1 /*-------------------------------------------------------------------------
2  *
3  * dynahash.c
4  *	  dynamic hash tables
5  *
6  * dynahash.c supports both local-to-a-backend hash tables and hash tables in
7  * shared memory.  For shared hash tables, it is the caller's responsibility
8  * to provide appropriate access interlocking.  The simplest convention is
9  * that a single LWLock protects the whole hash table.  Searches (HASH_FIND or
10  * hash_seq_search) need only shared lock, but any update requires exclusive
11  * lock.  For heavily-used shared tables, the single-lock approach creates a
12  * concurrency bottleneck, so we also support "partitioned" locking wherein
13  * there are multiple LWLocks guarding distinct subsets of the table.  To use
14  * a hash table in partitioned mode, the HASH_PARTITION flag must be given
15  * to hash_create.  This prevents any attempt to split buckets on-the-fly.
16  * Therefore, each hash bucket chain operates independently, and no fields
17  * of the hash header change after init except nentries and freeList.
18  * (A partitioned table uses multiple copies of those fields, guarded by
19  * spinlocks, for additional concurrency.)
20  * This lets any subset of the hash buckets be treated as a separately
21  * lockable partition.  We expect callers to use the low-order bits of a
22  * lookup key's hash value as a partition number --- this will work because
23  * of the way calc_bucket() maps hash values to bucket numbers.
24  *
25  * For hash tables in shared memory, the memory allocator function should
26  * match malloc's semantics of returning NULL on failure.  For hash tables
27  * in local memory, we typically use palloc() which will throw error on
28  * failure.  The code in this file has to cope with both cases.
29  *
30  * dynahash.c provides support for these types of lookup keys:
31  *
32  * 1. Null-terminated C strings (truncated if necessary to fit in keysize),
33  * compared as though by strcmp().  This is the default behavior.
34  *
35  * 2. Arbitrary binary data of size keysize, compared as though by memcmp().
36  * (Caller must ensure there are no undefined padding bits in the keys!)
37  * This is selected by specifying HASH_BLOBS flag to hash_create.
38  *
39  * 3. More complex key behavior can be selected by specifying user-supplied
40  * hashing, comparison, and/or key-copying functions.  At least a hashing
41  * function must be supplied; comparison defaults to memcmp() and key copying
42  * to memcpy() when a user-defined hashing function is selected.
43  *
44  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
45  * Portions Copyright (c) 1994, Regents of the University of California
46  *
47  *
48  * IDENTIFICATION
49  *	  src/backend/utils/hash/dynahash.c
50  *
51  *-------------------------------------------------------------------------
52  */
53 
54 /*
55  * Original comments:
56  *
57  * Dynamic hashing, after CACM April 1988 pp 446-457, by Per-Ake Larson.
58  * Coded into C, with minor code improvements, and with hsearch(3) interface,
59  * by ejp@ausmelb.oz, Jul 26, 1988: 13:16;
60  * also, hcreate/hdestroy routines added to simulate hsearch(3).
61  *
62  * These routines simulate hsearch(3) and family, with the important
63  * difference that the hash table is dynamic - can grow indefinitely
64  * beyond its original size (as supplied to hcreate()).
65  *
66  * Performance appears to be comparable to that of hsearch(3).
67  * The 'source-code' options referred to in hsearch(3)'s 'man' page
68  * are not implemented; otherwise functionality is identical.
69  *
70  * Compilation controls:
71  * HASH_DEBUG controls some informative traces, mainly for debugging.
72  * HASH_STATISTICS causes HashAccesses and HashCollisions to be maintained;
73  * when combined with HASH_DEBUG, these are displayed by hdestroy().
74  *
75  * Problems & fixes to ejp@ausmelb.oz. WARNING: relies on pre-processor
76  * concatenation property, in probably unnecessary code 'optimization'.
77  *
78  * Modified margo@postgres.berkeley.edu February 1990
79  *		added multiple table interface
80  * Modified by sullivan@postgres.berkeley.edu April 1990
81  *		changed ctl structure for shared memory
82  */
83 
84 #include "postgres.h"
85 
86 #include <limits.h>
87 
88 #include "access/xact.h"
89 #include "storage/shmem.h"
90 #include "storage/spin.h"
91 #include "utils/dynahash.h"
92 #include "utils/memutils.h"
93 
94 
95 /*
96  * Constants
97  *
98  * A hash table has a top-level "directory", each of whose entries points
99  * to a "segment" of ssize bucket headers.  The maximum number of hash
100  * buckets is thus dsize * ssize (but dsize may be expansible).  Of course,
101  * the number of records in the table can be larger, but we don't want a
102  * whole lot of records per bucket or performance goes down.
103  *
104  * In a hash table allocated in shared memory, the directory cannot be
105  * expanded because it must stay at a fixed address.  The directory size
106  * should be selected using hash_select_dirsize (and you'd better have
107  * a good idea of the maximum number of entries!).  For non-shared hash
108  * tables, the initial directory size can be left at the default.
109  */
110 #define DEF_SEGSIZE			   256
111 #define DEF_SEGSIZE_SHIFT	   8	/* must be log2(DEF_SEGSIZE) */
112 #define DEF_DIRSIZE			   256
113 #define DEF_FFACTOR			   1	/* default fill factor */
114 
115 /* Number of freelists to be used for a partitioned hash table. */
116 #define NUM_FREELISTS			32
117 
118 /* A hash bucket is a linked list of HASHELEMENTs */
119 typedef HASHELEMENT *HASHBUCKET;
120 
121 /* A hash segment is an array of bucket headers */
122 typedef HASHBUCKET *HASHSEGMENT;
123 
124 /*
125  * Per-freelist data.
126  *
127  * In a partitioned hash table, each freelist is associated with a specific
128  * set of hashcodes, as determined by the FREELIST_IDX() macro below.
129  * nentries tracks the number of live hashtable entries having those hashcodes
130  * (NOT the number of entries in the freelist, as you might expect).
131  *
132  * The coverage of a freelist might be more or less than one partition, so it
133  * needs its own lock rather than relying on caller locking.  Relying on that
134  * wouldn't work even if the coverage was the same, because of the occasional
135  * need to "borrow" entries from another freelist; see get_hash_entry().
136  *
137  * Using an array of FreeListData instead of separate arrays of mutexes,
138  * nentries and freeLists helps to reduce sharing of cache lines between
139  * different mutexes.
140  */
141 typedef struct
142 {
143 	slock_t		mutex;			/* spinlock for this freelist */
144 	long		nentries;		/* number of entries in associated buckets */
145 	HASHELEMENT *freeList;		/* chain of free elements */
146 } FreeListData;
147 
148 /*
149  * Header structure for a hash table --- contains all changeable info
150  *
151  * In a shared-memory hash table, the HASHHDR is in shared memory, while
152  * each backend has a local HTAB struct.  For a non-shared table, there isn't
153  * any functional difference between HASHHDR and HTAB, but we separate them
154  * anyway to share code between shared and non-shared tables.
155  */
156 struct HASHHDR
157 {
158 	/*
159 	 * The freelist can become a point of contention in high-concurrency hash
160 	 * tables, so we use an array of freelists, each with its own mutex and
161 	 * nentries count, instead of just a single one.  Although the freelists
162 	 * normally operate independently, we will scavenge entries from freelists
163 	 * other than a hashcode's default freelist when necessary.
164 	 *
165 	 * If the hash table is not partitioned, only freeList[0] is used and its
166 	 * spinlock is not used at all; callers' locking is assumed sufficient.
167 	 */
168 	FreeListData freeList[NUM_FREELISTS];
169 
170 	/* These fields can change, but not in a partitioned table */
171 	/* Also, dsize can't change in a shared table, even if unpartitioned */
172 	long		dsize;			/* directory size */
173 	long		nsegs;			/* number of allocated segments (<= dsize) */
174 	uint32		max_bucket;		/* ID of maximum bucket in use */
175 	uint32		high_mask;		/* mask to modulo into entire table */
176 	uint32		low_mask;		/* mask to modulo into lower half of table */
177 
178 	/* These fields are fixed at hashtable creation */
179 	Size		keysize;		/* hash key length in bytes */
180 	Size		entrysize;		/* total user element size in bytes */
181 	long		num_partitions; /* # partitions (must be power of 2), or 0 */
182 	long		ffactor;		/* target fill factor */
183 	long		max_dsize;		/* 'dsize' limit if directory is fixed size */
184 	long		ssize;			/* segment size --- must be power of 2 */
185 	int			sshift;			/* segment shift = log2(ssize) */
186 	int			nelem_alloc;	/* number of entries to allocate at once */
187 
188 #ifdef HASH_STATISTICS
189 
190 	/*
191 	 * Count statistics here.  NB: stats code doesn't bother with mutex, so
192 	 * counts could be corrupted a bit in a partitioned table.
