1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 //     * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 //     * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following disclaimer
11 // in the documentation and/or other materials provided with the
12 // distribution.
13 //     * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived from
15 // this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Various stubs for the open-source version of Snappy.
30 
31 #ifndef UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
32 #define UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
33 
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37 
38 #include <string>
39 
40 #include <assert.h>
41 #include <stdlib.h>
42 #include <string.h>
43 
44 #ifdef HAVE_SYS_MMAN_H
45 #include <sys/mman.h>
46 #endif
47 
48 #include "snappy-stubs-public.h"
49 
50 #if defined(__x86_64__)
51 
52 // Enable 64-bit optimized versions of some routines.
53 #define ARCH_K8 1
54 
55 #endif
56 
57 // Needed by OS X, among others.
58 #ifndef MAP_ANONYMOUS
59 #define MAP_ANONYMOUS MAP_ANON
60 #endif
61 
62 // Pull in std::min, std::ostream, and the likes. This is safe because this
63 // header file is never used from any public header files.
64 using namespace std;
65 
66 // The size of an array, if known at compile-time.
67 // Will give unexpected results if used on a pointer.
68 // We undefine it first, since some compilers already have a definition.
69 #ifdef ARRAYSIZE
70 #undef ARRAYSIZE
71 #endif
72 #define ARRAYSIZE(a) (sizeof(a) / sizeof(*(a)))
73 
74 // Static prediction hints.
75 #ifdef HAVE_BUILTIN_EXPECT
76 #define PREDICT_FALSE(x) (__builtin_expect(x, 0))
77 #define PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
78 #else
79 #define PREDICT_FALSE(x) x
80 #define PREDICT_TRUE(x) x
81 #endif
82 
83 // This is only used for recomputing the tag byte table used during
84 // decompression; for simplicity we just remove it from the open-source
85 // version (anyone who wants to regenerate it can just do the call
86 // themselves within main()).
87 #define DEFINE_bool(flag_name, default_value, description) \
88   bool FLAGS_ ## flag_name = default_value
89 #define DECLARE_bool(flag_name) \
90   extern bool FLAGS_ ## flag_name
91 
92 namespace snappy {
93 
94 static const uint32 kuint32max = static_cast<uint32>(0xFFFFFFFF);
95 static const int64 kint64max = static_cast<int64>(0x7FFFFFFFFFFFFFFFLL);
96 
97 // Potentially unaligned loads and stores.
98 
99 // x86 and PowerPC can simply do these loads and stores native.
100 
101 #if defined(__i386__) || defined(__x86_64__) || defined(__powerpc__)
102 
103 #define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p))
104 #define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p))
105 #define UNALIGNED_LOAD64(_p) (*reinterpret_cast<const uint64 *>(_p))
106 
107 #define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val))
108 #define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val))
109 #define UNALIGNED_STORE64(_p, _val) (*reinterpret_cast<uint64 *>(_p) = (_val))
110 
111 // ARMv7 and newer support native unaligned accesses, but only of 16-bit
112 // and 32-bit values (not 64-bit); older versions either raise a fatal signal,
113 // do an unaligned read and rotate the words around a bit, or do the reads very
114 // slowly (trip through kernel mode). There's no simple #define that says just
115 // “ARMv7 or higher”, so we have to filter away all ARMv5 and ARMv6
116 // sub-architectures.
117 //
118 // This is a mess, but there's not much we can do about it.
119 
120 #elif defined(__arm__) && \
121       !defined(__ARM_ARCH_4__) && \
122       !defined(__ARM_ARCH_4T__) && \
123       !defined(__ARM_ARCH_5__) && \
124       !defined(__ARM_ARCH_5T__) && \
125       !defined(__ARM_ARCH_5TE__) && \
126       !defined(__ARM_ARCH_5TEJ__) && \
127       !defined(__ARM_ARCH_6__) && \
128       !defined(__ARM_ARCH_6J__) && \
129       !defined(__ARM_ARCH_6K__) && \
130       !defined(__ARM_ARCH_6Z__) && \
131       !defined(__ARM_ARCH_6ZK__) && \
132       !defined(__ARM_ARCH_6T2__)
133 
134 #define UNALIGNED_LOAD16(_p) (*reinterpret_cast<const uint16 *>(_p))
135 #define UNALIGNED_LOAD32(_p) (*reinterpret_cast<const uint32 *>(_p))
136 
137 #define UNALIGNED_STORE16(_p, _val) (*reinterpret_cast<uint16 *>(_p) = (_val))
138 #define UNALIGNED_STORE32(_p, _val) (*reinterpret_cast<uint32 *>(_p) = (_val))
139 
140 // TODO(user): NEON supports unaligned 64-bit loads and stores.
141 // See if that would be more efficient on platforms supporting it,
142 // at least for copies.
