1 /*-------------------------------------------------------------------------
2  *
3  * fe-exec.c
4  *	  functions related to sending a query down to the backend
5  *
6  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/interfaces/libpq/fe-exec.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres_fe.h"
16 
17 #include <ctype.h>
18 #include <fcntl.h>
19 #include <limits.h>
20 
21 #include "libpq-fe.h"
22 #include "libpq-int.h"
23 
24 #include "mb/pg_wchar.h"
25 
26 #ifdef WIN32
27 #include "win32.h"
28 #else
29 #include <unistd.h>
30 #endif
31 
32 /* keep this in same order as ExecStatusType in libpq-fe.h */
33 char	   *const pgresStatus[] = {
34 	"PGRES_EMPTY_QUERY",
35 	"PGRES_COMMAND_OK",
36 	"PGRES_TUPLES_OK",
37 	"PGRES_COPY_OUT",
38 	"PGRES_COPY_IN",
39 	"PGRES_BAD_RESPONSE",
40 	"PGRES_NONFATAL_ERROR",
41 	"PGRES_FATAL_ERROR",
42 	"PGRES_COPY_BOTH",
43 	"PGRES_SINGLE_TUPLE"
44 };
45 
46 /*
47  * static state needed by PQescapeString and PQescapeBytea; initialize to
48  * values that result in backward-compatible behavior
49  */
50 static int	static_client_encoding = PG_SQL_ASCII;
51 static bool static_std_strings = false;
52 
53 
54 static PGEvent *dupEvents(PGEvent *events, int count);
55 static bool pqAddTuple(PGresult *res, PGresAttValue *tup,
56 		   const char **errmsgp);
57 static bool PQsendQueryStart(PGconn *conn);
58 static int PQsendQueryGuts(PGconn *conn,
59 				const char *command,
60 				const char *stmtName,
61 				int nParams,
62 				const Oid *paramTypes,
63 				const char *const *paramValues,
64 				const int *paramLengths,
65 				const int *paramFormats,
66 				int resultFormat);
67 static void parseInput(PGconn *conn);
68 static PGresult *getCopyResult(PGconn *conn, ExecStatusType copytype);
69 static bool PQexecStart(PGconn *conn);
70 static PGresult *PQexecFinish(PGconn *conn);
71 static int PQsendDescribe(PGconn *conn, char desc_type,
72 			   const char *desc_target);
73 static int	check_field_number(const PGresult *res, int field_num);
74 
75 
76 /* ----------------
77  * Space management for PGresult.
78  *
79  * Formerly, libpq did a separate malloc() for each field of each tuple
80  * returned by a query.  This was remarkably expensive --- malloc/free
81  * consumed a sizable part of the application's runtime.  And there is
82  * no real need to keep track of the fields separately, since they will
83  * all be freed together when the PGresult is released.  So now, we grab
84  * large blocks of storage from malloc and allocate space for query data
85  * within these blocks, using a trivially simple allocator.  This reduces
86  * the number of malloc/free calls dramatically, and it also avoids
87  * fragmentation of the malloc storage arena.
88  * The PGresult structure itself is still malloc'd separately.  We could
89  * combine it with the first allocation block, but that would waste space
90  * for the common case that no extra storage is actually needed (that is,
91  * the SQL command did not return tuples).
92  *
93  * We also malloc the top-level array of tuple pointers separately, because
94  * we need to be able to enlarge it via realloc, and our trivial space
95  * allocator doesn't handle that effectively.  (Too bad the FE/BE protocol
96  * doesn't tell us up front how many tuples will be returned.)
97  * All other subsidiary storage for a PGresult is kept in PGresult_data blocks
98  * of size PGRESULT_DATA_BLOCKSIZE.  The overhead at the start of each block
99  * is just a link to the next one, if any.  Free-space management info is
100  * kept in the owning PGresult.
101  * A query returning a small amount of data will thus require three malloc
102  * calls: one for the PGresult, one for the tuples pointer array, and one
103  * PGresult_data block.
104  *
105  * Only the most recently allocated PGresult_data block is a candidate to
106  * have more stuff added to it --- any extra space left over in older blocks
107  * is wasted.  We could be smarter and search the whole chain, but the point
108  * here is to be simple and fast.  Typical applications do not keep a PGresult
109  * around very long anyway, so some wasted space within one is not a problem.
110  *
111  * Tuning constants for the space allocator are:
112  * PGRESULT_DATA_BLOCKSIZE: size of a standard allocation block, in bytes
113  * PGRESULT_ALIGN_BOUNDARY: assumed alignment requirement for binary data
114  * PGRESULT_SEP_ALLOC_THRESHOLD: objects bigger than this are given separate
115  *	 blocks, instead of being crammed into a regular allocation block.
116  * Requirements for correct function are:
117  * PGRESULT_ALIGN_BOUNDARY must be a multiple of the alignment requirements
118  *		of all machine data types.  (Currently this is set from configure
119  *		tests, so it should be OK automatically.)
120  * PGRESULT_SEP_ALLOC_THRESHOLD + PGRESULT_BLOCK_OVERHEAD <=
121  *			PGRESULT_DATA_BLOCKSIZE
122  *		pqResultAlloc assumes an object smaller than the threshold will fit
123  *		in a new block.
124  * The amount of space wasted at the end of a block could be as much as
125  * PGRESULT_SEP_ALLOC_THRESHOLD, so it doesn't pay to make that too large.
126  * ----------------
127  */
128 
129 #define PGRESULT_DATA_BLOCKSIZE		2048
130 #define PGRESULT_ALIGN_BOUNDARY		MAXIMUM_ALIGNOF /* from configure */
131 #define PGRESULT_BLOCK_OVERHEAD		Max(sizeof(PGresult_data), PGRESULT_ALIGN_BOUNDARY)
132 #define PGRESULT_SEP_ALLOC_THRESHOLD	(PGRESULT_DATA_BLOCKSIZE / 2)
133 
134 
135 /*
136  * PQmakeEmptyPGresult
137  *	 returns a newly allocated, initialized PGresult with given status.
138  *	 If conn is not NULL and status indicates an error, the conn's
139  *	 errorMessage is copied.  Also, any PGEvents are copied from the conn.
140  */
141 PGresult *
PQmakeEmptyPGresult(PGconn * conn,ExecStatusType status)142 PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status)
143 {
144 	PGresult   *result;
145 
146 	result = (PGresult *) malloc(sizeof(PGresult));
147 	if (!result)
148 		return NULL;
149 
150 	result->ntups = 0;
151 	result->numAttributes = 0;
152 	result->attDescs = NULL;
153 	result->tuples = NULL;
154 	result->tupArrSize = 0;
155 	result->numParameters = 0;
156 	result->paramDescs = NULL;
157 	result->resultStatus = status;
158 	result->cmdStatus[0] = '\0';
159 	result->binary = 0;
160 	result->events = NULL;
161 	result->nEvents = 0;
162 	result->errMsg = NULL;
163 	result->errFields = NULL;
164 	result->errQuery = NULL;
165 	result->null_field[0] = '\0';
166 	result->curBlock = NULL;
167 	result->curOffset = 0;
168 	result->spaceLeft = 0;
169 
170 	if (conn)
171 	{
172 		/* copy connection data we might need for operations on PGresult */
173 		result->noticeHooks = conn->noticeHooks;
174 		result->client_encoding = conn->client_encoding;
175 
176 		/* consider copying conn's errorMessage */
177 		switch (status)
178 		{
179 			case PGRES_EMPTY_QUERY:
180 			case PGRES_COMMAND_OK:
181 			case PGRES_TUPLES_OK:
182 			case PGRES_COPY_OUT:
183 			case PGRES_COPY_IN:
184 			case PGRES_COPY_BOTH:
185 			case PGRES_SINGLE_TUPLE:
186 				/* non-error cases */
187 				break;
188 			default:
189 				pqSetResultError(result, conn->errorMessage.data);
190 				break;
191 		}
192 
193 		/* copy events last; result must be valid if we need to PQclear */
194 		if (conn->nEvents > 0)
195 		{
196 			result->events = dupEvents(conn->events, conn->nEvents);
197 			if (!result->events)
198 			{
199 				PQclear(result);
200 				return NULL;
201 			}
202 			result->nEvents = conn->nEvents;
203 		}
204 	}
205 	else
206 	{
207 		/* defaults... */
208 		result->noticeHooks.noticeRec = NULL;
209 		result->noticeHooks.noticeRecArg = NULL;
210 		result->noticeHooks.noticeProc = NULL;
211 		result->noticeHooks.noticeProcArg = NULL;
212 		result->client_encoding = PG_SQL_ASCII;
213 	}
214 
215 	return result;
216 }
217 
218 /*
219  * PQsetResultAttrs
220  *
221  * Set the attributes for a given result.  This function fails if there are
222  * already attributes contained in the provided result.  The call is
223  * ignored if numAttributes is zero or attDescs is NULL.  If the
224  * function fails, it returns zero.  If the function succeeds, it
225  * returns a non-zero value.
226  */
227 int
PQsetResultAttrs(PGresult * res,int numAttributes,PGresAttDesc * attDescs)228 PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc *attDescs)
229 {
230 	int			i;
231 
232 	/* If attrs already exist, they cannot be overwritten. */
233 	if (!res || res->numAttributes > 0)
234 		return FALSE;
235 
236 	/* ignore no-op request */
237 	if (numAttributes <= 0 || !attDescs)
238 		return TRUE;
239 
240 	res->attDescs = (PGresAttDesc *)
241 		PQresultAlloc(res, numAttributes * sizeof(PGresAttDesc));
242 
243 	if (!res->attDescs)
244 		return FALSE;
245 
246 	res->numAttributes = numAttributes;
247 	memcpy(res->attDescs, attDescs, numAttributes * sizeof(PGresAttDesc));
248 
249 	/* deep-copy the attribute names, and determine format */
250 	res->binary = 1;
251 	for (i = 0; i < res->numAttributes; i++)
252 	{
253 		if (res->attDescs[i].name)
254 			res->attDescs[i].name = pqResultStrdup(res, res->attDescs[i].name);
255 		else
256 			res->attDescs[i].name = res->null_field;
257 
258 		if (!res->attDescs[i].name)
259 			return FALSE;
260 
261 		if (res->attDescs[i].format == 0)
262 			res->binary = 0;
263 	}
264 
265 	return TRUE;
266 }
267 
268 /*
269  * PQcopyResult
270  *
271  * Returns a deep copy of the provided 'src' PGresult, which cannot be NULL.
272  * The 'flags' argument controls which portions of the result will or will
273  * NOT be copied.  The created result is always put into the
274  * PGRES_TUPLES_OK status.  The source result error message is not copied,
275  * although cmdStatus is.
276  *
277  * To set custom attributes, use PQsetResultAttrs.  That function requires
278  * that there are no attrs contained in the result, so to use that
279  * function you cannot use the PG_COPYRES_ATTRS or PG_COPYRES_TUPLES
280  * options with this function.
281  *
282  * Options:
283  *	 PG_COPYRES_ATTRS - Copy the source result's attributes
284  *
285  *	 PG_COPYRES_TUPLES - Copy the source result's tuples.  This implies
286  *	 copying the attrs, seeing how the attrs are needed by the tuples.
287  *
288  *	 PG_COPYRES_EVENTS - Copy the source result's events.
289  *
290  *	 PG_COPYRES_NOTICEHOOKS - Copy the source result's notice hooks.
291  */
292 PGresult *
PQcopyResult(const PGresult * src,int flags)293 PQcopyResult(const PGresult *src, int flags)
294 {
295 	PGresult   *dest;
296 	int			i;
297 
298 	if (!src)
299 		return NULL;
300 
301 	dest = PQmakeEmptyPGresult(NULL, PGRES_TUPLES_OK);
302 	if (!dest)
303 		return NULL;
304 
305 	/* Always copy these over.  Is cmdStatus really useful here? */
306 	dest->client_encoding = src->client_encoding;
307 	strcpy(dest->cmdStatus, src->cmdStatus);
308 
309 	/* Wants attrs? */
310 	if (flags & (PG_COPYRES_ATTRS | PG_COPYRES_TUPLES))
311 	{
312 		if (!PQsetResultAttrs(dest, src->numAttributes, src->attDescs))
313 		{
314 			PQclear(dest);
315 			return NULL;
316 		}
317 	}
318 
319 	/* Wants to copy tuples? */
320 	if (flags & PG_COPYRES_TUPLES)
321 	{
322 		int			tup,
323 					field;
324 
325 		for (tup = 0; tup < src->ntups; tup++)
326 		{
327 			for (field = 0; field < src->numAttributes; field++)
328 			{
329 				if (!PQsetvalue(dest, tup, field,
330 								src->tuples[tup][field].value,
331 								src->tuples[tup][field].len))
332 				{
333 					PQclear(dest);
334 					return NULL;
335 				}
336 			}
337 		}
338 	}
339 
340 	/* Wants to copy notice hooks? */
341 	if (flags & PG_COPYRES_NOTICEHOOKS)
342 		dest->noticeHooks = src->noticeHooks;
343 
344 	/* Wants to copy PGEvents? */
345 	if ((flags & PG_COPYRES_EVENTS) && src->nEvents > 0)
346 	{
347 		dest->events = dupEvents(src->events, src->nEvents);
348 		if (!dest->events)
349 		{
350 			PQclear(dest);
351 			return NULL;
352 		}
353 		dest->nEvents = src->nEvents;
354 	}
355 
356 	/* Okay, trigger PGEVT_RESULTCOPY event */
357 	for (i = 0; i < dest->nEvents; i++)
358 	{
359 		if (src->events[i].resultInitialized)
360 		{
361 			PGEventResultCopy evt;
362 
363 			evt.src = src;
364 			evt.dest = dest;
365 			if (!dest->events[i].proc(PGEVT_RESULTCOPY, &evt,
366 									  dest->events[i].passThrough))
367 			{
368 				PQclear(dest);
369 				return NULL;
370 			}
371 			dest->events[i].resultInitialized = TRUE;
372 		}
373 	}
374 
375 	return dest;
376 }
377 
378 /*
379  * Copy an array of PGEvents (with no extra space for more).
380  * Does not duplicate the event instance data, sets this to NULL.
381  * Also, the resultInitialized flags are all cleared.
382  */
383 static PGEvent *
dupEvents(PGEvent * events,int count)384 dupEvents(PGEvent *events, int count)
385 {
386 	PGEvent    *newEvents;
387 	int			i;
388 
389 	if (!events || count <= 0)
390 		return NULL;
391 
392 	newEvents = (PGEvent *) malloc(count * sizeof(PGEvent));
393 	if (!newEvents)
394 		return NULL;
395 
396 	for (i = 0; i < count; i++)
397 	{
398 		newEvents[i].proc = events[i].proc;
399 		newEvents[i].passThrough = events[i].passThrough;
400 		newEvents[i].data = NULL;
401 		newEvents[i].resultInitialized = FALSE;
402 		newEvents[i].name = strdup(events[i].name);
403 		if (!newEvents[i].name)
404 		{
405 			while (--i >= 0)
406 				free(newEvents[i].name);
407 			free(newEvents);
408 			return NULL;
409 		}
410 	}
411 
412 	return newEvents;
413 }
414 
415 
416 /*
417  * Sets the value for a tuple field.  The tup_num must be less than or
418  * equal to PQntuples(res).  If it is equal, a new tuple is created and
419  * added to the result.
420  * Returns a non-zero value for success and zero for failure.
421  * (On failure, we report the specific problem via pqInternalNotice.)
422  */
423 int
PQsetvalue(PGresult * res,int tup_num,int field_num,char * value,int len)424 PQsetvalue(PGresult *res, int tup_num, int field_num, char *value, int len)
425 {
426 	PGresAttValue *attval;
427 	const char *errmsg = NULL;
428 
429 	/* Note that this check also protects us against null "res" */
430 	if (!check_field_number(res, field_num))
431 		return FALSE;
432 
433 	/* Invalid tup_num, must be <= ntups */
434 	if (tup_num < 0 || tup_num > res->ntups)
435 	{
436 		pqInternalNotice(&res->noticeHooks,
437 						 "row number %d is out of range 0..%d",
438 						 tup_num, res->ntups);
439 		return FALSE;
440 	}
441 
442 	/* need to allocate a new tuple? */
443 	if (tup_num == res->ntups)
444 	{
445 		PGresAttValue *tup;
446 		int			i;
447 
448 		tup = (PGresAttValue *)
449 			pqResultAlloc(res, res->numAttributes * sizeof(PGresAttValue),
450 						  TRUE);
451 
452 		if (!tup)
453 			goto fail;
454 
455 		/* initialize each column to NULL */
456 		for (i = 0; i < res->numAttributes; i++)
457 		{
458 			tup[i].len = NULL_LEN;
459 			tup[i].value = res->null_field;
460 		}
461 
462 		/* add it to the array */
463 		if (!pqAddTuple(res, tup, &errmsg))
464 			goto fail;
465 	}
466 
467 	attval = &res->tuples[tup_num][field_num];
468 
469 	/* treat either NULL_LEN or NULL value pointer as a NULL field */
470 	if (len == NULL_LEN || value == NULL)
471 	{
472 		attval->len = NULL_LEN;
473 		attval->value = res->null_field;
474 	}
475 	else if (len <= 0)
476 	{
477 		attval->len = 0;
478 		attval->value = res->null_field;
479 	}
480 	else
481 	{
482 		attval->value = (char *) pqResultAlloc(res, len + 1, TRUE);
483 		if (!attval->value)
484 			goto fail;
485 		attval->len = len;
486 		memcpy(attval->value, value, len);
487 		attval->value[len] = '\0';
488 	}
489 
490 	return TRUE;
491 
492 	/*
493 	 * Report failure via pqInternalNotice.  If preceding code didn't provide
494 	 * an error message, assume "out of memory" was meant.
