1 /*
2   [auto_generated]
3   boost/numeric/odeint/stepper/bulirsch_stoer.hpp
4 
5   [begin_description]
6   Implementation of the Burlish-Stoer method. As described in
7   Ernst Hairer, Syvert Paul Norsett, Gerhard Wanner
8   Solving Ordinary Differential Equations I. Nonstiff Problems.
9   Springer Series in Comput. Mathematics, Vol. 8, Springer-Verlag 1987, Second revised edition 1993.
10   [end_description]
11 
12   Copyright 2011-2013 Mario Mulansky
13   Copyright 2011-2013 Karsten Ahnert
14   Copyright 2012 Christoph Koke
15 
16   Distributed under the Boost Software License, Version 1.0.
17   (See accompanying file LICENSE_1_0.txt or
18   copy at http://www.boost.org/LICENSE_1_0.txt)
19 */
20 
21 
22 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
23 #define BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
24 
25 
26 #include <iostream>
27 
28 #include <algorithm>
29 
30 #include <boost/config.hpp> // for min/max guidelines
31 
32 #include <boost/numeric/odeint/util/bind.hpp>
33 #include <boost/numeric/odeint/util/unwrap_reference.hpp>
34 
35 #include <boost/numeric/odeint/stepper/controlled_runge_kutta.hpp>
36 #include <boost/numeric/odeint/stepper/modified_midpoint.hpp>
37 #include <boost/numeric/odeint/stepper/controlled_step_result.hpp>
38 #include <boost/numeric/odeint/algebra/range_algebra.hpp>
39 #include <boost/numeric/odeint/algebra/default_operations.hpp>
40 #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
41 #include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
42 
43 #include <boost/numeric/odeint/util/state_wrapper.hpp>
44 #include <boost/numeric/odeint/util/is_resizeable.hpp>
45 #include <boost/numeric/odeint/util/resizer.hpp>
46 #include <boost/numeric/odeint/util/unit_helper.hpp>
47 #include <boost/numeric/odeint/util/detail/less_with_sign.hpp>
48 
49 namespace boost {
50 namespace numeric {
51 namespace odeint {
52 
53 template<
54     class State ,
55     class Value = double ,
56     class Deriv = State ,
57     class Time = Value ,
58     class Algebra = typename algebra_dispatcher< State >::algebra_type ,
59     class Operations = typename operations_dispatcher< State >::operations_type ,
60     class Resizer = initially_resizer
61     >
62 class bulirsch_stoer {
63 
64 public:
65 
66     typedef State state_type;
67     typedef Value value_type;
68     typedef Deriv deriv_type;
69     typedef Time time_type;
70     typedef Algebra algebra_type;
71     typedef Operations operations_type;
72     typedef Resizer resizer_type;
73 #ifndef DOXYGEN_SKIP
74     typedef state_wrapper< state_type > wrapped_state_type;
75     typedef state_wrapper< deriv_type > wrapped_deriv_type;
76     typedef controlled_stepper_tag stepper_category;
77 
78     typedef bulirsch_stoer< State , Value , Deriv , Time , Algebra , Operations , Resizer > controlled_error_bs_type;
79 
80     typedef typename inverse_time< time_type >::type inv_time_type;
81 
82     typedef std::vector< value_type > value_vector;
83     typedef std::vector< time_type > time_vector;
84     typedef std::vector< inv_time_type > inv_time_vector;  //should be 1/time_type for boost.units
85     typedef std::vector< value_vector > value_matrix;
86     typedef std::vector< size_t > int_vector;
87     typedef std::vector< wrapped_state_type > state_table_type;
88 #endif //DOXYGEN_SKIP
89     const static size_t m_k_max = 8;
90 
bulirsch_stoer(value_type eps_abs=1E-6,value_type eps_rel=1E-6,value_type factor_x=1.0,value_type factor_dxdt=1.0)91     bulirsch_stoer(
92         value_type eps_abs = 1E-6 , value_type eps_rel = 1E-6 ,
93         value_type factor_x = 1.0 , value_type factor_dxdt = 1.0 )
94         : m_error_checker( eps_abs , eps_rel , factor_x, factor_dxdt ) , m_midpoint() ,
95           m_last_step_rejected( false ) , m_first( true ) ,
96           m_interval_sequence( m_k_max+1 ) ,
97           m_coeff( m_k_max+1 ) ,
98           m_cost( m_k_max+1 ) ,
99           m_table( m_k_max ) ,
100           STEPFAC1( 0.65 ) , STEPFAC2( 0.94 ) , STEPFAC3( 0.02 ) , STEPFAC4( 4.0 ) , KFAC1( 0.8 ) , KFAC2( 0.9 )
101     {
102         BOOST_USING_STD_MIN();
103         BOOST_USING_STD_MAX();
104         /* initialize sequence of stage numbers and work */
105         for( unsigned short i = 0; i < m_k_max+1; i++ )
106         {
