1 /*-------------------------------------------------------------------------
2  *
3  * checkpointer.c
4  *
5  * The checkpointer is new as of Postgres 9.2.  It handles all checkpoints.
6  * Checkpoints are automatically dispatched after a certain amount of time has
7  * elapsed since the last one, and it can be signaled to perform requested
8  * checkpoints as well.  (The GUC parameter that mandates a checkpoint every
9  * so many WAL segments is implemented by having backends signal when they
10  * fill WAL segments; the checkpointer itself doesn't watch for the
11  * condition.)
12  *
13  * The checkpointer is started by the postmaster as soon as the startup
14  * subprocess finishes, or as soon as recovery begins if we are doing archive
15  * recovery.  It remains alive until the postmaster commands it to terminate.
16  * Normal termination is by SIGUSR2, which instructs the checkpointer to
17  * execute a shutdown checkpoint and then exit(0).  (All backends must be
18  * stopped before SIGUSR2 is issued!)  Emergency termination is by SIGQUIT;
19  * like any backend, the checkpointer will simply abort and exit on SIGQUIT.
20  *
21  * If the checkpointer exits unexpectedly, the postmaster treats that the same
22  * as a backend crash: shared memory may be corrupted, so remaining backends
23  * should be killed by SIGQUIT and then a recovery cycle started.  (Even if
24  * shared memory isn't corrupted, we have lost information about which
25  * files need to be fsync'd for the next checkpoint, and so a system
26  * restart needs to be forced.)
27  *
28  *
29  * Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
30  *
31  *
32  * IDENTIFICATION
33  *	  src/backend/postmaster/checkpointer.c
34  *
35  *-------------------------------------------------------------------------
36  */
37 #include "postgres.h"
38 
39 #include <signal.h>
40 #include <sys/time.h>
41 #include <time.h>
42 #include <unistd.h>
43 
44 #include "access/xlog.h"
45 #include "access/xlog_internal.h"
46 #include "libpq/pqsignal.h"
47 #include "miscadmin.h"
48 #include "pgstat.h"
49 #include "postmaster/bgwriter.h"
50 #include "replication/syncrep.h"
51 #include "storage/bufmgr.h"
52 #include "storage/condition_variable.h"
53 #include "storage/fd.h"
54 #include "storage/ipc.h"
55 #include "storage/lwlock.h"
56 #include "storage/proc.h"
57 #include "storage/shmem.h"
58 #include "storage/smgr.h"
59 #include "storage/spin.h"
60 #include "utils/guc.h"
61 #include "utils/memutils.h"
62 #include "utils/resowner.h"
63 
64 
65 /*----------
66  * Shared memory area for communication between checkpointer and backends
67  *
68  * The ckpt counters allow backends to watch for completion of a checkpoint
69  * request they send.  Here's how it works:
70  *	* At start of a checkpoint, checkpointer reads (and clears) the request
71  *	  flags and increments ckpt_started, while holding ckpt_lck.
72  *	* On completion of a checkpoint, checkpointer sets ckpt_done to
73  *	  equal ckpt_started.
74  *	* On failure of a checkpoint, checkpointer increments ckpt_failed
75  *	  and sets ckpt_done to equal ckpt_started.
76  *
77  * The algorithm for backends is:
78  *	1. Record current values of ckpt_failed and ckpt_started, and
79  *	   set request flags, while holding ckpt_lck.
80  *	2. Send signal to request checkpoint.
81  *	3. Sleep until ckpt_started changes.  Now you know a checkpoint has
82  *	   begun since you started this algorithm (although *not* that it was
83  *	   specifically initiated by your signal), and that it is using your flags.
84  *	4. Record new value of ckpt_started.
85  *	5. Sleep until ckpt_done >= saved value of ckpt_started.  (Use modulo
86  *	   arithmetic here in case counters wrap around.)  Now you know a
87  *	   checkpoint has started and completed, but not whether it was
88  *	   successful.
89  *	6. If ckpt_failed is different from the originally saved value,
90  *	   assume request failed; otherwise it was definitely successful.
91  *
92  * ckpt_flags holds the OR of the checkpoint request flags sent by all
93  * requesting backends since the last checkpoint start.  The flags are
94  * chosen so that OR'ing is the correct way to combine multiple requests.
95  *
96  * num_backend_writes is used to count the number of buffer writes performed
97  * by user backend processes.  This counter should be wide enough that it
98  * can't overflow during a single processing cycle.  num_backend_fsync
99  * counts the subset of those writes that also had to do their own fsync,
100  * because the checkpointer failed to absorb their request.
101  *
102  * The requests array holds fsync requests sent by backends and not yet
103  * absorbed by the checkpointer.
104  *
105  * Unlike the checkpoint fields, num_backend_writes, num_backend_fsync, and
106  * the requests fields are protected by CheckpointerCommLock.
107  *----------
108  */
109 typedef struct
110 {
111 	RelFileNode rnode;
112 	ForkNumber	forknum;
113 	BlockNumber segno;			/* see md.c for special values */
114 	/* might add a real request-type field later; not needed yet */
115 } CheckpointerRequest;
116 
117 typedef struct
118 {
119 	pid_t		checkpointer_pid;	/* PID (0 if not started) */
120 
121 	slock_t		ckpt_lck;		/* protects all the ckpt_* fields */
122 
123 	int			ckpt_started;	/* advances when checkpoint starts */
124 	int			ckpt_done;		/* advances when checkpoint done */
125 	int			ckpt_failed;	/* advances when checkpoint fails */
126 
127 	int			ckpt_flags;		/* checkpoint flags, as defined in xlog.h */
128 
129 	uint32		num_backend_writes; /* counts user backend buffer writes */
130 	uint32		num_backend_fsync;	/* counts user backend fsync calls */
131 
132 	int			num_requests;	/* current # of requests */
133 	int			max_requests;	/* allocated array size */
134 	CheckpointerRequest requests[FLEXIBLE_ARRAY_MEMBER];
135 } CheckpointerShmemStruct;
136 
137 static CheckpointerShmemStruct *CheckpointerShmem;
138 
139 /* interval for calling AbsorbFsyncRequests in CheckpointWriteDelay */
140 #define WRITES_PER_ABSORB		1000
141 
142 /*
143  * GUC parameters
144  */
145 int			CheckPointTimeout = 300;
146 int			CheckPointWarning = 30;
147 double		CheckPointCompletionTarget = 0.5;
148 
149 /*
150  * Flags set by interrupt handlers for later service in the main loop.