193 	 */
194 	long		accesses;
195 	long		collisions;
196 #endif
197 };
198 
199 #define IS_PARTITIONED(hctl)  ((hctl)->num_partitions != 0)
200 
201 #define FREELIST_IDX(hctl, hashcode) \
202 	(IS_PARTITIONED(hctl) ? (hashcode) % NUM_FREELISTS : 0)
203 
204 /*
205  * Top control structure for a hashtable --- in a shared table, each backend
206  * has its own copy (OK since no fields change at runtime)
207  */
208 struct HTAB
209 {
210 	HASHHDR    *hctl;			/* => shared control information */
211 	HASHSEGMENT *dir;			/* directory of segment starts */
212 	HashValueFunc hash;			/* hash function */
213 	HashCompareFunc match;		/* key comparison function */
214 	HashCopyFunc keycopy;		/* key copying function */
215 	HashAllocFunc alloc;		/* memory allocator */
216 	MemoryContext hcxt;			/* memory context if default allocator used */
217 	char	   *tabname;		/* table name (for error messages) */
218 	bool		isshared;		/* true if table is in shared memory */
219 	bool		isfixed;		/* if true, don't enlarge */
220 
221 	/* freezing a shared table isn't allowed, so we can keep state here */
222 	bool		frozen;			/* true = no more inserts allowed */
223 
224 	/* We keep local copies of these fixed values to reduce contention */
225 	Size		keysize;		/* hash key length in bytes */
226 	long		ssize;			/* segment size --- must be power of 2 */
227 	int			sshift;			/* segment shift = log2(ssize) */
228 };
229 
230 /*
231  * Key (also entry) part of a HASHELEMENT
232  */
233 #define ELEMENTKEY(helem)  (((char *)(helem)) + MAXALIGN(sizeof(HASHELEMENT)))
234 
235 /*
236  * Obtain element pointer given pointer to key
237  */
238 #define ELEMENT_FROM_KEY(key)  \
239 	((HASHELEMENT *) (((char *) (key)) - MAXALIGN(sizeof(HASHELEMENT))))
240 
241 /*
242  * Fast MOD arithmetic, assuming that y is a power of 2 !
243  */
244 #define MOD(x,y)			   ((x) & ((y)-1))
245 
246 #if HASH_STATISTICS
247 static long hash_accesses,
248 			hash_collisions,
249 			hash_expansions;
250 #endif
251 
252 /*
253  * Private function prototypes
254  */
255 static void *DynaHashAlloc(Size size);
256 static HASHSEGMENT seg_alloc(HTAB *hashp);
257 static bool element_alloc(HTAB *hashp, int nelem, int freelist_idx);
258 static bool dir_realloc(HTAB *hashp);
259 static bool expand_table(HTAB *hashp);
260 static HASHBUCKET get_hash_entry(HTAB *hashp, int freelist_idx);
261 static void hdefault(HTAB *hashp);
262 static int	choose_nelem_alloc(Size entrysize);
263 static bool init_htab(HTAB *hashp, long nelem);
264 static void hash_corrupted(HTAB *hashp);
265 static long next_pow2_long(long num);
266 static int	next_pow2_int(long num);
267 static void register_seq_scan(HTAB *hashp);
268 static void deregister_seq_scan(HTAB *hashp);
269 static bool has_seq_scans(HTAB *hashp);
270 
271 
272 /*
273  * memory allocation support
274  */
275 static MemoryContext CurrentDynaHashCxt = NULL;
276 
277 static void *
DynaHashAlloc(Size size)278 DynaHashAlloc(Size size)
279 {
280 	Assert(MemoryContextIsValid(CurrentDynaHashCxt));
281 	return MemoryContextAlloc(CurrentDynaHashCxt, size);
282 }
283 
284 
285 /*
286  * HashCompareFunc for string keys
287  *
288  * Because we copy keys with strlcpy(), they will be truncated at keysize-1
289  * bytes, so we can only compare that many ... hence strncmp is almost but
290  * not quite the right thing.
291  */
292 static int
string_compare(const char * key1,const char * key2,Size keysize)293 string_compare(const char *key1, const char *key2, Size keysize)
294 {
295 	return strncmp(key1, key2, keysize - 1);
296 }
297 
298 
299 /************************** CREATE ROUTINES **********************/
300 
301 /*
302  * hash_create -- create a new dynamic hash table
303  *
304  *	tabname: a name for the table (for debugging purposes)
305  *	nelem: maximum number of elements expected
306  *	*info: additional table parameters, as indicated by flags
307  *	flags: bitmask indicating which parameters to take from *info
308  *
309  * Note: for a shared-memory hashtable, nelem needs to be a pretty good
310  * estimate, since we can't expand the table on the fly.  But an unshared
311  * hashtable can be expanded on-the-fly, so it's better for nelem to be
312  * on the small side and let the table grow if it's exceeded.  An overly
313  * large nelem will penalize hash_seq_search speed without buying much.
314  */
315 HTAB *
hash_create(const char * tabname,long nelem,HASHCTL * info,int flags)316 hash_create(const char *tabname, long nelem, HASHCTL *info, int flags)
317 {
318 	HTAB	   *hashp;
319 	HASHHDR    *hctl;
320 
321 	/*
322 	 * For shared hash tables, we have a local hash header (HTAB struct) that
323 	 * we allocate in TopMemoryContext; all else is in shared memory.
324 	 *
325 	 * For non-shared hash tables, everything including the hash header is in
326 	 * a memory context created specially for the hash table --- this makes
327 	 * hash_destroy very simple.  The memory context is made a child of either
328 	 * a context specified by the caller, or TopMemoryContext if nothing is
329 	 * specified.
330 	 */
331 	if (flags & HASH_SHARED_MEM)
332 	{
333 		/* Set up to allocate the hash header */
334 		CurrentDynaHashCxt = TopMemoryContext;
335 	}
336 	else
337 	{
338 		/* Create the hash table's private memory context */
339 		if (flags & HASH_CONTEXT)
340 			CurrentDynaHashCxt = info->hcxt;
341 		else
342 			CurrentDynaHashCxt = TopMemoryContext;
343 		CurrentDynaHashCxt = AllocSetContextCreate(CurrentDynaHashCxt,
344 												   "dynahash",
345 												   ALLOCSET_DEFAULT_SIZES);
346 	}
347 
348 	/* Initialize the hash header, plus a copy of the table name */
349 	hashp = (HTAB *) DynaHashAlloc(sizeof(HTAB) + strlen(tabname) + 1);
350 	MemSet(hashp, 0, sizeof(HTAB));
351 
352 	hashp->tabname = (char *) (hashp + 1);
353 	strcpy(hashp->tabname, tabname);
354 
355 	/* If we have a private context, label it with hashtable's name */
356 	if (!(flags & HASH_SHARED_MEM))
357 		MemoryContextSetIdentifier(CurrentDynaHashCxt, hashp->tabname);
358 
359 	/*
360 	 * Select the appropriate hash function (see comments at head of file).
361 	 */
362 	if (flags & HASH_FUNCTION)
363 		hashp->hash = info->hash;
364 	else if (flags & HASH_BLOBS)
365 	{
366 		/* We can optimize hashing for common key sizes */
367 		Assert(flags & HASH_ELEM);
368 		if (info->keysize == sizeof(uint32))
369 			hashp->hash = uint32_hash;
370 		else
371 			hashp->hash = tag_hash;
372 	}
373 	else
374 		hashp->hash = string_hash;	/* default hash function */
375 
376 	/*
377 	 * If you don't specify a match function, it defaults to string_compare if
378 	 * you used string_hash (either explicitly or by default) and to memcmp
379 	 * otherwise.
380 	 *
381 	 * Note: explicitly specifying string_hash is deprecated, because this
382 	 * might not work for callers in loadable modules on some platforms due to
383 	 * referencing a trampoline instead of the string_hash function proper.
384 	 * Just let it default, eh?
385 	 */
386 	if (flags & HASH_COMPARE)
387 		hashp->match = info->match;
388 	else if (hashp->hash == string_hash)
389 		hashp->match = (HashCompareFunc) string_compare;
390 	else
391 		hashp->match = memcmp;
392 
393 	/*
394 	 * Similarly, the key-copying function defaults to strlcpy or memcpy.
395 	 */
396 	if (flags & HASH_KEYCOPY)
397 		hashp->keycopy = info->keycopy;
398 	else if (hashp->hash == string_hash)
399 		hashp->keycopy = (HashCopyFunc) strlcpy;
400 	else
401 		hashp->keycopy = memcpy;
402 
403 	/* And select the entry allocation function, too. */
404 	if (flags & HASH_ALLOC)
405 		hashp->alloc = info->alloc;
406 	else
407 		hashp->alloc = DynaHashAlloc;
408 
409 	if (flags & HASH_SHARED_MEM)
410 	{
411 		/*
412 		 * ctl structure and directory are preallocated for shared memory
413 		 * tables.  Note that HASH_DIRSIZE and HASH_ALLOC had better be set as
414 		 * well.
415 		 */
416 		hashp->hctl = info->hctl;
417 		hashp->dir = (HASHSEGMENT *) (((char *) info->hctl) + sizeof(HASHHDR));
418 		hashp->hcxt = NULL;
419 		hashp->isshared = true;
420 
421 		/* hash table already exists, we're just attaching to it */
422 		if (flags & HASH_ATTACH)
423 		{
424 			/* make local copies of some heavily-used values */
425 			hctl = hashp->hctl;
426 			hashp->keysize = hctl->keysize;
427 			hashp->ssize = hctl->ssize;
428 			hashp->sshift = hctl->sshift;
429 
430 			return hashp;
431 		}
432 	}
433 	else
434 	{
435 		/* setup hash table defaults */
436 		hashp->hctl = NULL;
437 		hashp->dir = NULL;
438 		hashp->hcxt = CurrentDynaHashCxt;
439 		hashp->isshared = false;
440 	}
441 
442 	if (!hashp->hctl)
443 	{
444 		hashp->hctl = (HASHHDR *) hashp->alloc(sizeof(HASHHDR));
445 		if (!hashp->hctl)
446 			ereport(ERROR,
447 					(errcode(ERRCODE_OUT_OF_MEMORY),
448 					 errmsg("out of memory")));
449 	}
450 
451 	hashp->frozen = false;
452 
453 	hdefault(hashp);
454 
455 	hctl = hashp->hctl;
456 
457 	if (flags & HASH_PARTITION)
458 	{
459 		/* Doesn't make sense to partition a local hash table */
460 		Assert(flags & HASH_SHARED_MEM);
461 
462 		/*
463 		 * The number of partitions had better be a power of 2. Also, it must
464 		 * be less than INT_MAX (see init_htab()), so call the int version of
465 		 * next_pow2.
