1 /*-------------------------------------------------------------------------
2  *
3  * ts_typanalyze.c
4  *	  functions for gathering statistics from tsvector columns
5  *
6  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
7  *
8  *
9  * IDENTIFICATION
10  *	  src/backend/tsearch/ts_typanalyze.c
11  *
12  *-------------------------------------------------------------------------
13  */
14 #include "postgres.h"
15 
16 #include "access/hash.h"
17 #include "catalog/pg_operator.h"
18 #include "commands/vacuum.h"
19 #include "tsearch/ts_type.h"
20 #include "utils/builtins.h"
21 
22 
23 /* A hash key for lexemes */
24 typedef struct
25 {
26 	char	   *lexeme;			/* lexeme (not NULL terminated!) */
27 	int			length;			/* its length in bytes */
28 } LexemeHashKey;
29 
30 /* A hash table entry for the Lossy Counting algorithm */
31 typedef struct
32 {
33 	LexemeHashKey key;			/* This is 'e' from the LC algorithm. */
34 	int			frequency;		/* This is 'f'. */
35 	int			delta;			/* And this is 'delta'. */
36 } TrackItem;
37 
38 static void compute_tsvector_stats(VacAttrStats *stats,
39 					   AnalyzeAttrFetchFunc fetchfunc,
40 					   int samplerows,
41 					   double totalrows);
42 static void prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current);
43 static uint32 lexeme_hash(const void *key, Size keysize);
44 static int	lexeme_match(const void *key1, const void *key2, Size keysize);
45 static int	lexeme_compare(const void *key1, const void *key2);
46 static int	trackitem_compare_frequencies_desc(const void *e1, const void *e2);
47 static int	trackitem_compare_lexemes(const void *e1, const void *e2);
48 
49 
50 /*
51  *	ts_typanalyze -- a custom typanalyze function for tsvector columns
52  */
53 Datum
ts_typanalyze(PG_FUNCTION_ARGS)54 ts_typanalyze(PG_FUNCTION_ARGS)
55 {
56 	VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0);
57 	Form_pg_attribute attr = stats->attr;
58 
59 	/* If the attstattarget column is negative, use the default value */
60 	/* NB: it is okay to scribble on stats->attr since it's a copy */
61 	if (attr->attstattarget < 0)
62 		attr->attstattarget = default_statistics_target;
63 
64 	stats->compute_stats = compute_tsvector_stats;
65 	/* see comment about the choice of minrows in commands/analyze.c */
66 	stats->minrows = 300 * attr->attstattarget;
67 
68 	PG_RETURN_BOOL(true);
69 }
70 
71 /*
72  *	compute_tsvector_stats() -- compute statistics for a tsvector column
73  *
74  *	This functions computes statistics that are useful for determining @@
75  *	operations' selectivity, along with the fraction of non-null rows and
76  *	average width.
77  *
78  *	Instead of finding the most common values, as we do for most datatypes,
79  *	we're looking for the most common lexemes. This is more useful, because
80  *	there most probably won't be any two rows with the same tsvector and thus
81  *	the notion of a MCV is a bit bogus with this datatype. With a list of the
82  *	most common lexemes we can do a better job at figuring out @@ selectivity.
83  *
84  *	For the same reasons we assume that tsvector columns are unique when
85  *	determining the number of distinct values.
86  *
87  *	The algorithm used is Lossy Counting, as proposed in the paper "Approximate
88  *	frequency counts over data streams" by G. S. Manku and R. Motwani, in
89  *	Proceedings of the 28th International Conference on Very Large Data Bases,
90  *	Hong Kong, China, August 2002, section 4.2. The paper is available at
91  *	http://www.vldb.org/conf/2002/S10P03.pdf
92  *
93  *	The Lossy Counting (aka LC) algorithm goes like this:
94  *	Let s be the threshold frequency for an item (the minimum frequency we
95  *	are interested in) and epsilon the error margin for the frequency. Let D
96  *	be a set of triples (e, f, delta), where e is an element value, f is that
97  *	element's frequency (actually, its current occurrence count) and delta is
98  *	the maximum error in f. We start with D empty and process the elements in
99  *	batches of size w. (The batch size is also known as "bucket size" and is
100  *	equal to 1/epsilon.) Let the current batch number be b_current, starting
101  *	with 1. For each element e we either increment its f count, if it's
102  *	already in D, or insert a new triple into D with values (e, 1, b_current
103  *	- 1). After processing each batch we prune D, by removing from it all
104  *	elements with f + delta <= b_current.  After the algorithm finishes we
105  *	suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
106  *	where N is the total number of elements in the input.  We emit the
107  *	remaining elements with estimated frequency f/N.  The LC paper proves
108  *	that this algorithm finds all elements with true frequency at least s,
109  *	and that no frequency is overestimated or is underestimated by more than
110  *	epsilon.  Furthermore, given reasonable assumptions about the input
111  *	distribution, the required table size is no more than about 7 times w.