495 	 */
496 fail:
497 	if (!errmsg)
498 		errmsg = libpq_gettext("out of memory");
499 	pqInternalNotice(&res->noticeHooks, "%s", errmsg);
500 
501 	return FALSE;
502 }
503 
504 /*
505  * pqResultAlloc - exported routine to allocate local storage in a PGresult.
506  *
507  * We force all such allocations to be maxaligned, since we don't know
508  * whether the value might be binary.
509  */
510 void *
PQresultAlloc(PGresult * res,size_t nBytes)511 PQresultAlloc(PGresult *res, size_t nBytes)
512 {
513 	return pqResultAlloc(res, nBytes, TRUE);
514 }
515 
516 /*
517  * pqResultAlloc -
518  *		Allocate subsidiary storage for a PGresult.
519  *
520  * nBytes is the amount of space needed for the object.
521  * If isBinary is true, we assume that we need to align the object on
522  * a machine allocation boundary.
523  * If isBinary is false, we assume the object is a char string and can
524  * be allocated on any byte boundary.
525  */
526 void *
pqResultAlloc(PGresult * res,size_t nBytes,bool isBinary)527 pqResultAlloc(PGresult *res, size_t nBytes, bool isBinary)
528 {
529 	char	   *space;
530 	PGresult_data *block;
531 
532 	if (!res)
533 		return NULL;
534 
535 	if (nBytes <= 0)
536 		return res->null_field;
537 
538 	/*
539 	 * If alignment is needed, round up the current position to an alignment
540 	 * boundary.
541 	 */
542 	if (isBinary)
543 	{
544 		int			offset = res->curOffset % PGRESULT_ALIGN_BOUNDARY;
545 
546 		if (offset)
547 		{
548 			res->curOffset += PGRESULT_ALIGN_BOUNDARY - offset;
549 			res->spaceLeft -= PGRESULT_ALIGN_BOUNDARY - offset;
550 		}
551 	}
552 
553 	/* If there's enough space in the current block, no problem. */
554 	if (nBytes <= (size_t) res->spaceLeft)
555 	{
556 		space = res->curBlock->space + res->curOffset;
557 		res->curOffset += nBytes;
558 		res->spaceLeft -= nBytes;
559 		return space;
560 	}
561 
562 	/*
563 	 * If the requested object is very large, give it its own block; this
564 	 * avoids wasting what might be most of the current block to start a new
565 	 * block.  (We'd have to special-case requests bigger than the block size
566 	 * anyway.)  The object is always given binary alignment in this case.
567 	 */
568 	if (nBytes >= PGRESULT_SEP_ALLOC_THRESHOLD)
569 	{
570 		block = (PGresult_data *) malloc(nBytes + PGRESULT_BLOCK_OVERHEAD);
571 		if (!block)
572 			return NULL;
573 		space = block->space + PGRESULT_BLOCK_OVERHEAD;
574 		if (res->curBlock)
575 		{
576 			/*
577 			 * Tuck special block below the active block, so that we don't
578 			 * have to waste the free space in the active block.
579 			 */
580 			block->next = res->curBlock->next;
581 			res->curBlock->next = block;
582 		}
583 		else
584 		{
585 			/* Must set up the new block as the first active block. */
586 			block->next = NULL;
587 			res->curBlock = block;
588 			res->spaceLeft = 0; /* be sure it's marked full */
589 		}
590 		return space;
591 	}
592 
593 	/* Otherwise, start a new block. */
594 	block = (PGresult_data *) malloc(PGRESULT_DATA_BLOCKSIZE);
595 	if (!block)
596 		return NULL;
597 	block->next = res->curBlock;
598 	res->curBlock = block;
599 	if (isBinary)
600 	{
601 		/* object needs full alignment */
602 		res->curOffset = PGRESULT_BLOCK_OVERHEAD;
603 		res->spaceLeft = PGRESULT_DATA_BLOCKSIZE - PGRESULT_BLOCK_OVERHEAD;
604 	}
605 	else
606 	{
607 		/* we can cram it right after the overhead pointer */
608 		res->curOffset = sizeof(PGresult_data);
609 		res->spaceLeft = PGRESULT_DATA_BLOCKSIZE - sizeof(PGresult_data);
610 	}
611 
612 	space = block->space + res->curOffset;
613 	res->curOffset += nBytes;
614 	res->spaceLeft -= nBytes;
615 	return space;
616 }
617 
618 /*
619  * pqResultStrdup -
620  *		Like strdup, but the space is subsidiary PGresult space.
621  */
622 char *
pqResultStrdup(PGresult * res,const char * str)623 pqResultStrdup(PGresult *res, const char *str)
624 {
625 	char	   *space = (char *) pqResultAlloc(res, strlen(str) + 1, FALSE);
626 
627 	if (space)
628 		strcpy(space, str);
629 	return space;
630 }
631 
632 /*
633  * pqSetResultError -
634  *		assign a new error message to a PGresult
635  */
636 void
pqSetResultError(PGresult * res,const char * msg)637 pqSetResultError(PGresult *res, const char *msg)
638 {
639 	if (!res)
640 		return;
641 	if (msg && *msg)
642 		res->errMsg = pqResultStrdup(res, msg);
643 	else
644 		res->errMsg = NULL;
645 }
646 
647 /*
648  * pqCatenateResultError -
649  *		concatenate a new error message to the one already in a PGresult
650  */
651 void
pqCatenateResultError(PGresult * res,const char * msg)652 pqCatenateResultError(PGresult *res, const char *msg)
653 {
654 	PQExpBufferData errorBuf;
655 
656 	if (!res || !msg)
657 		return;
658 	initPQExpBuffer(&errorBuf);
659 	if (res->errMsg)
660 		appendPQExpBufferStr(&errorBuf, res->errMsg);
661 	appendPQExpBufferStr(&errorBuf, msg);
662 	pqSetResultError(res, errorBuf.data);
663 	termPQExpBuffer(&errorBuf);
664 }
665 
666 /*
667  * PQclear -
668  *	  free's the memory associated with a PGresult
669  */
670 void
PQclear(PGresult * res)671 PQclear(PGresult *res)
672 {
673 	PGresult_data *block;
674 	int			i;
675 
676 	if (!res)
677 		return;
678 
679 	for (i = 0; i < res->nEvents; i++)
680 	{
681 		/* only send DESTROY to successfully-initialized event procs */
682 		if (res->events[i].resultInitialized)
683 		{
684 			PGEventResultDestroy evt;
685 
686 			evt.result = res;
687 			(void) res->events[i].proc(PGEVT_RESULTDESTROY, &evt,
688 									   res->events[i].passThrough);
689 		}
690 		free(res->events[i].name);
691 	}
692 
693 	if (res->events)
694 		free(res->events);
695 
696 	/* Free all the subsidiary blocks */
697 	while ((block = res->curBlock) != NULL)
698 	{
699 		res->curBlock = block->next;
700 		free(block);
701 	}
702 
703 	/* Free the top-level tuple pointer array */
704 	if (res->tuples)
705 		free(res->tuples);
706 
707 	/* zero out the pointer fields to catch programming errors */
708 	res->attDescs = NULL;
709 	res->tuples = NULL;
710 	res->paramDescs = NULL;
711 	res->errFields = NULL;
712 	res->events = NULL;
713 	res->nEvents = 0;
714 	/* res->curBlock was zeroed out earlier */
715 
716 	/* Free the PGresult structure itself */
717 	free(res);
718 }
719 
720 /*
721  * Handy subroutine to deallocate any partially constructed async result.
722  *
723  * Any "next" result gets cleared too.
724  */
725 void
pqClearAsyncResult(PGconn * conn)726 pqClearAsyncResult(PGconn *conn)
727 {
728 	if (conn->result)
729 		PQclear(conn->result);
730 	conn->result = NULL;
731 	if (conn->next_result)
732 		PQclear(conn->next_result);
733 	conn->next_result = NULL;
734 }
735 
736 /*
737  * This subroutine deletes any existing async result, sets conn->result
738  * to a PGresult with status PGRES_FATAL_ERROR, and stores the current
739  * contents of conn->errorMessage into that result.  It differs from a
740  * plain call on PQmakeEmptyPGresult() in that if there is already an
741  * async result with status PGRES_FATAL_ERROR, the current error message
742  * is APPENDED to the old error message instead of replacing it.  This
743  * behavior lets us report multiple error conditions properly, if necessary.
744  * (An example where this is needed is when the backend sends an 'E' message
745  * and immediately closes the connection --- we want to report both the
746  * backend error and the connection closure error.)
747  */
748 void
pqSaveErrorResult(PGconn * conn)749 pqSaveErrorResult(PGconn *conn)
750 {
751 	/*
752 	 * If no old async result, just let PQmakeEmptyPGresult make one. Likewise
753 	 * if old result is not an error message.
754 	 */
755 	if (conn->result == NULL ||
756 		conn->result->resultStatus != PGRES_FATAL_ERROR ||
757 		conn->result->errMsg == NULL)
758 	{
759 		pqClearAsyncResult(conn);
760 		conn->result = PQmakeEmptyPGresult(conn, PGRES_FATAL_ERROR);
761 	}
762 	else
763 	{
764 		/* Else, concatenate error message to existing async result. */
765 		pqCatenateResultError(conn->result, conn->errorMessage.data);
766 	}
767 }
768 
769 /*
770  * This subroutine prepares an async result object for return to the caller.
771  * If there is not already an async result object, build an error object
772  * using whatever is in conn->errorMessage.  In any case, clear the async
773  * result storage and make sure PQerrorMessage will agree with the result's
774  * error string.
775  */
776 PGresult *
pqPrepareAsyncResult(PGconn * conn)777 pqPrepareAsyncResult(PGconn *conn)
778 {
779 	PGresult   *res;
780 
781 	/*
782 	 * conn->result is the PGresult to return.  If it is NULL (which probably
783 	 * shouldn't happen) we assume there is an appropriate error message in
784 	 * conn->errorMessage.
785 	 */
786 	res = conn->result;
787 	if (!res)
788 		res = PQmakeEmptyPGresult(conn, PGRES_FATAL_ERROR);
789 	else
790 	{
791 		/*
792 		 * Make sure PQerrorMessage agrees with result; it could be different
793 		 * if we have concatenated messages.
794 		 */
795 		resetPQExpBuffer(&conn->errorMessage);
796 		appendPQExpBufferStr(&conn->errorMessage,
797 							 PQresultErrorMessage(res));
798 	}
799 
800 	/*
801 	 * Replace conn->result with next_result, if any.  In the normal case
802 	 * there isn't a next result and we're just dropping ownership of the
803 	 * current result.  In single-row mode this restores the situation to what
804 	 * it was before we created the current single-row result.
805 	 */
806 	conn->result = conn->next_result;
807 	conn->next_result = NULL;
808 
809 	return res;
810 }
811 
812 /*
813  * pqInternalNotice - produce an internally-generated notice message
814  *
815  * A format string and optional arguments can be passed.  Note that we do
816  * libpq_gettext() here, so callers need not.
817  *
818  * The supplied text is taken as primary message (ie., it should not include
819  * a trailing newline, and should not be more than one line).
820  */
821 void
pqInternalNotice(const PGNoticeHooks * hooks,const char * fmt,...)822 pqInternalNotice(const PGNoticeHooks *hooks, const char *fmt,...)
823 {
824 	char		msgBuf[1024];
825 	va_list		args;
826 	PGresult   *res;
827 
828 	if (hooks->noticeRec == NULL)
829 		return;					/* nobody home to receive notice? */
830 
831 	/* Format the message */
832 	va_start(args, fmt);
833 	vsnprintf(msgBuf, sizeof(msgBuf), libpq_gettext(fmt), args);
834 	va_end(args);
835 	msgBuf[sizeof(msgBuf) - 1] = '\0';	/* make real sure it's terminated */
836 
837 	/* Make a PGresult to pass to the notice receiver */
838 	res = PQmakeEmptyPGresult(NULL, PGRES_NONFATAL_ERROR);
839 	if (!res)
840 		return;
841 	res->noticeHooks = *hooks;
842 
843 	/*
844 	 * Set up fields of notice.
845 	 */
846 	pqSaveMessageField(res, PG_DIAG_MESSAGE_PRIMARY, msgBuf);
847 	pqSaveMessageField(res, PG_DIAG_SEVERITY, libpq_gettext("NOTICE"));
848 	pqSaveMessageField(res, PG_DIAG_SEVERITY_NONLOCALIZED, "NOTICE");
849 	/* XXX should provide a SQLSTATE too? */
850 
851 	/*
852 	 * Result text is always just the primary message + newline. If we can't
853 	 * allocate it, don't bother invoking the receiver.
854 	 */
855 	res->errMsg = (char *) pqResultAlloc(res, strlen(msgBuf) + 2, FALSE);
856 	if (res->errMsg)
857 	{
858 		sprintf(res->errMsg, "%s\n", msgBuf);
859 
860 		/*
861 		 * Pass to receiver, then free it.
862 		 */
863 		(*res->noticeHooks.noticeRec) (res->noticeHooks.noticeRecArg, res);
864 	}
865 	PQclear(res);
866 }
867 
868 /*
869  * pqAddTuple
870  *	  add a row pointer to the PGresult structure, growing it if necessary
871  *	  Returns TRUE if OK, FALSE if an error prevented adding the row
872  *
873  * On error, *errmsgp can be set to an error string to be returned.
874  * If it is left NULL, the error is presumed to be "out of memory".
875  */
876 static bool
pqAddTuple(PGresult * res,PGresAttValue * tup,const char ** errmsgp)877 pqAddTuple(PGresult *res, PGresAttValue *tup, const char **errmsgp)
878 {
879 	if (res->ntups >= res->tupArrSize)
880 	{
881 		/*
882 		 * Try to grow the array.
883 		 *
884 		 * We can use realloc because shallow copying of the structure is
885 		 * okay. Note that the first time through, res->tuples is NULL. While
886 		 * ANSI says that realloc() should act like malloc() in that case,
887 		 * some old C libraries (like SunOS 4.1.x) coredump instead. On
888 		 * failure realloc is supposed to return NULL without damaging the
889 		 * existing allocation. Note that the positions beyond res->ntups are
890 		 * garbage, not necessarily NULL.
891 		 */
892 		int			newSize;
893 		PGresAttValue **newTuples;
894 
895 		/*
896 		 * Since we use integers for row numbers, we can't support more than
897 		 * INT_MAX rows.  Make sure we allow that many, though.
898 		 */
899 		if (res->tupArrSize <= INT_MAX / 2)
900 			newSize = (res->tupArrSize > 0) ? res->tupArrSize * 2 : 128;
901 		else if (res->tupArrSize < INT_MAX)
902 			newSize = INT_MAX;
903 		else
904 		{
905 			*errmsgp = libpq_gettext("PGresult cannot support more than INT_MAX tuples");
906 			return FALSE;
907 		}
908 
909 		/*
910 		 * Also, on 32-bit platforms we could, in theory, overflow size_t even
911 		 * before newSize gets to INT_MAX.  (In practice we'd doubtless hit
912 		 * OOM long before that, but let's check.)