466 		 */
467 		Assert(info->num_partitions == next_pow2_int(info->num_partitions));
468 
469 		hctl->num_partitions = info->num_partitions;
470 	}
471 
472 	if (flags & HASH_SEGMENT)
473 	{
474 		hctl->ssize = info->ssize;
475 		hctl->sshift = my_log2(info->ssize);
476 		/* ssize had better be a power of 2 */
477 		Assert(hctl->ssize == (1L << hctl->sshift));
478 	}
479 	if (flags & HASH_FFACTOR)
480 		hctl->ffactor = info->ffactor;
481 
482 	/*
483 	 * SHM hash tables have fixed directory size passed by the caller.
484 	 */
485 	if (flags & HASH_DIRSIZE)
486 	{
487 		hctl->max_dsize = info->max_dsize;
488 		hctl->dsize = info->dsize;
489 	}
490 
491 	/*
492 	 * hash table now allocates space for key and data but you have to say how
493 	 * much space to allocate
494 	 */
495 	if (flags & HASH_ELEM)
496 	{
497 		Assert(info->entrysize >= info->keysize);
498 		hctl->keysize = info->keysize;
499 		hctl->entrysize = info->entrysize;
500 	}
501 
502 	/* make local copies of heavily-used constant fields */
503 	hashp->keysize = hctl->keysize;
504 	hashp->ssize = hctl->ssize;
505 	hashp->sshift = hctl->sshift;
506 
507 	/* Build the hash directory structure */
508 	if (!init_htab(hashp, nelem))
509 		elog(ERROR, "failed to initialize hash table \"%s\"", hashp->tabname);
510 
511 	/*
512 	 * For a shared hash table, preallocate the requested number of elements.
513 	 * This reduces problems with run-time out-of-shared-memory conditions.
514 	 *
515 	 * For a non-shared hash table, preallocate the requested number of
516 	 * elements if it's less than our chosen nelem_alloc.  This avoids wasting
517 	 * space if the caller correctly estimates a small table size.
518 	 */
519 	if ((flags & HASH_SHARED_MEM) ||
520 		nelem < hctl->nelem_alloc)
521 	{
522 		int			i,
523 					freelist_partitions,
524 					nelem_alloc,
525 					nelem_alloc_first;
526 
527 		/*
528 		 * If hash table is partitioned, give each freelist an equal share of
529 		 * the initial allocation.  Otherwise only freeList[0] is used.
530 		 */
531 		if (IS_PARTITIONED(hashp->hctl))
532 			freelist_partitions = NUM_FREELISTS;
533 		else
534 			freelist_partitions = 1;
535 
536 		nelem_alloc = nelem / freelist_partitions;
537 		if (nelem_alloc <= 0)
538 			nelem_alloc = 1;
539 
540 		/*
541 		 * Make sure we'll allocate all the requested elements; freeList[0]
542 		 * gets the excess if the request isn't divisible by NUM_FREELISTS.
543 		 */
544 		if (nelem_alloc * freelist_partitions < nelem)
545 			nelem_alloc_first =
546 				nelem - nelem_alloc * (freelist_partitions - 1);
547 		else
548 			nelem_alloc_first = nelem_alloc;
549 
550 		for (i = 0; i < freelist_partitions; i++)
551 		{
552 			int			temp = (i == 0) ? nelem_alloc_first : nelem_alloc;
553 
554 			if (!element_alloc(hashp, temp, i))
555 				ereport(ERROR,
556 						(errcode(ERRCODE_OUT_OF_MEMORY),
557 						 errmsg("out of memory")));
558 		}
559 	}
560 
561 	if (flags & HASH_FIXED_SIZE)
562 		hashp->isfixed = true;
563 	return hashp;
564 }
565 
566 /*
567  * Set default HASHHDR parameters.
568  */
569 static void
hdefault(HTAB * hashp)570 hdefault(HTAB *hashp)
571 {
572 	HASHHDR    *hctl = hashp->hctl;
573 
574 	MemSet(hctl, 0, sizeof(HASHHDR));
575 
576 	hctl->dsize = DEF_DIRSIZE;
577 	hctl->nsegs = 0;
578 
579 	/* rather pointless defaults for key & entry size */
580 	hctl->keysize = sizeof(char *);
581 	hctl->entrysize = 2 * sizeof(char *);
582 
583 	hctl->num_partitions = 0;	/* not partitioned */
584 
585 	hctl->ffactor = DEF_FFACTOR;
586 
587 	/* table has no fixed maximum size */
588 	hctl->max_dsize = NO_MAX_DSIZE;
589 
590 	hctl->ssize = DEF_SEGSIZE;
591 	hctl->sshift = DEF_SEGSIZE_SHIFT;
592 
593 #ifdef HASH_STATISTICS
594 	hctl->accesses = hctl->collisions = 0;
595 #endif
596 }
597 
598 /*
599  * Given the user-specified entry size, choose nelem_alloc, ie, how many
600  * elements to add to the hash table when we need more.
601  */
602 static int
choose_nelem_alloc(Size entrysize)603 choose_nelem_alloc(Size entrysize)
604 {
605 	int			nelem_alloc;
606 	Size		elementSize;
607 	Size		allocSize;
608 
609 	/* Each element has a HASHELEMENT header plus user data. */
610 	/* NB: this had better match element_alloc() */
611 	elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize);
612 
613 	/*
614 	 * The idea here is to choose nelem_alloc at least 32, but round up so
615 	 * that the allocation request will be a power of 2 or just less. This
616 	 * makes little difference for hash tables in shared memory, but for hash
617 	 * tables managed by palloc, the allocation request will be rounded up to
618 	 * a power of 2 anyway.  If we fail to take this into account, we'll waste
619 	 * as much as half the allocated space.
620 	 */
621 	allocSize = 32 * 4;			/* assume elementSize at least 8 */
622 	do
623 	{
624 		allocSize <<= 1;
625 		nelem_alloc = allocSize / elementSize;
626 	} while (nelem_alloc < 32);
627 
628 	return nelem_alloc;
629 }
630 
631 /*
632  * Compute derived fields of hctl and build the initial directory/segment
633  * arrays
634  */
635 static bool
init_htab(HTAB * hashp,long nelem)636 init_htab(HTAB *hashp, long nelem)
637 {
638 	HASHHDR    *hctl = hashp->hctl;
639 	HASHSEGMENT *segp;
640 	int			nbuckets;
641 	int			nsegs;
642 	int			i;
643 
644 	/*
645 	 * initialize mutexes if it's a partitioned table
646 	 */
647 	if (IS_PARTITIONED(hctl))
648 		for (i = 0; i < NUM_FREELISTS; i++)
649 			SpinLockInit(&(hctl->freeList[i].mutex));
650 
651 	/*
652 	 * Divide number of elements by the fill factor to determine a desired
653 	 * number of buckets.  Allocate space for the next greater power of two
654 	 * number of buckets
655 	 */
656 	nbuckets = next_pow2_int((nelem - 1) / hctl->ffactor + 1);
657 
658 	/*
659 	 * In a partitioned table, nbuckets must be at least equal to
660 	 * num_partitions; were it less, keys with apparently different partition
661 	 * numbers would map to the same bucket, breaking partition independence.
662 	 * (Normally nbuckets will be much bigger; this is just a safety check.)
663 	 */
664 	while (nbuckets < hctl->num_partitions)
665 		nbuckets <<= 1;
666 
667 	hctl->max_bucket = hctl->low_mask = nbuckets - 1;
668 	hctl->high_mask = (nbuckets << 1) - 1;
669 
670 	/*
671 	 * Figure number of directory segments needed, round up to a power of 2
672 	 */
673 	nsegs = (nbuckets - 1) / hctl->ssize + 1;
674 	nsegs = next_pow2_int(nsegs);
675 
676 	/*
677 	 * Make sure directory is big enough. If pre-allocated directory is too
678 	 * small, choke (caller screwed up).