107             m_interval_sequence[i] = 2 * (i+1);
108             if( i == 0 )
109                 m_cost[i] = m_interval_sequence[i];
110             else
111                 m_cost[i] = m_cost[i-1] + m_interval_sequence[i];
112             m_coeff[i].resize(i);
113             for( size_t k = 0 ; k < i ; ++k  )
114             {
115                 const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] );
116                 m_coeff[i][k] = 1.0 / ( r*r - static_cast< value_type >( 1.0 ) ); // coefficients for extrapolation
117             }
118 
119             // crude estimate of optimal order
120 
121             m_current_k_opt = 4;
122             /* no calculation because log10 might not exist for value_type!
123             const value_type logfact( -log10( max BOOST_PREVENT_MACRO_SUBSTITUTION( eps_rel , static_cast< value_type >(1.0E-12) ) ) * 0.6 + 0.5 );
124             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( 1 ) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( m_k_max-1 ) , logfact ));
125             */
126         }
127 
128     }
129 
130 
131     /*
132      * Version 1 : try_step( sys , x , t , dt )
133      *
134      * The overloads are needed to solve the forwarding problem
135      */
136     template< class System , class StateInOut >
try_step(System system,StateInOut & x,time_type & t,time_type & dt)137     controlled_step_result try_step( System system , StateInOut &x , time_type &t , time_type &dt )
138     {
139         return try_step_v1( system , x , t, dt );
140     }
141 
142     /**
143      * \brief Second version to solve the forwarding problem, can be used with Boost.Range as StateInOut.
144      */
145     template< class System , class StateInOut >
try_step(System system,const StateInOut & x,time_type & t,time_type & dt)146     controlled_step_result try_step( System system , const StateInOut &x , time_type &t , time_type &dt )
147     {
148         return try_step_v1( system , x , t, dt );
149     }
150 
151     /*
152      * Version 2 : try_step( sys , x , dxdt , t , dt )
153      *
154      * this version does not solve the forwarding problem, boost.range can not be used
155      */
156     template< class System , class StateInOut , class DerivIn >
try_step(System system,StateInOut & x,const DerivIn & dxdt,time_type & t,time_type & dt)157     controlled_step_result try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt )
158     {
159         m_xnew_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_xnew< StateInOut > , detail::ref( *this ) , detail::_1 ) );
160         controlled_step_result res = try_step( system , x , dxdt , t , m_xnew.m_v , dt );
161         if( res == success )
162         {
163             boost::numeric::odeint::copy( m_xnew.m_v , x );
164         }
165         return res;
166     }
167 
168     /*
169      * Version 3 : try_step( sys , in , t , out , dt )
170      *
171      * this version does not solve the forwarding problem, boost.range can not be used
172      */
173     template< class System , class StateIn , class StateOut >
174     typename boost::disable_if< boost::is_same< StateIn , time_type > , controlled_step_result >::type
try_step(System system,const StateIn & in,time_type & t,StateOut & out,time_type & dt)175     try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt )
176     {
177         typename odeint::unwrap_reference< System >::type &sys = system;
178         m_dxdt_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateIn > , detail::ref( *this ) , detail::_1 ) );
179         sys( in , m_dxdt.m_v , t );
180         return try_step( system , in , m_dxdt.m_v , t , out , dt );
181     }
182 
183 
184     /*
185      * Full version : try_step( sys , in , dxdt_in , t , out , dt )
186      *
187      * contains the actual implementation
188      */
189     template< class System , class StateIn , class DerivIn , class StateOut >
try_step(System system,const StateIn & in,const DerivIn & dxdt,time_type & t,StateOut & out,time_type & dt)190     controlled_step_result try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt )
191     {
192         BOOST_USING_STD_MIN();
193         BOOST_USING_STD_MAX();
194 
195         static const value_type val1( 1.0 );
196 
197         if( m_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) )