913 		 */
914 #if INT_MAX >= (SIZE_MAX / 2)
915 		if (newSize > SIZE_MAX / sizeof(PGresAttValue *))
916 		{
917 			*errmsgp = libpq_gettext("size_t overflow");
918 			return FALSE;
919 		}
920 #endif
921 
922 		if (res->tuples == NULL)
923 			newTuples = (PGresAttValue **)
924 				malloc(newSize * sizeof(PGresAttValue *));
925 		else
926 			newTuples = (PGresAttValue **)
927 				realloc(res->tuples, newSize * sizeof(PGresAttValue *));
928 		if (!newTuples)
929 			return FALSE;		/* malloc or realloc failed */
930 		res->tupArrSize = newSize;
931 		res->tuples = newTuples;
932 	}
933 	res->tuples[res->ntups] = tup;
934 	res->ntups++;
935 	return TRUE;
936 }
937 
938 /*
939  * pqSaveMessageField - save one field of an error or notice message
940  */
941 void
pqSaveMessageField(PGresult * res,char code,const char * value)942 pqSaveMessageField(PGresult *res, char code, const char *value)
943 {
944 	PGMessageField *pfield;
945 
946 	pfield = (PGMessageField *)
947 		pqResultAlloc(res,
948 					  offsetof(PGMessageField, contents) +
949 					  strlen(value) + 1,
950 					  TRUE);
951 	if (!pfield)
952 		return;					/* out of memory? */
953 	pfield->code = code;
954 	strcpy(pfield->contents, value);
955 	pfield->next = res->errFields;
956 	res->errFields = pfield;
957 }
958 
959 /*
960  * pqSaveParameterStatus - remember parameter status sent by backend
961  */
962 void
pqSaveParameterStatus(PGconn * conn,const char * name,const char * value)963 pqSaveParameterStatus(PGconn *conn, const char *name, const char *value)
964 {
965 	pgParameterStatus *pstatus;
966 	pgParameterStatus *prev;
967 
968 	if (conn->Pfdebug)
969 		fprintf(conn->Pfdebug, "pqSaveParameterStatus: '%s' = '%s'\n",
970 				name, value);
971 
972 	/*
973 	 * Forget any old information about the parameter
974 	 */
975 	for (pstatus = conn->pstatus, prev = NULL;
976 		 pstatus != NULL;
977 		 prev = pstatus, pstatus = pstatus->next)
978 	{
979 		if (strcmp(pstatus->name, name) == 0)
980 		{
981 			if (prev)
982 				prev->next = pstatus->next;
983 			else
984 				conn->pstatus = pstatus->next;
985 			free(pstatus);		/* frees name and value strings too */
986 			break;
987 		}
988 	}
989 
990 	/*
991 	 * Store new info as a single malloc block
992 	 */
993 	pstatus = (pgParameterStatus *) malloc(sizeof(pgParameterStatus) +
994 										   strlen(name) + strlen(value) + 2);
995 	if (pstatus)
996 	{
997 		char	   *ptr;
998 
999 		ptr = ((char *) pstatus) + sizeof(pgParameterStatus);
1000 		pstatus->name = ptr;
1001 		strcpy(ptr, name);
1002 		ptr += strlen(name) + 1;
1003 		pstatus->value = ptr;
1004 		strcpy(ptr, value);
1005 		pstatus->next = conn->pstatus;
1006 		conn->pstatus = pstatus;
1007 	}
1008 
1009 	/*
1010 	 * Special hacks: remember client_encoding and
1011 	 * standard_conforming_strings, and convert server version to a numeric
1012 	 * form.  We keep the first two of these in static variables as well, so
1013 	 * that PQescapeString and PQescapeBytea can behave somewhat sanely (at
1014 	 * least in single-connection-using programs).
1015 	 */
1016 	if (strcmp(name, "client_encoding") == 0)
1017 	{
1018 		conn->client_encoding = pg_char_to_encoding(value);
1019 		/* if we don't recognize the encoding name, fall back to SQL_ASCII */
1020 		if (conn->client_encoding < 0)
1021 			conn->client_encoding = PG_SQL_ASCII;
1022 		static_client_encoding = conn->client_encoding;
1023 	}
1024 	else if (strcmp(name, "standard_conforming_strings") == 0)
1025 	{
1026 		conn->std_strings = (strcmp(value, "on") == 0);
1027 		static_std_strings = conn->std_strings;
1028 	}
1029 	else if (strcmp(name, "server_version") == 0)
1030 	{
1031 		int			cnt;
1032 		int			vmaj,
1033 					vmin,
1034 					vrev;
1035 
1036 		cnt = sscanf(value, "%d.%d.%d", &vmaj, &vmin, &vrev);
1037 
1038 		if (cnt == 3)
1039 		{
1040 			/* old style, e.g. 9.6.1 */
1041 			conn->sversion = (100 * vmaj + vmin) * 100 + vrev;
1042 		}
1043 		else if (cnt == 2)
1044 		{
1045 			if (vmaj >= 10)
1046 			{
1047 				/* new style, e.g. 10.1 */
1048 				conn->sversion = 100 * 100 * vmaj + vmin;
1049 			}
1050 			else
1051 			{
1052 				/* old style without minor version, e.g. 9.6devel */
1053 				conn->sversion = (100 * vmaj + vmin) * 100;
1054 			}
1055 		}
1056 		else if (cnt == 1)
1057 		{
1058 			/* new style without minor version, e.g. 10devel */
1059 			conn->sversion = 100 * 100 * vmaj;
1060 		}
1061 		else
1062 			conn->sversion = 0; /* unknown */
1063 	}
1064 }
1065 
1066 
1067 /*
1068  * pqRowProcessor
1069  *	  Add the received row to the current async result (conn->result).
1070  *	  Returns 1 if OK, 0 if error occurred.
1071  *
1072  * On error, *errmsgp can be set to an error string to be returned.
1073  * If it is left NULL, the error is presumed to be "out of memory".
1074  *
1075  * In single-row mode, we create a new result holding just the current row,
1076  * stashing the previous result in conn->next_result so that it becomes
1077  * active again after pqPrepareAsyncResult().  This allows the result metadata
1078  * (column descriptions) to be carried forward to each result row.
1079  */
1080 int
pqRowProcessor(PGconn * conn,const char ** errmsgp)1081 pqRowProcessor(PGconn *conn, const char **errmsgp)
1082 {
1083 	PGresult   *res = conn->result;
1084 	int			nfields = res->numAttributes;
1085 	const PGdataValue *columns = conn->rowBuf;
1086 	PGresAttValue *tup;
1087 	int			i;
1088 
1089 	/*
1090 	 * In single-row mode, make a new PGresult that will hold just this one
1091 	 * row; the original conn->result is left unchanged so that it can be used
1092 	 * again as the template for future rows.
1093 	 */
1094 	if (conn->singleRowMode)
1095 	{
1096 		/* Copy everything that should be in the result at this point */
1097 		res = PQcopyResult(res,
1098 						   PG_COPYRES_ATTRS | PG_COPYRES_EVENTS |
1099 						   PG_COPYRES_NOTICEHOOKS);
1100 		if (!res)
1101 			return 0;
1102 	}
1103 
1104 	/*
1105 	 * Basically we just allocate space in the PGresult for each field and
1106 	 * copy the data over.
1107 	 *
1108 	 * Note: on malloc failure, we return 0 leaving *errmsgp still NULL, which
1109 	 * caller will take to mean "out of memory".  This is preferable to trying
1110 	 * to set up such a message here, because evidently there's not enough
1111 	 * memory for gettext() to do anything.
1112 	 */
1113 	tup = (PGresAttValue *)
1114 		pqResultAlloc(res, nfields * sizeof(PGresAttValue), TRUE);
1115 	if (tup == NULL)
1116 		goto fail;
1117 
1118 	for (i = 0; i < nfields; i++)
1119 	{
1120 		int			clen = columns[i].len;
1121 
1122 		if (clen < 0)
1123 		{
1124 			/* null field */
1125 			tup[i].len = NULL_LEN;
1126 			tup[i].value = res->null_field;
1127 		}
1128 		else
1129 		{
1130 			bool		isbinary = (res->attDescs[i].format != 0);
1131 			char	   *val;
1132 
1133 			val = (char *) pqResultAlloc(res, clen + 1, isbinary);
1134 			if (val == NULL)
1135 				goto fail;
1136 
1137 			/* copy and zero-terminate the data (even if it's binary) */
1138 			memcpy(val, columns[i].value, clen);
1139 			val[clen] = '\0';
1140 
1141 			tup[i].len = clen;
1142 			tup[i].value = val;
1143 		}
1144 	}
1145 
1146 	/* And add the tuple to the PGresult's tuple array */
1147 	if (!pqAddTuple(res, tup, errmsgp))
1148 		goto fail;
1149 
1150 	/*
1151 	 * Success.  In single-row mode, make the result available to the client
1152 	 * immediately.
1153 	 */
1154 	if (conn->singleRowMode)
1155 	{
1156 		/* Change result status to special single-row value */
1157 		res->resultStatus = PGRES_SINGLE_TUPLE;
1158 		/* Stash old result for re-use later */
1159 		conn->next_result = conn->result;
1160 		conn->result = res;
1161 		/* And mark the result ready to return */
1162 		conn->asyncStatus = PGASYNC_READY;
1163 	}
1164 
1165 	return 1;
1166 
1167 fail:
1168 	/* release locally allocated PGresult, if we made one */
1169 	if (res != conn->result)
1170 		PQclear(res);
1171 	return 0;
1172 }
1173 
1174 
1175 /*
1176  * PQsendQuery
1177  *	 Submit a query, but don't wait for it to finish
1178  *
1179  * Returns: 1 if successfully submitted
1180  *			0 if error (conn->errorMessage is set)
1181  */
1182 int
PQsendQuery(PGconn * conn,const char * query)1183 PQsendQuery(PGconn *conn, const char *query)
1184 {
1185 	if (!PQsendQueryStart(conn))
1186 		return 0;
1187 
1188 	/* check the argument */
1189 	if (!query)
1190 	{
1191 		printfPQExpBuffer(&conn->errorMessage,
1192 						  libpq_gettext("command string is a null pointer\n"));
1193 		return 0;
1194 	}
1195 
1196 	/* construct the outgoing Query message */
1197 	if (pqPutMsgStart('Q', false, conn) < 0 ||
1198 		pqPuts(query, conn) < 0 ||
1199 		pqPutMsgEnd(conn) < 0)
1200 	{
1201 		pqHandleSendFailure(conn);
1202 		return 0;
1203 	}
1204 
1205 	/* remember we are using simple query protocol */
1206 	conn->queryclass = PGQUERY_SIMPLE;
1207 
1208 	/* and remember the query text too, if possible */
1209 	/* if insufficient memory, last_query just winds up NULL */
1210 	if (conn->last_query)
1211 		free(conn->last_query);
1212 	conn->last_query = strdup(query);
1213 
1214 	/*
1215 	 * Give the data a push.  In nonblock mode, don't complain if we're unable
1216 	 * to send it all; PQgetResult() will do any additional flushing needed.
1217 	 */
1218 	if (pqFlush(conn) < 0)
1219 	{
1220 		pqHandleSendFailure(conn);
1221 		return 0;
1222 	}
1223 
1224 	/* OK, it's launched! */
1225 	conn->asyncStatus = PGASYNC_BUSY;
1226 	return 1;
1227 }
1228 
1229 /*
1230  * PQsendQueryParams
1231  *		Like PQsendQuery, but use protocol 3.0 so we can pass parameters
1232  */
1233 int
PQsendQueryParams(PGconn * conn,const char * command,int nParams,const Oid * paramTypes,const char * const * paramValues,const int * paramLengths,const int * paramFormats,int resultFormat)1234 PQsendQueryParams(PGconn *conn,
1235 				  const char *command,
1236 				  int nParams,
1237 				  const Oid *paramTypes,
1238 				  const char *const *paramValues,
1239 				  const int *paramLengths,
1240 				  const int *paramFormats,
1241 				  int resultFormat)
1242 {
1243 	if (!PQsendQueryStart(conn))
1244 		return 0;
1245 
1246 	/* check the arguments */
1247 	if (!command)
1248 	{
1249 		printfPQExpBuffer(&conn->errorMessage,
1250 						  libpq_gettext("command string is a null pointer\n"));
1251 		return 0;
1252 	}
1253 	if (nParams < 0 || nParams > 65535)
1254 	{
1255 		printfPQExpBuffer(&conn->errorMessage,
1256 						  libpq_gettext("number of parameters must be between 0 and 65535\n"));
1257 		return 0;
1258 	}
1259 
1260 	return PQsendQueryGuts(conn,
1261 						   command,
1262 						   "",	/* use unnamed statement */
1263 						   nParams,
1264 						   paramTypes,
1265 						   paramValues,
1266 						   paramLengths,
1267 						   paramFormats,
1268 						   resultFormat);
1269 }
1270 
1271 /*
1272  * PQsendPrepare
1273  *	 Submit a Parse message, but don't wait for it to finish
1274  *
1275  * Returns: 1 if successfully submitted
1276  *			0 if error (conn->errorMessage is set)
1277  */
1278 int
PQsendPrepare(PGconn * conn,const char * stmtName,const char * query,int nParams,const Oid * paramTypes)1279 PQsendPrepare(PGconn *conn,
1280 			  const char *stmtName, const char *query,
1281 			  int nParams, const Oid *paramTypes)
1282 {
1283 	if (!PQsendQueryStart(conn))
1284 		return 0;
1285 
1286 	/* check the arguments */
1287 	if (!stmtName)
1288 	{
1289 		printfPQExpBuffer(&conn->errorMessage,
1290 						  libpq_gettext("statement name is a null pointer\n"));
1291 		return 0;
1292 	}
1293 	if (!query)
1294 	{
1295 		printfPQExpBuffer(&conn->errorMessage,
1296 						  libpq_gettext("command string is a null pointer\n"));
1297 		return 0;
1298 	}
1299 	if (nParams < 0 || nParams > 65535)
1300 	{
1301 		printfPQExpBuffer(&conn->errorMessage,
1302 						  libpq_gettext("number of parameters must be between 0 and 65535\n"));
1303 		return 0;
1304 	}
1305 
1306 	/* This isn't gonna work on a 2.0 server */
1307 	if (PG_PROTOCOL_MAJOR(conn->pversion) < 3)
1308 	{
1309 		printfPQExpBuffer(&conn->errorMessage,
1310 						  libpq_gettext("function requires at least protocol version 3.0\n"));
1311 		return 0;
1312 	}
1313 
1314 	/* construct the Parse message */
1315 	if (pqPutMsgStart('P', false, conn) < 0 ||
1316 		pqPuts(stmtName, conn) < 0 ||
1317 		pqPuts(query, conn) < 0)
1318 		goto sendFailed;
1319 
1320 	if (nParams > 0 && paramTypes)
1321 	{
1322 		int			i;
1323 
1324 		if (pqPutInt(nParams, 2, conn) < 0)
1325 			goto sendFailed;
1326 		for (i = 0; i < nParams; i++)
1327 		{
1328 			if (pqPutInt(paramTypes[i], 4, conn) < 0)
1329 				goto sendFailed;
1330 		}
1331 	}
1332 	else
1333 	{
1334 		if (pqPutInt(0, 2, conn) < 0)
1335 			goto sendFailed;
1336 	}
1337 	if (pqPutMsgEnd(conn) < 0)
1338 		goto sendFailed;
1339 
1340 	/* construct the Sync message */
1341 	if (pqPutMsgStart('S', false, conn) < 0 ||
1342 		pqPutMsgEnd(conn) < 0)
1343 		goto sendFailed;
1344 
1345 	/* remember we are doing just a Parse */
1346 	conn->queryclass = PGQUERY_PREPARE;
1347 
1348 	/* and remember the query text too, if possible */
1349 	/* if insufficient memory, last_query just winds up NULL */
1350 	if (conn->last_query)
1351 		free(conn->last_query);
1352 	conn->last_query = strdup(query);
1353 
1354 	/*
1355 	 * Give the data a push.  In nonblock mode, don't complain if we're unable
1356 	 * to send it all; PQgetResult() will do any additional flushing needed.
1357 	 */
1358 	if (pqFlush(conn) < 0)
1359 		goto sendFailed;
1360 
1361 	/* OK, it's launched! */
1362 	conn->asyncStatus = PGASYNC_BUSY;
1363 	return 1;
1364 
1365 sendFailed:
1366 	pqHandleSendFailure(conn);
1367 	return 0;
1368 }
1369 
1370 /*
1371  * PQsendQueryPrepared
1372  *		Like PQsendQuery, but execute a previously prepared statement,
1373  *		using protocol 3.0 so we can pass parameters
1374  */
1375 int
PQsendQueryPrepared(PGconn * conn,const char * stmtName,int nParams,const char * const * paramValues,const int * paramLengths,const int * paramFormats,int resultFormat)1376 PQsendQueryPrepared(PGconn *conn,
1377 					const char *stmtName,
1378 					int nParams,
1379 					const char *const *paramValues,
1380 					const int *paramLengths,
1381 					const int *paramFormats,
1382 					int resultFormat)
1383 {
1384 	if (!PQsendQueryStart(conn))
1385 		return 0;
1386 
1387 	/* check the arguments */
1388 	if (!stmtName)
1389 	{
1390 		printfPQExpBuffer(&conn->errorMessage,
1391 						  libpq_gettext("statement name is a null pointer\n"));
1392 		return 0;
1393 	}
1394 	if (nParams < 0 || nParams > 65535)
1395 	{
1396 		printfPQExpBuffer(&conn->errorMessage,
1397 						  libpq_gettext("number of parameters must be between 0 and 65535\n"));
1398 		return 0;
1399 	}
1400 
1401 	return PQsendQueryGuts(conn,
1402 						   NULL,	/* no command to parse */
1403 						   stmtName,
1404 						   nParams,
1405 						   NULL,	/* no param types */
1406 						   paramValues,
1407 						   paramLengths,
1408 						   paramFormats,
1409 						   resultFormat);
1410 }
1411 
1412 /*
1413  * Common startup code for PQsendQuery and sibling routines
1414  */
1415 static bool
PQsendQueryStart(PGconn * conn)1416 PQsendQueryStart(PGconn *conn)
1417 {
1418 	if (!conn)
1419 		return false;
1420 
1421 	/* clear the error string */
1422 	resetPQExpBuffer(&conn->errorMessage);
1423 
1424 	/* Don't try to send if we know there's no live connection. */
1425 	if (conn->status != CONNECTION_OK)
1426 	{
1427 		printfPQExpBuffer(&conn->errorMessage,
1428 						  libpq_gettext("no connection to the server\n"));
1429 		return false;
1430 	}
1431 	/* Can't send while already busy, either. */
1432 	if (conn->asyncStatus != PGASYNC_IDLE)
1433 	{
1434 		printfPQExpBuffer(&conn->errorMessage,
1435 						  libpq_gettext("another command is already in progress\n"));
1436 		return false;
1437 	}
1438 
1439 	/* initialize async result-accumulation state */
1440 	pqClearAsyncResult(conn);
1441 
1442 	/* reset single-row processing mode */
1443 	conn->singleRowMode = false;
1444 
1445 	/* ready to send command message */
1446 	return true;
1447 }
1448 
1449 /*
1450  * PQsendQueryGuts
1451  *		Common code for protocol-3.0 query sending
1452  *		PQsendQueryStart should be done already
1453  *
1454  * command may be NULL to indicate we use an already-prepared statement
1455  */
1456 static int
PQsendQueryGuts(PGconn * conn,const char * command,const char * stmtName,int nParams,const Oid * paramTypes,const char * const * paramValues,const int * paramLengths,const int * paramFormats,int resultFormat)1457 PQsendQueryGuts(PGconn *conn,
1458 				const char *command,
1459 				const char *stmtName,
1460 				int nParams,
1461 				const Oid *paramTypes,
1462 				const char *const *paramValues,
1463 				const int *paramLengths,
1464 				const int *paramFormats,
1465 				int resultFormat)
1466 {
1467 	int			i;
1468 
1469 	/* This isn't gonna work on a 2.0 server */
1470 	if (PG_PROTOCOL_MAJOR(conn->pversion) < 3)
1471 	{
1472 		printfPQExpBuffer(&conn->errorMessage,
1473 						  libpq_gettext("function requires at least protocol version 3.0\n"));
1474 		return 0;
1475 	}
1476 
1477 	/*
1478 	 * We will send Parse (if needed), Bind, Describe Portal, Execute, Sync,
1479 	 * using specified statement name and the unnamed portal.
