1 /*-------------------------------------------------------------------------
2  *
3  * postgres.h
4  *	  Primary include file for PostgreSQL server .c files
5  *
6  * This should be the first file included by PostgreSQL backend modules.
7  * Client-side code should include postgres_fe.h instead.
8  *
9  *
10  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1995, Regents of the University of California
12  *
13  * src/include/postgres.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 /*
18  *----------------------------------------------------------------
19  *	 TABLE OF CONTENTS
20  *
21  *		When adding stuff to this file, please try to put stuff
22  *		into the relevant section, or add new sections as appropriate.
23  *
24  *	  section	description
25  *	  -------	------------------------------------------------
26  *		1)		variable-length datatypes (TOAST support)
27  *		2)		Datum type + support macros
28  *
29  *	 NOTES
30  *
31  *	In general, this file should contain declarations that are widely needed
32  *	in the backend environment, but are of no interest outside the backend.
33  *
34  *	Simple type definitions live in c.h, where they are shared with
35  *	postgres_fe.h.  We do that since those type definitions are needed by
36  *	frontend modules that want to deal with binary data transmission to or
37  *	from the backend.  Type definitions in this file should be for
38  *	representations that never escape the backend, such as Datum or
39  *	TOASTed varlena objects.
40  *
41  *----------------------------------------------------------------
42  */
43 #ifndef POSTGRES_H
44 #define POSTGRES_H
45 
46 #include "c.h"
47 #include "utils/elog.h"
48 #include "utils/palloc.h"
49 
50 /* ----------------------------------------------------------------
51  *				Section 1:	variable-length datatypes (TOAST support)
52  * ----------------------------------------------------------------
53  */
54 
55 /*
56  * struct varatt_external is a traditional "TOAST pointer", that is, the
57  * information needed to fetch a Datum stored out-of-line in a TOAST table.
58  * The data is compressed if and only if va_extsize < va_rawsize - VARHDRSZ.
59  * This struct must not contain any padding, because we sometimes compare
60  * these pointers using memcmp.
61  *
62  * Note that this information is stored unaligned within actual tuples, so
63  * you need to memcpy from the tuple into a local struct variable before
64  * you can look at these fields!  (The reason we use memcmp is to avoid
65  * having to do that just to detect equality of two TOAST pointers...)
66  */
67 typedef struct varatt_external
68 {
69 	int32		va_rawsize;		/* Original data size (includes header) */
70 	int32		va_extsize;		/* External saved size (doesn't) */
71 	Oid			va_valueid;		/* Unique ID of value within TOAST table */
72 	Oid			va_toastrelid;	/* RelID of TOAST table containing it */
73 }			varatt_external;
74 
75 /*
76  * struct varatt_indirect is a "TOAST pointer" representing an out-of-line
77  * Datum that's stored in memory, not in an external toast relation.
78  * The creator of such a Datum is entirely responsible that the referenced
79  * storage survives for as long as referencing pointer Datums can exist.
80  *
81  * Note that just as for struct varatt_external, this struct is stored
82  * unaligned within any containing tuple.
83  */
84 typedef struct varatt_indirect
85 {
86 	struct varlena *pointer;	/* Pointer to in-memory varlena */
87 }			varatt_indirect;
88 
89 /*
90  * struct varatt_expanded is a "TOAST pointer" representing an out-of-line
91  * Datum that is stored in memory, in some type-specific, not necessarily
92  * physically contiguous format that is convenient for computation not
93  * storage.  APIs for this, in particular the definition of struct
94  * ExpandedObjectHeader, are in src/include/utils/expandeddatum.h.
95  *
96  * Note that just as for struct varatt_external, this struct is stored
97  * unaligned within any containing tuple.
98  */
99 typedef struct ExpandedObjectHeader ExpandedObjectHeader;
100 
101 typedef struct varatt_expanded
102 {
103 	ExpandedObjectHeader *eohptr;
104 } varatt_expanded;
105 
106 /*
107  * Type tag for the various sorts of "TOAST pointer" datums.  The peculiar
108  * value for VARTAG_ONDISK comes from a requirement for on-disk compatibility
109  * with a previous notion that the tag field was the pointer datum's length.