679 	 */
680 	if (nsegs > hctl->dsize)
681 	{
682 		if (!(hashp->dir))
683 			hctl->dsize = nsegs;
684 		else
685 			return false;
686 	}
687 
688 	/* Allocate a directory */
689 	if (!(hashp->dir))
690 	{
691 		CurrentDynaHashCxt = hashp->hcxt;
692 		hashp->dir = (HASHSEGMENT *)
693 			hashp->alloc(hctl->dsize * sizeof(HASHSEGMENT));
694 		if (!hashp->dir)
695 			return false;
696 	}
697 
698 	/* Allocate initial segments */
699 	for (segp = hashp->dir; hctl->nsegs < nsegs; hctl->nsegs++, segp++)
700 	{
701 		*segp = seg_alloc(hashp);
702 		if (*segp == NULL)
703 			return false;
704 	}
705 
706 	/* Choose number of entries to allocate at a time */
707 	hctl->nelem_alloc = choose_nelem_alloc(hctl->entrysize);
708 
709 #if HASH_DEBUG
710 	fprintf(stderr, "init_htab:\n%s%p\n%s%ld\n%s%ld\n%s%d\n%s%ld\n%s%u\n%s%x\n%s%x\n%s%ld\n",
711 			"TABLE POINTER   ", hashp,
712 			"DIRECTORY SIZE  ", hctl->dsize,
713 			"SEGMENT SIZE    ", hctl->ssize,
714 			"SEGMENT SHIFT   ", hctl->sshift,
715 			"FILL FACTOR     ", hctl->ffactor,
716 			"MAX BUCKET      ", hctl->max_bucket,
717 			"HIGH MASK       ", hctl->high_mask,
718 			"LOW  MASK       ", hctl->low_mask,
719 			"NSEGS           ", hctl->nsegs);
720 #endif
721 	return true;
722 }
723 
724 /*
725  * Estimate the space needed for a hashtable containing the given number
726  * of entries of given size.
727  * NOTE: this is used to estimate the footprint of hashtables in shared
728  * memory; therefore it does not count HTAB which is in local memory.
729  * NB: assumes that all hash structure parameters have default values!
730  */
731 Size
hash_estimate_size(long num_entries,Size entrysize)732 hash_estimate_size(long num_entries, Size entrysize)
733 {
734 	Size		size;
735 	long		nBuckets,
736 				nSegments,
737 				nDirEntries,
738 				nElementAllocs,
739 				elementSize,
740 				elementAllocCnt;
741 
742 	/* estimate number of buckets wanted */
743 	nBuckets = next_pow2_long((num_entries - 1) / DEF_FFACTOR + 1);
744 	/* # of segments needed for nBuckets */
745 	nSegments = next_pow2_long((nBuckets - 1) / DEF_SEGSIZE + 1);
746 	/* directory entries */
747 	nDirEntries = DEF_DIRSIZE;
748 	while (nDirEntries < nSegments)
749 		nDirEntries <<= 1;		/* dir_alloc doubles dsize at each call */
750 
751 	/* fixed control info */
752 	size = MAXALIGN(sizeof(HASHHDR));	/* but not HTAB, per above */
753 	/* directory */
754 	size = add_size(size, mul_size(nDirEntries, sizeof(HASHSEGMENT)));
755 	/* segments */
756 	size = add_size(size, mul_size(nSegments,
757 								   MAXALIGN(DEF_SEGSIZE * sizeof(HASHBUCKET))));
758 	/* elements --- allocated in groups of choose_nelem_alloc() entries */
759 	elementAllocCnt = choose_nelem_alloc(entrysize);
760 	nElementAllocs = (num_entries - 1) / elementAllocCnt + 1;
761 	elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize);
762 	size = add_size(size,
763 					mul_size(nElementAllocs,
764 							 mul_size(elementAllocCnt, elementSize)));
765 
766 	return size;
767 }
768 
769 /*
770  * Select an appropriate directory size for a hashtable with the given
771  * maximum number of entries.
772  * This is only needed for hashtables in shared memory, whose directories
773  * cannot be expanded dynamically.
774  * NB: assumes that all hash structure parameters have default values!
775  *
776  * XXX this had better agree with the behavior of init_htab()...
777  */
778 long
hash_select_dirsize(long num_entries)779 hash_select_dirsize(long num_entries)
780 {
781 	long		nBuckets,
782 				nSegments,
783 				nDirEntries;
784 
785 	/* estimate number of buckets wanted */
786 	nBuckets = next_pow2_long((num_entries - 1) / DEF_FFACTOR + 1);
787 	/* # of segments needed for nBuckets */
788 	nSegments = next_pow2_long((nBuckets - 1) / DEF_SEGSIZE + 1);
789 	/* directory entries */
790 	nDirEntries = DEF_DIRSIZE;
791 	while (nDirEntries < nSegments)
792 		nDirEntries <<= 1;		/* dir_alloc doubles dsize at each call */
793 
794 	return nDirEntries;
795 }
796 
797 /*
798  * Compute the required initial memory allocation for a shared-memory
799  * hashtable with the given parameters.  We need space for the HASHHDR
800  * and for the (non expansible) directory.
801  */
802 Size
hash_get_shared_size(HASHCTL * info,int flags)803 hash_get_shared_size(HASHCTL *info, int flags)
804 {
805 	Assert(flags & HASH_DIRSIZE);
806 	Assert(info->dsize == info->max_dsize);
807 	return sizeof(HASHHDR) + info->dsize * sizeof(HASHSEGMENT);
808 }
809 
810 
811 /********************** DESTROY ROUTINES ************************/
812 
813 void
hash_destroy(HTAB * hashp)814 hash_destroy(HTAB *hashp)
815 {
816 	if (hashp != NULL)
817 	{
818 		/* allocation method must be one we know how to free, too */
819 		Assert(hashp->alloc == DynaHashAlloc);
820 		/* so this hashtable must have it's own context */
821 		Assert(hashp->hcxt != NULL);
822 
823 		hash_stats("destroy", hashp);
824 
825 		/*
826 		 * Free everything by destroying the hash table's memory context.
827 		 */
828 		MemoryContextDelete(hashp->hcxt);
829 	}
830 }
831 
832 void
hash_stats(const char * where,HTAB * hashp)833 hash_stats(const char *where, HTAB *hashp)
834 {
835 #if HASH_STATISTICS
836 	fprintf(stderr, "%s: this HTAB -- accesses %ld collisions %ld\n",
837 			where, hashp->hctl->accesses, hashp->hctl->collisions);
838 
839 	fprintf(stderr, "hash_stats: entries %ld keysize %ld maxp %u segmentcount %ld\n",
840 			hash_get_num_entries(hashp), (long) hashp->hctl->keysize,
841 			hashp->hctl->max_bucket, hashp->hctl->nsegs);
842 	fprintf(stderr, "%s: total accesses %ld total collisions %ld\n",
843 			where, hash_accesses, hash_collisions);
844 	fprintf(stderr, "hash_stats: total expansions %ld\n",
845 			hash_expansions);
846 #endif
847 }
848 
849 /*******************************SEARCH ROUTINES *****************************/
850 
851 
852 /*
853  * get_hash_value -- exported routine to calculate a key's hash value
854  *
855  * We export this because for partitioned tables, callers need to compute
856  * the partition number (from the low-order bits of the hash value) before
857  * searching.
858  */
859 uint32
get_hash_value(HTAB * hashp,const void * keyPtr)860 get_hash_value(HTAB *hashp, const void *keyPtr)
861 {
862 	return hashp->hash(keyPtr, hashp->keysize);
863 }
864 
865 /* Convert a hash value to a bucket number */
866 static inline uint32
calc_bucket(HASHHDR * hctl,uint32 hash_val)867 calc_bucket(HASHHDR *hctl, uint32 hash_val)
868 {
869 	uint32		bucket;
870 
871 	bucket = hash_val & hctl->high_mask;
872 	if (bucket > hctl->max_bucket)
873 		bucket = bucket & hctl->low_mask;
874 
875 	return bucket;
876 }
877 
878 /*
879  * hash_search -- look up key in table and perform action
880  * hash_search_with_hash_value -- same, with key's hash value already computed
881  *
882  * action is one of:
883  *		HASH_FIND: look up key in table
884  *		HASH_ENTER: look up key in table, creating entry if not present
885  *		HASH_ENTER_NULL: same, but return NULL if out of memory
886  *		HASH_REMOVE: look up key in table, remove entry if present
887  *
888  * Return value is a pointer to the element found/entered/removed if any,
889  * or NULL if no match was found.  (NB: in the case of the REMOVE action,
890  * the result is a dangling pointer that shouldn't be dereferenced!)
891  *
892  * HASH_ENTER will normally ereport a generic "out of memory" error if
893  * it is unable to create a new entry.  The HASH_ENTER_NULL operation is
894  * the same except it will return NULL if out of memory.  Note that
895  * HASH_ENTER_NULL cannot be used with the default palloc-based allocator,
896  * since palloc internally ereports on out-of-memory.
897  *
898  * If foundPtr isn't NULL, then *foundPtr is set true if we found an
899  * existing entry in the table, false otherwise.  This is needed in the
900  * HASH_ENTER case, but is redundant with the return value otherwise.
901  *
902  * For hash_search_with_hash_value, the hashvalue parameter must have been
903  * calculated with get_hash_value().
904  */
905 void *
hash_search(HTAB * hashp,const void * keyPtr,HASHACTION action,bool * foundPtr)906 hash_search(HTAB *hashp,
907 			const void *keyPtr,
908 			HASHACTION action,
909 			bool *foundPtr)
910 {
911 	return hash_search_with_hash_value(hashp,
912 									   keyPtr,
913 									   hashp->hash(keyPtr, hashp->keysize),
914 									   action,
915 									   foundPtr);
916 }
917 
918 void *
hash_search_with_hash_value(HTAB * hashp,const void * keyPtr,uint32 hashvalue,HASHACTION action,bool * foundPtr)919 hash_search_with_hash_value(HTAB *hashp,
920 							const void *keyPtr,
921 							uint32 hashvalue,
922 							HASHACTION action,
923 							bool *foundPtr)
924 {
925 	HASHHDR    *hctl = hashp->hctl;
926 	int			freelist_idx = FREELIST_IDX(hctl, hashvalue);
927 	Size		keysize;
928 	uint32		bucket;
929 	long		segment_num;
930 	long		segment_ndx;
931 	HASHSEGMENT segp;
932 	HASHBUCKET	currBucket;
933 	HASHBUCKET *prevBucketPtr;
934 	HashCompareFunc match;
935 
936 #if HASH_STATISTICS
937 	hash_accesses++;
938 	hctl->accesses++;
939 #endif
940 
941 	/*
942 	 * If inserting, check if it is time to split a bucket.