143 
UNALIGNED_LOAD64(const void * p)144 inline uint64 UNALIGNED_LOAD64(const void *p) {
145   uint64 t;
146   memcpy(&t, p, sizeof t);
147   return t;
148 }
149 
UNALIGNED_STORE64(void * p,uint64 v)150 inline void UNALIGNED_STORE64(void *p, uint64 v) {
151   memcpy(p, &v, sizeof v);
152 }
153 
154 #else
155 
156 // These functions are provided for architectures that don't support
157 // unaligned loads and stores.
158 
UNALIGNED_LOAD16(const void * p)159 inline uint16 UNALIGNED_LOAD16(const void *p) {
160   uint16 t;
161   memcpy(&t, p, sizeof t);
162   return t;
163 }
164 
UNALIGNED_LOAD32(const void * p)165 inline uint32 UNALIGNED_LOAD32(const void *p) {
166   uint32 t;
167   memcpy(&t, p, sizeof t);
168   return t;
169 }
170 
UNALIGNED_LOAD64(const void * p)171 inline uint64 UNALIGNED_LOAD64(const void *p) {
172   uint64 t;
173   memcpy(&t, p, sizeof t);
174   return t;
175 }
176 
UNALIGNED_STORE16(void * p,uint16 v)177 inline void UNALIGNED_STORE16(void *p, uint16 v) {
178   memcpy(p, &v, sizeof v);
179 }
180 
UNALIGNED_STORE32(void * p,uint32 v)181 inline void UNALIGNED_STORE32(void *p, uint32 v) {
182   memcpy(p, &v, sizeof v);
183 }
184 
UNALIGNED_STORE64(void * p,uint64 v)185 inline void UNALIGNED_STORE64(void *p, uint64 v) {
186   memcpy(p, &v, sizeof v);
187 }
188 
189 #endif
190 
191 // This can be more efficient than UNALIGNED_LOAD64 + UNALIGNED_STORE64
192 // on some platforms, in particular ARM.
UnalignedCopy64(const void * src,void * dst)193 inline void UnalignedCopy64(const void *src, void *dst) {
194   if (sizeof(void *) == 8) {
195     UNALIGNED_STORE64(dst, UNALIGNED_LOAD64(src));
196   } else {
197     const char *src_char = reinterpret_cast<const char *>(src);
198     char *dst_char = reinterpret_cast<char *>(dst);
199 
200     UNALIGNED_STORE32(dst_char, UNALIGNED_LOAD32(src_char));
201     UNALIGNED_STORE32(dst_char + 4, UNALIGNED_LOAD32(src_char + 4));
202   }
203 }
204 
205 // The following guarantees declaration of the byte swap functions.
206 #ifdef WORDS_BIGENDIAN
207 
208 #ifdef HAVE_SYS_BYTEORDER_H
209 #include <sys/byteorder.h>
210 #endif
211 
212 #ifdef HAVE_SYS_ENDIAN_H
213 #include <sys/endian.h>
214 #endif
215 
216 #ifdef _MSC_VER
217 #include <stdlib.h>
218 #define bswap_16(x) _byteswap_ushort(x)
219 #define bswap_32(x) _byteswap_ulong(x)
220 #define bswap_64(x) _byteswap_uint64(x)
221 
222 #elif defined(__APPLE__)
223 // Mac OS X / Darwin features
224 #include <libkern/OSByteOrder.h>
225 #define bswap_16(x) OSSwapInt16(x)
226 #define bswap_32(x) OSSwapInt32(x)
227 #define bswap_64(x) OSSwapInt64(x)
228 
229 #elif defined(HAVE_BYTESWAP_H)
230 #include <byteswap.h>
231 
232 #elif defined(bswap32)
233 // FreeBSD defines bswap{16,32,64} in <sys/endian.h> (already #included).
234 #define bswap_16(x) bswap16(x)
235 #define bswap_32(x) bswap32(x)
236 #define bswap_64(x) bswap64(x)
237 
238 #elif defined(BSWAP_64)
239 // Solaris 10 defines BSWAP_{16,32,64} in <sys/byteorder.h> (already #included).
240 #define bswap_16(x) BSWAP_16(x)
241 #define bswap_32(x) BSWAP_32(x)
242 #define bswap_64(x) BSWAP_64(x)
243 
244 #else
245 
bswap_16(uint16 x)246 inline uint16 bswap_16(uint16 x) {
247   return (x << 8) | (x >> 8);
248 }
249 
bswap_32(uint32 x)250 inline uint32 bswap_32(uint32 x) {
251   x = ((x & 0xff00ff00UL) >> 8) | ((x & 0x00ff00ffUL) << 8);
252   return (x >> 16) | (x << 16);
253 }
254 
bswap_64(uint64 x)255 inline uint64 bswap_64(uint64 x) {
256   x = ((x & 0xff00ff00ff00ff00ULL) >> 8) | ((x & 0x00ff00ff00ff00ffULL) << 8);
257   x = ((x & 0xffff0000ffff0000ULL) >> 16) | ((x & 0x0000ffff0000ffffULL) << 16);
258   return (x >> 32) | (x << 32);
259 }
260 
261 #endif
262 
263 #endif  // WORDS_BIGENDIAN
264 
265 // Convert to little-endian storage, opposite of network format.