112  *
113  *	We set s to be the estimated frequency of the K'th word in a natural
114  *	language's frequency table, where K is the target number of entries in
115  *	the MCELEM array plus an arbitrary constant, meant to reflect the fact
116  *	that the most common words in any language would usually be stopwords
117  *	so we will not actually see them in the input.  We assume that the
118  *	distribution of word frequencies (including the stopwords) follows Zipf's
119  *	law with an exponent of 1.
120  *
121  *	Assuming Zipfian distribution, the frequency of the K'th word is equal
122  *	to 1/(K * H(W)) where H(n) is 1/2 + 1/3 + ... + 1/n and W is the number of
123  *	words in the language.  Putting W as one million, we get roughly 0.07/K.
124  *	Assuming top 10 words are stopwords gives s = 0.07/(K + 10).  We set
125  *	epsilon = s/10, which gives bucket width w = (K + 10)/0.007 and
126  *	maximum expected hashtable size of about 1000 * (K + 10).
127  *
128  *	Note: in the above discussion, s, epsilon, and f/N are in terms of a
129  *	lexeme's frequency as a fraction of all lexemes seen in the input.
130  *	However, what we actually want to store in the finished pg_statistic
131  *	entry is each lexeme's frequency as a fraction of all rows that it occurs
132  *	in.  Assuming that the input tsvectors are correctly constructed, no
133  *	lexeme occurs more than once per tsvector, so the final count f is a
134  *	correct estimate of the number of input tsvectors it occurs in, and we
135  *	need only change the divisor from N to nonnull_cnt to get the number we
136  *	want.
137  */
138 static void
compute_tsvector_stats(VacAttrStats * stats,AnalyzeAttrFetchFunc fetchfunc,int samplerows,double totalrows)139 compute_tsvector_stats(VacAttrStats *stats,
140 					   AnalyzeAttrFetchFunc fetchfunc,
141 					   int samplerows,
142 					   double totalrows)
143 {
144 	int			num_mcelem;
145 	int			null_cnt = 0;
146 	double		total_width = 0;
147 
148 	/* This is D from the LC algorithm. */
149 	HTAB	   *lexemes_tab;
150 	HASHCTL		hash_ctl;
151 	HASH_SEQ_STATUS scan_status;
152 
153 	/* This is the current bucket number from the LC algorithm */
154 	int			b_current;
155 
156 	/* This is 'w' from the LC algorithm */
157 	int			bucket_width;
158 	int			vector_no,
159 				lexeme_no;
160 	LexemeHashKey hash_key;
161 	TrackItem  *item;
162 
163 	/*
164 	 * We want statistics_target * 10 lexemes in the MCELEM array.  This
165 	 * multiplier is pretty arbitrary, but is meant to reflect the fact that
166 	 * the number of individual lexeme values tracked in pg_statistic ought to
167 	 * be more than the number of values for a simple scalar column.
168 	 */
169 	num_mcelem = stats->attr->attstattarget * 10;
170 
171 	/*
172 	 * We set bucket width equal to (num_mcelem + 10) / 0.007 as per the
173 	 * comment above.
174 	 */
175 	bucket_width = (num_mcelem + 10) * 1000 / 7;
176 
177 	/*
178 	 * Create the hashtable. It will be in local memory, so we don't need to
179 	 * worry about overflowing the initial size. Also we don't need to pay any
180 	 * attention to locking and memory management.