110  */
111 typedef enum vartag_external
112 {
113 	VARTAG_INDIRECT = 1,
114 	VARTAG_EXPANDED_RO = 2,
115 	VARTAG_EXPANDED_RW = 3,
116 	VARTAG_ONDISK = 18
117 } vartag_external;
118 
119 /* this test relies on the specific tag values above */
120 #define VARTAG_IS_EXPANDED(tag) \
121 	(((tag) & ~1) == VARTAG_EXPANDED_RO)
122 
123 #define VARTAG_SIZE(tag) \
124 	((tag) == VARTAG_INDIRECT ? sizeof(varatt_indirect) : \
125 	 VARTAG_IS_EXPANDED(tag) ? sizeof(varatt_expanded) : \
126 	 (tag) == VARTAG_ONDISK ? sizeof(varatt_external) : \
127 	 TrapMacro(true, "unrecognized TOAST vartag"))
128 
129 /*
130  * These structs describe the header of a varlena object that may have been
131  * TOASTed.  Generally, don't reference these structs directly, but use the
132  * macros below.
133  *
134  * We use separate structs for the aligned and unaligned cases because the
135  * compiler might otherwise think it could generate code that assumes
136  * alignment while touching fields of a 1-byte-header varlena.
137  */
138 typedef union
139 {
140 	struct						/* Normal varlena (4-byte length) */
141 	{
142 		uint32		va_header;
143 		char		va_data[FLEXIBLE_ARRAY_MEMBER];
144 	}			va_4byte;
145 	struct						/* Compressed-in-line format */
146 	{
147 		uint32		va_header;
148 		uint32		va_rawsize; /* Original data size (excludes header) */
149 		char		va_data[FLEXIBLE_ARRAY_MEMBER]; /* Compressed data */
150 	}			va_compressed;
151 } varattrib_4b;
152 
153 typedef struct
154 {
155 	uint8		va_header;
156 	char		va_data[FLEXIBLE_ARRAY_MEMBER]; /* Data begins here */
157 } varattrib_1b;
158 
159 /* TOAST pointers are a subset of varattrib_1b with an identifying tag byte */
160 typedef struct
161 {
162 	uint8		va_header;		/* Always 0x80 or 0x01 */
163 	uint8		va_tag;			/* Type of datum */
164 	char		va_data[FLEXIBLE_ARRAY_MEMBER]; /* Type-specific data */
165 } varattrib_1b_e;
166 
167 /*
168  * Bit layouts for varlena headers on big-endian machines:
169  *
170  * 00xxxxxx 4-byte length word, aligned, uncompressed data (up to 1G)
171  * 01xxxxxx 4-byte length word, aligned, *compressed* data (up to 1G)
172  * 10000000 1-byte length word, unaligned, TOAST pointer
173  * 1xxxxxxx 1-byte length word, unaligned, uncompressed data (up to 126b)
174  *
175  * Bit layouts for varlena headers on little-endian machines:
176  *
177  * xxxxxx00 4-byte length word, aligned, uncompressed data (up to 1G)
178  * xxxxxx10 4-byte length word, aligned, *compressed* data (up to 1G)
179  * 00000001 1-byte length word, unaligned, TOAST pointer
180  * xxxxxxx1 1-byte length word, unaligned, uncompressed data (up to 126b)
181  *
182  * The "xxx" bits are the length field (which includes itself in all cases).
183  * In the big-endian case we mask to extract the length, in the little-endian
184  * case we shift.  Note that in both cases the flag bits are in the physically
185  * first byte.  Also, it is not possible for a 1-byte length word to be zero;
186  * this lets us disambiguate alignment padding bytes from the start of an
187  * unaligned datum.  (We now *require* pad bytes to be filled with zero!)
188  *
189  * In TOAST pointers the va_tag field (see varattrib_1b_e) is used to discern
190  * the specific type and length of the pointer datum.
191  */
192 
193 /*
194  * Endian-dependent macros.  These are considered internal --- use the
195  * external macros below instead of using these directly.
196  *
197  * Note: IS_1B is true for external toast records but VARSIZE_1B will return 0
198  * for such records. Hence you should usually check for IS_EXTERNAL before
199  * checking for IS_1B.