198         {
199             reset(); // system resized -> reset
200         }
201 
202         if( dt != m_dt_last )
203         {
204             reset(); // step size changed from outside -> reset
205         }
206 
207         bool reject( true );
208 
209         time_vector h_opt( m_k_max+1 );
210         inv_time_vector work( m_k_max+1 );
211 
212         time_type new_h = dt;
213 
214         /* m_current_k_opt is the estimated current optimal stage number */
215         for( size_t k = 0 ; k <= m_current_k_opt+1 ; k++ )
216         {
217             /* the stage counts are stored in m_interval_sequence */
218             m_midpoint.set_steps( m_interval_sequence[k] );
219             if( k == 0 )
220             {
221                 m_midpoint.do_step( system , in , dxdt , t , out , dt );
222                 /* the first step, nothing more to do */
223             }
224             else
225             {
226                 m_midpoint.do_step( system , in , dxdt , t , m_table[k-1].m_v , dt );
227                 extrapolate( k , m_table , m_coeff , out );
228                 // get error estimate
229                 m_algebra.for_each3( m_err.m_v , out , m_table[0].m_v ,
230                                      typename operations_type::template scale_sum2< value_type , value_type >( val1 , -val1 ) );
231                 const value_type error = m_error_checker.error( m_algebra , in , dxdt , m_err.m_v , dt );
232                 h_opt[k] = calc_h_opt( dt , error , k );
233                 work[k] = static_cast<value_type>( m_cost[k] ) / h_opt[k];
234 
235                 if( (k == m_current_k_opt-1) || m_first )
236                 { // convergence before k_opt ?
237                     if( error < 1.0 )
238                     {
239                         //convergence
240                         reject = false;
241                         if( (work[k] < KFAC2*work[k-1]) || (m_current_k_opt <= 2) )
242                         {
243                             // leave order as is (except we were in first round)
244                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k)+1 ) );
245                             new_h = h_opt[k];
246                             new_h *= static_cast<value_type>( m_cost[k+1] ) / static_cast<value_type>( m_cost[k] );
247                         } else {
248                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k) ) );
249                             new_h = h_opt[k];
250                         }
251                         break;
252                     }
253                     else if( should_reject( error , k ) && !m_first )
254                     {
255                         reject = true;
256                         new_h = h_opt[k];
257                         break;
258                     }
259                 }
260                 if( k == m_current_k_opt )
261                 { // convergence at k_opt ?
262                     if( error < 1.0 )
263                     {
264                         //convergence
265                         reject = false;
266                         if( (work[k-1] < KFAC2*work[k]) )
267                         {
268                             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
269                             new_h = h_opt[m_current_k_opt];
270                         }
271                         else if( (work[k] < KFAC2*work[k-1]) && !m_last_step_rejected )
272                         {
273                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max-1) , static_cast<int>(m_current_k_opt)+1 );
274                             new_h = h_opt[k];
275                             new_h *= m_cost[m_current_k_opt]/m_cost[k];
276                         } else
277                             new_h = h_opt[m_current_k_opt];
278                         break;
279                     }
280                     else if( should_reject( error , k ) )
281                     {
282                         reject = true;
283                         new_h = h_opt[m_current_k_opt];
284                         break;
285                     }
286                 }
287                 if( k == m_current_k_opt+1 )
288                 { // convergence at k_opt+1 ?