151  */
152 static volatile sig_atomic_t got_SIGHUP = false;
153 static volatile sig_atomic_t shutdown_requested = false;
154 
155 /*
156  * Private state
157  */
158 static bool ckpt_active = false;
159 
160 /* these values are valid when ckpt_active is true: */
161 static pg_time_t ckpt_start_time;
162 static XLogRecPtr ckpt_start_recptr;
163 static double ckpt_cached_elapsed;
164 
165 static pg_time_t last_checkpoint_time;
166 static pg_time_t last_xlog_switch_time;
167 
168 /* Prototypes for private functions */
169 
170 static void CheckArchiveTimeout(void);
171 static bool IsCheckpointOnSchedule(double progress);
172 static bool ImmediateCheckpointRequested(void);
173 static bool CompactCheckpointerRequestQueue(void);
174 static void UpdateSharedMemoryConfig(void);
175 
176 /* Signal handlers */
177 
178 static void chkpt_quickdie(SIGNAL_ARGS);
179 static void ChkptSigHupHandler(SIGNAL_ARGS);
180 static void ReqCheckpointHandler(SIGNAL_ARGS);
181 static void chkpt_sigusr1_handler(SIGNAL_ARGS);
182 static void ReqShutdownHandler(SIGNAL_ARGS);
183 
184 
185 /*
186  * Main entry point for checkpointer process
187  *
188  * This is invoked from AuxiliaryProcessMain, which has already created the
189  * basic execution environment, but not enabled signals yet.
190  */
191 void
192 CheckpointerMain(void)
193 {
194 	sigjmp_buf	local_sigjmp_buf;
195 	MemoryContext checkpointer_context;
196 
197 	CheckpointerShmem->checkpointer_pid = MyProcPid;
198 
199 	/*
200 	 * Properly accept or ignore signals the postmaster might send us
201 	 *
202 	 * Note: we deliberately ignore SIGTERM, because during a standard Unix
203 	 * system shutdown cycle, init will SIGTERM all processes at once.  We
204 	 * want to wait for the backends to exit, whereupon the postmaster will
205 	 * tell us it's okay to shut down (via SIGUSR2).
206 	 */
207 	pqsignal(SIGHUP, ChkptSigHupHandler);	/* set flag to read config file */
208 	pqsignal(SIGINT, ReqCheckpointHandler); /* request checkpoint */
209 	pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
210 	pqsignal(SIGQUIT, chkpt_quickdie);	/* hard crash time */
211 	pqsignal(SIGALRM, SIG_IGN);
212 	pqsignal(SIGPIPE, SIG_IGN);
213 	pqsignal(SIGUSR1, chkpt_sigusr1_handler);
214 	pqsignal(SIGUSR2, ReqShutdownHandler);	/* request shutdown */
215 
216 	/*
217 	 * Reset some signals that are accepted by postmaster but not here
218 	 */
219 	pqsignal(SIGCHLD, SIG_DFL);
220 	pqsignal(SIGTTIN, SIG_DFL);
221 	pqsignal(SIGTTOU, SIG_DFL);
222 	pqsignal(SIGCONT, SIG_DFL);
223 	pqsignal(SIGWINCH, SIG_DFL);
224 
225 	/* We allow SIGQUIT (quickdie) at all times */
226 	sigdelset(&BlockSig, SIGQUIT);
227 
228 	/*
229 	 * Initialize so that first time-driven event happens at the correct time.
230 	 */
231 	last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL);
232 
233 	/*
234 	 * Create a resource owner to keep track of our resources (currently only
235 	 * buffer pins).
236 	 */
237 	CurrentResourceOwner = ResourceOwnerCreate(NULL, "Checkpointer");
238 
239 	/*
240 	 * Create a memory context that we will do all our work in.  We do this so
241 	 * that we can reset the context during error recovery and thereby avoid
242 	 * possible memory leaks.  Formerly this code just ran in
243 	 * TopMemoryContext, but resetting that would be a really bad idea.
244 	 */
245 	checkpointer_context = AllocSetContextCreate(TopMemoryContext,
246 												 "Checkpointer",
247 												 ALLOCSET_DEFAULT_SIZES);
248 	MemoryContextSwitchTo(checkpointer_context);
249 
250 	/*
251 	 * If an exception is encountered, processing resumes here.
252 	 *
253 	 * See notes in postgres.c about the design of this coding.
254 	 */
255 	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
256 	{
257 		/* Since not using PG_TRY, must reset error stack by hand */
258 		error_context_stack = NULL;
259 
260 		/* Prevent interrupts while cleaning up */
261 		HOLD_INTERRUPTS();
262 
263 		/* Report the error to the server log */
264 		EmitErrorReport();
265 
266 		/*
267 		 * These operations are really just a minimal subset of
268 		 * AbortTransaction().  We don't have very many resources to worry
269 		 * about in checkpointer, but we do have LWLocks, buffers, and temp
270 		 * files.
271 		 */
272 		LWLockReleaseAll();
273 		ConditionVariableCancelSleep();
274 		pgstat_report_wait_end();
275 		AbortBufferIO();
276 		UnlockBuffers();
277 		/* buffer pins are released here: */
278 		ResourceOwnerRelease(CurrentResourceOwner,
279 							 RESOURCE_RELEASE_BEFORE_LOCKS,
280 							 false, true);
281 		/* we needn't bother with the other ResourceOwnerRelease phases */
282 		AtEOXact_Buffers(false);
283 		AtEOXact_SMgr();
284 		AtEOXact_Files(false);
285 		AtEOXact_HashTables(false);
286 
287 		/* Warn any waiting backends that the checkpoint failed. */
288 		if (ckpt_active)
289 		{
290 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
291 			CheckpointerShmem->ckpt_failed++;
292 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
293 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
294 
295 			ckpt_active = false;
296 		}
297 
298 		/*
299 		 * Now return to normal top-level context and clear ErrorContext for
300 		 * next time.
301 		 */
302 		MemoryContextSwitchTo(checkpointer_context);
303 		FlushErrorState();
304 
305 		/* Flush any leaked data in the top-level context */
306 		MemoryContextResetAndDeleteChildren(checkpointer_context);
307 
308 		/* Now we can allow interrupts again */
309 		RESUME_INTERRUPTS();
310 
311 		/*
312 		 * Sleep at least 1 second after any error.  A write error is likely
313 		 * to be repeated, and we don't want to be filling the error logs as
314 		 * fast as we can.
315 		 */
316 		pg_usleep(1000000L);
317 
318 		/*
319 		 * Close all open files after any error.  This is helpful on Windows,
320 		 * where holding deleted files open causes various strange errors.
321 		 * It's not clear we need it elsewhere, but shouldn't hurt.