943 	 *
944 	 * NOTE: failure to expand table is not a fatal error, it just means we
945 	 * have to run at higher fill factor than we wanted.  However, if we're
946 	 * using the palloc allocator then it will throw error anyway on
947 	 * out-of-memory, so we must do this before modifying the table.
948 	 */
949 	if (action == HASH_ENTER || action == HASH_ENTER_NULL)
950 	{
951 		/*
952 		 * Can't split if running in partitioned mode, nor if frozen, nor if
953 		 * table is the subject of any active hash_seq_search scans.  Strange
954 		 * order of these tests is to try to check cheaper conditions first.
955 		 */
956 		if (!IS_PARTITIONED(hctl) && !hashp->frozen &&
957 			hctl->freeList[0].nentries / (long) (hctl->max_bucket + 1) >= hctl->ffactor &&
958 			!has_seq_scans(hashp))
959 			(void) expand_table(hashp);
960 	}
961 
962 	/*
963 	 * Do the initial lookup
964 	 */
965 	bucket = calc_bucket(hctl, hashvalue);
966 
967 	segment_num = bucket >> hashp->sshift;
968 	segment_ndx = MOD(bucket, hashp->ssize);
969 
970 	segp = hashp->dir[segment_num];
971 
972 	if (segp == NULL)
973 		hash_corrupted(hashp);
974 
975 	prevBucketPtr = &segp[segment_ndx];
976 	currBucket = *prevBucketPtr;
977 
978 	/*
979 	 * Follow collision chain looking for matching key
980 	 */
981 	match = hashp->match;		/* save one fetch in inner loop */
982 	keysize = hashp->keysize;	/* ditto */
983 
984 	while (currBucket != NULL)
985 	{
986 		if (currBucket->hashvalue == hashvalue &&
987 			match(ELEMENTKEY(currBucket), keyPtr, keysize) == 0)
988 			break;
989 		prevBucketPtr = &(currBucket->link);
990 		currBucket = *prevBucketPtr;
991 #if HASH_STATISTICS
992 		hash_collisions++;
993 		hctl->collisions++;
994 #endif
995 	}
996 
997 	if (foundPtr)
998 		*foundPtr = (bool) (currBucket != NULL);
999 
1000 	/*
1001 	 * OK, now what?
1002 	 */
1003 	switch (action)
1004 	{
1005 		case HASH_FIND:
1006 			if (currBucket != NULL)
1007 				return (void *) ELEMENTKEY(currBucket);
1008 			return NULL;
1009 
1010 		case HASH_REMOVE:
1011 			if (currBucket != NULL)
1012 			{
1013 				/* if partitioned, must lock to touch nentries and freeList */
1014 				if (IS_PARTITIONED(hctl))
1015 					SpinLockAcquire(&(hctl->freeList[freelist_idx].mutex));
1016 
1017 				/* delete the record from the appropriate nentries counter. */
1018 				Assert(hctl->freeList[freelist_idx].nentries > 0);
1019 				hctl->freeList[freelist_idx].nentries--;
1020 
1021 				/* remove record from hash bucket's chain. */
1022 				*prevBucketPtr = currBucket->link;
1023 
1024 				/* add the record to the appropriate freelist. */
1025 				currBucket->link = hctl->freeList[freelist_idx].freeList;
1026 				hctl->freeList[freelist_idx].freeList = currBucket;
1027 
1028 				if (IS_PARTITIONED(hctl))
1029 					SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
1030 
1031 				/*
1032 				 * better hope the caller is synchronizing access to this
1033 				 * element, because someone else is going to reuse it the next
1034 				 * time something is added to the table
1035 				 */
1036 				return (void *) ELEMENTKEY(currBucket);
1037 			}
1038 			return NULL;
1039 
1040 		case HASH_ENTER_NULL:
1041 			/* ENTER_NULL does not work with palloc-based allocator */
1042 			Assert(hashp->alloc != DynaHashAlloc);
1043 			/* FALL THRU */
1044 
1045 		case HASH_ENTER:
1046 			/* Return existing element if found, else create one */
1047 			if (currBucket != NULL)
1048 				return (void *) ELEMENTKEY(currBucket);
1049 
1050 			/* disallow inserts if frozen */
1051 			if (hashp->frozen)
1052 				elog(ERROR, "cannot insert into frozen hashtable \"%s\"",
1053 					 hashp->tabname);
1054 
1055 			currBucket = get_hash_entry(hashp, freelist_idx);
1056 			if (currBucket == NULL)
1057 			{
1058 				/* out of memory */
1059 				if (action == HASH_ENTER_NULL)
1060 					return NULL;
1061 				/* report a generic message */
1062 				if (hashp->isshared)
1063 					ereport(ERROR,
1064 							(errcode(ERRCODE_OUT_OF_MEMORY),
1065 							 errmsg("out of shared memory")));
1066 				else
1067 					ereport(ERROR,
1068 							(errcode(ERRCODE_OUT_OF_MEMORY),
1069 							 errmsg("out of memory")));
1070 			}
1071 
1072 			/* link into hashbucket chain */
1073 			*prevBucketPtr = currBucket;
1074 			currBucket->link = NULL;
1075 
1076 			/* copy key into record */
1077 			currBucket->hashvalue = hashvalue;
1078 			hashp->keycopy(ELEMENTKEY(currBucket), keyPtr, keysize);
1079 
1080 			/*
1081 			 * Caller is expected to fill the data field on return.  DO NOT
1082 			 * insert any code that could possibly throw error here, as doing
1083 			 * so would leave the table entry incomplete and hence corrupt the
1084 			 * caller's data structure.
1085 			 */
1086 
1087 			return (void *) ELEMENTKEY(currBucket);
1088 	}
1089 
1090 	elog(ERROR, "unrecognized hash action code: %d", (int) action);
1091 
1092 	return NULL;				/* keep compiler quiet */
1093 }
1094 
1095 /*
1096  * hash_update_hash_key -- change the hash key of an existing table entry
1097  *
1098  * This is equivalent to removing the entry, making a new entry, and copying
1099  * over its data, except that the entry never goes to the table's freelist.
1100  * Therefore this cannot suffer an out-of-memory failure, even if there are
1101  * other processes operating in other partitions of the hashtable.
1102  *
1103  * Returns true if successful, false if the requested new hash key is already
1104  * present.  Throws error if the specified entry pointer isn't actually a
1105  * table member.
1106  *
1107  * NB: currently, there is no special case for old and new hash keys being
1108  * identical, which means we'll report false for that situation.  This is
1109  * preferable for existing uses.
1110  *
1111  * NB: for a partitioned hashtable, caller must hold lock on both relevant
1112  * partitions, if the new hash key would belong to a different partition.
1113  */
1114 bool
hash_update_hash_key(HTAB * hashp,void * existingEntry,const void * newKeyPtr)1115 hash_update_hash_key(HTAB *hashp,
1116 					 void *existingEntry,
1117 					 const void *newKeyPtr)
1118 {
1119 	HASHELEMENT *existingElement = ELEMENT_FROM_KEY(existingEntry);
1120 	HASHHDR    *hctl = hashp->hctl;
1121 	uint32		newhashvalue;
1122 	Size		keysize;
1123 	uint32		bucket;
1124 	uint32		newbucket;
1125 	long		segment_num;
1126 	long		segment_ndx;
1127 	HASHSEGMENT segp;
1128 	HASHBUCKET	currBucket;
1129 	HASHBUCKET *prevBucketPtr;
1130 	HASHBUCKET *oldPrevPtr;
1131 	HashCompareFunc match;
1132 
1133 #if HASH_STATISTICS
1134 	hash_accesses++;
1135 	hctl->accesses++;
1136 #endif
1137 
1138 	/* disallow updates if frozen */
1139 	if (hashp->frozen)
1140 		elog(ERROR, "cannot update in frozen hashtable \"%s\"",
1141 			 hashp->tabname);
1142 
1143 	/*
1144 	 * Lookup the existing element using its saved hash value.  We need to do
1145 	 * this to be able to unlink it from its hash chain, but as a side benefit
1146 	 * we can verify the validity of the passed existingEntry pointer.
1147 	 */
1148 	bucket = calc_bucket(hctl, existingElement->hashvalue);
1149 
1150 	segment_num = bucket >> hashp->sshift;
1151 	segment_ndx = MOD(bucket, hashp->ssize);
1152 
1153 	segp = hashp->dir[segment_num];
1154 
1155 	if (segp == NULL)
1156 		hash_corrupted(hashp);
1157 
1158 	prevBucketPtr = &segp[segment_ndx];
1159 	currBucket = *prevBucketPtr;
1160 
1161 	while (currBucket != NULL)
1162 	{
1163 		if (currBucket == existingElement)
1164 			break;
1165 		prevBucketPtr = &(currBucket->link);
1166 		currBucket = *prevBucketPtr;
1167 	}
1168 
1169 	if (currBucket == NULL)
1170 		elog(ERROR, "hash_update_hash_key argument is not in hashtable \"%s\"",
1171 			 hashp->tabname);
1172 
1173 	oldPrevPtr = prevBucketPtr;
1174 
1175 	/*
1176 	 * Now perform the equivalent of a HASH_ENTER operation to locate the hash
1177 	 * chain we want to put the entry into.