200  */
201 
202 #ifdef WORDS_BIGENDIAN
203 
204 #define VARATT_IS_4B(PTR) \
205 	((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x00)
206 #define VARATT_IS_4B_U(PTR) \
207 	((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x00)
208 #define VARATT_IS_4B_C(PTR) \
209 	((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x40)
210 #define VARATT_IS_1B(PTR) \
211 	((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x80)
212 #define VARATT_IS_1B_E(PTR) \
213 	((((varattrib_1b *) (PTR))->va_header) == 0x80)
214 #define VARATT_NOT_PAD_BYTE(PTR) \
215 	(*((uint8 *) (PTR)) != 0)
216 
217 /* VARSIZE_4B() should only be used on known-aligned data */
218 #define VARSIZE_4B(PTR) \
219 	(((varattrib_4b *) (PTR))->va_4byte.va_header & 0x3FFFFFFF)
220 #define VARSIZE_1B(PTR) \
221 	(((varattrib_1b *) (PTR))->va_header & 0x7F)
222 #define VARTAG_1B_E(PTR) \
223 	(((varattrib_1b_e *) (PTR))->va_tag)
224 
225 #define SET_VARSIZE_4B(PTR,len) \
226 	(((varattrib_4b *) (PTR))->va_4byte.va_header = (len) & 0x3FFFFFFF)
227 #define SET_VARSIZE_4B_C(PTR,len) \
228 	(((varattrib_4b *) (PTR))->va_4byte.va_header = ((len) & 0x3FFFFFFF) | 0x40000000)
229 #define SET_VARSIZE_1B(PTR,len) \
230 	(((varattrib_1b *) (PTR))->va_header = (len) | 0x80)
231 #define SET_VARTAG_1B_E(PTR,tag) \
232 	(((varattrib_1b_e *) (PTR))->va_header = 0x80, \
233 	 ((varattrib_1b_e *) (PTR))->va_tag = (tag))
234 #else							/* !WORDS_BIGENDIAN */
235 
236 #define VARATT_IS_4B(PTR) \
237 	((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x00)
238 #define VARATT_IS_4B_U(PTR) \
239 	((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x00)
240 #define VARATT_IS_4B_C(PTR) \
241 	((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x02)
242 #define VARATT_IS_1B(PTR) \
243 	((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x01)
244 #define VARATT_IS_1B_E(PTR) \
245 	((((varattrib_1b *) (PTR))->va_header) == 0x01)
246 #define VARATT_NOT_PAD_BYTE(PTR) \
247 	(*((uint8 *) (PTR)) != 0)
248 
249 /* VARSIZE_4B() should only be used on known-aligned data */
250 #define VARSIZE_4B(PTR) \
251 	((((varattrib_4b *) (PTR))->va_4byte.va_header >> 2) & 0x3FFFFFFF)
252 #define VARSIZE_1B(PTR) \
253 	((((varattrib_1b *) (PTR))->va_header >> 1) & 0x7F)
254 #define VARTAG_1B_E(PTR) \
255 	(((varattrib_1b_e *) (PTR))->va_tag)
256 
257 #define SET_VARSIZE_4B(PTR,len) \
258 	(((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2))
259 #define SET_VARSIZE_4B_C(PTR,len) \
260 	(((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2) | 0x02)
261 #define SET_VARSIZE_1B(PTR,len) \
262 	(((varattrib_1b *) (PTR))->va_header = (((uint8) (len)) << 1) | 0x01)
263 #define SET_VARTAG_1B_E(PTR,tag) \
264 	(((varattrib_1b_e *) (PTR))->va_header = 0x01, \
265 	 ((varattrib_1b_e *) (PTR))->va_tag = (tag))
266 #endif							/* WORDS_BIGENDIAN */
267 
268 #define VARHDRSZ_SHORT			offsetof(varattrib_1b, va_data)
269 #define VARATT_SHORT_MAX		0x7F
270 #define VARATT_CAN_MAKE_SHORT(PTR) \
271 	(VARATT_IS_4B_U(PTR) && \
272 	 (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT) <= VARATT_SHORT_MAX)
273 #define VARATT_CONVERTED_SHORT_SIZE(PTR) \
274 	(VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT)
275 
276 #define VARHDRSZ_EXTERNAL		offsetof(varattrib_1b_e, va_data)
277 
278 #define VARDATA_4B(PTR)		(((varattrib_4b *) (PTR))->va_4byte.va_data)
279 #define VARDATA_4B_C(PTR)	(((varattrib_4b *) (PTR))->va_compressed.va_data)
280 #define VARDATA_1B(PTR)		(((varattrib_1b *) (PTR))->va_data)
281 #define VARDATA_1B_E(PTR)	(((varattrib_1b_e *) (PTR))->va_data)
282 
283 #define VARRAWSIZE_4B_C(PTR) \
284 	(((varattrib_4b *) (PTR))->va_compressed.va_rawsize)
285 
286 /* Externally visible macros */
287 
288 /*
289  * In consumers oblivious to data alignment, call PG_DETOAST_DATUM_PACKED(),
290  * VARDATA_ANY(), VARSIZE_ANY() and VARSIZE_ANY_EXHDR().  Elsewhere, call
291  * PG_DETOAST_DATUM(), VARDATA() and VARSIZE().  Directly fetching an int16,
292  * int32 or wider field in the struct representing the datum layout requires
293  * aligned data.  memcpy() is alignment-oblivious, as are most operations on
294  * datatypes, such as text, whose layout struct contains only char fields.