289                     if( error < 1.0 )
290                     {   //convergence
291                         reject = false;
292                         if( work[k-2] < KFAC2*work[k-1] )
293                             m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
294                         if( (work[k] < KFAC2*work[m_current_k_opt]) && !m_last_step_rejected )
295                             m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(k) );
296                         new_h = h_opt[m_current_k_opt];
297                     } else
298                     {
299                         reject = true;
300                         new_h = h_opt[m_current_k_opt];
301                     }
302                     break;
303                 }
304             }
305         }
306 
307         if( !reject )
308         {
309             t += dt;
310         }
311 
312         if( !m_last_step_rejected || boost::numeric::odeint::detail::less_with_sign(new_h, dt, dt) )
313         {
314             m_dt_last = new_h;
315             dt = new_h;
316         }
317 
318         m_last_step_rejected = reject;
319         m_first = false;
320 
321         if( reject )
322             return fail;
323         else
324             return success;
325     }
326 
327     /** \brief Resets the internal state of the stepper */
reset()328     void reset()
329     {
330         m_first = true;
331         m_last_step_rejected = false;
332     }
333 
334 
335     /* Resizer methods */
336 
337     template< class StateIn >
adjust_size(const StateIn & x)338     void adjust_size( const StateIn &x )
339     {
340         resize_m_dxdt( x );
341         resize_m_xnew( x );
342         resize_impl( x );
343         m_midpoint.adjust_size( x );
344     }
345 
346 
347 private:
348 
349     template< class StateIn >
resize_m_dxdt(const StateIn & x)350     bool resize_m_dxdt( const StateIn &x )
351     {
352         return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
353     }
354 
355     template< class StateIn >
resize_m_xnew(const StateIn & x)356     bool resize_m_xnew( const StateIn &x )
357     {
358         return adjust_size_by_resizeability( m_xnew , x , typename is_resizeable<state_type>::type() );
359     }
360 
361     template< class StateIn >
resize_impl(const StateIn & x)362     bool resize_impl( const StateIn &x )
363     {
364         bool resized( false );
365         for( size_t i = 0 ; i < m_k_max ; ++i )
366             resized |= adjust_size_by_resizeability( m_table[i] , x , typename is_resizeable<state_type>::type() );
367         resized |= adjust_size_by_resizeability( m_err , x , typename is_resizeable<state_type>::type() );
368         return resized;
369     }
370 
371 
372     template< class System , class StateInOut >
try_step_v1(System system,StateInOut & x,time_type & t,time_type & dt)373     controlled_step_result try_step_v1( System system , StateInOut &x , time_type &t , time_type &dt )
374     {
375         typename odeint::unwrap_reference< System >::type &sys = system;
376         m_dxdt_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateInOut > , detail::ref( *this ) , detail::_1 ) );
377         sys( x , m_dxdt.m_v ,t );
378         return try_step( system , x , m_dxdt.m_v , t , dt );
379     }
380 
381 
382     template< class StateInOut >
extrapolate(size_t k,state_table_type & table,const value_matrix & coeff,StateInOut & xest)383     void extrapolate( size_t k , state_table_type &table , const value_matrix &coeff , StateInOut &xest )
384     /* polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
385        uses the obtained intermediate results to extrapolate to dt->0
386     */
387     {
388         static const value_type val1 = static_cast< value_type >( 1.0 );
389         for( int j=k-1 ; j>0 ; --j )
390         {
391             m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v ,
392                                  typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][j] , -coeff[k][j] ) );
393         }
394         m_algebra.for_each3( xest , table[0].m_v , xest ,
395                              typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][0] , -coeff[k][0]) );
396     }
397 
calc_h_opt(time_type h,value_type error,size_t k) const398     time_type calc_h_opt( time_type h , value_type error , size_t k ) const
399     /* calculates the optimal step size for a given error and stage number */
400     {
401         BOOST_USING_STD_MIN();
402         BOOST_USING_STD_MAX();
403         using std::pow;
404         value_type expo( 1.0/(2*k+1) );
405         value_type facmin = pow BOOST_PREVENT_MACRO_SUBSTITUTION( STEPFAC3 , expo );
406         value_type fac;
407         if (error == 0.0)