181 	 */
182 	MemSet(&hash_ctl, 0, sizeof(hash_ctl));
183 	hash_ctl.keysize = sizeof(LexemeHashKey);
184 	hash_ctl.entrysize = sizeof(TrackItem);
185 	hash_ctl.hash = lexeme_hash;
186 	hash_ctl.match = lexeme_match;
187 	hash_ctl.hcxt = CurrentMemoryContext;
188 	lexemes_tab = hash_create("Analyzed lexemes table",
189 							  num_mcelem,
190 							  &hash_ctl,
191 							  HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
192 
193 	/* Initialize counters. */
194 	b_current = 1;
195 	lexeme_no = 0;
196 
197 	/* Loop over the tsvectors. */
198 	for (vector_no = 0; vector_no < samplerows; vector_no++)
199 	{
200 		Datum		value;
201 		bool		isnull;
202 		TSVector	vector;
203 		WordEntry  *curentryptr;
204 		char	   *lexemesptr;
205 		int			j;
206 
207 		vacuum_delay_point();
208 
209 		value = fetchfunc(stats, vector_no, &isnull);
210 
211 		/*
212 		 * Check for null/nonnull.
213 		 */
214 		if (isnull)
215 		{
216 			null_cnt++;
217 			continue;
218 		}
219 
220 		/*
221 		 * Add up widths for average-width calculation.  Since it's a
222 		 * tsvector, we know it's varlena.  As in the regular
223 		 * compute_minimal_stats function, we use the toasted width for this
224 		 * calculation.
225 		 */
226 		total_width += VARSIZE_ANY(DatumGetPointer(value));
227 
228 		/*
229 		 * Now detoast the tsvector if needed.
230 		 */
231 		vector = DatumGetTSVector(value);
232 
233 		/*
234 		 * We loop through the lexemes in the tsvector and add them to our
235 		 * tracking hashtable.
236 		 */
237 		lexemesptr = STRPTR(vector);
238 		curentryptr = ARRPTR(vector);
239 		for (j = 0; j < vector->size; j++)
240 		{
241 			bool		found;
242 
243 			/*
244 			 * Construct a hash key.  The key points into the (detoasted)
245 			 * tsvector value at this point, but if a new entry is created, we
246 			 * make a copy of it.  This way we can free the tsvector value
247 			 * once we've processed all its lexemes.
248 			 */
249 			hash_key.lexeme = lexemesptr + curentryptr->pos;
250 			hash_key.length = curentryptr->len;
251 
252 			/* Lookup current lexeme in hashtable, adding it if new */
253 			item = (TrackItem *) hash_search(lexemes_tab,
254 											 (const void *) &hash_key,
255 											 HASH_ENTER, &found);
256 
257 			if (found)
258 			{
259 				/* The lexeme is already on the tracking list */
260 				item->frequency++;
261 			}
262 			else
263 			{
264 				/* Initialize new tracking list element */
265 				item->frequency = 1;
266 				item->delta = b_current - 1;
267 
268 				item->key.lexeme = palloc(hash_key.length);
269 				memcpy(item->key.lexeme, hash_key.lexeme, hash_key.length);
270 			}
271 
272 			/* lexeme_no is the number of elements processed (ie N) */
273 			lexeme_no++;
274 
275 			/* We prune the D structure after processing each bucket */
276 			if (lexeme_no % bucket_width == 0)
277 			{
278 				prune_lexemes_hashtable(lexemes_tab, b_current);
279 				b_current++;
280 			}
281 
282 			/* Advance to the next WordEntry in the tsvector */
283 			curentryptr++;
284 		}
285 
286 		/* If the vector was toasted, free the detoasted copy. */
287 		if (TSVectorGetDatum(vector) != value)
288 			pfree(vector);
289 	}
290 
291 	/* We can only compute real stats if we found some non-null values. */
292 	if (null_cnt < samplerows)
293 	{
294 		int			nonnull_cnt = samplerows - null_cnt;
295 		int			i;
296 		TrackItem **sort_table;
297 		int			track_len;
298 		int			cutoff_freq;
299 		int			minfreq,
300 					maxfreq;
301 
302 		stats->stats_valid = true;
303 		/* Do the simple null-frac and average width stats */
304 		stats->stanullfrac = (double) null_cnt / (double) samplerows;
305 		stats->stawidth = total_width / (double) nonnull_cnt;
306 
307 		/* Assume it's a unique column (see notes above) */
308 		stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
309 
310 		/*
311 		 * Construct an array of the interesting hashtable items, that is,
312 		 * those meeting the cutoff frequency (s - epsilon)*N.  Also identify
313 		 * the minimum and maximum frequencies among these items.