322 		 */
323 		smgrcloseall();
324 	}
325 
326 	/* We can now handle ereport(ERROR) */
327 	PG_exception_stack = &local_sigjmp_buf;
328 
329 	/*
330 	 * Unblock signals (they were blocked when the postmaster forked us)
331 	 */
332 	PG_SETMASK(&UnBlockSig);
333 
334 	/*
335 	 * Ensure all shared memory values are set correctly for the config. Doing
336 	 * this here ensures no race conditions from other concurrent updaters.
337 	 */
338 	UpdateSharedMemoryConfig();
339 
340 	/*
341 	 * Advertise our latch that backends can use to wake us up while we're
342 	 * sleeping.
343 	 */
344 	ProcGlobal->checkpointerLatch = &MyProc->procLatch;
345 
346 	/*
347 	 * Loop forever
348 	 */
349 	for (;;)
350 	{
351 		bool		do_checkpoint = false;
352 		int			flags = 0;
353 		pg_time_t	now;
354 		int			elapsed_secs;
355 		int			cur_timeout;
356 		int			rc;
357 
358 		/* Clear any already-pending wakeups */
359 		ResetLatch(MyLatch);
360 
361 		/*
362 		 * Process any requests or signals received recently.
363 		 */
364 		AbsorbFsyncRequests();
365 
366 		if (got_SIGHUP)
367 		{
368 			got_SIGHUP = false;
369 			ProcessConfigFile(PGC_SIGHUP);
370 
371 			/*
372 			 * Checkpointer is the last process to shut down, so we ask it to
373 			 * hold the keys for a range of other tasks required most of which
374 			 * have nothing to do with checkpointing at all.
375 			 *
376 			 * For various reasons, some config values can change dynamically
377 			 * so the primary copy of them is held in shared memory to make
378 			 * sure all backends see the same value.  We make Checkpointer
379 			 * responsible for updating the shared memory copy if the
380 			 * parameter setting changes because of SIGHUP.
381 			 */
382 			UpdateSharedMemoryConfig();
383 		}
384 		if (shutdown_requested)
385 		{
386 			/*
387 			 * From here on, elog(ERROR) should end with exit(1), not send
388 			 * control back to the sigsetjmp block above
389 			 */
390 			ExitOnAnyError = true;
391 			/* Close down the database */
392 			ShutdownXLOG(0, 0);
393 			/* Normal exit from the checkpointer is here */
394 			proc_exit(0);		/* done */
395 		}
396 
397 		/*
398 		 * Detect a pending checkpoint request by checking whether the flags
399 		 * word in shared memory is nonzero.  We shouldn't need to acquire the
400 		 * ckpt_lck for this.
401 		 */
402 		if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags)
403 		{
404 			do_checkpoint = true;
405 			BgWriterStats.m_requested_checkpoints++;
406 		}
407 
408 		/*
409 		 * Force a checkpoint if too much time has elapsed since the last one.
410 		 * Note that we count a timed checkpoint in stats only when this
411 		 * occurs without an external request, but we set the CAUSE_TIME flag
412 		 * bit even if there is also an external request.
413 		 */
414 		now = (pg_time_t) time(NULL);
415 		elapsed_secs = now - last_checkpoint_time;
416 		if (elapsed_secs >= CheckPointTimeout)
417 		{
418 			if (!do_checkpoint)
419 				BgWriterStats.m_timed_checkpoints++;
420 			do_checkpoint = true;
421 			flags |= CHECKPOINT_CAUSE_TIME;
422 		}
423 
424 		/*
425 		 * Do a checkpoint if requested.
426 		 */
427 		if (do_checkpoint)
428 		{
429 			bool		ckpt_performed = false;
430 			bool		do_restartpoint;
431 
432 			/*
433 			 * Check if we should perform a checkpoint or a restartpoint. As a
434 			 * side-effect, RecoveryInProgress() initializes TimeLineID if
435 			 * it's not set yet.
436 			 */
437 			do_restartpoint = RecoveryInProgress();
438 
439 			/*
440 			 * Atomically fetch the request flags to figure out what kind of a
441 			 * checkpoint we should perform, and increase the started-counter
442 			 * to acknowledge that we've started a new checkpoint.
443 			 */
444 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
445 			flags |= CheckpointerShmem->ckpt_flags;
446 			CheckpointerShmem->ckpt_flags = 0;
447 			CheckpointerShmem->ckpt_started++;
448 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
449 
450 			/*
451 			 * The end-of-recovery checkpoint is a real checkpoint that's
452 			 * performed while we're still in recovery.
453 			 */
454 			if (flags & CHECKPOINT_END_OF_RECOVERY)
455 				do_restartpoint = false;
456 
457 			/*
458 			 * We will warn if (a) too soon since last checkpoint (whatever
459 			 * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
460 			 * since the last checkpoint start.  Note in particular that this
461 			 * implementation will not generate warnings caused by
462 			 * CheckPointTimeout < CheckPointWarning.
463 			 */
464 			if (!do_restartpoint &&
465 				(flags & CHECKPOINT_CAUSE_XLOG) &&
466 				elapsed_secs < CheckPointWarning)
467 				ereport(LOG,
468 						(errmsg_plural("checkpoints are occurring too frequently (%d second apart)",
469 									   "checkpoints are occurring too frequently (%d seconds apart)",
470 									   elapsed_secs,
471 									   elapsed_secs),
472 						 errhint("Consider increasing the configuration parameter \"max_wal_size\".")));
473 
474 			/*
475 			 * Initialize checkpointer-private variables used during
476 			 * checkpoint.
477 			 */
478 			ckpt_active = true;
479 			if (do_restartpoint)
480 				ckpt_start_recptr = GetXLogReplayRecPtr(NULL);
481 			else
482 				ckpt_start_recptr = GetInsertRecPtr();
483 			ckpt_start_time = now;
484 			ckpt_cached_elapsed = 0;
485 
486 			/*
487 			 * Do the checkpoint.
488 			 */
489 			if (!do_restartpoint)
490 			{
491 				CreateCheckPoint(flags);
492 				ckpt_performed = true;
493 			}
494 			else
495 				ckpt_performed = CreateRestartPoint(flags);
496 
497 			/*
498 			 * After any checkpoint, close all smgr files.  This is so we
499 			 * won't hang onto smgr references to deleted files indefinitely.
500 			 */
501 			smgrcloseall();
502 
503 			/*
504 			 * Indicate checkpoint completion to any waiting backends.