266 // Convert x from host to little endian: x = LittleEndian.FromHost(x);
267 // convert x from little endian to host: x = LittleEndian.ToHost(x);
268 //
269 //  Store values into unaligned memory converting to little endian order:
270 //    LittleEndian.Store16(p, x);
271 //
272 //  Load unaligned values stored in little endian converting to host order:
273 //    x = LittleEndian.Load16(p);
274 class LittleEndian {
275  public:
276   // Conversion functions.
277 #ifdef WORDS_BIGENDIAN
278 
FromHost16(uint16 x)279   static uint16 FromHost16(uint16 x) { return bswap_16(x); }
ToHost16(uint16 x)280   static uint16 ToHost16(uint16 x) { return bswap_16(x); }
281 
FromHost32(uint32 x)282   static uint32 FromHost32(uint32 x) { return bswap_32(x); }
ToHost32(uint32 x)283   static uint32 ToHost32(uint32 x) { return bswap_32(x); }
284 
IsLittleEndian()285   static bool IsLittleEndian() { return false; }
286 
287 #else  // !defined(WORDS_BIGENDIAN)
288 
289   static uint16 FromHost16(uint16 x) { return x; }
290   static uint16 ToHost16(uint16 x) { return x; }
291 
292   static uint32 FromHost32(uint32 x) { return x; }
293   static uint32 ToHost32(uint32 x) { return x; }
294 
295   static bool IsLittleEndian() { return true; }
296 
297 #endif  // !defined(WORDS_BIGENDIAN)
298 
299   // Functions to do unaligned loads and stores in little-endian order.
Load16(const void * p)300   static uint16 Load16(const void *p) {
301     return ToHost16(UNALIGNED_LOAD16(p));
302   }
303 
Store16(void * p,uint16 v)304   static void Store16(void *p, uint16 v) {
305     UNALIGNED_STORE16(p, FromHost16(v));
306   }
307 
Load32(const void * p)308   static uint32 Load32(const void *p) {
309     return ToHost32(UNALIGNED_LOAD32(p));
310   }
311 
Store32(void * p,uint32 v)312   static void Store32(void *p, uint32 v) {
313     UNALIGNED_STORE32(p, FromHost32(v));
314   }
315 };
316 
317 // Some bit-manipulation functions.
318 class Bits {
319  public:
320   // Return floor(log2(n)) for positive integer n.  Returns -1 iff n == 0.
321   static int Log2Floor(uint32 n);
322 
323   // Return the first set least / most significant bit, 0-indexed.  Returns an
324   // undefined value if n == 0.  FindLSBSetNonZero() is similar to ffs() except
325   // that it's 0-indexed.
326   static int FindLSBSetNonZero(uint32 n);
327   static int FindLSBSetNonZero64(uint64 n);
328 
329  private:
330   DISALLOW_COPY_AND_ASSIGN(Bits);
331 };
332 
333 #ifdef HAVE_BUILTIN_CTZ
334 
Log2Floor(uint32 n)335 inline int Bits::Log2Floor(uint32 n) {
336   return n == 0 ? -1 : 31 ^ __builtin_clz(n);
337 }
338 
FindLSBSetNonZero(uint32 n)339 inline int Bits::FindLSBSetNonZero(uint32 n) {
340   return __builtin_ctz(n);
341 }
342 
FindLSBSetNonZero64(uint64 n)343 inline int Bits::FindLSBSetNonZero64(uint64 n) {
344   return __builtin_ctzll(n);
345 }
346 
347 #else  // Portable versions.
348 
Log2Floor(uint32 n)349 inline int Bits::Log2Floor(uint32 n) {
350   if (n == 0)
351     return -1;
352   int log = 0;
353   uint32 value = n;
354   for (int i = 4; i >= 0; --i) {
355     int shift = (1 << i);
356     uint32 x = value >> shift;
357     if (x != 0) {
358       value = x;
359       log += shift;
360     }
361   }
362   assert(value == 1);
363   return log;
364 }
365 
FindLSBSetNonZero(uint32 n)366 inline int Bits::FindLSBSetNonZero(uint32 n) {
367   int rc = 31;
368   for (int i = 4, shift = 1 << 4; i >= 0; --i) {
369     const uint32 x = n << shift;
370     if (x != 0) {
371       n = x;
372       rc -= shift;
373     }
374     shift >>= 1;
375   }
376   return rc;
377 }
378 
379 // FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero().