314 		 *
315 		 * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
316 		 * frequency is 9*N / bucket_width.
317 		 */
318 		cutoff_freq = 9 * lexeme_no / bucket_width;
319 
320 		i = hash_get_num_entries(lexemes_tab);	/* surely enough space */
321 		sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i);
322 
323 		hash_seq_init(&scan_status, lexemes_tab);
324 		track_len = 0;
325 		minfreq = lexeme_no;
326 		maxfreq = 0;
327 		while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
328 		{
329 			if (item->frequency > cutoff_freq)
330 			{
331 				sort_table[track_len++] = item;
332 				minfreq = Min(minfreq, item->frequency);
333 				maxfreq = Max(maxfreq, item->frequency);
334 			}
335 		}
336 		Assert(track_len <= i);
337 
338 		/* emit some statistics for debug purposes */
339 		elog(DEBUG3, "tsvector_stats: target # mces = %d, bucket width = %d, "
340 			 "# lexemes = %d, hashtable size = %d, usable entries = %d",
341 			 num_mcelem, bucket_width, lexeme_no, i, track_len);
342 
343 		/*
344 		 * If we obtained more lexemes than we really want, get rid of those
345 		 * with least frequencies.  The easiest way is to qsort the array into
346 		 * descending frequency order and truncate the array.
347 		 */
348 		if (num_mcelem < track_len)
349 		{
350 			qsort(sort_table, track_len, sizeof(TrackItem *),
351 				  trackitem_compare_frequencies_desc);
352 			/* reset minfreq to the smallest frequency we're keeping */
353 			minfreq = sort_table[num_mcelem - 1]->frequency;
354 		}
355 		else
356 			num_mcelem = track_len;
357 
358 		/* Generate MCELEM slot entry */
359 		if (num_mcelem > 0)
360 		{
361 			MemoryContext old_context;
362 			Datum	   *mcelem_values;
363 			float4	   *mcelem_freqs;
364 
365 			/*
366 			 * We want to store statistics sorted on the lexeme value using
367 			 * first length, then byte-for-byte comparison. The reason for
368 			 * doing length comparison first is that we don't care about the
369 			 * ordering so long as it's consistent, and comparing lengths
370 			 * first gives us a chance to avoid a strncmp() call.
371 			 *
372 			 * This is different from what we do with scalar statistics --
373 			 * they get sorted on frequencies. The rationale is that we
374 			 * usually search through most common elements looking for a
375 			 * specific value, so we can grab its frequency.  When values are
376 			 * presorted we can employ binary search for that.  See
377 			 * ts_selfuncs.c for a real usage scenario.
378 			 */
379 			qsort(sort_table, num_mcelem, sizeof(TrackItem *),
380 				  trackitem_compare_lexemes);
381 
382 			/* Must copy the target values into anl_context */
383 			old_context = MemoryContextSwitchTo(stats->anl_context);
384 
385 			/*
386 			 * We sorted statistics on the lexeme value, but we want to be
387 			 * able to find out the minimal and maximal frequency without
388 			 * going through all the values.  We keep those two extra
389 			 * frequencies in two extra cells in mcelem_freqs.
390 			 *
391 			 * (Note: the MCELEM statistics slot definition allows for a third
392 			 * extra number containing the frequency of nulls, but we don't
393 			 * create that for a tsvector column, since null elements aren't
394 			 * possible.)
395 			 */
396 			mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
397 			mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4));
398 
399 			/*
400 			 * See comments above about use of nonnull_cnt as the divisor for
401 			 * the final frequency estimates.