505 			 */
506 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
507 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
508 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
509 
510 			if (ckpt_performed)
511 			{
512 				/*
513 				 * Note we record the checkpoint start time not end time as
514 				 * last_checkpoint_time.  This is so that time-driven
515 				 * checkpoints happen at a predictable spacing.
516 				 */
517 				last_checkpoint_time = now;
518 			}
519 			else
520 			{
521 				/*
522 				 * We were not able to perform the restartpoint (checkpoints
523 				 * throw an ERROR in case of error).  Most likely because we
524 				 * have not received any new checkpoint WAL records since the
525 				 * last restartpoint. Try again in 15 s.
526 				 */
527 				last_checkpoint_time = now - CheckPointTimeout + 15;
528 			}
529 
530 			ckpt_active = false;
531 		}
532 
533 		/* Check for archive_timeout and switch xlog files if necessary. */
534 		CheckArchiveTimeout();
535 
536 		/*
537 		 * Send off activity statistics to the stats collector.  (The reason
538 		 * why we re-use bgwriter-related code for this is that the bgwriter
539 		 * and checkpointer used to be just one process.  It's probably not
540 		 * worth the trouble to split the stats support into two independent
541 		 * stats message types.)
542 		 */
543 		pgstat_send_bgwriter();
544 
545 		/*
546 		 * Sleep until we are signaled or it's time for another checkpoint or
547 		 * xlog file switch.
548 		 */
549 		now = (pg_time_t) time(NULL);
550 		elapsed_secs = now - last_checkpoint_time;
551 		if (elapsed_secs >= CheckPointTimeout)
552 			continue;			/* no sleep for us ... */
553 		cur_timeout = CheckPointTimeout - elapsed_secs;
554 		if (XLogArchiveTimeout > 0 && !RecoveryInProgress())
555 		{
556 			elapsed_secs = now - last_xlog_switch_time;
557 			if (elapsed_secs >= XLogArchiveTimeout)
558 				continue;		/* no sleep for us ... */
559 			cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs);
560 		}
561 
562 		rc = WaitLatch(MyLatch,
563 					   WL_LATCH_SET | WL_TIMEOUT | WL_POSTMASTER_DEATH,
564 					   cur_timeout * 1000L /* convert to ms */ ,
565 					   WAIT_EVENT_CHECKPOINTER_MAIN);
566 
567 		/*
568 		 * Emergency bailout if postmaster has died.  This is to avoid the
569 		 * necessity for manual cleanup of all postmaster children.
570 		 */
571 		if (rc & WL_POSTMASTER_DEATH)
572 			exit(1);
573 	}
574 }
575 
576 /*
577  * CheckArchiveTimeout -- check for archive_timeout and switch xlog files
578  *
579  * This will switch to a new WAL file and force an archive file write if
580  * meaningful activity is recorded in the current WAL file. This includes most
581  * writes, including just a single checkpoint record, but excludes WAL records
582  * that were inserted with the XLOG_MARK_UNIMPORTANT flag being set (like
583  * snapshots of running transactions).  Such records, depending on
584  * configuration, occur on regular intervals and don't contain important
585  * information.  This avoids generating archives with a few unimportant
586  * records.
587  */
588 static void
589 CheckArchiveTimeout(void)
590 {
591 	pg_time_t	now;
592 	pg_time_t	last_time;
593 	XLogRecPtr	last_switch_lsn;
594 
595 	if (XLogArchiveTimeout <= 0 || RecoveryInProgress())
596 		return;
597 
598 	now = (pg_time_t) time(NULL);
599 
600 	/* First we do a quick check using possibly-stale local state. */
601 	if ((int) (now - last_xlog_switch_time) < XLogArchiveTimeout)
602 		return;
603 
604 	/*
605 	 * Update local state ... note that last_xlog_switch_time is the last time
606 	 * a switch was performed *or requested*.
607 	 */
608 	last_time = GetLastSegSwitchData(&last_switch_lsn);
609 
610 	last_xlog_switch_time = Max(last_xlog_switch_time, last_time);
611 
612 	/* Now we can do the real checks */
613 	if ((int) (now - last_xlog_switch_time) >= XLogArchiveTimeout)
614 	{
615 		/*
616 		 * Switch segment only when "important" WAL has been logged since the
617 		 * last segment switch (last_switch_lsn points to end of segment
618 		 * switch occurred in).
619 		 */
620 		if (GetLastImportantRecPtr() > last_switch_lsn)
621 		{
622 			XLogRecPtr	switchpoint;
623 
624 			/* mark switch as unimportant, avoids triggering checkpoints */
625 			switchpoint = RequestXLogSwitch(true);
626 
627 			/*
628 			 * If the returned pointer points exactly to a segment boundary,
629 			 * assume nothing happened.
630 			 */
631 			if (XLogSegmentOffset(switchpoint, wal_segment_size) != 0)
632 				elog(DEBUG1, "write-ahead log switch forced (archive_timeout=%d)",
633 					 XLogArchiveTimeout);
634 		}
635 
636 		/*
637 		 * Update state in any case, so we don't retry constantly when the
638 		 * system is idle.
639 		 */
640 		last_xlog_switch_time = now;
641 	}
642 }
643 
644 /*
645  * Returns true if an immediate checkpoint request is pending.  (Note that
646  * this does not check the *current* checkpoint's IMMEDIATE flag, but whether
647  * there is one pending behind it.)
648  */
649 static bool
650 ImmediateCheckpointRequested(void)
651 {
652 	volatile CheckpointerShmemStruct *cps = CheckpointerShmem;
653 
654 	/*
655 	 * We don't need to acquire the ckpt_lck in this case because we're only
656 	 * looking at a single flag bit.
657 	 */
658 	if (cps->ckpt_flags & CHECKPOINT_IMMEDIATE)
659 		return true;
660 	return false;
661 }
662 
663 /*
664  * CheckpointWriteDelay -- control rate of checkpoint
665  *
666  * This function is called after each page write performed by BufferSync().
667  * It is responsible for throttling BufferSync()'s write rate to hit
668  * checkpoint_completion_target.
669  *
670  * The checkpoint request flags should be passed in; currently the only one
671  * examined is CHECKPOINT_IMMEDIATE, which disables delays between writes.
672  *
673  * 'progress' is an estimate of how much of the work has been done, as a
674  * fraction between 0.0 meaning none, and 1.0 meaning all done.
675  */
676 void
677 CheckpointWriteDelay(int flags, double progress)
678 {
679 	static int	absorb_counter = WRITES_PER_ABSORB;
680 
681 	/* Do nothing if checkpoint is being executed by non-checkpointer process */
682 	if (!AmCheckpointerProcess())
683 		return;
684 
685 	/*
686 	 * Perform the usual duties and take a nap, unless we're behind schedule,
687 	 * in which case we just try to catch up as quickly as possible.