295  *
296  * Code assembling a new datum should call VARDATA() and SET_VARSIZE().
297  * (Datums begin life untoasted.)
298  *
299  * Other macros here should usually be used only by tuple assembly/disassembly
300  * code and code that specifically wants to work with still-toasted Datums.
301  */
302 #define VARDATA(PTR)						VARDATA_4B(PTR)
303 #define VARSIZE(PTR)						VARSIZE_4B(PTR)
304 
305 #define VARSIZE_SHORT(PTR)					VARSIZE_1B(PTR)
306 #define VARDATA_SHORT(PTR)					VARDATA_1B(PTR)
307 
308 #define VARTAG_EXTERNAL(PTR)				VARTAG_1B_E(PTR)
309 #define VARSIZE_EXTERNAL(PTR)				(VARHDRSZ_EXTERNAL + VARTAG_SIZE(VARTAG_EXTERNAL(PTR)))
310 #define VARDATA_EXTERNAL(PTR)				VARDATA_1B_E(PTR)
311 
312 #define VARATT_IS_COMPRESSED(PTR)			VARATT_IS_4B_C(PTR)
313 #define VARATT_IS_EXTERNAL(PTR)				VARATT_IS_1B_E(PTR)
314 #define VARATT_IS_EXTERNAL_ONDISK(PTR) \
315 	(VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_ONDISK)
316 #define VARATT_IS_EXTERNAL_INDIRECT(PTR) \
317 	(VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_INDIRECT)
318 #define VARATT_IS_EXTERNAL_EXPANDED_RO(PTR) \
319 	(VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_EXPANDED_RO)
320 #define VARATT_IS_EXTERNAL_EXPANDED_RW(PTR) \
321 	(VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_EXPANDED_RW)
322 #define VARATT_IS_EXTERNAL_EXPANDED(PTR) \
323 	(VARATT_IS_EXTERNAL(PTR) && VARTAG_IS_EXPANDED(VARTAG_EXTERNAL(PTR)))
324 #define VARATT_IS_EXTERNAL_NON_EXPANDED(PTR) \
325 	(VARATT_IS_EXTERNAL(PTR) && !VARTAG_IS_EXPANDED(VARTAG_EXTERNAL(PTR)))
326 #define VARATT_IS_SHORT(PTR)				VARATT_IS_1B(PTR)
327 #define VARATT_IS_EXTENDED(PTR)				(!VARATT_IS_4B_U(PTR))
328 
329 #define SET_VARSIZE(PTR, len)				SET_VARSIZE_4B(PTR, len)
330 #define SET_VARSIZE_SHORT(PTR, len)			SET_VARSIZE_1B(PTR, len)
331 #define SET_VARSIZE_COMPRESSED(PTR, len)	SET_VARSIZE_4B_C(PTR, len)
332 
333 #define SET_VARTAG_EXTERNAL(PTR, tag)		SET_VARTAG_1B_E(PTR, tag)
334 
335 #define VARSIZE_ANY(PTR) \
336 	(VARATT_IS_1B_E(PTR) ? VARSIZE_EXTERNAL(PTR) : \
337 	 (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR) : \
338 	  VARSIZE_4B(PTR)))
339 
340 /* Size of a varlena data, excluding header */
341 #define VARSIZE_ANY_EXHDR(PTR) \
342 	(VARATT_IS_1B_E(PTR) ? VARSIZE_EXTERNAL(PTR)-VARHDRSZ_EXTERNAL : \
343 	 (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR)-VARHDRSZ_SHORT : \
344 	  VARSIZE_4B(PTR)-VARHDRSZ))
345 
346 /* caution: this will not work on an external or compressed-in-line Datum */
347 /* caution: this will return a possibly unaligned pointer */
348 #define VARDATA_ANY(PTR) \
349 	 (VARATT_IS_1B(PTR) ? VARDATA_1B(PTR) : VARDATA_4B(PTR))
350 
351 
352 /* ----------------------------------------------------------------
353  *				Section 2:	Datum type + support macros
354  * ----------------------------------------------------------------
355  */
356 
357 /*
358  * A Datum contains either a value of a pass-by-value type or a pointer to a
359  * value of a pass-by-reference type.  Therefore, we require:
360  *
361  * sizeof(Datum) == sizeof(void *) == 4 or 8
362  *
363  * The macros below and the analogous macros for other types should be used to
364  * convert between a Datum and the appropriate C type.