1178 	 */
1179 	newhashvalue = hashp->hash(newKeyPtr, hashp->keysize);
1180 
1181 	newbucket = calc_bucket(hctl, newhashvalue);
1182 
1183 	segment_num = newbucket >> hashp->sshift;
1184 	segment_ndx = MOD(newbucket, hashp->ssize);
1185 
1186 	segp = hashp->dir[segment_num];
1187 
1188 	if (segp == NULL)
1189 		hash_corrupted(hashp);
1190 
1191 	prevBucketPtr = &segp[segment_ndx];
1192 	currBucket = *prevBucketPtr;
1193 
1194 	/*
1195 	 * Follow collision chain looking for matching key
1196 	 */
1197 	match = hashp->match;		/* save one fetch in inner loop */
1198 	keysize = hashp->keysize;	/* ditto */
1199 
1200 	while (currBucket != NULL)
1201 	{
1202 		if (currBucket->hashvalue == newhashvalue &&
1203 			match(ELEMENTKEY(currBucket), newKeyPtr, keysize) == 0)
1204 			break;
1205 		prevBucketPtr = &(currBucket->link);
1206 		currBucket = *prevBucketPtr;
1207 #if HASH_STATISTICS
1208 		hash_collisions++;
1209 		hctl->collisions++;
1210 #endif
1211 	}
1212 
1213 	if (currBucket != NULL)
1214 		return false;			/* collision with an existing entry */
1215 
1216 	currBucket = existingElement;
1217 
1218 	/*
1219 	 * If old and new hash values belong to the same bucket, we need not
1220 	 * change any chain links, and indeed should not since this simplistic
1221 	 * update will corrupt the list if currBucket is the last element.  (We
1222 	 * cannot fall out earlier, however, since we need to scan the bucket to
1223 	 * check for duplicate keys.)
1224 	 */
1225 	if (bucket != newbucket)
1226 	{
1227 		/* OK to remove record from old hash bucket's chain. */
1228 		*oldPrevPtr = currBucket->link;
1229 
1230 		/* link into new hashbucket chain */
1231 		*prevBucketPtr = currBucket;
1232 		currBucket->link = NULL;
1233 	}
1234 
1235 	/* copy new key into record */
1236 	currBucket->hashvalue = newhashvalue;
1237 	hashp->keycopy(ELEMENTKEY(currBucket), newKeyPtr, keysize);
1238 
1239 	/* rest of record is untouched */
1240 
1241 	return true;
1242 }
1243 
1244 /*
1245  * Allocate a new hashtable entry if possible; return NULL if out of memory.
1246  * (Or, if the underlying space allocator throws error for out-of-memory,
1247  * we won't return at all.)
1248  */
1249 static HASHBUCKET
get_hash_entry(HTAB * hashp,int freelist_idx)1250 get_hash_entry(HTAB *hashp, int freelist_idx)
1251 {
1252 	HASHHDR    *hctl = hashp->hctl;
1253 	HASHBUCKET	newElement;
1254 
1255 	for (;;)
1256 	{
1257 		/* if partitioned, must lock to touch nentries and freeList */
1258 		if (IS_PARTITIONED(hctl))
1259 			SpinLockAcquire(&hctl->freeList[freelist_idx].mutex);
1260 
1261 		/* try to get an entry from the freelist */
1262 		newElement = hctl->freeList[freelist_idx].freeList;
1263 
1264 		if (newElement != NULL)
1265 			break;
1266 
1267 		if (IS_PARTITIONED(hctl))
1268 			SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
1269 
1270 		/*
1271 		 * No free elements in this freelist.  In a partitioned table, there
1272 		 * might be entries in other freelists, but to reduce contention we
1273 		 * prefer to first try to get another chunk of buckets from the main
1274 		 * shmem allocator.  If that fails, though, we *MUST* root through all
1275 		 * the other freelists before giving up.  There are multiple callers
1276 		 * that assume that they can allocate every element in the initially
1277 		 * requested table size, or that deleting an element guarantees they
1278 		 * can insert a new element, even if shared memory is entirely full.
1279 		 * Failing because the needed element is in a different freelist is
1280 		 * not acceptable.
1281 		 */
1282 		if (!element_alloc(hashp, hctl->nelem_alloc, freelist_idx))
1283 		{
1284 			int			borrow_from_idx;
1285 
1286 			if (!IS_PARTITIONED(hctl))
1287 				return NULL;	/* out of memory */
1288 
1289 			/* try to borrow element from another freelist */
1290 			borrow_from_idx = freelist_idx;
1291 			for (;;)
1292 			{
1293 				borrow_from_idx = (borrow_from_idx + 1) % NUM_FREELISTS;
1294 				if (borrow_from_idx == freelist_idx)
1295 					break;		/* examined all freelists, fail */
1296 
1297 				SpinLockAcquire(&(hctl->freeList[borrow_from_idx].mutex));
1298 				newElement = hctl->freeList[borrow_from_idx].freeList;
1299 
1300 				if (newElement != NULL)
1301 				{
1302 					hctl->freeList[borrow_from_idx].freeList = newElement->link;
1303 					SpinLockRelease(&(hctl->freeList[borrow_from_idx].mutex));
1304 
1305 					/* careful: count the new element in its proper freelist */
1306 					SpinLockAcquire(&hctl->freeList[freelist_idx].mutex);
1307 					hctl->freeList[freelist_idx].nentries++;
1308 					SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
1309 
1310 					return newElement;
1311 				}
1312 
1313 				SpinLockRelease(&(hctl->freeList[borrow_from_idx].mutex));
1314 			}
1315 
1316 			/* no elements available to borrow either, so out of memory */
1317 			return NULL;
1318 		}
1319 	}
1320 
1321 	/* remove entry from freelist, bump nentries */
1322 	hctl->freeList[freelist_idx].freeList = newElement->link;
1323 	hctl->freeList[freelist_idx].nentries++;
1324 
1325 	if (IS_PARTITIONED(hctl))
1326 		SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
1327 
1328 	return newElement;
1329 }
1330 
1331 /*
1332  * hash_get_num_entries -- get the number of entries in a hashtable
1333  */
1334 long
hash_get_num_entries(HTAB * hashp)1335 hash_get_num_entries(HTAB *hashp)
1336 {
1337 	int			i;
1338 	long		sum = hashp->hctl->freeList[0].nentries;
1339 
1340 	/*
1341 	 * We currently don't bother with acquiring the mutexes; it's only
1342 	 * sensible to call this function if you've got lock on all partitions of
1343 	 * the table.
1344 	 */
1345 	if (IS_PARTITIONED(hashp->hctl))
1346 	{
1347 		for (i = 1; i < NUM_FREELISTS; i++)
1348 			sum += hashp->hctl->freeList[i].nentries;
1349 	}
1350 
1351 	return sum;
1352 }
1353 
1354 /*
1355  * hash_seq_init/_search/_term
1356  *			Sequentially search through hash table and return
1357  *			all the elements one by one, return NULL when no more.
1358  *
1359  * hash_seq_term should be called if and only if the scan is abandoned before
1360  * completion; if hash_seq_search returns NULL then it has already done the
1361  * end-of-scan cleanup.
1362  *
1363  * NOTE: caller may delete the returned element before continuing the scan.
1364  * However, deleting any other element while the scan is in progress is
1365  * UNDEFINED (it might be the one that curIndex is pointing at!).  Also,
1366  * if elements are added to the table while the scan is in progress, it is
1367  * unspecified whether they will be visited by the scan or not.
1368  *
1369  * NOTE: it is possible to use hash_seq_init/hash_seq_search without any
1370  * worry about hash_seq_term cleanup, if the hashtable is first locked against
1371  * further insertions by calling hash_freeze.
1372  *
1373  * NOTE: to use this with a partitioned hashtable, caller had better hold
1374  * at least shared lock on all partitions of the table throughout the scan!
1375  * We can cope with insertions or deletions by our own backend, but *not*
1376  * with concurrent insertions or deletions by another.
1377  */
1378 void
hash_seq_init(HASH_SEQ_STATUS * status,HTAB * hashp)1379 hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
1380 {
1381 	status->hashp = hashp;
1382 	status->curBucket = 0;
1383 	status->curEntry = NULL;
1384 	if (!hashp->frozen)
1385 		register_seq_scan(hashp);
1386 }
1387 
1388 void *
hash_seq_search(HASH_SEQ_STATUS * status)1389 hash_seq_search(HASH_SEQ_STATUS *status)
1390 {
1391 	HTAB	   *hashp;
1392 	HASHHDR    *hctl;
1393 	uint32		max_bucket;
1394 	long		ssize;
1395 	long		segment_num;
1396 	long		segment_ndx;
1397 	HASHSEGMENT segp;
1398 	uint32		curBucket;
1399 	HASHELEMENT *curElem;
1400 
1401 	if ((curElem = status->curEntry) != NULL)
1402 	{
1403 		/* Continuing scan of curBucket... */
1404 		status->curEntry = curElem->link;
1405 		if (status->curEntry == NULL)	/* end of this bucket */
1406 			++status->curBucket;
1407 		return (void *) ELEMENTKEY(curElem);
1408 	}
1409 
1410 	/*
1411 	 * Search for next nonempty bucket starting at curBucket.