688 	 */
689 	if (!(flags & CHECKPOINT_IMMEDIATE) &&
690 		!shutdown_requested &&
691 		!ImmediateCheckpointRequested() &&
692 		IsCheckpointOnSchedule(progress))
693 	{
694 		if (got_SIGHUP)
695 		{
696 			got_SIGHUP = false;
697 			ProcessConfigFile(PGC_SIGHUP);
698 			/* update shmem copies of config variables */
699 			UpdateSharedMemoryConfig();
700 		}
701 
702 		AbsorbFsyncRequests();
703 		absorb_counter = WRITES_PER_ABSORB;
704 
705 		CheckArchiveTimeout();
706 
707 		/*
708 		 * Report interim activity statistics to the stats collector.
709 		 */
710 		pgstat_send_bgwriter();
711 
712 		/*
713 		 * This sleep used to be connected to bgwriter_delay, typically 200ms.
714 		 * That resulted in more frequent wakeups if not much work to do.
715 		 * Checkpointer and bgwriter are no longer related so take the Big
716 		 * Sleep.
717 		 */
718 		pg_usleep(100000L);
719 	}
720 	else if (--absorb_counter <= 0)
721 	{
722 		/*
723 		 * Absorb pending fsync requests after each WRITES_PER_ABSORB write
724 		 * operations even when we don't sleep, to prevent overflow of the
725 		 * fsync request queue.
726 		 */
727 		AbsorbFsyncRequests();
728 		absorb_counter = WRITES_PER_ABSORB;
729 	}
730 }
731 
732 /*
733  * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint
734  *		 (or restartpoint) in time?
735  *
736  * Compares the current progress against the time/segments elapsed since last
737  * checkpoint, and returns true if the progress we've made this far is greater
738  * than the elapsed time/segments.
739  */
740 static bool
741 IsCheckpointOnSchedule(double progress)
742 {
743 	XLogRecPtr	recptr;
744 	struct timeval now;
745 	double		elapsed_xlogs,
746 				elapsed_time;
747 
748 	Assert(ckpt_active);
749 
750 	/* Scale progress according to checkpoint_completion_target. */
751 	progress *= CheckPointCompletionTarget;
752 
753 	/*
754 	 * Check against the cached value first. Only do the more expensive
755 	 * calculations once we reach the target previously calculated. Since
756 	 * neither time or WAL insert pointer moves backwards, a freshly
757 	 * calculated value can only be greater than or equal to the cached value.
758 	 */
759 	if (progress < ckpt_cached_elapsed)
760 		return false;
761 
762 	/*
763 	 * Check progress against WAL segments written and CheckPointSegments.
764 	 *
765 	 * We compare the current WAL insert location against the location
766 	 * computed before calling CreateCheckPoint. The code in XLogInsert that
767 	 * actually triggers a checkpoint when CheckPointSegments is exceeded
768 	 * compares against RedoRecptr, so this is not completely accurate.
769 	 * However, it's good enough for our purposes, we're only calculating an
770 	 * estimate anyway.
771 	 *
772 	 * During recovery, we compare last replayed WAL record's location with
773 	 * the location computed before calling CreateRestartPoint. That maintains
774 	 * the same pacing as we have during checkpoints in normal operation, but
775 	 * we might exceed max_wal_size by a fair amount. That's because there can
776 	 * be a large gap between a checkpoint's redo-pointer and the checkpoint
777 	 * record itself, and we only start the restartpoint after we've seen the
778 	 * checkpoint record. (The gap is typically up to CheckPointSegments *
779 	 * checkpoint_completion_target where checkpoint_completion_target is the
780 	 * value that was in effect when the WAL was generated).
781 	 */
782 	if (RecoveryInProgress())
783 		recptr = GetXLogReplayRecPtr(NULL);
784 	else
785 		recptr = GetInsertRecPtr();
786 	elapsed_xlogs = (((double) (recptr - ckpt_start_recptr)) /
787 					 wal_segment_size) / CheckPointSegments;
788 
789 	if (progress < elapsed_xlogs)
790 	{
791 		ckpt_cached_elapsed = elapsed_xlogs;
792 		return false;
793 	}
794 
795 	/*
796 	 * Check progress against time elapsed and checkpoint_timeout.
797 	 */
798 	gettimeofday(&now, NULL);
799 	elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) +
800 					now.tv_usec / 1000000.0) / CheckPointTimeout;
801 
802 	if (progress < elapsed_time)
803 	{
804 		ckpt_cached_elapsed = elapsed_time;
805 		return false;
806 	}
807 
808 	/* It looks like we're on schedule. */
809 	return true;
810 }
811 
812 
813 /* --------------------------------
814  *		signal handler routines
815  * --------------------------------
816  */
817 
818 /*
819  * chkpt_quickdie() occurs when signalled SIGQUIT by the postmaster.
820  *
821  * Some backend has bought the farm,
822  * so we need to stop what we're doing and exit.
823  */
824 static void
825 chkpt_quickdie(SIGNAL_ARGS)
826 {
827 	/*
828 	 * We DO NOT want to run proc_exit() or atexit() callbacks -- we're here
829 	 * because shared memory may be corrupted, so we don't want to try to
830 	 * clean up our transaction.  Just nail the windows shut and get out of
831 	 * town.  The callbacks wouldn't be safe to run from a signal handler,
832 	 * anyway.
833 	 *
834 	 * Note we do _exit(2) not _exit(0).  This is to force the postmaster into
835 	 * a system reset cycle if someone sends a manual SIGQUIT to a random
836 	 * backend.  This is necessary precisely because we don't clean up our
837 	 * shared memory state.  (The "dead man switch" mechanism in pmsignal.c
838 	 * should ensure the postmaster sees this as a crash, too, but no harm in
839 	 * being doubly sure.)
840 	 */
841 	_exit(2);
842 }
843 
844 /* SIGHUP: set flag to re-read config file at next convenient time */
845 static void
846 ChkptSigHupHandler(SIGNAL_ARGS)
847 {
848 	int			save_errno = errno;
849 
850 	got_SIGHUP = true;
851 	SetLatch(MyLatch);
852 
853 	errno = save_errno;
854 }
855 
856 /* SIGINT: set flag to run a normal checkpoint right away */
857 static void
858 ReqCheckpointHandler(SIGNAL_ARGS)
859 {
860 	int			save_errno = errno;
861 
862 	/*
863 	 * The signalling process should have set ckpt_flags nonzero, so all we
864 	 * need do is ensure that our main loop gets kicked out of any wait.