365  */
366 
367 typedef uintptr_t Datum;
368 
369 #define SIZEOF_DATUM SIZEOF_VOID_P
370 
371 /*
372  * DatumGetBool
373  *		Returns boolean value of a datum.
374  *
375  * Note: any nonzero value will be considered true.
376  */
377 
378 #define DatumGetBool(X) ((bool) ((X) != 0))
379 
380 /*
381  * BoolGetDatum
382  *		Returns datum representation for a boolean.
383  *
384  * Note: any nonzero value will be considered true.
385  */
386 
387 #define BoolGetDatum(X) ((Datum) ((X) ? 1 : 0))
388 
389 /*
390  * DatumGetChar
391  *		Returns character value of a datum.
392  */
393 
394 #define DatumGetChar(X) ((char) (X))
395 
396 /*
397  * CharGetDatum
398  *		Returns datum representation for a character.
399  */
400 
401 #define CharGetDatum(X) ((Datum) (X))
402 
403 /*
404  * Int8GetDatum
405  *		Returns datum representation for an 8-bit integer.
406  */
407 
408 #define Int8GetDatum(X) ((Datum) (X))
409 
410 /*
411  * DatumGetUInt8
412  *		Returns 8-bit unsigned integer value of a datum.
413  */
414 
415 #define DatumGetUInt8(X) ((uint8) (X))
416 
417 /*
418  * UInt8GetDatum
419  *		Returns datum representation for an 8-bit unsigned integer.
420  */
421 
422 #define UInt8GetDatum(X) ((Datum) (X))
423 
424 /*
425  * DatumGetInt16
426  *		Returns 16-bit integer value of a datum.
427  */
428 
429 #define DatumGetInt16(X) ((int16) (X))
430 
431 /*
432  * Int16GetDatum
433  *		Returns datum representation for a 16-bit integer.
434  */
435 
436 #define Int16GetDatum(X) ((Datum) (X))
437 
438 /*
439  * DatumGetUInt16
440  *		Returns 16-bit unsigned integer value of a datum.
441  */
442 
443 #define DatumGetUInt16(X) ((uint16) (X))
444 
445 /*
446  * UInt16GetDatum
447  *		Returns datum representation for a 16-bit unsigned integer.
448  */
449 
450 #define UInt16GetDatum(X) ((Datum) (X))
451 
452 /*
453  * DatumGetInt32
454  *		Returns 32-bit integer value of a datum.
455  */
456 
457 #define DatumGetInt32(X) ((int32) (X))
458 
459 /*
460  * Int32GetDatum
461  *		Returns datum representation for a 32-bit integer.
462  */
463 
464 #define Int32GetDatum(X) ((Datum) (X))
465 
466 /*
467  * DatumGetUInt32
468  *		Returns 32-bit unsigned integer value of a datum.
469  */
470 
471 #define DatumGetUInt32(X) ((uint32) (X))
472 
473 /*
474  * UInt32GetDatum
475  *		Returns datum representation for a 32-bit unsigned integer.
476  */
477 
478 #define UInt32GetDatum(X) ((Datum) (X))
479 
480 /*
481  * DatumGetObjectId
482  *		Returns object identifier value of a datum.
483  */
484 
485 #define DatumGetObjectId(X) ((Oid) (X))
486 
487 /*
488  * ObjectIdGetDatum
489  *		Returns datum representation for an object identifier.