1412 	 */
1413 	curBucket = status->curBucket;
1414 	hashp = status->hashp;
1415 	hctl = hashp->hctl;
1416 	ssize = hashp->ssize;
1417 	max_bucket = hctl->max_bucket;
1418 
1419 	if (curBucket > max_bucket)
1420 	{
1421 		hash_seq_term(status);
1422 		return NULL;			/* search is done */
1423 	}
1424 
1425 	/*
1426 	 * first find the right segment in the table directory.
1427 	 */
1428 	segment_num = curBucket >> hashp->sshift;
1429 	segment_ndx = MOD(curBucket, ssize);
1430 
1431 	segp = hashp->dir[segment_num];
1432 
1433 	/*
1434 	 * Pick up the first item in this bucket's chain.  If chain is not empty
1435 	 * we can begin searching it.  Otherwise we have to advance to find the
1436 	 * next nonempty bucket.  We try to optimize that case since searching a
1437 	 * near-empty hashtable has to iterate this loop a lot.
1438 	 */
1439 	while ((curElem = segp[segment_ndx]) == NULL)
1440 	{
1441 		/* empty bucket, advance to next */
1442 		if (++curBucket > max_bucket)
1443 		{
1444 			status->curBucket = curBucket;
1445 			hash_seq_term(status);
1446 			return NULL;		/* search is done */
1447 		}
1448 		if (++segment_ndx >= ssize)
1449 		{
1450 			segment_num++;
1451 			segment_ndx = 0;
1452 			segp = hashp->dir[segment_num];
1453 		}
1454 	}
1455 
1456 	/* Begin scan of curBucket... */
1457 	status->curEntry = curElem->link;
1458 	if (status->curEntry == NULL)	/* end of this bucket */
1459 		++curBucket;
1460 	status->curBucket = curBucket;
1461 	return (void *) ELEMENTKEY(curElem);
1462 }
1463 
1464 void
hash_seq_term(HASH_SEQ_STATUS * status)1465 hash_seq_term(HASH_SEQ_STATUS *status)
1466 {
1467 	if (!status->hashp->frozen)
1468 		deregister_seq_scan(status->hashp);
1469 }
1470 
1471 /*
1472  * hash_freeze
1473  *			Freeze a hashtable against future insertions (deletions are
1474  *			still allowed)
1475  *
1476  * The reason for doing this is that by preventing any more bucket splits,
1477  * we no longer need to worry about registering hash_seq_search scans,
1478  * and thus caller need not be careful about ensuring hash_seq_term gets
1479  * called at the right times.
1480  *
1481  * Multiple calls to hash_freeze() are allowed, but you can't freeze a table
1482  * with active scans (since hash_seq_term would then do the wrong thing).
1483  */
1484 void
hash_freeze(HTAB * hashp)1485 hash_freeze(HTAB *hashp)
1486 {
1487 	if (hashp->isshared)
1488 		elog(ERROR, "cannot freeze shared hashtable \"%s\"", hashp->tabname);
1489 	if (!hashp->frozen && has_seq_scans(hashp))
1490 		elog(ERROR, "cannot freeze hashtable \"%s\" because it has active scans",
1491 			 hashp->tabname);
1492 	hashp->frozen = true;
1493 }
1494 
1495 
1496 /********************************* UTILITIES ************************/
1497 
1498 /*
1499  * Expand the table by adding one more hash bucket.
1500  */
1501 static bool
expand_table(HTAB * hashp)1502 expand_table(HTAB *hashp)
1503 {
1504 	HASHHDR    *hctl = hashp->hctl;
1505 	HASHSEGMENT old_seg,
1506 				new_seg;
1507 	long		old_bucket,
1508 				new_bucket;
1509 	long		new_segnum,
1510 				new_segndx;
1511 	long		old_segnum,
1512 				old_segndx;
1513 	HASHBUCKET *oldlink,
1514 			   *newlink;
1515 	HASHBUCKET	currElement,
1516 				nextElement;
1517 
1518 	Assert(!IS_PARTITIONED(hctl));
1519 
1520 #ifdef HASH_STATISTICS
1521 	hash_expansions++;
1522 #endif
1523 
1524 	new_bucket = hctl->max_bucket + 1;
1525 	new_segnum = new_bucket >> hashp->sshift;
1526 	new_segndx = MOD(new_bucket, hashp->ssize);
1527 
1528 	if (new_segnum >= hctl->nsegs)
1529 	{
1530 		/* Allocate new segment if necessary -- could fail if dir full */
1531 		if (new_segnum >= hctl->dsize)
1532 			if (!dir_realloc(hashp))
1533 				return false;
1534 		if (!(hashp->dir[new_segnum] = seg_alloc(hashp)))
1535 			return false;
1536 		hctl->nsegs++;
1537 	}
1538 
1539 	/* OK, we created a new bucket */
1540 	hctl->max_bucket++;
1541 
1542 	/*
1543 	 * *Before* changing masks, find old bucket corresponding to same hash
1544 	 * values; values in that bucket may need to be relocated to new bucket.
1545 	 * Note that new_bucket is certainly larger than low_mask at this point,
1546 	 * so we can skip the first step of the regular hash mask calc.
1547 	 */
1548 	old_bucket = (new_bucket & hctl->low_mask);
1549 
1550 	/*
1551 	 * If we crossed a power of 2, readjust masks.
1552 	 */
1553 	if ((uint32) new_bucket > hctl->high_mask)
1554 	{
1555 		hctl->low_mask = hctl->high_mask;
1556 		hctl->high_mask = (uint32) new_bucket | hctl->low_mask;
1557 	}
1558 
1559 	/*
1560 	 * Relocate records to the new bucket.  NOTE: because of the way the hash
1561 	 * masking is done in calc_bucket, only one old bucket can need to be
1562 	 * split at this point.  With a different way of reducing the hash value,
1563 	 * that might not be true!
1564 	 */
1565 	old_segnum = old_bucket >> hashp->sshift;
1566 	old_segndx = MOD(old_bucket, hashp->ssize);
1567 
1568 	old_seg = hashp->dir[old_segnum];
1569 	new_seg = hashp->dir[new_segnum];
1570 
1571 	oldlink = &old_seg[old_segndx];
1572 	newlink = &new_seg[new_segndx];
1573 
1574 	for (currElement = *oldlink;
1575 		 currElement != NULL;
1576 		 currElement = nextElement)
1577 	{
1578 		nextElement = currElement->link;
1579 		if ((long) calc_bucket(hctl, currElement->hashvalue) == old_bucket)
1580 		{
1581 			*oldlink = currElement;
1582 			oldlink = &currElement->link;
1583 		}
1584 		else
1585 		{
1586 			*newlink = currElement;
1587 			newlink = &currElement->link;
1588 		}
1589 	}
1590 	/* don't forget to terminate the rebuilt hash chains... */
1591 	*oldlink = NULL;
1592 	*newlink = NULL;
1593 
1594 	return true;
1595 }
1596 
1597 
1598 static bool
dir_realloc(HTAB * hashp)1599 dir_realloc(HTAB *hashp)
1600 {
1601 	HASHSEGMENT *p;
1602 	HASHSEGMENT *old_p;
1603 	long		new_dsize;
1604 	long		old_dirsize;
1605 	long		new_dirsize;
1606 
1607 	if (hashp->hctl->max_dsize != NO_MAX_DSIZE)
1608 		return false;
1609 
1610 	/* Reallocate directory */
1611 	new_dsize = hashp->hctl->dsize << 1;
1612 	old_dirsize = hashp->hctl->dsize * sizeof(HASHSEGMENT);
1613 	new_dirsize = new_dsize * sizeof(HASHSEGMENT);
1614 
1615 	old_p = hashp->dir;
1616 	CurrentDynaHashCxt = hashp->hcxt;
1617 	p = (HASHSEGMENT *) hashp->alloc((Size) new_dirsize);
1618 
1619 	if (p != NULL)
1620 	{
1621 		memcpy(p, old_p, old_dirsize);
1622 		MemSet(((char *) p) + old_dirsize, 0, new_dirsize - old_dirsize);
1623 		hashp->dir = p;
1624 		hashp->hctl->dsize = new_dsize;
1625 
1626 		/* XXX assume the allocator is palloc, so we know how to free */
1627 		Assert(hashp->alloc == DynaHashAlloc);
1628 		pfree(old_p);
1629 
1630 		return true;
1631 	}
1632 
1633 	return false;
1634 }
1635 
1636 
1637 static HASHSEGMENT
seg_alloc(HTAB * hashp)1638 seg_alloc(HTAB *hashp)
1639 {
1640 	HASHSEGMENT segp;
1641 
1642 	CurrentDynaHashCxt = hashp->hcxt;
1643 	segp = (HASHSEGMENT) hashp->alloc(sizeof(HASHBUCKET) * hashp->ssize);
1644 
1645 	if (!segp)
1646 		return NULL;
1647 
1648 	MemSet(segp, 0, sizeof(HASHBUCKET) * hashp->ssize);
1649 
1650 	return segp;
1651 }
1652 
1653 /*
1654  * allocate some new elements and link them into the indicated free list
1655  */
1656 static bool
element_alloc(HTAB * hashp,int nelem,int freelist_idx)1657 element_alloc(HTAB *hashp, int nelem, int freelist_idx)
1658 {
1659 	HASHHDR    *hctl = hashp->hctl;
1660 	Size		elementSize;
1661 	HASHELEMENT *firstElement;
1662 	HASHELEMENT *tmpElement;
1663 	HASHELEMENT *prevElement;
1664 	int			i;
1665 
1666 	if (hashp->isfixed)
1667 		return false;
1668 
1669 	/* Each element has a HASHELEMENT header plus user data. */
1670 	elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(hctl->entrysize);
1671 
1672 	CurrentDynaHashCxt = hashp->hcxt;
1673 	firstElement = (HASHELEMENT *) hashp->alloc(nelem * elementSize);
1674 
1675 	if (!firstElement)
1676 		return false;
1677 
1678 	/* prepare to link all the new entries into the freelist */
1679 	prevElement = NULL;
1680 	tmpElement = firstElement;
1681 	for (i = 0; i < nelem; i++)
1682 	{
1683 		tmpElement->link = prevElement;
1684 		prevElement = tmpElement;
1685 		tmpElement = (HASHELEMENT *) (((char *) tmpElement) + elementSize);
1686 	}
1687 
1688 	/* if partitioned, must lock to touch freeList */
1689 	if (IS_PARTITIONED(hctl))
1690 		SpinLockAcquire(&hctl->freeList[freelist_idx].mutex);
1691 
1692 	/* freelist could be nonempty if two backends did this concurrently */
1693 	firstElement->link = hctl->freeList[freelist_idx].freeList;
1694 	hctl->freeList[freelist_idx].freeList = prevElement;
1695 
1696 	if (IS_PARTITIONED(hctl))
1697 		SpinLockRelease(&hctl->freeList[freelist_idx].mutex);
1698 
1699 	return true;
1700 }
1701 
1702 /* complain when we have detected a corrupted hashtable */
1703 static void
hash_corrupted(HTAB * hashp)1704 hash_corrupted(HTAB *hashp)
1705 {
1706 	/*
1707 	 * If the corruption is in a shared hashtable, we'd better force a
1708 	 * systemwide restart.  Otherwise, just shut down this one backend.