1480 	 */
1481 
1482 	if (command)
1483 	{
1484 		/* construct the Parse message */
1485 		if (pqPutMsgStart('P', false, conn) < 0 ||
1486 			pqPuts(stmtName, conn) < 0 ||
1487 			pqPuts(command, conn) < 0)
1488 			goto sendFailed;
1489 		if (nParams > 0 && paramTypes)
1490 		{
1491 			if (pqPutInt(nParams, 2, conn) < 0)
1492 				goto sendFailed;
1493 			for (i = 0; i < nParams; i++)
1494 			{
1495 				if (pqPutInt(paramTypes[i], 4, conn) < 0)
1496 					goto sendFailed;
1497 			}
1498 		}
1499 		else
1500 		{
1501 			if (pqPutInt(0, 2, conn) < 0)
1502 				goto sendFailed;
1503 		}
1504 		if (pqPutMsgEnd(conn) < 0)
1505 			goto sendFailed;
1506 	}
1507 
1508 	/* Construct the Bind message */
1509 	if (pqPutMsgStart('B', false, conn) < 0 ||
1510 		pqPuts("", conn) < 0 ||
1511 		pqPuts(stmtName, conn) < 0)
1512 		goto sendFailed;
1513 
1514 	/* Send parameter formats */
1515 	if (nParams > 0 && paramFormats)
1516 	{
1517 		if (pqPutInt(nParams, 2, conn) < 0)
1518 			goto sendFailed;
1519 		for (i = 0; i < nParams; i++)
1520 		{
1521 			if (pqPutInt(paramFormats[i], 2, conn) < 0)
1522 				goto sendFailed;
1523 		}
1524 	}
1525 	else
1526 	{
1527 		if (pqPutInt(0, 2, conn) < 0)
1528 			goto sendFailed;
1529 	}
1530 
1531 	if (pqPutInt(nParams, 2, conn) < 0)
1532 		goto sendFailed;
1533 
1534 	/* Send parameters */
1535 	for (i = 0; i < nParams; i++)
1536 	{
1537 		if (paramValues && paramValues[i])
1538 		{
1539 			int			nbytes;
1540 
1541 			if (paramFormats && paramFormats[i] != 0)
1542 			{
1543 				/* binary parameter */
1544 				if (paramLengths)
1545 					nbytes = paramLengths[i];
1546 				else
1547 				{
1548 					printfPQExpBuffer(&conn->errorMessage,
1549 									  libpq_gettext("length must be given for binary parameter\n"));
1550 					goto sendFailed;
1551 				}
1552 			}
1553 			else
1554 			{
1555 				/* text parameter, do not use paramLengths */
1556 				nbytes = strlen(paramValues[i]);
1557 			}
1558 			if (pqPutInt(nbytes, 4, conn) < 0 ||
1559 				pqPutnchar(paramValues[i], nbytes, conn) < 0)
1560 				goto sendFailed;
1561 		}
1562 		else
1563 		{
1564 			/* take the param as NULL */
1565 			if (pqPutInt(-1, 4, conn) < 0)
1566 				goto sendFailed;
1567 		}
1568 	}
1569 	if (pqPutInt(1, 2, conn) < 0 ||
1570 		pqPutInt(resultFormat, 2, conn))
1571 		goto sendFailed;
1572 	if (pqPutMsgEnd(conn) < 0)
1573 		goto sendFailed;
1574 
1575 	/* construct the Describe Portal message */
1576 	if (pqPutMsgStart('D', false, conn) < 0 ||
1577 		pqPutc('P', conn) < 0 ||
1578 		pqPuts("", conn) < 0 ||
1579 		pqPutMsgEnd(conn) < 0)
1580 		goto sendFailed;
1581 
1582 	/* construct the Execute message */
1583 	if (pqPutMsgStart('E', false, conn) < 0 ||
1584 		pqPuts("", conn) < 0 ||
1585 		pqPutInt(0, 4, conn) < 0 ||
1586 		pqPutMsgEnd(conn) < 0)
1587 		goto sendFailed;
1588 
1589 	/* construct the Sync message */
1590 	if (pqPutMsgStart('S', false, conn) < 0 ||
1591 		pqPutMsgEnd(conn) < 0)
1592 		goto sendFailed;
1593 
1594 	/* remember we are using extended query protocol */
1595 	conn->queryclass = PGQUERY_EXTENDED;
1596 
1597 	/* and remember the query text too, if possible */
1598 	/* if insufficient memory, last_query just winds up NULL */
1599 	if (conn->last_query)
1600 		free(conn->last_query);
1601 	if (command)
1602 		conn->last_query = strdup(command);
1603 	else
1604 		conn->last_query = NULL;
1605 
1606 	/*
1607 	 * Give the data a push.  In nonblock mode, don't complain if we're unable
1608 	 * to send it all; PQgetResult() will do any additional flushing needed.
1609 	 */
1610 	if (pqFlush(conn) < 0)
1611 		goto sendFailed;
1612 
1613 	/* OK, it's launched! */
1614 	conn->asyncStatus = PGASYNC_BUSY;
1615 	return 1;
1616 
1617 sendFailed:
1618 	pqHandleSendFailure(conn);
1619 	return 0;
1620 }
1621 
1622 /*
1623  * pqHandleSendFailure: try to clean up after failure to send command.
1624  *
1625  * Primarily, what we want to accomplish here is to process any ERROR or
1626  * NOTICE messages that the backend might have sent just before it died.
1627  * Since we're in IDLE state, all such messages will get sent to the notice
1628  * processor.
1629  *
1630  * NOTE: this routine should only be called in PGASYNC_IDLE state.
1631  */
1632 void
pqHandleSendFailure(PGconn * conn)1633 pqHandleSendFailure(PGconn *conn)
1634 {
1635 	/*
1636 	 * Accept and parse any available input data, ignoring I/O errors.  Note
1637 	 * that if pqReadData decides the backend has closed the channel, it will
1638 	 * close our side of the socket --- that's just what we want here.
1639 	 */
1640 	while (pqReadData(conn) > 0)
1641 		parseInput(conn);
1642 
1643 	/*
1644 	 * Be sure to parse available input messages even if we read no data.
1645 	 * (Note: calling parseInput within the above loop isn't really necessary,
1646 	 * but it prevents buffer bloat if there's a lot of data available.)
1647 	 */
1648 	parseInput(conn);
1649 }
1650 
1651 /*
1652  * Select row-by-row processing mode
1653  */
1654 int
PQsetSingleRowMode(PGconn * conn)1655 PQsetSingleRowMode(PGconn *conn)
1656 {
1657 	/*
1658 	 * Only allow setting the flag when we have launched a query and not yet
1659 	 * received any results.
1660 	 */
1661 	if (!conn)
1662 		return 0;
1663 	if (conn->asyncStatus != PGASYNC_BUSY)
1664 		return 0;
1665 	if (conn->queryclass != PGQUERY_SIMPLE &&
1666 		conn->queryclass != PGQUERY_EXTENDED)
1667 		return 0;
1668 	if (conn->result)
1669 		return 0;
1670 
1671 	/* OK, set flag */
1672 	conn->singleRowMode = true;
1673 	return 1;
1674 }
1675 
1676 /*
1677  * Consume any available input from the backend
1678  * 0 return: some kind of trouble
1679  * 1 return: no problem
1680  */
1681 int
PQconsumeInput(PGconn * conn)1682 PQconsumeInput(PGconn *conn)
1683 {
1684 	if (!conn)
1685 		return 0;
1686 
1687 	/*
1688 	 * for non-blocking connections try to flush the send-queue, otherwise we
1689 	 * may never get a response for something that may not have already been
1690 	 * sent because it's in our write buffer!
1691 	 */
1692 	if (pqIsnonblocking(conn))
1693 	{
1694 		if (pqFlush(conn) < 0)
1695 			return 0;
1696 	}
1697 
1698 	/*
1699 	 * Load more data, if available. We do this no matter what state we are
1700 	 * in, since we are probably getting called because the application wants
1701 	 * to get rid of a read-select condition. Note that we will NOT block
1702 	 * waiting for more input.
1703 	 */
1704 	if (pqReadData(conn) < 0)
1705 		return 0;
1706 
1707 	/* Parsing of the data waits till later. */
1708 	return 1;
1709 }
1710 
1711 
1712 /*
1713  * parseInput: if appropriate, parse input data from backend
1714  * until input is exhausted or a stopping state is reached.
1715  * Note that this function will NOT attempt to read more data from the backend.
1716  */
1717 static void
parseInput(PGconn * conn)1718 parseInput(PGconn *conn)
1719 {
1720 	if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
1721 		pqParseInput3(conn);
1722 	else
1723 		pqParseInput2(conn);
1724 }
1725 
1726 /*
1727  * PQisBusy
1728  *	 Return TRUE if PQgetResult would block waiting for input.
1729  */
1730 
1731 int
PQisBusy(PGconn * conn)1732 PQisBusy(PGconn *conn)
1733 {
1734 	if (!conn)
1735 		return FALSE;
1736 
1737 	/* Parse any available data, if our state permits. */
1738 	parseInput(conn);
1739 
1740 	/* PQgetResult will return immediately in all states except BUSY. */
1741 	return conn->asyncStatus == PGASYNC_BUSY;
1742 }
1743 
1744 
1745 /*
1746  * PQgetResult
1747  *	  Get the next PGresult produced by a query.  Returns NULL if no
1748  *	  query work remains or an error has occurred (e.g. out of
1749  *	  memory).
1750  */
1751 
1752 PGresult *
PQgetResult(PGconn * conn)1753 PQgetResult(PGconn *conn)
1754 {
1755 	PGresult   *res;
1756 
1757 	if (!conn)
1758 		return NULL;
1759 
1760 	/* Parse any available data, if our state permits. */
1761 	parseInput(conn);
1762 
1763 	/* If not ready to return something, block until we are. */
1764 	while (conn->asyncStatus == PGASYNC_BUSY)
1765 	{
1766 		int			flushResult;
1767 
1768 		/*
1769 		 * If data remains unsent, send it.  Else we might be waiting for the
1770 		 * result of a command the backend hasn't even got yet.
1771 		 */
1772 		while ((flushResult = pqFlush(conn)) > 0)
1773 		{
1774 			if (pqWait(FALSE, TRUE, conn))
1775 			{
1776 				flushResult = -1;
1777 				break;
1778 			}
1779 		}
1780 
1781 		/* Wait for some more data, and load it. */
1782 		if (flushResult ||
1783 			pqWait(TRUE, FALSE, conn) ||
1784 			pqReadData(conn) < 0)
1785 		{
1786 			/*
1787 			 * conn->errorMessage has been set by pqWait or pqReadData. We
1788 			 * want to append it to any already-received error message.
1789 			 */
1790 			pqSaveErrorResult(conn);
1791 			conn->asyncStatus = PGASYNC_IDLE;
1792 			return pqPrepareAsyncResult(conn);
1793 		}
1794 
1795 		/* Parse it. */
1796 		parseInput(conn);
1797 	}
1798 
1799 	/* Return the appropriate thing. */
1800 	switch (conn->asyncStatus)
1801 	{
1802 		case PGASYNC_IDLE:
1803 			res = NULL;			/* query is complete */
1804 			break;
1805 		case PGASYNC_READY:
1806 			res = pqPrepareAsyncResult(conn);
1807 			/* Set the state back to BUSY, allowing parsing to proceed. */
1808 			conn->asyncStatus = PGASYNC_BUSY;
1809 			break;
1810 		case PGASYNC_COPY_IN:
1811 			res = getCopyResult(conn, PGRES_COPY_IN);
1812 			break;
1813 		case PGASYNC_COPY_OUT:
1814 			res = getCopyResult(conn, PGRES_COPY_OUT);
1815 			break;
1816 		case PGASYNC_COPY_BOTH:
1817 			res = getCopyResult(conn, PGRES_COPY_BOTH);
1818 			break;
1819 		default:
1820 			printfPQExpBuffer(&conn->errorMessage,
1821 							  libpq_gettext("unexpected asyncStatus: %d\n"),
1822 							  (int) conn->asyncStatus);
1823 			res = PQmakeEmptyPGresult(conn, PGRES_FATAL_ERROR);
1824 			break;
1825 	}
1826 
1827 	if (res)
1828 	{
1829 		int			i;
1830 
1831 		for (i = 0; i < res->nEvents; i++)
1832 		{
1833 			PGEventResultCreate evt;
1834 
1835 			evt.conn = conn;
1836 			evt.result = res;
1837 			if (!res->events[i].proc(PGEVT_RESULTCREATE, &evt,
1838 									 res->events[i].passThrough))
1839 			{
1840 				printfPQExpBuffer(&conn->errorMessage,
1841 								  libpq_gettext("PGEventProc \"%s\" failed during PGEVT_RESULTCREATE event\n"),
1842 								  res->events[i].name);
1843 				pqSetResultError(res, conn->errorMessage.data);
1844 				res->resultStatus = PGRES_FATAL_ERROR;
1845 				break;
1846 			}
1847 			res->events[i].resultInitialized = TRUE;
1848 		}
1849 	}
1850 
1851 	return res;
1852 }
1853 
1854 /*
1855  * getCopyResult
1856  *	  Helper for PQgetResult: generate result for COPY-in-progress cases
1857  */
1858 static PGresult *
getCopyResult(PGconn * conn,ExecStatusType copytype)1859 getCopyResult(PGconn *conn, ExecStatusType copytype)
1860 {
1861 	/*
1862 	 * If the server connection has been lost, don't pretend everything is
1863 	 * hunky-dory; instead return a PGRES_FATAL_ERROR result, and reset the
1864 	 * asyncStatus to idle (corresponding to what we'd do if we'd detected I/O
1865 	 * error in the earlier steps in PQgetResult).  The text returned in the
1866 	 * result is whatever is in conn->errorMessage; we hope that was filled
1867 	 * with something relevant when the lost connection was detected.
1868 	 */
1869 	if (conn->status != CONNECTION_OK)
1870 	{
1871 		pqSaveErrorResult(conn);
1872 		conn->asyncStatus = PGASYNC_IDLE;
1873 		return pqPrepareAsyncResult(conn);
1874 	}
1875 
1876 	/* If we have an async result for the COPY, return that */
1877 	if (conn->result && conn->result->resultStatus == copytype)
1878 		return pqPrepareAsyncResult(conn);
1879 
1880 	/* Otherwise, invent a suitable PGresult */
1881 	return PQmakeEmptyPGresult(conn, copytype);
1882 }
1883 
1884 
1885 /*
1886  * PQexec
1887  *	  send a query to the backend and package up the result in a PGresult
1888  *
1889  * If the query was not even sent, return NULL; conn->errorMessage is set to
1890  * a relevant message.
1891  * If the query was sent, a new PGresult is returned (which could indicate
1892  * either success or failure).
1893  * The user is responsible for freeing the PGresult via PQclear()
1894  * when done with it.