490  */
491 
492 #define ObjectIdGetDatum(X) ((Datum) (X))
493 
494 /*
495  * DatumGetTransactionId
496  *		Returns transaction identifier value of a datum.
497  */
498 
499 #define DatumGetTransactionId(X) ((TransactionId) (X))
500 
501 /*
502  * TransactionIdGetDatum
503  *		Returns datum representation for a transaction identifier.
504  */
505 
506 #define TransactionIdGetDatum(X) ((Datum) (X))
507 
508 /*
509  * MultiXactIdGetDatum
510  *		Returns datum representation for a multixact identifier.
511  */
512 
513 #define MultiXactIdGetDatum(X) ((Datum) (X))
514 
515 /*
516  * DatumGetCommandId
517  *		Returns command identifier value of a datum.
518  */
519 
520 #define DatumGetCommandId(X) ((CommandId) (X))
521 
522 /*
523  * CommandIdGetDatum
524  *		Returns datum representation for a command identifier.
525  */
526 
527 #define CommandIdGetDatum(X) ((Datum) (X))
528 
529 /*
530  * DatumGetPointer
531  *		Returns pointer value of a datum.
532  */
533 
534 #define DatumGetPointer(X) ((Pointer) (X))
535 
536 /*
537  * PointerGetDatum
538  *		Returns datum representation for a pointer.
539  */
540 
541 #define PointerGetDatum(X) ((Datum) (X))
542 
543 /*
544  * DatumGetCString
545  *		Returns C string (null-terminated string) value of a datum.
546  *
547  * Note: C string is not a full-fledged Postgres type at present,
548  * but type input functions use this conversion for their inputs.
549  */
550 
551 #define DatumGetCString(X) ((char *) DatumGetPointer(X))
552 
553 /*
554  * CStringGetDatum
555  *		Returns datum representation for a C string (null-terminated string).
556  *
557  * Note: C string is not a full-fledged Postgres type at present,
558  * but type output functions use this conversion for their outputs.
559  * Note: CString is pass-by-reference; caller must ensure the pointed-to
560  * value has adequate lifetime.
561  */
562 
563 #define CStringGetDatum(X) PointerGetDatum(X)
564 
565 /*
566  * DatumGetName
567  *		Returns name value of a datum.
568  */
569 
570 #define DatumGetName(X) ((Name) DatumGetPointer(X))
571 
572 /*
573  * NameGetDatum
574  *		Returns datum representation for a name.
575  *
576  * Note: Name is pass-by-reference; caller must ensure the pointed-to
577  * value has adequate lifetime.
578  */
579 
580 #define NameGetDatum(X) CStringGetDatum(NameStr(*(X)))
581 
582 /*
583  * DatumGetInt64
584  *		Returns 64-bit integer value of a datum.
585  *
586  * Note: this macro hides whether int64 is pass by value or by reference.
587  */
588 
589 #ifdef USE_FLOAT8_BYVAL
590 #define DatumGetInt64(X) ((int64) (X))
591 #else
592 #define DatumGetInt64(X) (* ((int64 *) DatumGetPointer(X)))
593 #endif
594 
595 /*
596  * Int64GetDatum
597  *		Returns datum representation for a 64-bit integer.
598  *
599  * Note: if int64 is pass by reference, this function returns a reference
600  * to palloc'd space.
601  */
602 
603 #ifdef USE_FLOAT8_BYVAL
604 #define Int64GetDatum(X) ((Datum) (X))
605 #else
606 extern Datum Int64GetDatum(int64 X);
607 #endif
608 
609 /*
610  * DatumGetUInt64
611  *		Returns 64-bit unsigned integer value of a datum.
612  *
613  * Note: this macro hides whether int64 is pass by value or by reference.
614  */
615 
616 #ifdef USE_FLOAT8_BYVAL
617 #define DatumGetUInt64(X) ((uint64) (X))
618 #else
619 #define DatumGetUInt64(X) (* ((uint64 *) DatumGetPointer(X)))
620 #endif
621 
622 /*
623  * UInt64GetDatum
624  *		Returns datum representation for a 64-bit unsigned integer.
625  *
626  * Note: if int64 is pass by reference, this function returns a reference
627  * to palloc'd space.