865 	 */
866 	SetLatch(MyLatch);
867 
868 	errno = save_errno;
869 }
870 
871 /* SIGUSR1: used for latch wakeups */
872 static void
873 chkpt_sigusr1_handler(SIGNAL_ARGS)
874 {
875 	int			save_errno = errno;
876 
877 	latch_sigusr1_handler();
878 
879 	errno = save_errno;
880 }
881 
882 /* SIGUSR2: set flag to run a shutdown checkpoint and exit */
883 static void
884 ReqShutdownHandler(SIGNAL_ARGS)
885 {
886 	int			save_errno = errno;
887 
888 	shutdown_requested = true;
889 	SetLatch(MyLatch);
890 
891 	errno = save_errno;
892 }
893 
894 
895 /* --------------------------------
896  *		communication with backends
897  * --------------------------------
898  */
899 
900 /*
901  * CheckpointerShmemSize
902  *		Compute space needed for checkpointer-related shared memory
903  */
904 Size
905 CheckpointerShmemSize(void)
906 {
907 	Size		size;
908 
909 	/*
910 	 * Currently, the size of the requests[] array is arbitrarily set equal to
911 	 * NBuffers.  This may prove too large or small ...
912 	 */
913 	size = offsetof(CheckpointerShmemStruct, requests);
914 	size = add_size(size, mul_size(NBuffers, sizeof(CheckpointerRequest)));
915 
916 	return size;
917 }
918 
919 /*
920  * CheckpointerShmemInit
921  *		Allocate and initialize checkpointer-related shared memory
922  */
923 void
924 CheckpointerShmemInit(void)
925 {
926 	Size		size = CheckpointerShmemSize();
927 	bool		found;
928 
929 	CheckpointerShmem = (CheckpointerShmemStruct *)
930 		ShmemInitStruct("Checkpointer Data",
931 						size,
932 						&found);
933 
934 	if (!found)
935 	{
936 		/*
937 		 * First time through, so initialize.  Note that we zero the whole
938 		 * requests array; this is so that CompactCheckpointerRequestQueue can
939 		 * assume that any pad bytes in the request structs are zeroes.
940 		 */
941 		MemSet(CheckpointerShmem, 0, size);
942 		SpinLockInit(&CheckpointerShmem->ckpt_lck);
943 		CheckpointerShmem->max_requests = NBuffers;
944 	}
945 }
946 
947 /*
948  * RequestCheckpoint
949  *		Called in backend processes to request a checkpoint
950  *
951  * flags is a bitwise OR of the following:
952  *	CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
953  *	CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
954  *	CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
955  *		ignoring checkpoint_completion_target parameter.
956  *	CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
957  *		since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
958  *		CHECKPOINT_END_OF_RECOVERY).
959  *	CHECKPOINT_WAIT: wait for completion before returning (otherwise,
960  *		just signal checkpointer to do it, and return).
961  *	CHECKPOINT_CAUSE_XLOG: checkpoint is requested due to xlog filling.
962  *		(This affects logging, and in particular enables CheckPointWarning.)
963  */
964 void
965 RequestCheckpoint(int flags)
966 {
967 	int			ntries;
968 	int			old_failed,
969 				old_started;
970 
971 	/*
972 	 * If in a standalone backend, just do it ourselves.
973 	 */
974 	if (!IsPostmasterEnvironment)
975 	{
976 		/*
977 		 * There's no point in doing slow checkpoints in a standalone backend,
978 		 * because there's no other backends the checkpoint could disrupt.
979 		 */
980 		CreateCheckPoint(flags | CHECKPOINT_IMMEDIATE);
981 
982 		/*
983 		 * After any checkpoint, close all smgr files.  This is so we won't
984 		 * hang onto smgr references to deleted files indefinitely.
985 		 */
986 		smgrcloseall();
987 
988 		return;
989 	}
990 
991 	/*
992 	 * Atomically set the request flags, and take a snapshot of the counters.
993 	 * When we see ckpt_started > old_started, we know the flags we set here
994 	 * have been seen by checkpointer.
995 	 *
996 	 * Note that we OR the flags with any existing flags, to avoid overriding
997 	 * a "stronger" request by another backend.  The flag senses must be
998 	 * chosen to make this work!
999 	 */
1000 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1001 
1002 	old_failed = CheckpointerShmem->ckpt_failed;
1003 	old_started = CheckpointerShmem->ckpt_started;
1004 	CheckpointerShmem->ckpt_flags |= (flags | CHECKPOINT_REQUESTED);
1005 
1006 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1007 
1008 	/*
1009 	 * Send signal to request checkpoint.  It's possible that the checkpointer
1010 	 * hasn't started yet, or is in process of restarting, so we will retry a
1011 	 * few times if needed.  (Actually, more than a few times, since on slow
1012 	 * or overloaded buildfarm machines, it's been observed that the
1013 	 * checkpointer can take several seconds to start.)  However, if not told
1014 	 * to wait for the checkpoint to occur, we consider failure to send the
1015 	 * signal to be nonfatal and merely LOG it.  The checkpointer should see
1016 	 * the request when it does start, with or without getting a signal.
1017 	 */
1018 #define MAX_SIGNAL_TRIES 600	/* max wait 60.0 sec */
1019 	for (ntries = 0;; ntries++)
1020 	{
1021 		if (CheckpointerShmem->checkpointer_pid == 0)
1022 		{
1023 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1024 			{
1025 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1026 					 "could not signal for checkpoint: checkpointer is not running");
1027 				break;
1028 			}
1029 		}
1030 		else if (kill(CheckpointerShmem->checkpointer_pid, SIGINT) != 0)
1031 		{
1032 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1033 			{
1034 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1035 					 "could not signal for checkpoint: %m");
1036 				break;
1037 			}
1038 		}
1039 		else
1040 			break;				/* signal sent successfully */
1041 
1042 		CHECK_FOR_INTERRUPTS();
1043 		pg_usleep(100000L);		/* wait 0.1 sec, then retry */
1044 	}
1045 
1046 	/*
1047 	 * If requested, wait for completion.  We detect completion according to
1048 	 * the algorithm given above.
1049 	 */
1050 	if (flags & CHECKPOINT_WAIT)
1051 	{
1052 		int			new_started,
1053 					new_failed;
1054 
1055 		/* Wait for a new checkpoint to start. */
1056 		for (;;)
1057 		{
1058 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1059 			new_started = CheckpointerShmem->ckpt_started;
1060 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1061 
1062 			if (new_started != old_started)
1063 				break;
1064 
1065 			CHECK_FOR_INTERRUPTS();
1066 			pg_usleep(100000L);
1067 		}
1068 
1069 		/*
1070 		 * We are waiting for ckpt_done >= new_started, in a modulo sense.