408             fac=1.0/facmin;
409         else
410         {
411             fac = STEPFAC2 / pow BOOST_PREVENT_MACRO_SUBSTITUTION( error / STEPFAC1 , expo );
412             fac = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(facmin/STEPFAC4) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(1.0/facmin) , fac ) );
413         }
414         return h*fac;
415     }
416 
set_k_opt(size_t k,const inv_time_vector & work,const time_vector & h_opt,time_type & dt)417     controlled_step_result set_k_opt( size_t k , const inv_time_vector &work , const time_vector &h_opt , time_type &dt )
418     /* calculates the optimal stage number */
419     {
420         if( k == 1 )
421         {
422             m_current_k_opt = 2;
423             return success;
424         }
425         if( (work[k-1] < KFAC1*work[k]) || (k == m_k_max) )
426         {   // order decrease
427             m_current_k_opt = k-1;
428             dt = h_opt[ m_current_k_opt ];
429             return success;
430         }
431         else if( (work[k] < KFAC2*work[k-1]) || m_last_step_rejected || (k == m_k_max-1) )
432         {   // same order - also do this if last step got rejected
433             m_current_k_opt = k;
434             dt = h_opt[ m_current_k_opt ];
435             return success;
436         }
437         else
438         {   // order increase - only if last step was not rejected
439             m_current_k_opt = k+1;
440             dt = h_opt[ m_current_k_opt-1 ] * m_cost[ m_current_k_opt ] / m_cost[ m_current_k_opt-1 ] ;
441             return success;
442         }
443     }
444 
in_convergence_window(size_t k) const445     bool in_convergence_window( size_t k ) const
446     {
447         if( (k == m_current_k_opt-1) && !m_last_step_rejected )
448             return true; // decrease stepsize only if last step was not rejected
449         return ( (k == m_current_k_opt) || (k == m_current_k_opt+1) );
450     }
451 
should_reject(value_type error,size_t k) const452     bool should_reject( value_type error , size_t k ) const
453     {
454         if( k == m_current_k_opt-1 )
455         {
456             const value_type d = m_interval_sequence[m_current_k_opt] * m_interval_sequence[m_current_k_opt+1] /
457                 (m_interval_sequence[0]*m_interval_sequence[0]);
458             //step will fail, criterion 17.3.17 in NR
459             return ( error > d*d );
460         }
461         else if( k == m_current_k_opt )
462         {
463             const value_type d = m_interval_sequence[m_current_k_opt] / m_interval_sequence[0];
464             return ( error > d*d );
465         } else
466             return error > 1.0;
467     }
468 
469     default_error_checker< value_type, algebra_type , operations_type > m_error_checker;
470     modified_midpoint< state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > m_midpoint;
471 
472     bool m_last_step_rejected;
473     bool m_first;
474 
475     time_type m_dt_last;
476     time_type m_t_last;
477 
478     size_t m_current_k_opt;
479 
480     algebra_type m_algebra;
481 
482     resizer_type m_dxdt_resizer;
483     resizer_type m_xnew_resizer;
484     resizer_type m_resizer;
485 
486     wrapped_state_type m_xnew;
487     wrapped_state_type m_err;
488     wrapped_deriv_type m_dxdt;
489 
490     int_vector m_interval_sequence; // stores the successive interval counts
491     value_matrix m_coeff;
492     int_vector m_cost; // costs for interval count
493 
494     state_table_type m_table; // sequence of states for extrapolation
495 
496     const value_type STEPFAC1 , STEPFAC2 , STEPFAC3 , STEPFAC4 , KFAC1 , KFAC2;
497 };
498 
499 
500 /******** DOXYGEN ********/
501 /**
502  * \class bulirsch_stoer
503  * \brief The Bulirsch-Stoer algorithm.
504  *
505  * The Bulirsch-Stoer is a controlled stepper that adjusts both step size
506  * and order of the method. The algorithm uses the modified midpoint and
507  * a polynomial extrapolation compute the solution.
508  *
509  * \tparam State The state type.
510  * \tparam Value The value type.
511  * \tparam Deriv The type representing the time derivative of the state.
512  * \tparam Time The time representing the independent variable - the time.
513  * \tparam Algebra The algebra type.
514  * \tparam Operations The operations type.
515  * \tparam Resizer The resizer policy type.
516  */
517 
518     /**
519      * \fn bulirsch_stoer::bulirsch_stoer( value_type eps_abs , value_type eps_rel , value_type factor_x , value_type factor_dxdt )
520      * \brief Constructs the bulirsch_stoer class, including initialization of
521      * the error bounds.
522      *
523      * \param eps_abs Absolute tolerance level.
524      * \param eps_rel Relative tolerance level.