628  */
629 
630 #ifdef USE_FLOAT8_BYVAL
631 #define UInt64GetDatum(X) ((Datum) (X))
632 #else
633 #define UInt64GetDatum(X) Int64GetDatum((int64) (X))
634 #endif
635 
636 /*
637  * Float <-> Datum conversions
638  *
639  * These have to be implemented as inline functions rather than macros, when
640  * passing by value, because many machines pass int and float function
641  * parameters/results differently; so we need to play weird games with unions.
642  */
643 
644 /*
645  * DatumGetFloat4
646  *		Returns 4-byte floating point value of a datum.
647  *
648  * Note: this macro hides whether float4 is pass by value or by reference.
649  */
650 
651 #ifdef USE_FLOAT4_BYVAL
652 static inline float4
DatumGetFloat4(Datum X)653 DatumGetFloat4(Datum X)
654 {
655 	union
656 	{
657 		int32		value;
658 		float4		retval;
659 	}			myunion;
660 
661 	myunion.value = DatumGetInt32(X);
662 	return myunion.retval;
663 }
664 #else
665 #define DatumGetFloat4(X) (* ((float4 *) DatumGetPointer(X)))
666 #endif
667 
668 /*
669  * Float4GetDatum
670  *		Returns datum representation for a 4-byte floating point number.
671  *
672  * Note: if float4 is pass by reference, this function returns a reference
673  * to palloc'd space.
674  */
675 #ifdef USE_FLOAT4_BYVAL
676 static inline Datum
Float4GetDatum(float4 X)677 Float4GetDatum(float4 X)
678 {
679 	union
680 	{
681 		float4		value;
682 		int32		retval;
683 	}			myunion;
684 
685 	myunion.value = X;
686 	return Int32GetDatum(myunion.retval);
687 }
688 #else
689 extern Datum Float4GetDatum(float4 X);
690 #endif
691 
692 /*
693  * DatumGetFloat8
694  *		Returns 8-byte floating point value of a datum.
695  *
696  * Note: this macro hides whether float8 is pass by value or by reference.
697  */
698 
699 #ifdef USE_FLOAT8_BYVAL
700 static inline float8
DatumGetFloat8(Datum X)701 DatumGetFloat8(Datum X)
702 {
703 	union
704 	{
705 		int64		value;
706 		float8		retval;
707 	}			myunion;
708 
709 	myunion.value = DatumGetInt64(X);
710 	return myunion.retval;
711 }
712 #else
713 #define DatumGetFloat8(X) (* ((float8 *) DatumGetPointer(X)))
714 #endif
715 
716 /*
717  * Float8GetDatum
718  *		Returns datum representation for an 8-byte floating point number.
719  *
720  * Note: if float8 is pass by reference, this function returns a reference
721  * to palloc'd space.
722  */
723 
724 #ifdef USE_FLOAT8_BYVAL
725 static inline Datum
Float8GetDatum(float8 X)726 Float8GetDatum(float8 X)
727 {
728 	union
729 	{
730 		float8		value;
731 		int64		retval;
732 	}			myunion;
733 
734 	myunion.value = X;
735 	return Int64GetDatum(myunion.retval);
736 }
737 #else
738 extern Datum Float8GetDatum(float8 X);
739 #endif
740 
741 
742 /*
743  * Int64GetDatumFast
744  * Float8GetDatumFast
745  * Float4GetDatumFast
746  *
747  * These macros are intended to allow writing code that does not depend on
748  * whether int64, float8, float4 are pass-by-reference types, while not
749  * sacrificing performance when they are.  The argument must be a variable
750  * that will exist and have the same value for as long as the Datum is needed.
751  * In the pass-by-ref case, the address of the variable is taken to use as
752  * the Datum.  In the pass-by-val case, these will be the same as the non-Fast
753  * macros.
754  */
755 
756 #ifdef USE_FLOAT8_BYVAL
757 #define Int64GetDatumFast(X)  Int64GetDatum(X)
758 #define Float8GetDatumFast(X) Float8GetDatum(X)
759 #else
760 #define Int64GetDatumFast(X)  PointerGetDatum(&(X))
761 #define Float8GetDatumFast(X) PointerGetDatum(&(X))
762 #endif
763 
764 #ifdef USE_FLOAT4_BYVAL
765 #define Float4GetDatumFast(X) Float4GetDatum(X)
766 #else
767 #define Float4GetDatumFast(X) PointerGetDatum(&(X))
768 #endif
769 
770 #endif							/* POSTGRES_H */
771