1071 		 */
1072 		for (;;)
1073 		{
1074 			int			new_done;
1075 
1076 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1077 			new_done = CheckpointerShmem->ckpt_done;
1078 			new_failed = CheckpointerShmem->ckpt_failed;
1079 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1080 
1081 			if (new_done - new_started >= 0)
1082 				break;
1083 
1084 			CHECK_FOR_INTERRUPTS();
1085 			pg_usleep(100000L);
1086 		}
1087 
1088 		if (new_failed != old_failed)
1089 			ereport(ERROR,
1090 					(errmsg("checkpoint request failed"),
1091 					 errhint("Consult recent messages in the server log for details.")));
1092 	}
1093 }
1094 
1095 /*
1096  * ForwardFsyncRequest
1097  *		Forward a file-fsync request from a backend to the checkpointer
1098  *
1099  * Whenever a backend is compelled to write directly to a relation
1100  * (which should be seldom, if the background writer is getting its job done),
1101  * the backend calls this routine to pass over knowledge that the relation
1102  * is dirty and must be fsync'd before next checkpoint.  We also use this
1103  * opportunity to count such writes for statistical purposes.
1104  *
1105  * This functionality is only supported for regular (not backend-local)
1106  * relations, so the rnode argument is intentionally RelFileNode not
1107  * RelFileNodeBackend.
1108  *
1109  * segno specifies which segment (not block!) of the relation needs to be
1110  * fsync'd.  (Since the valid range is much less than BlockNumber, we can
1111  * use high values for special flags; that's all internal to md.c, which
1112  * see for details.)
1113  *
1114  * To avoid holding the lock for longer than necessary, we normally write
1115  * to the requests[] queue without checking for duplicates.  The checkpointer
1116  * will have to eliminate dups internally anyway.  However, if we discover
1117  * that the queue is full, we make a pass over the entire queue to compact
1118  * it.  This is somewhat expensive, but the alternative is for the backend
1119  * to perform its own fsync, which is far more expensive in practice.  It
1120  * is theoretically possible a backend fsync might still be necessary, if
1121  * the queue is full and contains no duplicate entries.  In that case, we
1122  * let the backend know by returning false.
1123  */
1124 bool
1125 ForwardFsyncRequest(RelFileNode rnode, ForkNumber forknum, BlockNumber segno)
1126 {
1127 	CheckpointerRequest *request;
1128 	bool		too_full;
1129 
1130 	if (!IsUnderPostmaster)
1131 		return false;			/* probably shouldn't even get here */
1132 
1133 	if (AmCheckpointerProcess())
1134 		elog(ERROR, "ForwardFsyncRequest must not be called in checkpointer");
1135 
1136 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1137 
1138 	/* Count all backend writes regardless of if they fit in the queue */
1139 	if (!AmBackgroundWriterProcess())
1140 		CheckpointerShmem->num_backend_writes++;
1141 
1142 	/*
1143 	 * If the checkpointer isn't running or the request queue is full, the
1144 	 * backend will have to perform its own fsync request.  But before forcing
1145 	 * that to happen, we can try to compact the request queue.
1146 	 */
1147 	if (CheckpointerShmem->checkpointer_pid == 0 ||
1148 		(CheckpointerShmem->num_requests >= CheckpointerShmem->max_requests &&
1149 		 !CompactCheckpointerRequestQueue()))
1150 	{
1151 		/*
1152 		 * Count the subset of writes where backends have to do their own
1153 		 * fsync
1154 		 */
1155 		if (!AmBackgroundWriterProcess())
1156 			CheckpointerShmem->num_backend_fsync++;
1157 		LWLockRelease(CheckpointerCommLock);
1158 		return false;
1159 	}
1160 
1161 	/* OK, insert request */
1162 	request = &CheckpointerShmem->requests[CheckpointerShmem->num_requests++];
1163 	request->rnode = rnode;
1164 	request->forknum = forknum;
1165 	request->segno = segno;
1166 
1167 	/* If queue is more than half full, nudge the checkpointer to empty it */
1168 	too_full = (CheckpointerShmem->num_requests >=
1169 				CheckpointerShmem->max_requests / 2);
1170 
1171 	LWLockRelease(CheckpointerCommLock);
1172 
1173 	/* ... but not till after we release the lock */
1174 	if (too_full && ProcGlobal->checkpointerLatch)
1175 		SetLatch(ProcGlobal->checkpointerLatch);
1176 
1177 	return true;
1178 }
1179 
1180 /*
1181  * CompactCheckpointerRequestQueue
1182  *		Remove duplicates from the request queue to avoid backend fsyncs.
1183  *		Returns "true" if any entries were removed.
1184  *
1185  * Although a full fsync request queue is not common, it can lead to severe
1186  * performance problems when it does happen.  So far, this situation has
1187  * only been observed to occur when the system is under heavy write load,
1188  * and especially during the "sync" phase of a checkpoint.  Without this
1189  * logic, each backend begins doing an fsync for every block written, which
1190  * gets very expensive and can slow down the whole system.
1191  *
1192  * Trying to do this every time the queue is full could lose if there
1193  * aren't any removable entries.  But that should be vanishingly rare in
1194  * practice: there's one queue entry per shared buffer.
1195  */
1196 static bool
1197 CompactCheckpointerRequestQueue(void)
1198 {
1199 	struct CheckpointerSlotMapping
1200 	{
1201 		CheckpointerRequest request;
1202 		int			slot;
1203 	};
1204 
1205 	int			n,
1206 				preserve_count;
1207 	int			num_skipped = 0;
1208 	HASHCTL		ctl;
1209 	HTAB	   *htab;
1210 	bool	   *skip_slot;
1211 
1212 	/* must hold CheckpointerCommLock in exclusive mode */
1213 	Assert(LWLockHeldByMe(CheckpointerCommLock));
1214 
1215 	/* Initialize skip_slot array */
1216 	skip_slot = palloc0(sizeof(bool) * CheckpointerShmem->num_requests);
1217 
1218 	/* Initialize temporary hash table */
1219 	MemSet(&ctl, 0, sizeof(ctl));
1220 	ctl.keysize = sizeof(CheckpointerRequest);
1221 	ctl.entrysize = sizeof(struct CheckpointerSlotMapping);
1222 	ctl.hcxt = CurrentMemoryContext;
1223 
1224 	htab = hash_create("CompactCheckpointerRequestQueue",
1225 					   CheckpointerShmem->num_requests,
1226 					   &ctl,
1227 					   HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
1228 
1229 	/*
1230 	 * The basic idea here is that a request can be skipped if it's followed
1231 	 * by a later, identical request.  It might seem more sensible to work
1232 	 * backwards from the end of the queue and check whether a request is
1233 	 * *preceded* by an earlier, identical request, in the hopes of doing less
1234 	 * copying.  But that might change the semantics, if there's an
1235 	 * intervening FORGET_RELATION_FSYNC or FORGET_DATABASE_FSYNC request, so
1236 	 * we do it this way.  It would be possible to be even smarter if we made
1237 	 * the code below understand the specific semantics of such requests (it
1238 	 * could blow away preceding entries that would end up being canceled
1239 	 * anyhow), but it's not clear that the extra complexity would buy us
1240 	 * anything.