1895  */
1896 PGresult *
PQexec(PGconn * conn,const char * query)1897 PQexec(PGconn *conn, const char *query)
1898 {
1899 	if (!PQexecStart(conn))
1900 		return NULL;
1901 	if (!PQsendQuery(conn, query))
1902 		return NULL;
1903 	return PQexecFinish(conn);
1904 }
1905 
1906 /*
1907  * PQexecParams
1908  *		Like PQexec, but use protocol 3.0 so we can pass parameters
1909  */
1910 PGresult *
PQexecParams(PGconn * conn,const char * command,int nParams,const Oid * paramTypes,const char * const * paramValues,const int * paramLengths,const int * paramFormats,int resultFormat)1911 PQexecParams(PGconn *conn,
1912 			 const char *command,
1913 			 int nParams,
1914 			 const Oid *paramTypes,
1915 			 const char *const *paramValues,
1916 			 const int *paramLengths,
1917 			 const int *paramFormats,
1918 			 int resultFormat)
1919 {
1920 	if (!PQexecStart(conn))
1921 		return NULL;
1922 	if (!PQsendQueryParams(conn, command,
1923 						   nParams, paramTypes, paramValues, paramLengths,
1924 						   paramFormats, resultFormat))
1925 		return NULL;
1926 	return PQexecFinish(conn);
1927 }
1928 
1929 /*
1930  * PQprepare
1931  *	  Creates a prepared statement by issuing a v3.0 parse message.
1932  *
1933  * If the query was not even sent, return NULL; conn->errorMessage is set to
1934  * a relevant message.
1935  * If the query was sent, a new PGresult is returned (which could indicate
1936  * either success or failure).
1937  * The user is responsible for freeing the PGresult via PQclear()
1938  * when done with it.
1939  */
1940 PGresult *
PQprepare(PGconn * conn,const char * stmtName,const char * query,int nParams,const Oid * paramTypes)1941 PQprepare(PGconn *conn,
1942 		  const char *stmtName, const char *query,
1943 		  int nParams, const Oid *paramTypes)
1944 {
1945 	if (!PQexecStart(conn))
1946 		return NULL;
1947 	if (!PQsendPrepare(conn, stmtName, query, nParams, paramTypes))
1948 		return NULL;
1949 	return PQexecFinish(conn);
1950 }
1951 
1952 /*
1953  * PQexecPrepared
1954  *		Like PQexec, but execute a previously prepared statement,
1955  *		using protocol 3.0 so we can pass parameters
1956  */
1957 PGresult *
PQexecPrepared(PGconn * conn,const char * stmtName,int nParams,const char * const * paramValues,const int * paramLengths,const int * paramFormats,int resultFormat)1958 PQexecPrepared(PGconn *conn,
1959 			   const char *stmtName,
1960 			   int nParams,
1961 			   const char *const *paramValues,
1962 			   const int *paramLengths,
1963 			   const int *paramFormats,
1964 			   int resultFormat)
1965 {
1966 	if (!PQexecStart(conn))
1967 		return NULL;
1968 	if (!PQsendQueryPrepared(conn, stmtName,
1969 							 nParams, paramValues, paramLengths,
1970 							 paramFormats, resultFormat))
1971 		return NULL;
1972 	return PQexecFinish(conn);
1973 }
1974 
1975 /*
1976  * Common code for PQexec and sibling routines: prepare to send command
1977  */
1978 static bool
PQexecStart(PGconn * conn)1979 PQexecStart(PGconn *conn)
1980 {
1981 	PGresult   *result;
1982 
1983 	if (!conn)
1984 		return false;
1985 
1986 	/*
1987 	 * Silently discard any prior query result that application didn't eat.
1988 	 * This is probably poor design, but it's here for backward compatibility.
1989 	 */
1990 	while ((result = PQgetResult(conn)) != NULL)
1991 	{
1992 		ExecStatusType resultStatus = result->resultStatus;
1993 
1994 		PQclear(result);		/* only need its status */
1995 		if (resultStatus == PGRES_COPY_IN)
1996 		{
1997 			if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
1998 			{
1999 				/* In protocol 3, we can get out of a COPY IN state */
2000 				if (PQputCopyEnd(conn,
2001 								 libpq_gettext("COPY terminated by new PQexec")) < 0)
2002 					return false;
2003 				/* keep waiting to swallow the copy's failure message */
2004 			}
2005 			else
2006 			{
2007 				/* In older protocols we have to punt */
2008 				printfPQExpBuffer(&conn->errorMessage,
2009 								  libpq_gettext("COPY IN state must be terminated first\n"));
2010 				return false;
2011 			}
2012 		}
2013 		else if (resultStatus == PGRES_COPY_OUT)
2014 		{
2015 			if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2016 			{
2017 				/*
2018 				 * In protocol 3, we can get out of a COPY OUT state: we just
2019 				 * switch back to BUSY and allow the remaining COPY data to be
2020 				 * dropped on the floor.
2021 				 */
2022 				conn->asyncStatus = PGASYNC_BUSY;
2023 				/* keep waiting to swallow the copy's completion message */
2024 			}
2025 			else
2026 			{
2027 				/* In older protocols we have to punt */
2028 				printfPQExpBuffer(&conn->errorMessage,
2029 								  libpq_gettext("COPY OUT state must be terminated first\n"));
2030 				return false;
2031 			}
2032 		}
2033 		else if (resultStatus == PGRES_COPY_BOTH)
2034 		{
2035 			/* We don't allow PQexec during COPY BOTH */
2036 			printfPQExpBuffer(&conn->errorMessage,
2037 							  libpq_gettext("PQexec not allowed during COPY BOTH\n"));
2038 			return false;
2039 		}
2040 		/* check for loss of connection, too */
2041 		if (conn->status == CONNECTION_BAD)
2042 			return false;
2043 	}
2044 
2045 	/* OK to send a command */
2046 	return true;
2047 }
2048 
2049 /*
2050  * Common code for PQexec and sibling routines: wait for command result
2051  */
2052 static PGresult *
PQexecFinish(PGconn * conn)2053 PQexecFinish(PGconn *conn)
2054 {
2055 	PGresult   *result;
2056 	PGresult   *lastResult;
2057 
2058 	/*
2059 	 * For backwards compatibility, return the last result if there are more
2060 	 * than one --- but merge error messages if we get more than one error
2061 	 * result.
2062 	 *
2063 	 * We have to stop if we see copy in/out/both, however. We will resume
2064 	 * parsing after application performs the data transfer.
2065 	 *
2066 	 * Also stop if the connection is lost (else we'll loop infinitely).
2067 	 */
2068 	lastResult = NULL;
2069 	while ((result = PQgetResult(conn)) != NULL)
2070 	{
2071 		if (lastResult)
2072 		{
2073 			if (lastResult->resultStatus == PGRES_FATAL_ERROR &&
2074 				result->resultStatus == PGRES_FATAL_ERROR)
2075 			{
2076 				pqCatenateResultError(lastResult, result->errMsg);
2077 				PQclear(result);
2078 				result = lastResult;
2079 
2080 				/*
2081 				 * Make sure PQerrorMessage agrees with concatenated result
2082 				 */
2083 				resetPQExpBuffer(&conn->errorMessage);
2084 				appendPQExpBufferStr(&conn->errorMessage, result->errMsg);
2085 			}
2086 			else
2087 				PQclear(lastResult);
2088 		}
2089 		lastResult = result;
2090 		if (result->resultStatus == PGRES_COPY_IN ||
2091 			result->resultStatus == PGRES_COPY_OUT ||
2092 			result->resultStatus == PGRES_COPY_BOTH ||
2093 			conn->status == CONNECTION_BAD)
2094 			break;
2095 	}
2096 
2097 	return lastResult;
2098 }
2099 
2100 /*
2101  * PQdescribePrepared
2102  *	  Obtain information about a previously prepared statement
2103  *
2104  * If the query was not even sent, return NULL; conn->errorMessage is set to
2105  * a relevant message.
2106  * If the query was sent, a new PGresult is returned (which could indicate
2107  * either success or failure).  On success, the PGresult contains status
2108  * PGRES_COMMAND_OK, and its parameter and column-heading fields describe
2109  * the statement's inputs and outputs respectively.
2110  * The user is responsible for freeing the PGresult via PQclear()
2111  * when done with it.
2112  */
2113 PGresult *
PQdescribePrepared(PGconn * conn,const char * stmt)2114 PQdescribePrepared(PGconn *conn, const char *stmt)
2115 {
2116 	if (!PQexecStart(conn))
2117 		return NULL;
2118 	if (!PQsendDescribe(conn, 'S', stmt))
2119 		return NULL;
2120 	return PQexecFinish(conn);
2121 }
2122 
2123 /*
2124  * PQdescribePortal
2125  *	  Obtain information about a previously created portal
2126  *
2127  * This is much like PQdescribePrepared, except that no parameter info is
2128  * returned.  Note that at the moment, libpq doesn't really expose portals
2129  * to the client; but this can be used with a portal created by a SQL
2130  * DECLARE CURSOR command.
2131  */
2132 PGresult *
PQdescribePortal(PGconn * conn,const char * portal)2133 PQdescribePortal(PGconn *conn, const char *portal)
2134 {
2135 	if (!PQexecStart(conn))
2136 		return NULL;
2137 	if (!PQsendDescribe(conn, 'P', portal))
2138 		return NULL;
2139 	return PQexecFinish(conn);
2140 }
2141 
2142 /*
2143  * PQsendDescribePrepared
2144  *	 Submit a Describe Statement command, but don't wait for it to finish
2145  *
2146  * Returns: 1 if successfully submitted
2147  *			0 if error (conn->errorMessage is set)
2148  */
2149 int
PQsendDescribePrepared(PGconn * conn,const char * stmt)2150 PQsendDescribePrepared(PGconn *conn, const char *stmt)
2151 {
2152 	return PQsendDescribe(conn, 'S', stmt);
2153 }
2154 
2155 /*
2156  * PQsendDescribePortal
2157  *	 Submit a Describe Portal command, but don't wait for it to finish
2158  *
2159  * Returns: 1 if successfully submitted
2160  *			0 if error (conn->errorMessage is set)
2161  */
2162 int
PQsendDescribePortal(PGconn * conn,const char * portal)2163 PQsendDescribePortal(PGconn *conn, const char *portal)
2164 {
2165 	return PQsendDescribe(conn, 'P', portal);
2166 }
2167 
2168 /*
2169  * PQsendDescribe
2170  *	 Common code to send a Describe command
2171  *
2172  * Available options for desc_type are
2173  *	 'S' to describe a prepared statement; or
2174  *	 'P' to describe a portal.
2175  * Returns 1 on success and 0 on failure.
2176  */
2177 static int
PQsendDescribe(PGconn * conn,char desc_type,const char * desc_target)2178 PQsendDescribe(PGconn *conn, char desc_type, const char *desc_target)
2179 {
2180 	/* Treat null desc_target as empty string */
2181 	if (!desc_target)
2182 		desc_target = "";
2183 
2184 	if (!PQsendQueryStart(conn))
2185 		return 0;
2186 
2187 	/* This isn't gonna work on a 2.0 server */
2188 	if (PG_PROTOCOL_MAJOR(conn->pversion) < 3)
2189 	{
2190 		printfPQExpBuffer(&conn->errorMessage,
2191 						  libpq_gettext("function requires at least protocol version 3.0\n"));
2192 		return 0;
2193 	}
2194 
2195 	/* construct the Describe message */
2196 	if (pqPutMsgStart('D', false, conn) < 0 ||
2197 		pqPutc(desc_type, conn) < 0 ||
2198 		pqPuts(desc_target, conn) < 0 ||
2199 		pqPutMsgEnd(conn) < 0)
2200 		goto sendFailed;
2201 
2202 	/* construct the Sync message */
2203 	if (pqPutMsgStart('S', false, conn) < 0 ||
2204 		pqPutMsgEnd(conn) < 0)
2205 		goto sendFailed;
2206 
2207 	/* remember we are doing a Describe */
2208 	conn->queryclass = PGQUERY_DESCRIBE;
2209 
2210 	/* reset last-query string (not relevant now) */
2211 	if (conn->last_query)
2212 	{
2213 		free(conn->last_query);
2214 		conn->last_query = NULL;
2215 	}
2216 
2217 	/*
2218 	 * Give the data a push.  In nonblock mode, don't complain if we're unable
2219 	 * to send it all; PQgetResult() will do any additional flushing needed.
2220 	 */
2221 	if (pqFlush(conn) < 0)
2222 		goto sendFailed;
2223 
2224 	/* OK, it's launched! */
2225 	conn->asyncStatus = PGASYNC_BUSY;
2226 	return 1;
2227 
2228 sendFailed:
2229 	pqHandleSendFailure(conn);
2230 	return 0;
2231 }
2232 
2233 /*
2234  * PQnotifies
2235  *	  returns a PGnotify* structure of the latest async notification
2236  * that has not yet been handled
2237  *
2238  * returns NULL, if there is currently
2239  * no unhandled async notification from the backend
2240  *
2241  * the CALLER is responsible for FREE'ing the structure returned
2242  *
2243  * Note that this function does not read any new data from the socket;
2244  * so usually, caller should call PQconsumeInput() first.
2245  */
2246 PGnotify *
PQnotifies(PGconn * conn)2247 PQnotifies(PGconn *conn)
2248 {
2249 	PGnotify   *event;
2250 
2251 	if (!conn)
2252 		return NULL;
2253 
2254 	/* Parse any available data to see if we can extract NOTIFY messages. */
2255 	parseInput(conn);
2256 
2257 	event = conn->notifyHead;
2258 	if (event)
2259 	{
2260 		conn->notifyHead = event->next;
2261 		if (!conn->notifyHead)
2262 			conn->notifyTail = NULL;
2263 		event->next = NULL;		/* don't let app see the internal state */
2264 	}
2265 	return event;
2266 }
2267 
2268 /*
2269  * PQputCopyData - send some data to the backend during COPY IN or COPY BOTH
2270  *
2271  * Returns 1 if successful, 0 if data could not be sent (only possible
2272  * in nonblock mode), or -1 if an error occurs.
2273  */
2274 int
PQputCopyData(PGconn * conn,const char * buffer,int nbytes)2275 PQputCopyData(PGconn *conn, const char *buffer, int nbytes)
2276 {
2277 	if (!conn)
2278 		return -1;
2279 	if (conn->asyncStatus != PGASYNC_COPY_IN &&
2280 		conn->asyncStatus != PGASYNC_COPY_BOTH)
2281 	{
2282 		printfPQExpBuffer(&conn->errorMessage,
2283 						  libpq_gettext("no COPY in progress\n"));
2284 		return -1;
2285 	}
2286 
2287 	/*
2288 	 * Process any NOTICE or NOTIFY messages that might be pending in the
2289 	 * input buffer.  Since the server might generate many notices during the
2290 	 * COPY, we want to clean those out reasonably promptly to prevent
2291 	 * indefinite expansion of the input buffer.  (Note: the actual read of
2292 	 * input data into the input buffer happens down inside pqSendSome, but
2293 	 * it's not authorized to get rid of the data again.)
2294 	 */
2295 	parseInput(conn);
2296 
2297 	if (nbytes > 0)
2298 	{
2299 		/*
2300 		 * Try to flush any previously sent data in preference to growing the
2301 		 * output buffer.  If we can't enlarge the buffer enough to hold the
2302 		 * data, return 0 in the nonblock case, else hard error. (For
2303 		 * simplicity, always assume 5 bytes of overhead even in protocol 2.0
2304 		 * case.)
2305 		 */
2306 		if ((conn->outBufSize - conn->outCount - 5) < nbytes)
2307 		{
2308 			if (pqFlush(conn) < 0)
2309 				return -1;
2310 			if (pqCheckOutBufferSpace(conn->outCount + 5 + (size_t) nbytes,
2311 									  conn))
2312 				return pqIsnonblocking(conn) ? 0 : -1;
2313 		}
2314 		/* Send the data (too simple to delegate to fe-protocol files) */
2315 		if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2316 		{
2317 			if (pqPutMsgStart('d', false, conn) < 0 ||
2318 				pqPutnchar(buffer, nbytes, conn) < 0 ||
2319 				pqPutMsgEnd(conn) < 0)
2320 				return -1;
2321 		}
2322 		else
2323 		{
2324 			if (pqPutMsgStart(0, false, conn) < 0 ||
2325 				pqPutnchar(buffer, nbytes, conn) < 0 ||
2326 				pqPutMsgEnd(conn) < 0)
2327 				return -1;
2328 		}
2329 	}
2330 	return 1;
2331 }
2332 
2333 /*
2334  * PQputCopyEnd - send EOF indication to the backend during COPY IN
2335  *
2336  * After calling this, use PQgetResult() to check command completion status.
2337  *
2338  * Returns 1 if successful, 0 if data could not be sent (only possible
2339  * in nonblock mode), or -1 if an error occurs.
2340  */
2341 int
PQputCopyEnd(PGconn * conn,const char * errormsg)2342 PQputCopyEnd(PGconn *conn, const char *errormsg)
2343 {
2344 	if (!conn)
2345 		return -1;
2346 	if (conn->asyncStatus != PGASYNC_COPY_IN &&
2347 		conn->asyncStatus != PGASYNC_COPY_BOTH)
2348 	{
2349 		printfPQExpBuffer(&conn->errorMessage,
2350 						  libpq_gettext("no COPY in progress\n"));
2351 		return -1;
2352 	}
2353 
2354 	/*
2355 	 * Send the COPY END indicator.  This is simple enough that we don't
2356 	 * bother delegating it to the fe-protocol files.