402 			 */
403 			for (i = 0; i < num_mcelem; i++)
404 			{
405 				TrackItem  *item = sort_table[i];
406 
407 				mcelem_values[i] =
408 					PointerGetDatum(cstring_to_text_with_len(item->key.lexeme,
409 															 item->key.length));
410 				mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt;
411 			}
412 			mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
413 			mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt;
414 			MemoryContextSwitchTo(old_context);
415 
416 			stats->stakind[0] = STATISTIC_KIND_MCELEM;
417 			stats->staop[0] = TextEqualOperator;
418 			stats->stanumbers[0] = mcelem_freqs;
419 			/* See above comment about two extra frequency fields */
420 			stats->numnumbers[0] = num_mcelem + 2;
421 			stats->stavalues[0] = mcelem_values;
422 			stats->numvalues[0] = num_mcelem;
423 			/* We are storing text values */
424 			stats->statypid[0] = TEXTOID;
425 			stats->statyplen[0] = -1;	/* typlen, -1 for varlena */
426 			stats->statypbyval[0] = false;
427 			stats->statypalign[0] = 'i';
428 		}
429 	}
430 	else
431 	{
432 		/* We found only nulls; assume the column is entirely null */
433 		stats->stats_valid = true;
434 		stats->stanullfrac = 1.0;
435 		stats->stawidth = 0;	/* "unknown" */
436 		stats->stadistinct = 0.0;	/* "unknown" */
437 	}
438 
439 	/*
440 	 * We don't need to bother cleaning up any of our temporary palloc's. The
441 	 * hashtable should also go away, as it used a child memory context.
442 	 */
443 }
444 
445 /*
446  *	A function to prune the D structure from the Lossy Counting algorithm.
447  *	Consult compute_tsvector_stats() for wider explanation.
448  */
449 static void
prune_lexemes_hashtable(HTAB * lexemes_tab,int b_current)450 prune_lexemes_hashtable(HTAB *lexemes_tab, int b_current)
451 {
452 	HASH_SEQ_STATUS scan_status;
453 	TrackItem  *item;
454 
455 	hash_seq_init(&scan_status, lexemes_tab);
456 	while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
457 	{
458 		if (item->frequency + item->delta <= b_current)
459 		{
460 			char	   *lexeme = item->key.lexeme;
461 
462 			if (hash_search(lexemes_tab, (const void *) &item->key,
463 							HASH_REMOVE, NULL) == NULL)
464 				elog(ERROR, "hash table corrupted");
465 			pfree(lexeme);
466 		}
467 	}
468 }
469 
470 /*
471  * Hash functions for lexemes. They are strings, but not NULL terminated,
472  * so we need a special hash function.
473  */
474 static uint32
lexeme_hash(const void * key,Size keysize)475 lexeme_hash(const void *key, Size keysize)
476 {
477 	const LexemeHashKey *l = (const LexemeHashKey *) key;
478 
479 	return DatumGetUInt32(hash_any((const unsigned char *) l->lexeme,
480 								   l->length));
481 }
482 
483 /*
484  *	Matching function for lexemes, to be used in hashtable lookups.
485  */
486 static int
lexeme_match(const void * key1,const void * key2,Size keysize)487 lexeme_match(const void *key1, const void *key2, Size keysize)
488 {
489 	/* The keysize parameter is superfluous, the keys store their lengths */
490 	return lexeme_compare(key1, key2);
491 }
492 
493 /*
494  *	Comparison function for lexemes.
495  */
496 static int
lexeme_compare(const void * key1,const void * key2)497 lexeme_compare(const void *key1, const void *key2)
498 {
499 	const LexemeHashKey *d1 = (const LexemeHashKey *) key1;
500 	const LexemeHashKey *d2 = (const LexemeHashKey *) key2;
501 
502 	/* First, compare by length */
503 	if (d1->length > d2->length)
504 		return 1;
505 	else if (d1->length < d2->length)
506 		return -1;
507 	/* Lengths are equal, do a byte-by-byte comparison */
508 	return strncmp(d1->lexeme, d2->lexeme, d1->length);
509 }
510 
511 /*
512  *	qsort() comparator for sorting TrackItems on frequencies (descending sort)
513  */
514 static int
trackitem_compare_frequencies_desc(const void * e1,const void * e2)515 trackitem_compare_frequencies_desc(const void *e1, const void *e2)
516 {
517 	const TrackItem *const *t1 = (const TrackItem *const *) e1;
518 	const TrackItem *const *t2 = (const TrackItem *const *) e2;
519 
520 	return (*t2)->frequency - (*t1)->frequency;
521 }
522 
523 /*
524  *	qsort() comparator for sorting TrackItems on lexemes
525  */
526 static int
trackitem_compare_lexemes(const void * e1,const void * e2)527 trackitem_compare_lexemes(const void *e1, const void *e2)
528 {
529 	const TrackItem *const *t1 = (const TrackItem *const *) e1;
530 	const TrackItem *const *t2 = (const TrackItem *const *) e2;
531 
532 	return lexeme_compare(&(*t1)->key, &(*t2)->key);
533 }
534