1 // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. See the AUTHORS file for names of contributors.
4 
5 #ifndef STORAGE_LEVELDB_DB_FORMAT_H_
6 #define STORAGE_LEVELDB_DB_FORMAT_H_
7 
8 #include <stdio.h>
9 #include "leveldb_wt.h"
10 #include "util/coding.h"
11 #include "util/logging.h"
12 
13 namespace leveldb {
14 
15 // Grouping of constants.  We may want to make some of these
16 // parameters set via options.
17 namespace config {
18 static const int kNumLevels = 7;
19 
20 // Level-0 compaction is started when we hit this many files.
21 static const int kL0_CompactionTrigger = 4;
22 
23 // Soft limit on number of level-0 files.  We slow down writes at this point.
24 static const int kL0_SlowdownWritesTrigger = 8;
25 
26 // Maximum number of level-0 files.  We stop writes at this point.
27 static const int kL0_StopWritesTrigger = 12;
28 
29 // Maximum level to which a new compacted memtable is pushed if it
30 // does not create overlap.  We try to push to level 2 to avoid the
31 // relatively expensive level 0=>1 compactions and to avoid some
32 // expensive manifest file operations.  We do not push all the way to
33 // the largest level since that can generate a lot of wasted disk
34 // space if the same key space is being repeatedly overwritten.
35 static const int kMaxMemCompactLevel = 2;
36 
37 }  // namespace config
38 
39 class InternalKey;
40 
41 // Value types encoded as the last component of internal keys.
42 // DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
43 // data structures.
44 enum ValueType {
45   kTypeDeletion = 0x0,
46   kTypeValue = 0x1
47 #ifdef HAVE_ROCKSDB
48   ,kTypeMerge = 0x2,
49   // Following types are used only in write ahead logs. They are not used in
50   // memtables or sst files:
51   kTypeLogData = 0x3,
52   kTypeColumnFamilyDeletion = 0x4,
53   kTypeColumnFamilyValue = 0x5,
54   kTypeColumnFamilyMerge = 0x6,
55   kMaxValue = 0x7F
56 #endif
57 };
58 // kValueTypeForSeek defines the ValueType that should be passed when
59 // constructing a ParsedInternalKey object for seeking to a particular
60 // sequence number (since we sort sequence numbers in decreasing order
61 // and the value type is embedded as the low 8 bits in the sequence
62 // number in internal keys, we need to use the highest-numbered
63 // ValueType, not the lowest).
64 static const ValueType kValueTypeForSeek = kTypeValue;
65 
66 typedef uint64_t SequenceNumber;
67 
68 // We leave eight bits empty at the bottom so a type and sequence#
69 // can be packed together into 64-bits.
70 static const SequenceNumber kMaxSequenceNumber =
71     ((0x1ull << 56) - 1);
72 
73 struct ParsedInternalKey {
74   Slice user_key;
75   SequenceNumber sequence;
76   ValueType type;
77 
ParsedInternalKeyParsedInternalKey78   ParsedInternalKey() { }  // Intentionally left uninitialized (for speed)
ParsedInternalKeyParsedInternalKey79   ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
80       : user_key(u), sequence(seq), type(t) { }
81   std::string DebugString() const;
82 };
83 
84 // Return the length of the encoding of "key".
InternalKeyEncodingLength(const ParsedInternalKey & key)85 inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
86   return key.user_key.size() + 8;
87 }
88 
89 // Append the serialization of "key" to *result.
90 extern void AppendInternalKey(std::string* result,
91                               const ParsedInternalKey& key);
92 
93 // Attempt to parse an internal key from "internal_key".  On success,
94 // stores the parsed data in "*result", and returns true.
95 //
96 // On error, returns false, leaves "*result" in an undefined state.
97 extern bool ParseInternalKey(const Slice& internal_key,
98                              ParsedInternalKey* result);
99 
100 // Returns the user key portion of an internal key.
ExtractUserKey(const Slice & internal_key)101 inline Slice ExtractUserKey(const Slice& internal_key) {
102   assert(internal_key.size() >= 8);
103   return Slice(internal_key.data(), internal_key.size() - 8);
104 }
105 
ExtractValueType(const Slice & internal_key)106 inline ValueType ExtractValueType(const Slice& internal_key) {
107   assert(internal_key.size() >= 8);
108   const size_t n = internal_key.size();
109   uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
110   unsigned char c = num & 0xff;
111   return static_cast<ValueType>(c);
112 }
113 
114 // A comparator for internal keys that uses a specified comparator for
115 // the user key portion and breaks ties by decreasing sequence number.