2357 	 */
2358 	if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2359 	{
2360 		if (errormsg)
2361 		{
2362 			/* Send COPY FAIL */
2363 			if (pqPutMsgStart('f', false, conn) < 0 ||
2364 				pqPuts(errormsg, conn) < 0 ||
2365 				pqPutMsgEnd(conn) < 0)
2366 				return -1;
2367 		}
2368 		else
2369 		{
2370 			/* Send COPY DONE */
2371 			if (pqPutMsgStart('c', false, conn) < 0 ||
2372 				pqPutMsgEnd(conn) < 0)
2373 				return -1;
2374 		}
2375 
2376 		/*
2377 		 * If we sent the COPY command in extended-query mode, we must issue a
2378 		 * Sync as well.
2379 		 */
2380 		if (conn->queryclass != PGQUERY_SIMPLE)
2381 		{
2382 			if (pqPutMsgStart('S', false, conn) < 0 ||
2383 				pqPutMsgEnd(conn) < 0)
2384 				return -1;
2385 		}
2386 	}
2387 	else
2388 	{
2389 		if (errormsg)
2390 		{
2391 			/* Oops, no way to do this in 2.0 */
2392 			printfPQExpBuffer(&conn->errorMessage,
2393 							  libpq_gettext("function requires at least protocol version 3.0\n"));
2394 			return -1;
2395 		}
2396 		else
2397 		{
2398 			/* Send old-style end-of-data marker */
2399 			if (pqPutMsgStart(0, false, conn) < 0 ||
2400 				pqPutnchar("\\.\n", 3, conn) < 0 ||
2401 				pqPutMsgEnd(conn) < 0)
2402 				return -1;
2403 		}
2404 	}
2405 
2406 	/* Return to active duty */
2407 	if (conn->asyncStatus == PGASYNC_COPY_BOTH)
2408 		conn->asyncStatus = PGASYNC_COPY_OUT;
2409 	else
2410 		conn->asyncStatus = PGASYNC_BUSY;
2411 	resetPQExpBuffer(&conn->errorMessage);
2412 
2413 	/* Try to flush data */
2414 	if (pqFlush(conn) < 0)
2415 		return -1;
2416 
2417 	return 1;
2418 }
2419 
2420 /*
2421  * PQgetCopyData - read a row of data from the backend during COPY OUT
2422  * or COPY BOTH
2423  *
2424  * If successful, sets *buffer to point to a malloc'd row of data, and
2425  * returns row length (always > 0) as result.
2426  * Returns 0 if no row available yet (only possible if async is true),
2427  * -1 if end of copy (consult PQgetResult), or -2 if error (consult
2428  * PQerrorMessage).
2429  */
2430 int
PQgetCopyData(PGconn * conn,char ** buffer,int async)2431 PQgetCopyData(PGconn *conn, char **buffer, int async)
2432 {
2433 	*buffer = NULL;				/* for all failure cases */
2434 	if (!conn)
2435 		return -2;
2436 	if (conn->asyncStatus != PGASYNC_COPY_OUT &&
2437 		conn->asyncStatus != PGASYNC_COPY_BOTH)
2438 	{
2439 		printfPQExpBuffer(&conn->errorMessage,
2440 						  libpq_gettext("no COPY in progress\n"));
2441 		return -2;
2442 	}
2443 	if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2444 		return pqGetCopyData3(conn, buffer, async);
2445 	else
2446 		return pqGetCopyData2(conn, buffer, async);
2447 }
2448 
2449 /*
2450  * PQgetline - gets a newline-terminated string from the backend.
2451  *
2452  * Chiefly here so that applications can use "COPY <rel> to stdout"
2453  * and read the output string.  Returns a null-terminated string in s.
2454  *
2455  * XXX this routine is now deprecated, because it can't handle binary data.
2456  * If called during a COPY BINARY we return EOF.
2457  *
2458  * PQgetline reads up to maxlen-1 characters (like fgets(3)) but strips
2459  * the terminating \n (like gets(3)).
2460  *
2461  * CAUTION: the caller is responsible for detecting the end-of-copy signal
2462  * (a line containing just "\.") when using this routine.
2463  *
2464  * RETURNS:
2465  *		EOF if error (eg, invalid arguments are given)
2466  *		0 if EOL is reached (i.e., \n has been read)
2467  *				(this is required for backward-compatibility -- this
2468  *				 routine used to always return EOF or 0, assuming that
2469  *				 the line ended within maxlen bytes.)
2470  *		1 in other cases (i.e., the buffer was filled before \n is reached)
2471  */
2472 int
PQgetline(PGconn * conn,char * s,int maxlen)2473 PQgetline(PGconn *conn, char *s, int maxlen)
2474 {
2475 	if (!s || maxlen <= 0)
2476 		return EOF;
2477 	*s = '\0';
2478 	/* maxlen must be at least 3 to hold the \. terminator! */
2479 	if (maxlen < 3)
2480 		return EOF;
2481 
2482 	if (!conn)
2483 		return EOF;
2484 
2485 	if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2486 		return pqGetline3(conn, s, maxlen);
2487 	else
2488 		return pqGetline2(conn, s, maxlen);
2489 }
2490 
2491 /*
2492  * PQgetlineAsync - gets a COPY data row without blocking.
2493  *
2494  * This routine is for applications that want to do "COPY <rel> to stdout"
2495  * asynchronously, that is without blocking.  Having issued the COPY command
2496  * and gotten a PGRES_COPY_OUT response, the app should call PQconsumeInput
2497  * and this routine until the end-of-data signal is detected.  Unlike
2498  * PQgetline, this routine takes responsibility for detecting end-of-data.
2499  *
2500  * On each call, PQgetlineAsync will return data if a complete data row
2501  * is available in libpq's input buffer.  Otherwise, no data is returned
2502  * until the rest of the row arrives.
2503  *
2504  * If -1 is returned, the end-of-data signal has been recognized (and removed
2505  * from libpq's input buffer).  The caller *must* next call PQendcopy and
2506  * then return to normal processing.
2507  *
2508  * RETURNS:
2509  *	 -1    if the end-of-copy-data marker has been recognized
2510  *	 0	   if no data is available
2511  *	 >0    the number of bytes returned.
2512  *
2513  * The data returned will not extend beyond a data-row boundary.  If possible
2514  * a whole row will be returned at one time.  But if the buffer offered by
2515  * the caller is too small to hold a row sent by the backend, then a partial
2516  * data row will be returned.  In text mode this can be detected by testing
2517  * whether the last returned byte is '\n' or not.
2518  *
2519  * The returned data is *not* null-terminated.
2520  */
2521 
2522 int
PQgetlineAsync(PGconn * conn,char * buffer,int bufsize)2523 PQgetlineAsync(PGconn *conn, char *buffer, int bufsize)
2524 {
2525 	if (!conn)
2526 		return -1;
2527 
2528 	if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2529 		return pqGetlineAsync3(conn, buffer, bufsize);
2530 	else
2531 		return pqGetlineAsync2(conn, buffer, bufsize);
2532 }
2533 
2534 /*
2535  * PQputline -- sends a string to the backend during COPY IN.
2536  * Returns 0 if OK, EOF if not.
2537  *
2538  * This is deprecated primarily because the return convention doesn't allow
2539  * caller to tell the difference between a hard error and a nonblock-mode
2540  * send failure.
2541  */
2542 int
PQputline(PGconn * conn,const char * s)2543 PQputline(PGconn *conn, const char *s)
2544 {
2545 	return PQputnbytes(conn, s, strlen(s));
2546 }
2547 
2548 /*
2549  * PQputnbytes -- like PQputline, but buffer need not be null-terminated.
2550  * Returns 0 if OK, EOF if not.
2551  */
2552 int
PQputnbytes(PGconn * conn,const char * buffer,int nbytes)2553 PQputnbytes(PGconn *conn, const char *buffer, int nbytes)
2554 {
2555 	if (PQputCopyData(conn, buffer, nbytes) > 0)
2556 		return 0;
2557 	else
2558 		return EOF;
2559 }
2560 
2561 /*
2562  * PQendcopy
2563  *		After completing the data transfer portion of a copy in/out,
2564  *		the application must call this routine to finish the command protocol.
2565  *
2566  * When using protocol 3.0 this is deprecated; it's cleaner to use PQgetResult
2567  * to get the transfer status.  Note however that when using 2.0 protocol,
2568  * recovering from a copy failure often requires a PQreset.  PQendcopy will
2569  * take care of that, PQgetResult won't.
2570  *
2571  * RETURNS:
2572  *		0 on success
2573  *		1 on failure
2574  */
2575 int
PQendcopy(PGconn * conn)2576 PQendcopy(PGconn *conn)
2577 {
2578 	if (!conn)
2579 		return 0;
2580 
2581 	if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2582 		return pqEndcopy3(conn);
2583 	else
2584 		return pqEndcopy2(conn);
2585 }
2586 
2587 
2588 /* ----------------
2589  *		PQfn -	Send a function call to the POSTGRES backend.
2590  *
2591  *		conn			: backend connection
2592  *		fnid			: OID of function to be called
2593  *		result_buf		: pointer to result buffer
2594  *		result_len		: actual length of result is returned here
2595  *		result_is_int	: If the result is an integer, this must be 1,
2596  *						  otherwise this should be 0
2597  *		args			: pointer to an array of function arguments
2598  *						  (each has length, if integer, and value/pointer)
2599  *		nargs			: # of arguments in args array.
2600  *
2601  * RETURNS
2602  *		PGresult with status = PGRES_COMMAND_OK if successful.
2603  *			*result_len is > 0 if there is a return value, 0 if not.
2604  *		PGresult with status = PGRES_FATAL_ERROR if backend returns an error.
2605  *		NULL on communications failure.  conn->errorMessage will be set.
2606  * ----------------
2607  */
2608 
2609 PGresult *
PQfn(PGconn * conn,int fnid,int * result_buf,int * result_len,int result_is_int,const PQArgBlock * args,int nargs)2610 PQfn(PGconn *conn,
2611 	 int fnid,
2612 	 int *result_buf,
2613 	 int *result_len,
2614 	 int result_is_int,
2615 	 const PQArgBlock *args,
2616 	 int nargs)
2617 {
2618 	*result_len = 0;
2619 
2620 	if (!conn)
2621 		return NULL;
2622 
2623 	/* clear the error string */
2624 	resetPQExpBuffer(&conn->errorMessage);
2625 
2626 	if (conn->sock == PGINVALID_SOCKET || conn->asyncStatus != PGASYNC_IDLE ||
2627 		conn->result != NULL)
2628 	{
2629 		printfPQExpBuffer(&conn->errorMessage,
2630 						  libpq_gettext("connection in wrong state\n"));
2631 		return NULL;
2632 	}
2633 
2634 	if (PG_PROTOCOL_MAJOR(conn->pversion) >= 3)
2635 		return pqFunctionCall3(conn, fnid,
2636 							   result_buf, result_len,
2637 							   result_is_int,
2638 							   args, nargs);
2639 	else
2640 		return pqFunctionCall2(conn, fnid,
2641 							   result_buf, result_len,
2642 							   result_is_int,
2643 							   args, nargs);
2644 }
2645 
2646 
2647 /* ====== accessor funcs for PGresult ======== */
2648 
2649 ExecStatusType
PQresultStatus(const PGresult * res)2650 PQresultStatus(const PGresult *res)
2651 {
2652 	if (!res)
2653 		return PGRES_FATAL_ERROR;
2654 	return res->resultStatus;
2655 }
2656 
2657 char *
PQresStatus(ExecStatusType status)2658 PQresStatus(ExecStatusType status)
2659 {
2660 	if ((unsigned int) status >= sizeof pgresStatus / sizeof pgresStatus[0])
2661 		return libpq_gettext("invalid ExecStatusType code");
2662 	return pgresStatus[status];
2663 }
2664 
2665 char *
PQresultErrorMessage(const PGresult * res)2666 PQresultErrorMessage(const PGresult *res)
2667 {
2668 	if (!res || !res->errMsg)
2669 		return "";
2670 	return res->errMsg;
2671 }
2672 
2673 char *
PQresultVerboseErrorMessage(const PGresult * res,PGVerbosity verbosity,PGContextVisibility show_context)2674 PQresultVerboseErrorMessage(const PGresult *res,
2675 							PGVerbosity verbosity,
2676 							PGContextVisibility show_context)
2677 {
2678 	PQExpBufferData workBuf;
2679 
2680 	/*
2681 	 * Because the caller is expected to free the result string, we must
2682 	 * strdup any constant result.  We use plain strdup and document that
2683 	 * callers should expect NULL if out-of-memory.
2684 	 */
2685 	if (!res ||
2686 		(res->resultStatus != PGRES_FATAL_ERROR &&
2687 		 res->resultStatus != PGRES_NONFATAL_ERROR))
2688 		return strdup(libpq_gettext("PGresult is not an error result\n"));
2689 
2690 	initPQExpBuffer(&workBuf);
2691 
2692 	/*
2693 	 * Currently, we pass this off to fe-protocol3.c in all cases; it will
2694 	 * behave reasonably sanely with an error reported by fe-protocol2.c as
2695 	 * well.  If necessary, we could record the protocol version in PGresults
2696 	 * so as to be able to invoke a version-specific message formatter, but
2697 	 * for now there's no need.
2698 	 */
2699 	pqBuildErrorMessage3(&workBuf, res, verbosity, show_context);
2700 
2701 	/* If insufficient memory to format the message, fail cleanly */
2702 	if (PQExpBufferDataBroken(workBuf))
2703 	{
2704 		termPQExpBuffer(&workBuf);
2705 		return strdup(libpq_gettext("out of memory\n"));
2706 	}
2707 
2708 	return workBuf.data;
2709 }
2710 
2711 char *
PQresultErrorField(const PGresult * res,int fieldcode)2712 PQresultErrorField(const PGresult *res, int fieldcode)
2713 {
2714 	PGMessageField *pfield;
2715 
2716 	if (!res)
2717 		return NULL;
2718 	for (pfield = res->errFields; pfield != NULL; pfield = pfield->next)
2719 	{
2720 		if (pfield->code == fieldcode)
2721 			return pfield->contents;
2722 	}
2723 	return NULL;
2724 }
2725 
2726 int
PQntuples(const PGresult * res)2727 PQntuples(const PGresult *res)
2728 {
2729 	if (!res)
2730 		return 0;
2731 	return res->ntups;
2732 }
2733 
2734 int
PQnfields(const PGresult * res)2735 PQnfields(const PGresult *res)
2736 {
2737 	if (!res)
2738 		return 0;
2739 	return res->numAttributes;
2740 }
2741 
2742 int
PQbinaryTuples(const PGresult * res)2743 PQbinaryTuples(const PGresult *res)
2744 {
2745 	if (!res)
2746 		return 0;
2747 	return res->binary;
2748 }
2749 
2750 /*
2751  * Helper routines to range-check field numbers and tuple numbers.
2752  * Return TRUE if OK, FALSE if not
2753  */
2754 
2755 static int
check_field_number(const PGresult * res,int field_num)2756 check_field_number(const PGresult *res, int field_num)
2757 {
2758 	if (!res)
2759 		return FALSE;			/* no way to display error message... */
2760 	if (field_num < 0 || field_num >= res->numAttributes)
2761 	{
2762 		pqInternalNotice(&res->noticeHooks,
2763 						 "column number %d is out of range 0..%d",
2764 						 field_num, res->numAttributes - 1);
2765 		return FALSE;
2766 	}
2767 	return TRUE;
2768 }
2769 
2770 static int
check_tuple_field_number(const PGresult * res,int tup_num,int field_num)2771 check_tuple_field_number(const PGresult *res,
2772 						 int tup_num, int field_num)
2773 {
2774 	if (!res)
2775 		return FALSE;			/* no way to display error message... */
2776 	if (tup_num < 0 || tup_num >= res->ntups)
2777 	{
2778 		pqInternalNotice(&res->noticeHooks,
2779 						 "row number %d is out of range 0..%d",
2780 						 tup_num, res->ntups - 1);
2781 		return FALSE;
2782 	}
2783 	if (field_num < 0 || field_num >= res->numAttributes)
2784 	{
2785 		pqInternalNotice(&res->noticeHooks,
2786 						 "column number %d is out of range 0..%d",
2787 						 field_num, res->numAttributes - 1);
2788 		return FALSE;
2789 	}
2790 	return TRUE;
2791 }
2792 
2793 static int
check_param_number(const PGresult * res,int param_num)2794 check_param_number(const PGresult *res, int param_num)
2795 {
2796 	if (!res)
2797 		return FALSE;			/* no way to display error message... */
2798 	if (param_num < 0 || param_num >= res->numParameters)
2799 	{
2800 		pqInternalNotice(&res->noticeHooks,
2801 						 "parameter number %d is out of range 0..%d",
2802 						 param_num, res->numParameters - 1);
2803 		return FALSE;
2804 	}
2805 
2806 	return TRUE;
2807 }
2808 
2809 /*
2810  * returns NULL if the field_num is invalid
2811  */
2812 char *
PQfname(const PGresult * res,int field_num)2813 PQfname(const PGresult *res, int field_num)
2814 {
2815 	if (!check_field_number(res, field_num))
2816 		return NULL;
2817 	if (res->attDescs)
2818 		return res->attDescs[field_num].name;
2819 	else
2820 		return NULL;
2821 }
2822 
2823 /*
2824  * PQfnumber: find column number given column name
2825  *
2826  * The column name is parsed as if it were in a SQL statement, including
2827  * case-folding and double-quote processing.  But note a possible gotcha:
2828  * downcasing in the frontend might follow different locale rules than
2829  * downcasing in the backend...