1241 	 */
1242 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1243 	{
1244 		CheckpointerRequest *request;
1245 		struct CheckpointerSlotMapping *slotmap;
1246 		bool		found;
1247 
1248 		/*
1249 		 * We use the request struct directly as a hashtable key.  This
1250 		 * assumes that any padding bytes in the structs are consistently the
1251 		 * same, which should be okay because we zeroed them in
1252 		 * CheckpointerShmemInit.  Note also that RelFileNode had better
1253 		 * contain no pad bytes.
1254 		 */
1255 		request = &CheckpointerShmem->requests[n];
1256 		slotmap = hash_search(htab, request, HASH_ENTER, &found);
1257 		if (found)
1258 		{
1259 			/* Duplicate, so mark the previous occurrence as skippable */
1260 			skip_slot[slotmap->slot] = true;
1261 			num_skipped++;
1262 		}
1263 		/* Remember slot containing latest occurrence of this request value */
1264 		slotmap->slot = n;
1265 	}
1266 
1267 	/* Done with the hash table. */
1268 	hash_destroy(htab);
1269 
1270 	/* If no duplicates, we're out of luck. */
1271 	if (!num_skipped)
1272 	{
1273 		pfree(skip_slot);
1274 		return false;
1275 	}
1276 
1277 	/* We found some duplicates; remove them. */
1278 	preserve_count = 0;
1279 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1280 	{
1281 		if (skip_slot[n])
1282 			continue;
1283 		CheckpointerShmem->requests[preserve_count++] = CheckpointerShmem->requests[n];
1284 	}
1285 	ereport(DEBUG1,
1286 			(errmsg("compacted fsync request queue from %d entries to %d entries",
1287 					CheckpointerShmem->num_requests, preserve_count)));
1288 	CheckpointerShmem->num_requests = preserve_count;
1289 
1290 	/* Cleanup. */
1291 	pfree(skip_slot);
1292 	return true;
1293 }
1294 
1295 /*
1296  * AbsorbFsyncRequests
1297  *		Retrieve queued fsync requests and pass them to local smgr.
1298  *
1299  * This is exported because it must be called during CreateCheckPoint;
1300  * we have to be sure we have accepted all pending requests just before
1301  * we start fsync'ing.  Since CreateCheckPoint sometimes runs in
1302  * non-checkpointer processes, do nothing if not checkpointer.
1303  */
1304 void
1305 AbsorbFsyncRequests(void)
1306 {
1307 	CheckpointerRequest *requests = NULL;
1308 	CheckpointerRequest *request;
1309 	int			n;
1310 
1311 	if (!AmCheckpointerProcess())
1312 		return;
1313 
1314 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1315 
1316 	/* Transfer stats counts into pending pgstats message */
1317 	BgWriterStats.m_buf_written_backend += CheckpointerShmem->num_backend_writes;
1318 	BgWriterStats.m_buf_fsync_backend += CheckpointerShmem->num_backend_fsync;
1319 
1320 	CheckpointerShmem->num_backend_writes = 0;
1321 	CheckpointerShmem->num_backend_fsync = 0;
1322 
1323 	/*
1324 	 * We try to avoid holding the lock for a long time by copying the request
1325 	 * array, and processing the requests after releasing the lock.
1326 	 *
1327 	 * Once we have cleared the requests from shared memory, we have to PANIC
1328 	 * if we then fail to absorb them (eg, because our hashtable runs out of
1329 	 * memory).  This is because the system cannot run safely if we are unable
1330 	 * to fsync what we have been told to fsync.  Fortunately, the hashtable
1331 	 * is so small that the problem is quite unlikely to arise in practice.
1332 	 */
1333 	n = CheckpointerShmem->num_requests;
1334 	if (n > 0)
1335 	{
1336 		requests = (CheckpointerRequest *) palloc(n * sizeof(CheckpointerRequest));
1337 		memcpy(requests, CheckpointerShmem->requests, n * sizeof(CheckpointerRequest));
1338 	}
1339 
1340 	START_CRIT_SECTION();
1341 
1342 	CheckpointerShmem->num_requests = 0;
1343 
1344 	LWLockRelease(CheckpointerCommLock);
1345 
1346 	for (request = requests; n > 0; request++, n--)
1347 		RememberFsyncRequest(request->rnode, request->forknum, request->segno);
1348 
1349 	END_CRIT_SECTION();
1350 
1351 	if (requests)
1352 		pfree(requests);
1353 }
1354 
1355 /*
1356  * Update any shared memory configurations based on config parameters
1357  */
1358 static void
1359 UpdateSharedMemoryConfig(void)
1360 {
1361 	/* update global shmem state for sync rep */
1362 	SyncRepUpdateSyncStandbysDefined();
1363 
1364 	/*
1365 	 * If full_page_writes has been changed by SIGHUP, we update it in shared
1366 	 * memory and write an XLOG_FPW_CHANGE record.
1367 	 */
1368 	UpdateFullPageWrites();
1369 
1370 	elog(DEBUG2, "checkpointer updated shared memory configuration values");
1371 }
1372 
1373 /*
1374  * FirstCallSinceLastCheckpoint allows a process to take an action once
1375  * per checkpoint cycle by asynchronously checking for checkpoint completion.
1376  */
1377 bool
1378 FirstCallSinceLastCheckpoint(void)
1379 {
1380 	static int	ckpt_done = 0;
1381 	int			new_done;
1382 	bool		FirstCall = false;
1383 
1384 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1385 	new_done = CheckpointerShmem->ckpt_done;
1386 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1387 
1388 	if (new_done != ckpt_done)
1389 		FirstCall = true;
1390 
1391 	ckpt_done = new_done;
1392 
1393 	return FirstCall;
1394 }
1395