FindLSBSetNonZero64(uint64 n)380 inline int Bits::FindLSBSetNonZero64(uint64 n) {
381   const uint32 bottombits = static_cast<uint32>(n);
382   if (bottombits == 0) {
383     // Bottom bits are zero, so scan in top bits
384     return 32 + FindLSBSetNonZero(static_cast<uint32>(n >> 32));
385   } else {
386     return FindLSBSetNonZero(bottombits);
387   }
388 }
389 
390 #endif  // End portable versions.
391 
392 // Variable-length integer encoding.
393 class Varint {
394  public:
395   // Maximum lengths of varint encoding of uint32.
396   static const int kMax32 = 5;
397 
398   // Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
399   // Never reads a character at or beyond limit.  If a valid/terminated varint32
400   // was found in the range, stores it in *OUTPUT and returns a pointer just
401   // past the last byte of the varint32. Else returns NULL.  On success,
402   // "result <= limit".
403   static const char* Parse32WithLimit(const char* ptr, const char* limit,
404                                       uint32* OUTPUT);
405 
406   // REQUIRES   "ptr" points to a buffer of length sufficient to hold "v".
407   // EFFECTS    Encodes "v" into "ptr" and returns a pointer to the
408   //            byte just past the last encoded byte.
409   static char* Encode32(char* ptr, uint32 v);
410 
411   // EFFECTS    Appends the varint representation of "value" to "*s".
412   static void Append32(string* s, uint32 value);
413 };
414 
Parse32WithLimit(const char * p,const char * l,uint32 * OUTPUT)415 inline const char* Varint::Parse32WithLimit(const char* p,
416                                             const char* l,
417                                             uint32* OUTPUT) {
418   const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p);
419   const unsigned char* limit = reinterpret_cast<const unsigned char*>(l);
420   uint32 b, result;
421   if (ptr >= limit) return NULL;
422   b = *(ptr++); result = b & 127;          if (b < 128) goto done;
423   if (ptr >= limit) return NULL;
424   b = *(ptr++); result |= (b & 127) <<  7; if (b < 128) goto done;
425   if (ptr >= limit) return NULL;
426   b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done;
427   if (ptr >= limit) return NULL;
428   b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done;
429   if (ptr >= limit) return NULL;
430   b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done;
431   return NULL;       // Value is too long to be a varint32
432  done:
433   *OUTPUT = result;
434   return reinterpret_cast<const char*>(ptr);
435 }
436 
Encode32(char * sptr,uint32 v)437 inline char* Varint::Encode32(char* sptr, uint32 v) {
438   // Operate on characters as unsigneds
439   unsigned char* ptr = reinterpret_cast<unsigned char*>(sptr);
440   static const int B = 128;
441   if (v < (1<<7)) {
442     *(ptr++) = v;
443   } else if (v < (1<<14)) {
444     *(ptr++) = v | B;
445     *(ptr++) = v>>7;
446   } else if (v < (1<<21)) {
447     *(ptr++) = v | B;
448     *(ptr++) = (v>>7) | B;
449     *(ptr++) = v>>14;
450   } else if (v < (1<<28)) {
451     *(ptr++) = v | B;
452     *(ptr++) = (v>>7) | B;
453     *(ptr++) = (v>>14) | B;
454     *(ptr++) = v>>21;
455   } else {
456     *(ptr++) = v | B;
457     *(ptr++) = (v>>7) | B;
458     *(ptr++) = (v>>14) | B;
459     *(ptr++) = (v>>21) | B;
460     *(ptr++) = v>>28;
461   }
462   return reinterpret_cast<char*>(ptr);
463 }
464 
465 // If you know the internal layout of the std::string in use, you can
466 // replace this function with one that resizes the string without
467 // filling the new space with zeros (if applicable) --
468 // it will be non-portable but faster.
STLStringResizeUninitialized(string * s,size_t new_size)469 inline void STLStringResizeUninitialized(string* s, size_t new_size) {
470   s->resize(new_size);
471 }
472 
473 // Return a mutable char* pointing to a string's internal buffer,
474 // which may not be null-terminated. Writing through this pointer will
475 // modify the string.
476 //
477 // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
478 // next call to a string method that invalidates iterators.
479 //
480 // As of 2006-04, there is no standard-blessed way of getting a
481 // mutable reference to a string's internal buffer. However, issue 530
482 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530)
483 // proposes this as the method. It will officially be part of the standard
484 // for C++0x. This should already work on all current implementations.
string_as_array(string * str)485 inline char* string_as_array(string* str) {
486   return str->empty() ? NULL : &*str->begin();
487 }
488 
489 }  // namespace snappy
490 
491 #endif  // UTIL_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
492