2830  *
2831  * Returns -1 if no match.  In the present backend it is also possible
2832  * to have multiple matches, in which case the first one is found.
2833  */
2834 int
PQfnumber(const PGresult * res,const char * field_name)2835 PQfnumber(const PGresult *res, const char *field_name)
2836 {
2837 	char	   *field_case;
2838 	bool		in_quotes;
2839 	bool		all_lower = true;
2840 	const char *iptr;
2841 	char	   *optr;
2842 	int			i;
2843 
2844 	if (!res)
2845 		return -1;
2846 
2847 	/*
2848 	 * Note: it is correct to reject a zero-length input string; the proper
2849 	 * input to match a zero-length field name would be "".
2850 	 */
2851 	if (field_name == NULL ||
2852 		field_name[0] == '\0' ||
2853 		res->attDescs == NULL)
2854 		return -1;
2855 
2856 	/*
2857 	 * Check if we can avoid the strdup() and related work because the
2858 	 * passed-in string wouldn't be changed before we do the check anyway.
2859 	 */
2860 	for (iptr = field_name; *iptr; iptr++)
2861 	{
2862 		char		c = *iptr;
2863 
2864 		if (c == '"' || c != pg_tolower((unsigned char) c))
2865 		{
2866 			all_lower = false;
2867 			break;
2868 		}
2869 	}
2870 
2871 	if (all_lower)
2872 		for (i = 0; i < res->numAttributes; i++)
2873 			if (strcmp(field_name, res->attDescs[i].name) == 0)
2874 				return i;
2875 
2876 	/* Fall through to the normal check if that didn't work out. */
2877 
2878 	/*
2879 	 * Note: this code will not reject partially quoted strings, eg
2880 	 * foo"BAR"foo will become fooBARfoo when it probably ought to be an error
2881 	 * condition.
2882 	 */
2883 	field_case = strdup(field_name);
2884 	if (field_case == NULL)
2885 		return -1;				/* grotty */
2886 
2887 	in_quotes = false;
2888 	optr = field_case;
2889 	for (iptr = field_case; *iptr; iptr++)
2890 	{
2891 		char		c = *iptr;
2892 
2893 		if (in_quotes)
2894 		{
2895 			if (c == '"')
2896 			{
2897 				if (iptr[1] == '"')
2898 				{
2899 					/* doubled quotes become a single quote */
2900 					*optr++ = '"';
2901 					iptr++;
2902 				}
2903 				else
2904 					in_quotes = false;
2905 			}
2906 			else
2907 				*optr++ = c;
2908 		}
2909 		else if (c == '"')
2910 			in_quotes = true;
2911 		else
2912 		{
2913 			c = pg_tolower((unsigned char) c);
2914 			*optr++ = c;
2915 		}
2916 	}
2917 	*optr = '\0';
2918 
2919 	for (i = 0; i < res->numAttributes; i++)
2920 	{
2921 		if (strcmp(field_case, res->attDescs[i].name) == 0)
2922 		{
2923 			free(field_case);
2924 			return i;
2925 		}
2926 	}
2927 	free(field_case);
2928 	return -1;
2929 }
2930 
2931 Oid
PQftable(const PGresult * res,int field_num)2932 PQftable(const PGresult *res, int field_num)
2933 {
2934 	if (!check_field_number(res, field_num))
2935 		return InvalidOid;
2936 	if (res->attDescs)
2937 		return res->attDescs[field_num].tableid;
2938 	else
2939 		return InvalidOid;
2940 }
2941 
2942 int
PQftablecol(const PGresult * res,int field_num)2943 PQftablecol(const PGresult *res, int field_num)
2944 {
2945 	if (!check_field_number(res, field_num))
2946 		return 0;
2947 	if (res->attDescs)
2948 		return res->attDescs[field_num].columnid;
2949 	else
2950 		return 0;
2951 }
2952 
2953 int
PQfformat(const PGresult * res,int field_num)2954 PQfformat(const PGresult *res, int field_num)
2955 {
2956 	if (!check_field_number(res, field_num))
2957 		return 0;
2958 	if (res->attDescs)
2959 		return res->attDescs[field_num].format;
2960 	else
2961 		return 0;
2962 }
2963 
2964 Oid
PQftype(const PGresult * res,int field_num)2965 PQftype(const PGresult *res, int field_num)
2966 {
2967 	if (!check_field_number(res, field_num))
2968 		return InvalidOid;
2969 	if (res->attDescs)
2970 		return res->attDescs[field_num].typid;
2971 	else
2972 		return InvalidOid;
2973 }
2974 
2975 int
PQfsize(const PGresult * res,int field_num)2976 PQfsize(const PGresult *res, int field_num)
2977 {
2978 	if (!check_field_number(res, field_num))
2979 		return 0;
2980 	if (res->attDescs)
2981 		return res->attDescs[field_num].typlen;
2982 	else
2983 		return 0;
2984 }
2985 
2986 int
PQfmod(const PGresult * res,int field_num)2987 PQfmod(const PGresult *res, int field_num)
2988 {
2989 	if (!check_field_number(res, field_num))
2990 		return 0;
2991 	if (res->attDescs)
2992 		return res->attDescs[field_num].atttypmod;
2993 	else
2994 		return 0;
2995 }
2996 
2997 char *
PQcmdStatus(PGresult * res)2998 PQcmdStatus(PGresult *res)
2999 {
3000 	if (!res)
3001 		return NULL;
3002 	return res->cmdStatus;
3003 }
3004 
3005 /*
3006  * PQoidStatus -
3007  *	if the last command was an INSERT, return the oid string
3008  *	if not, return ""
3009  */
3010 char *
PQoidStatus(const PGresult * res)3011 PQoidStatus(const PGresult *res)
3012 {
3013 	/*
3014 	 * This must be enough to hold the result. Don't laugh, this is better
3015 	 * than what this function used to do.
3016 	 */
3017 	static char buf[24];
3018 
3019 	size_t		len;
3020 
3021 	if (!res || strncmp(res->cmdStatus, "INSERT ", 7) != 0)
3022 		return "";
3023 
3024 	len = strspn(res->cmdStatus + 7, "0123456789");
3025 	if (len > sizeof(buf) - 1)
3026 		len = sizeof(buf) - 1;
3027 	memcpy(buf, res->cmdStatus + 7, len);
3028 	buf[len] = '\0';
3029 
3030 	return buf;
3031 }
3032 
3033 /*
3034  * PQoidValue -
3035  *	a perhaps preferable form of the above which just returns
3036  *	an Oid type
3037  */
3038 Oid
PQoidValue(const PGresult * res)3039 PQoidValue(const PGresult *res)
3040 {
3041 	char	   *endptr = NULL;
3042 	unsigned long result;
3043 
3044 	if (!res ||
3045 		strncmp(res->cmdStatus, "INSERT ", 7) != 0 ||
3046 		res->cmdStatus[7] < '0' ||
3047 		res->cmdStatus[7] > '9')
3048 		return InvalidOid;
3049 
3050 	result = strtoul(res->cmdStatus + 7, &endptr, 10);
3051 
3052 	if (!endptr || (*endptr != ' ' && *endptr != '\0'))
3053 		return InvalidOid;
3054 	else
3055 		return (Oid) result;
3056 }
3057 
3058 
3059 /*
3060  * PQcmdTuples -
3061  *	If the last command was INSERT/UPDATE/DELETE/MOVE/FETCH/COPY, return
3062  *	a string containing the number of inserted/affected tuples. If not,
3063  *	return "".
3064  *
3065  *	XXX: this should probably return an int
3066  */
3067 char *
PQcmdTuples(PGresult * res)3068 PQcmdTuples(PGresult *res)
3069 {
3070 	char	   *p,
3071 			   *c;
3072 
3073 	if (!res)
3074 		return "";
3075 
3076 	if (strncmp(res->cmdStatus, "INSERT ", 7) == 0)
3077 	{
3078 		p = res->cmdStatus + 7;
3079 		/* INSERT: skip oid and space */
3080 		while (*p && *p != ' ')
3081 			p++;
3082 		if (*p == 0)
3083 			goto interpret_error;	/* no space? */
3084 		p++;
3085 	}
3086 	else if (strncmp(res->cmdStatus, "SELECT ", 7) == 0 ||
3087 			 strncmp(res->cmdStatus, "DELETE ", 7) == 0 ||
3088 			 strncmp(res->cmdStatus, "UPDATE ", 7) == 0)
3089 		p = res->cmdStatus + 7;
3090 	else if (strncmp(res->cmdStatus, "FETCH ", 6) == 0)
3091 		p = res->cmdStatus + 6;
3092 	else if (strncmp(res->cmdStatus, "MOVE ", 5) == 0 ||
3093 			 strncmp(res->cmdStatus, "COPY ", 5) == 0)
3094 		p = res->cmdStatus + 5;
3095 	else
3096 		return "";
3097 
3098 	/* check that we have an integer (at least one digit, nothing else) */
3099 	for (c = p; *c; c++)
3100 	{
3101 		if (!isdigit((unsigned char) *c))
3102 			goto interpret_error;
3103 	}
3104 	if (c == p)
3105 		goto interpret_error;
3106 
3107 	return p;
3108 
3109 interpret_error:
3110 	pqInternalNotice(&res->noticeHooks,
3111 					 "could not interpret result from server: %s",
3112 					 res->cmdStatus);
3113 	return "";
3114 }
3115 
3116 /*
3117  * PQgetvalue:
3118  *	return the value of field 'field_num' of row 'tup_num'
3119  */
3120 char *
PQgetvalue(const PGresult * res,int tup_num,int field_num)3121 PQgetvalue(const PGresult *res, int tup_num, int field_num)
3122 {
3123 	if (!check_tuple_field_number(res, tup_num, field_num))
3124 		return NULL;
3125 	return res->tuples[tup_num][field_num].value;
3126 }
3127 
3128 /* PQgetlength:
3129  *	returns the actual length of a field value in bytes.
3130  */
3131 int
PQgetlength(const PGresult * res,int tup_num,int field_num)3132 PQgetlength(const PGresult *res, int tup_num, int field_num)
3133 {
3134 	if (!check_tuple_field_number(res, tup_num, field_num))
3135 		return 0;
3136 	if (res->tuples[tup_num][field_num].len != NULL_LEN)
3137 		return res->tuples[tup_num][field_num].len;
3138 	else
3139 		return 0;
3140 }
3141 
3142 /* PQgetisnull:
3143  *	returns the null status of a field value.
3144  */
3145 int
PQgetisnull(const PGresult * res,int tup_num,int field_num)3146 PQgetisnull(const PGresult *res, int tup_num, int field_num)
3147 {
3148 	if (!check_tuple_field_number(res, tup_num, field_num))
3149 		return 1;				/* pretend it is null */
3150 	if (res->tuples[tup_num][field_num].len == NULL_LEN)
3151 		return 1;
3152 	else
3153 		return 0;
3154 }
3155 
3156 /* PQnparams:
3157  *	returns the number of input parameters of a prepared statement.
3158  */
3159 int
PQnparams(const PGresult * res)3160 PQnparams(const PGresult *res)
3161 {
3162 	if (!res)
3163 		return 0;
3164 	return res->numParameters;
3165 }
3166 
3167 /* PQparamtype:
3168  *	returns type Oid of the specified statement parameter.
3169  */
3170 Oid
PQparamtype(const PGresult * res,int param_num)3171 PQparamtype(const PGresult *res, int param_num)
3172 {
3173 	if (!check_param_number(res, param_num))
3174 		return InvalidOid;
3175 	if (res->paramDescs)
3176 		return res->paramDescs[param_num].typid;
3177 	else
3178 		return InvalidOid;
3179 }
3180 
3181 
3182 /* PQsetnonblocking:
3183  *	sets the PGconn's database connection non-blocking if the arg is TRUE
3184  *	or makes it blocking if the arg is FALSE, this will not protect
3185  *	you from PQexec(), you'll only be safe when using the non-blocking API.
3186  *	Needs to be called only on a connected database connection.
3187  */
3188 int
PQsetnonblocking(PGconn * conn,int arg)3189 PQsetnonblocking(PGconn *conn, int arg)
3190 {
3191 	bool		barg;
3192 
3193 	if (!conn || conn->status == CONNECTION_BAD)
3194 		return -1;
3195 
3196 	barg = (arg ? TRUE : FALSE);
3197 
3198 	/* early out if the socket is already in the state requested */
3199 	if (barg == conn->nonblocking)
3200 		return 0;
3201 
3202 	/*
3203 	 * to guarantee constancy for flushing/query/result-polling behavior we
3204 	 * need to flush the send queue at this point in order to guarantee proper
3205 	 * behavior. this is ok because either they are making a transition _from_
3206 	 * or _to_ blocking mode, either way we can block them.
3207 	 */
3208 	/* if we are going from blocking to non-blocking flush here */
3209 	if (pqFlush(conn))
3210 		return -1;
3211 
3212 	conn->nonblocking = barg;
3213 
3214 	return 0;
3215 }
3216 
3217 /*
3218  * return the blocking status of the database connection
3219  *		TRUE == nonblocking, FALSE == blocking
3220  */
3221 int
PQisnonblocking(const PGconn * conn)3222 PQisnonblocking(const PGconn *conn)
3223 {
3224 	return pqIsnonblocking(conn);
3225 }
3226 
3227 /* libpq is thread-safe? */
3228 int
PQisthreadsafe(void)3229 PQisthreadsafe(void)
3230 {
3231 #ifdef ENABLE_THREAD_SAFETY
3232 	return true;
3233 #else
3234 	return false;
3235 #endif
3236 }
3237 
3238 
3239 /* try to force data out, really only useful for non-blocking users */
3240 int
PQflush(PGconn * conn)3241 PQflush(PGconn *conn)
3242 {
3243 	return pqFlush(conn);
3244 }
3245 
3246 
3247 /*
3248  *		PQfreemem - safely frees memory allocated
3249  *
3250  * Needed mostly by Win32, unless multithreaded DLL (/MD in VC6)
3251  * Used for freeing memory from PQescapeByte()a/PQunescapeBytea()
3252  */
3253 void
PQfreemem(void * ptr)3254 PQfreemem(void *ptr)
3255 {
3256 	free(ptr);
3257 }
3258 
3259 /*
3260  * PQfreeNotify - free's the memory associated with a PGnotify
3261  *
3262  * This function is here only for binary backward compatibility.
3263  * New code should use PQfreemem().  A macro will automatically map
3264  * calls to PQfreemem.  It should be removed in the future.  bjm 2003-03-24
3265  */
3266 
3267 #undef PQfreeNotify
3268 void		PQfreeNotify(PGnotify *notify);
3269 
3270 void
PQfreeNotify(PGnotify * notify)3271 PQfreeNotify(PGnotify *notify)
3272 {
3273 	PQfreemem(notify);
3274 }
3275 
3276 
3277 /*
3278  * Escaping arbitrary strings to get valid SQL literal strings.
3279  *
3280  * Replaces "'" with "''", and if not std_strings, replaces "\" with "\\".
3281  *
3282  * length is the length of the source string.  (Note: if a terminating NUL
3283  * is encountered sooner, PQescapeString stops short of "length"; the behavior
3284  * is thus rather like strncpy.)
3285  *
3286  * For safety the buffer at "to" must be at least 2*length + 1 bytes long.
3287  * A terminating NUL character is added to the output string, whether the
3288  * input is NUL-terminated or not.
3289  *
3290  * Returns the actual length of the output (not counting the terminating NUL).
3291  */
3292 static size_t
PQescapeStringInternal(PGconn * conn,char * to,const char * from,size_t length,int * error,int encoding,bool std_strings)3293 PQescapeStringInternal(PGconn *conn,
3294 					   char *to, const char *from, size_t length,
3295 					   int *error,
3296 					   int encoding, bool std_strings)
3297 {
3298 	const char *source = from;
3299 	char	   *target = to;
3300 	size_t		remaining = length;
3301 
3302 	if (error)
3303 		*error = 0;
3304 
3305 	while (remaining > 0 && *source != '\0')
3306 	{
3307 		char		c = *source;
3308 		int			len;
3309 		int			i;
3310 
3311 		/* Fast path for plain ASCII */
3312 		if (!IS_HIGHBIT_SET(c))
3313 		{
3314 			/* Apply quoting if needed */
3315 			if (SQL_STR_DOUBLE(c, !std_strings))
3316 				*target++ = c;
3317 			/* Copy the character */
3318 			*target++ = c;
3319 			source++;
3320 			remaining--;
3321 			continue;
3322 		}
3323 
3324 		/* Slow path for possible multibyte characters */
3325 		len = pg_encoding_mblen(encoding, source);
3326 
3327 		/* Copy the character */
3328 		for (i = 0; i < len; i++)
3329 		{
3330 			if (remaining == 0 || *source == '\0')
3331 				break;
3332 			*target++ = *source++;
3333 			remaining--;
3334 		}
3335 
3336 		/*
3337 		 * If we hit premature end of string (ie, incomplete multibyte
3338 		 * character), try to pad out to the correct length with spaces. We
3339 		 * may not be able to pad completely, but we will always be able to
3340 		 * insert at least one pad space (since we'd not have quoted a
3341 		 * multibyte character).  This should be enough to make a string that
3342 		 * the server will error out on.