116 class InternalKeyComparator : public Comparator {
117  private:
118   const Comparator* user_comparator_;
119  public:
InternalKeyComparator(const Comparator * c)120   explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c) { }
121   virtual const char* Name() const;
122   virtual int Compare(const Slice& a, const Slice& b) const;
123   virtual void FindShortestSeparator(
124       std::string* start,
125       const Slice& limit) const;
126   virtual void FindShortSuccessor(std::string* key) const;
127 
user_comparator()128   const Comparator* user_comparator() const { return user_comparator_; }
129 
130   int Compare(const InternalKey& a, const InternalKey& b) const;
131 };
132 
133 // Filter policy wrapper that converts from internal keys to user keys
134 class InternalFilterPolicy : public FilterPolicy {
135  private:
136   const FilterPolicy* const user_policy_;
137  public:
InternalFilterPolicy(const FilterPolicy * p)138   explicit InternalFilterPolicy(const FilterPolicy* p) : user_policy_(p) { }
139   virtual const char* Name() const;
140   virtual void CreateFilter(const Slice* keys, int n, std::string* dst) const;
141   virtual bool KeyMayMatch(const Slice& key, const Slice& filter) const;
142 };
143 
144 // Modules in this directory should keep internal keys wrapped inside
145 // the following class instead of plain strings so that we do not
146 // incorrectly use string comparisons instead of an InternalKeyComparator.
147 class InternalKey {
148  private:
149   std::string rep_;
150  public:
InternalKey()151   InternalKey() { }   // Leave rep_ as empty to indicate it is invalid
InternalKey(const Slice & user_key,SequenceNumber s,ValueType t)152   InternalKey(const Slice& user_key, SequenceNumber s, ValueType t) {
153     AppendInternalKey(&rep_, ParsedInternalKey(user_key, s, t));
154   }
155 
DecodeFrom(const Slice & s)156   void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
Encode()157   Slice Encode() const {
158     assert(!rep_.empty());
159     return rep_;
160   }
161 
user_key()162   Slice user_key() const { return ExtractUserKey(rep_); }
163 
SetFrom(const ParsedInternalKey & p)164   void SetFrom(const ParsedInternalKey& p) {
165     rep_.clear();
166     AppendInternalKey(&rep_, p);
167   }
168 
Clear()169   void Clear() { rep_.clear(); }
170 
171   std::string DebugString() const;
172 };
173 
Compare(const InternalKey & a,const InternalKey & b)174 inline int InternalKeyComparator::Compare(
175     const InternalKey& a, const InternalKey& b) const {
176   return Compare(a.Encode(), b.Encode());
177 }
178 
ParseInternalKey(const Slice & internal_key,ParsedInternalKey * result)179 inline bool ParseInternalKey(const Slice& internal_key,
180                              ParsedInternalKey* result) {
181   const size_t n = internal_key.size();
182   if (n < 8) return false;
183   uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
184   unsigned char c = num & 0xff;
185   result->sequence = num >> 8;
186   result->type = static_cast<ValueType>(c);
187   result->user_key = Slice(internal_key.data(), n - 8);
188   return (c <= static_cast<unsigned char>(kTypeValue));
189 }
190 
191 // A helper class useful for DBImpl::Get()
192 class LookupKey {
193  public:
194   // Initialize *this for looking up user_key at a snapshot with
195   // the specified sequence number.
196   LookupKey(const Slice& user_key, SequenceNumber sequence);
197 
198   ~LookupKey();
199 
200   // Return a key suitable for lookup in a MemTable.
memtable_key()201   Slice memtable_key() const { return Slice(start_, end_ - start_); }
202 
203   // Return an internal key (suitable for passing to an internal iterator)
internal_key()204   Slice internal_key() const { return Slice(kstart_, end_ - kstart_); }
205 
206   // Return the user key
user_key()207   Slice user_key() const { return Slice(kstart_, end_ - kstart_ - 8); }
208 
209  private:
210   // We construct a char array of the form:
211   //    klength  varint32               <-- start_
212   //    userkey  char[klength]          <-- kstart_
213   //    tag      uint64
214   //                                    <-- end_
215   // The array is a suitable MemTable key.
216   // The suffix starting with "userkey" can be used as an InternalKey.
217   const char* start_;
218   const char* kstart_;
219   const char* end_;
220   char space_[200];      // Avoid allocation for short keys
221 
222   // No copying allowed
223   LookupKey(const LookupKey&);
224   void operator=(const LookupKey&);
225 };
226 
~LookupKey()227 inline LookupKey::~LookupKey() {
228   if (start_ != space_) delete[] start_;
229 }
230 
231 }  // namespace leveldb
232 
233 #endif  // STORAGE_LEVELDB_DB_FORMAT_H_
234