1709 	 */
1710 	if (hashp->isshared)
1711 		elog(PANIC, "hash table \"%s\" corrupted", hashp->tabname);
1712 	else
1713 		elog(FATAL, "hash table \"%s\" corrupted", hashp->tabname);
1714 }
1715 
1716 /* calculate ceil(log base 2) of num */
1717 int
my_log2(long num)1718 my_log2(long num)
1719 {
1720 	int			i;
1721 	long		limit;
1722 
1723 	/* guard against too-large input, which would put us into infinite loop */
1724 	if (num > LONG_MAX / 2)
1725 		num = LONG_MAX / 2;
1726 
1727 	for (i = 0, limit = 1; limit < num; i++, limit <<= 1)
1728 		;
1729 	return i;
1730 }
1731 
1732 /* calculate first power of 2 >= num, bounded to what will fit in a long */
1733 static long
next_pow2_long(long num)1734 next_pow2_long(long num)
1735 {
1736 	/* my_log2's internal range check is sufficient */
1737 	return 1L << my_log2(num);
1738 }
1739 
1740 /* calculate first power of 2 >= num, bounded to what will fit in an int */
1741 static int
next_pow2_int(long num)1742 next_pow2_int(long num)
1743 {
1744 	if (num > INT_MAX / 2)
1745 		num = INT_MAX / 2;
1746 	return 1 << my_log2(num);
1747 }
1748 
1749 
1750 /************************* SEQ SCAN TRACKING ************************/
1751 
1752 /*
1753  * We track active hash_seq_search scans here.  The need for this mechanism
1754  * comes from the fact that a scan will get confused if a bucket split occurs
1755  * while it's in progress: it might visit entries twice, or even miss some
1756  * entirely (if it's partway through the same bucket that splits).  Hence
1757  * we want to inhibit bucket splits if there are any active scans on the
1758  * table being inserted into.  This is a fairly rare case in current usage,
1759  * so just postponing the split until the next insertion seems sufficient.
1760  *
1761  * Given present usages of the function, only a few scans are likely to be
1762  * open concurrently; so a finite-size stack of open scans seems sufficient,
1763  * and we don't worry that linear search is too slow.  Note that we do
1764  * allow multiple scans of the same hashtable to be open concurrently.
1765  *
1766  * This mechanism can support concurrent scan and insertion in a shared
1767  * hashtable if it's the same backend doing both.  It would fail otherwise,
1768  * but locking reasons seem to preclude any such scenario anyway, so we don't
1769  * worry.
1770  *
1771  * This arrangement is reasonably robust if a transient hashtable is deleted
1772  * without notifying us.  The absolute worst case is we might inhibit splits
1773  * in another table created later at exactly the same address.  We will give
1774  * a warning at transaction end for reference leaks, so any bugs leading to
1775  * lack of notification should be easy to catch.
1776  */
1777 
1778 #define MAX_SEQ_SCANS 100
1779 
1780 static HTAB *seq_scan_tables[MAX_SEQ_SCANS];	/* tables being scanned */
1781 static int	seq_scan_level[MAX_SEQ_SCANS];	/* subtransaction nest level */
1782 static int	num_seq_scans = 0;
1783 
1784 
1785 /* Register a table as having an active hash_seq_search scan */
1786 static void
register_seq_scan(HTAB * hashp)1787 register_seq_scan(HTAB *hashp)
1788 {
1789 	if (num_seq_scans >= MAX_SEQ_SCANS)
1790 		elog(ERROR, "too many active hash_seq_search scans, cannot start one on \"%s\"",
1791 			 hashp->tabname);
1792 	seq_scan_tables[num_seq_scans] = hashp;
1793 	seq_scan_level[num_seq_scans] = GetCurrentTransactionNestLevel();
1794 	num_seq_scans++;
1795 }
1796 
1797 /* Deregister an active scan */
1798 static void
deregister_seq_scan(HTAB * hashp)1799 deregister_seq_scan(HTAB *hashp)
1800 {
1801 	int			i;
1802 
1803 	/* Search backward since it's most likely at the stack top */
1804 	for (i = num_seq_scans - 1; i >= 0; i--)
1805 	{
1806 		if (seq_scan_tables[i] == hashp)
1807 		{
1808 			seq_scan_tables[i] = seq_scan_tables[num_seq_scans - 1];
1809 			seq_scan_level[i] = seq_scan_level[num_seq_scans - 1];
1810 			num_seq_scans--;
1811 			return;
1812 		}
1813 	}
1814 	elog(ERROR, "no hash_seq_search scan for hash table \"%s\"",
1815 		 hashp->tabname);
1816 }
1817 
1818 /* Check if a table has any active scan */
1819 static bool
has_seq_scans(HTAB * hashp)1820 has_seq_scans(HTAB *hashp)
1821 {
1822 	int			i;
1823 
1824 	for (i = 0; i < num_seq_scans; i++)
1825 	{
1826 		if (seq_scan_tables[i] == hashp)
1827 			return true;
1828 	}
1829 	return false;
1830 }
1831 
1832 /* Clean up any open scans at end of transaction */
1833 void
AtEOXact_HashTables(bool isCommit)1834 AtEOXact_HashTables(bool isCommit)
1835 {
1836 	/*
1837 	 * During abort cleanup, open scans are expected; just silently clean 'em
1838 	 * out.  An open scan at commit means someone forgot a hash_seq_term()
1839 	 * call, so complain.
1840 	 *
1841 	 * Note: it's tempting to try to print the tabname here, but refrain for
1842 	 * fear of touching deallocated memory.  This isn't a user-facing message
1843 	 * anyway, so it needn't be pretty.
1844 	 */
1845 	if (isCommit)
1846 	{
1847 		int			i;
1848 
1849 		for (i = 0; i < num_seq_scans; i++)
1850 		{
1851 			elog(WARNING, "leaked hash_seq_search scan for hash table %p",
1852 				 seq_scan_tables[i]);
1853 		}
1854 	}
1855 	num_seq_scans = 0;
1856 }
1857 
1858 /* Clean up any open scans at end of subtransaction */
1859 void
AtEOSubXact_HashTables(bool isCommit,int nestDepth)1860 AtEOSubXact_HashTables(bool isCommit, int nestDepth)
1861 {
1862 	int			i;
1863 
1864 	/*
1865 	 * Search backward to make cleanup easy.  Note we must check all entries,
1866 	 * not only those at the end of the array, because deletion technique
1867 	 * doesn't keep them in order.
1868 	 */
1869 	for (i = num_seq_scans - 1; i >= 0; i--)
1870 	{
1871 		if (seq_scan_level[i] >= nestDepth)
1872 		{
1873 			if (isCommit)
1874 				elog(WARNING, "leaked hash_seq_search scan for hash table %p",
1875 					 seq_scan_tables[i]);
1876 			seq_scan_tables[i] = seq_scan_tables[num_seq_scans - 1];
1877 			seq_scan_level[i] = seq_scan_level[num_seq_scans - 1];
1878 			num_seq_scans--;
1879 		}
1880 	}
1881 }
1882