3343 		 */
3344 		if (i < len)
3345 		{
3346 			if (error)
3347 				*error = 1;
3348 			if (conn)
3349 				printfPQExpBuffer(&conn->errorMessage,
3350 								  libpq_gettext("incomplete multibyte character\n"));
3351 			for (; i < len; i++)
3352 			{
3353 				if (((size_t) (target - to)) / 2 >= length)
3354 					break;
3355 				*target++ = ' ';
3356 			}
3357 			break;
3358 		}
3359 	}
3360 
3361 	/* Write the terminating NUL character. */
3362 	*target = '\0';
3363 
3364 	return target - to;
3365 }
3366 
3367 size_t
PQescapeStringConn(PGconn * conn,char * to,const char * from,size_t length,int * error)3368 PQescapeStringConn(PGconn *conn,
3369 				   char *to, const char *from, size_t length,
3370 				   int *error)
3371 {
3372 	if (!conn)
3373 	{
3374 		/* force empty-string result */
3375 		*to = '\0';
3376 		if (error)
3377 			*error = 1;
3378 		return 0;
3379 	}
3380 	return PQescapeStringInternal(conn, to, from, length, error,
3381 								  conn->client_encoding,
3382 								  conn->std_strings);
3383 }
3384 
3385 size_t
PQescapeString(char * to,const char * from,size_t length)3386 PQescapeString(char *to, const char *from, size_t length)
3387 {
3388 	return PQescapeStringInternal(NULL, to, from, length, NULL,
3389 								  static_client_encoding,
3390 								  static_std_strings);
3391 }
3392 
3393 
3394 /*
3395  * Escape arbitrary strings.  If as_ident is true, we escape the result
3396  * as an identifier; if false, as a literal.  The result is returned in
3397  * a newly allocated buffer.  If we fail due to an encoding violation or out
3398  * of memory condition, we return NULL, storing an error message into conn.
3399  */
3400 static char *
PQescapeInternal(PGconn * conn,const char * str,size_t len,bool as_ident)3401 PQescapeInternal(PGconn *conn, const char *str, size_t len, bool as_ident)
3402 {
3403 	const char *s;
3404 	char	   *result;
3405 	char	   *rp;
3406 	int			num_quotes = 0; /* single or double, depending on as_ident */
3407 	int			num_backslashes = 0;
3408 	int			input_len;
3409 	int			result_size;
3410 	char		quote_char = as_ident ? '"' : '\'';
3411 
3412 	/* We must have a connection, else fail immediately. */
3413 	if (!conn)
3414 		return NULL;
3415 
3416 	/* Scan the string for characters that must be escaped. */
3417 	for (s = str; (s - str) < len && *s != '\0'; ++s)
3418 	{
3419 		if (*s == quote_char)
3420 			++num_quotes;
3421 		else if (*s == '\\')
3422 			++num_backslashes;
3423 		else if (IS_HIGHBIT_SET(*s))
3424 		{
3425 			int			charlen;
3426 
3427 			/* Slow path for possible multibyte characters */
3428 			charlen = pg_encoding_mblen(conn->client_encoding, s);
3429 
3430 			/* Multibyte character overruns allowable length. */
3431 			if ((s - str) + charlen > len || memchr(s, 0, charlen) != NULL)
3432 			{
3433 				printfPQExpBuffer(&conn->errorMessage,
3434 								  libpq_gettext("incomplete multibyte character\n"));
3435 				return NULL;
3436 			}
3437 
3438 			/* Adjust s, bearing in mind that for loop will increment it. */
3439 			s += charlen - 1;
3440 		}
3441 	}
3442 
3443 	/* Allocate output buffer. */
3444 	input_len = s - str;
3445 	result_size = input_len + num_quotes + 3;	/* two quotes, plus a NUL */
3446 	if (!as_ident && num_backslashes > 0)
3447 		result_size += num_backslashes + 2;
3448 	result = rp = (char *) malloc(result_size);
3449 	if (rp == NULL)
3450 	{
3451 		printfPQExpBuffer(&conn->errorMessage,
3452 						  libpq_gettext("out of memory\n"));
3453 		return NULL;
3454 	}
3455 
3456 	/*
3457 	 * If we are escaping a literal that contains backslashes, we use the
3458 	 * escape string syntax so that the result is correct under either value
3459 	 * of standard_conforming_strings.  We also emit a leading space in this
3460 	 * case, to guard against the possibility that the result might be
3461 	 * interpolated immediately following an identifier.
3462 	 */
3463 	if (!as_ident && num_backslashes > 0)
3464 	{
3465 		*rp++ = ' ';
3466 		*rp++ = 'E';
3467 	}
3468 
3469 	/* Opening quote. */
3470 	*rp++ = quote_char;
3471 
3472 	/*
3473 	 * Use fast path if possible.
3474 	 *
3475 	 * We've already verified that the input string is well-formed in the
3476 	 * current encoding.  If it contains no quotes and, in the case of
3477 	 * literal-escaping, no backslashes, then we can just copy it directly to
3478 	 * the output buffer, adding the necessary quotes.
3479 	 *
3480 	 * If not, we must rescan the input and process each character
3481 	 * individually.
3482 	 */
3483 	if (num_quotes == 0 && (num_backslashes == 0 || as_ident))
3484 	{
3485 		memcpy(rp, str, input_len);
3486 		rp += input_len;
3487 	}
3488 	else
3489 	{
3490 		for (s = str; s - str < input_len; ++s)
3491 		{
3492 			if (*s == quote_char || (!as_ident && *s == '\\'))
3493 			{
3494 				*rp++ = *s;
3495 				*rp++ = *s;
3496 			}
3497 			else if (!IS_HIGHBIT_SET(*s))
3498 				*rp++ = *s;
3499 			else
3500 			{
3501 				int			i = pg_encoding_mblen(conn->client_encoding, s);
3502 
3503 				while (1)
3504 				{
3505 					*rp++ = *s;
3506 					if (--i == 0)
3507 						break;
3508 					++s;		/* for loop will provide the final increment */
3509 				}
3510 			}
3511 		}
3512 	}
3513 
3514 	/* Closing quote and terminating NUL. */
3515 	*rp++ = quote_char;
3516 	*rp = '\0';
3517 
3518 	return result;
3519 }
3520 
3521 char *
PQescapeLiteral(PGconn * conn,const char * str,size_t len)3522 PQescapeLiteral(PGconn *conn, const char *str, size_t len)
3523 {
3524 	return PQescapeInternal(conn, str, len, false);
3525 }
3526 
3527 char *
PQescapeIdentifier(PGconn * conn,const char * str,size_t len)3528 PQescapeIdentifier(PGconn *conn, const char *str, size_t len)
3529 {
3530 	return PQescapeInternal(conn, str, len, true);
3531 }
3532 
3533 /* HEX encoding support for bytea */
3534 static const char hextbl[] = "0123456789abcdef";
3535 
3536 static const int8 hexlookup[128] = {
3537 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3538 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3539 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3540 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
3541 	-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3542 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3543 	-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3544 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3545 };
3546 
3547 static inline char
get_hex(char c)3548 get_hex(char c)
3549 {
3550 	int			res = -1;
3551 
3552 	if (c > 0 && c < 127)
3553 		res = hexlookup[(unsigned char) c];
3554 
3555 	return (char) res;
3556 }
3557 
3558 
3559 /*
3560  *		PQescapeBytea	- converts from binary string to the
3561  *		minimal encoding necessary to include the string in an SQL
3562  *		INSERT statement with a bytea type column as the target.
3563  *
3564  *		We can use either hex or escape (traditional) encoding.
3565  *		In escape mode, the following transformations are applied:
3566  *		'\0' == ASCII  0 == \000
3567  *		'\'' == ASCII 39 == ''
3568  *		'\\' == ASCII 92 == \\
3569  *		anything < 0x20, or > 0x7e ---> \ooo
3570  *										(where ooo is an octal expression)
3571  *
3572  *		If not std_strings, all backslashes sent to the output are doubled.
3573  */
3574 static unsigned char *
PQescapeByteaInternal(PGconn * conn,const unsigned char * from,size_t from_length,size_t * to_length,bool std_strings,bool use_hex)3575 PQescapeByteaInternal(PGconn *conn,
3576 					  const unsigned char *from, size_t from_length,
3577 					  size_t *to_length, bool std_strings, bool use_hex)
3578 {
3579 	const unsigned char *vp;
3580 	unsigned char *rp;
3581 	unsigned char *result;
3582 	size_t		i;
3583 	size_t		len;
3584 	size_t		bslash_len = (std_strings ? 1 : 2);
3585 
3586 	/*
3587 	 * empty string has 1 char ('\0')
3588 	 */
3589 	len = 1;
3590 
3591 	if (use_hex)
3592 	{
3593 		len += bslash_len + 1 + 2 * from_length;
3594 	}
3595 	else
3596 	{
3597 		vp = from;
3598 		for (i = from_length; i > 0; i--, vp++)
3599 		{
3600 			if (*vp < 0x20 || *vp > 0x7e)
3601 				len += bslash_len + 3;
3602 			else if (*vp == '\'')
3603 				len += 2;
3604 			else if (*vp == '\\')
3605 				len += bslash_len + bslash_len;
3606 			else
3607 				len++;
3608 		}
3609 	}
3610 
3611 	*to_length = len;
3612 	rp = result = (unsigned char *) malloc(len);
3613 	if (rp == NULL)
3614 	{
3615 		if (conn)
3616 			printfPQExpBuffer(&conn->errorMessage,
3617 							  libpq_gettext("out of memory\n"));
3618 		return NULL;
3619 	}
3620 
3621 	if (use_hex)
3622 	{
3623 		if (!std_strings)
3624 			*rp++ = '\\';
3625 		*rp++ = '\\';
3626 		*rp++ = 'x';
3627 	}
3628 
3629 	vp = from;
3630 	for (i = from_length; i > 0; i--, vp++)
3631 	{
3632 		unsigned char c = *vp;
3633 
3634 		if (use_hex)
3635 		{
3636 			*rp++ = hextbl[(c >> 4) & 0xF];
3637 			*rp++ = hextbl[c & 0xF];
3638 		}
3639 		else if (c < 0x20 || c > 0x7e)
3640 		{
3641 			if (!std_strings)
3642 				*rp++ = '\\';
3643 			*rp++ = '\\';
3644 			*rp++ = (c >> 6) + '0';
3645 			*rp++ = ((c >> 3) & 07) + '0';
3646 			*rp++ = (c & 07) + '0';
3647 		}
3648 		else if (c == '\'')
3649 		{
3650 			*rp++ = '\'';
3651 			*rp++ = '\'';
3652 		}
3653 		else if (c == '\\')
3654 		{
3655 			if (!std_strings)
3656 			{
3657 				*rp++ = '\\';
3658 				*rp++ = '\\';
3659 			}
3660 			*rp++ = '\\';
3661 			*rp++ = '\\';
3662 		}
3663 		else
3664 			*rp++ = c;
3665 	}
3666 	*rp = '\0';
3667 
3668 	return result;
3669 }
3670 
3671 unsigned char *
PQescapeByteaConn(PGconn * conn,const unsigned char * from,size_t from_length,size_t * to_length)3672 PQescapeByteaConn(PGconn *conn,
3673 				  const unsigned char *from, size_t from_length,
3674 				  size_t *to_length)
3675 {
3676 	if (!conn)
3677 		return NULL;
3678 	return PQescapeByteaInternal(conn, from, from_length, to_length,
3679 								 conn->std_strings,
3680 								 (conn->sversion >= 90000));
3681 }
3682 
3683 unsigned char *
PQescapeBytea(const unsigned char * from,size_t from_length,size_t * to_length)3684 PQescapeBytea(const unsigned char *from, size_t from_length, size_t *to_length)
3685 {
3686 	return PQescapeByteaInternal(NULL, from, from_length, to_length,
3687 								 static_std_strings,
3688 								 false /* can't use hex */ );
3689 }
3690 
3691 
3692 #define ISFIRSTOCTDIGIT(CH) ((CH) >= '0' && (CH) <= '3')
3693 #define ISOCTDIGIT(CH) ((CH) >= '0' && (CH) <= '7')
3694 #define OCTVAL(CH) ((CH) - '0')
3695 
3696 /*
3697  *		PQunescapeBytea - converts the null terminated string representation
3698  *		of a bytea, strtext, into binary, filling a buffer. It returns a
3699  *		pointer to the buffer (or NULL on error), and the size of the
3700  *		buffer in retbuflen. The pointer may subsequently be used as an
3701  *		argument to the function PQfreemem.
3702  *
3703  *		The following transformations are made:
3704  *		\\	 == ASCII 92 == \
3705  *		\ooo == a byte whose value = ooo (ooo is an octal number)
3706  *		\x	 == x (x is any character not matched by the above transformations)
3707  */
3708 unsigned char *
PQunescapeBytea(const unsigned char * strtext,size_t * retbuflen)3709 PQunescapeBytea(const unsigned char *strtext, size_t *retbuflen)
3710 {
3711 	size_t		strtextlen,
3712 				buflen;
3713 	unsigned char *buffer,
3714 			   *tmpbuf;
3715 	size_t		i,
3716 				j;
3717 
3718 	if (strtext == NULL)
3719 		return NULL;
3720 
3721 	strtextlen = strlen((const char *) strtext);
3722 
3723 	if (strtext[0] == '\\' && strtext[1] == 'x')
3724 	{
3725 		const unsigned char *s;
3726 		unsigned char *p;
3727 
3728 		buflen = (strtextlen - 2) / 2;
3729 		/* Avoid unportable malloc(0) */
3730 		buffer = (unsigned char *) malloc(buflen > 0 ? buflen : 1);
3731 		if (buffer == NULL)
3732 			return NULL;
3733 
3734 		s = strtext + 2;
3735 		p = buffer;
3736 		while (*s)
3737 		{
3738 			char		v1,
3739 						v2;
3740 
3741 			/*
3742 			 * Bad input is silently ignored.  Note that this includes
3743 			 * whitespace between hex pairs, which is allowed by byteain.
3744 			 */
3745 			v1 = get_hex(*s++);
3746 			if (!*s || v1 == (char) -1)
3747 				continue;
3748 			v2 = get_hex(*s++);
3749 			if (v2 != (char) -1)
3750 				*p++ = (v1 << 4) | v2;
3751 		}
3752 
3753 		buflen = p - buffer;
3754 	}
3755 	else
3756 	{
3757 		/*
3758 		 * Length of input is max length of output, but add one to avoid
3759 		 * unportable malloc(0) if input is zero-length.
3760 		 */
3761 		buffer = (unsigned char *) malloc(strtextlen + 1);
3762 		if (buffer == NULL)
3763 			return NULL;
3764 
3765 		for (i = j = 0; i < strtextlen;)
3766 		{
3767 			switch (strtext[i])
3768 			{
3769 				case '\\':
3770 					i++;
3771 					if (strtext[i] == '\\')
3772 						buffer[j++] = strtext[i++];
3773 					else
3774 					{
3775 						if ((ISFIRSTOCTDIGIT(strtext[i])) &&
3776 							(ISOCTDIGIT(strtext[i + 1])) &&
3777 							(ISOCTDIGIT(strtext[i + 2])))
3778 						{
3779 							int			byte;
3780 
3781 							byte = OCTVAL(strtext[i++]);
3782 							byte = (byte << 3) + OCTVAL(strtext[i++]);
3783 							byte = (byte << 3) + OCTVAL(strtext[i++]);
3784 							buffer[j++] = byte;
3785 						}
3786 					}
3787 
3788 					/*
3789 					 * Note: if we see '\' followed by something that isn't a
3790 					 * recognized escape sequence, we loop around having done
3791 					 * nothing except advance i.  Therefore the something will
3792 					 * be emitted as ordinary data on the next cycle. Corner
3793 					 * case: '\' at end of string will just be discarded.
3794 					 */
3795 					break;
3796 
3797 				default:
3798 					buffer[j++] = strtext[i++];
3799 					break;
3800 			}
3801 		}
3802 		buflen = j;				/* buflen is the length of the dequoted data */
3803 	}
3804 
3805 	/* Shrink the buffer to be no larger than necessary */
3806 	/* +1 avoids unportable behavior when buflen==0 */
3807 	tmpbuf = realloc(buffer, buflen + 1);
3808 
3809 	/* It would only be a very brain-dead realloc that could fail, but... */
3810 	if (!tmpbuf)
3811 	{
3812 		free(buffer);
3813 		return NULL;
3814 	}
3815 
3816 	*retbuflen = buflen;
3817 	return tmpbuf;
3818 }
3819