525      * \param factor_x Factor for the weight of the state.
526      * \param factor_dxdt Factor for the weight of the derivative.
527      */
528 
529     /**
530      * \fn bulirsch_stoer::try_step( System system , StateInOut &x , time_type &t , time_type &dt )
531      * \brief Tries to perform one step.
532      *
533      * This method tries to do one step with step size dt. If the error estimate
534      * is to large, the step is rejected and the method returns fail and the
535      * step size dt is reduced. If the error estimate is acceptably small, the
536      * step is performed, success is returned and dt might be increased to make
537      * the steps as large as possible. This method also updates t if a step is
538      * performed. Also, the internal order of the stepper is adjusted if required.
539      *
540      * \param system The system function to solve, hence the r.h.s. of the ODE.
541      * It must fulfill the Simple System concept.
542      * \param x The state of the ODE which should be solved. Overwritten if
543      * the step is successful.
544      * \param t The value of the time. Updated if the step is successful.
545      * \param dt The step size. Updated.
546      * \return success if the step was accepted, fail otherwise.
547      */
548 
549     /**
550      * \fn bulirsch_stoer::try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt )
551      * \brief Tries to perform one step.
552      *
553      * This method tries to do one step with step size dt. If the error estimate
554      * is to large, the step is rejected and the method returns fail and the
555      * step size dt is reduced. If the error estimate is acceptably small, the
556      * step is performed, success is returned and dt might be increased to make
557      * the steps as large as possible. This method also updates t if a step is
558      * performed. Also, the internal order of the stepper is adjusted if required.
559      *
560      * \param system The system function to solve, hence the r.h.s. of the ODE.
561      * It must fulfill the Simple System concept.
562      * \param x The state of the ODE which should be solved. Overwritten if
563      * the step is successful.
564      * \param dxdt The derivative of state.
565      * \param t The value of the time. Updated if the step is successful.
566      * \param dt The step size. Updated.
567      * \return success if the step was accepted, fail otherwise.
568      */
569 
570     /**
571      * \fn bulirsch_stoer::try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt )
572      * \brief Tries to perform one step.
573      *
574      * \note This method is disabled if state_type=time_type to avoid ambiguity.
575      *
576      * This method tries to do one step with step size dt. If the error estimate
577      * is to large, the step is rejected and the method returns fail and the
578      * step size dt is reduced. If the error estimate is acceptably small, the
579      * step is performed, success is returned and dt might be increased to make
580      * the steps as large as possible. This method also updates t if a step is
581      * performed. Also, the internal order of the stepper is adjusted if required.
582      *
583      * \param system The system function to solve, hence the r.h.s. of the ODE.
584      * It must fulfill the Simple System concept.
585      * \param in The state of the ODE which should be solved.
586      * \param t The value of the time. Updated if the step is successful.
587      * \param out Used to store the result of the step.
588      * \param dt The step size. Updated.
589      * \return success if the step was accepted, fail otherwise.
590      */
591 
592 
593     /**
594      * \fn bulirsch_stoer::try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt )
595      * \brief Tries to perform one step.
596      *
597      * This method tries to do one step with step size dt. If the error estimate
598      * is to large, the step is rejected and the method returns fail and the
599      * step size dt is reduced. If the error estimate is acceptably small, the
600      * step is performed, success is returned and dt might be increased to make
601      * the steps as large as possible. This method also updates t if a step is
602      * performed. Also, the internal order of the stepper is adjusted if required.
603      *
604      * \param system The system function to solve, hence the r.h.s. of the ODE.
605      * It must fulfill the Simple System concept.
606      * \param in The state of the ODE which should be solved.
607      * \param dxdt The derivative of state.
608      * \param t The value of the time. Updated if the step is successful.
609      * \param out Used to store the result of the step.
610      * \param dt The step size. Updated.
611      * \return success if the step was accepted, fail otherwise.
612      */
613 
614 
615     /**
616      * \fn bulirsch_stoer::adjust_size( const StateIn &x )
617      * \brief Adjust the size of all temporaries in the stepper manually.
618      * \param x A state from which the size of the temporaries to be resized is deduced.
619      */
620 
621 }
622 }
623 }
624 
625 #endif // BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
626