1 /*-------------------------------------------------------------------------
2  *
3  * checkpointer.c
4  *
5  * The checkpointer is new as of Postgres 9.2.  It handles all checkpoints.
6  * Checkpoints are automatically dispatched after a certain amount of time has
7  * elapsed since the last one, and it can be signaled to perform requested
8  * checkpoints as well.  (The GUC parameter that mandates a checkpoint every
9  * so many WAL segments is implemented by having backends signal when they
10  * fill WAL segments; the checkpointer itself doesn't watch for the
11  * condition.)
12  *
13  * The checkpointer is started by the postmaster as soon as the startup
14  * subprocess finishes, or as soon as recovery begins if we are doing archive
15  * recovery.  It remains alive until the postmaster commands it to terminate.
16  * Normal termination is by SIGUSR2, which instructs the checkpointer to
17  * execute a shutdown checkpoint and then exit(0).  (All backends must be
18  * stopped before SIGUSR2 is issued!)  Emergency termination is by SIGQUIT;
19  * like any backend, the checkpointer will simply abort and exit on SIGQUIT.
20  *
21  * If the checkpointer exits unexpectedly, the postmaster treats that the same
22  * as a backend crash: shared memory may be corrupted, so remaining backends
23  * should be killed by SIGQUIT and then a recovery cycle started.  (Even if
24  * shared memory isn't corrupted, we have lost information about which
25  * files need to be fsync'd for the next checkpoint, and so a system
26  * restart needs to be forced.)
27  *
28  *
29  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
30  *
31  *
32  * IDENTIFICATION
33  *	  src/backend/postmaster/checkpointer.c
34  *
35  *-------------------------------------------------------------------------
36  */
37 #include "postgres.h"
38 
39 #include <signal.h>
40 #include <sys/time.h>
41 #include <time.h>
42 #include <unistd.h>
43 
44 #include "access/xlog.h"
45 #include "access/xlog_internal.h"
46 #include "libpq/pqsignal.h"
47 #include "miscadmin.h"
48 #include "pgstat.h"
49 #include "postmaster/bgwriter.h"
50 #include "replication/syncrep.h"
51 #include "storage/bufmgr.h"
52 #include "storage/condition_variable.h"
53 #include "storage/fd.h"
54 #include "storage/ipc.h"
55 #include "storage/lwlock.h"
56 #include "storage/proc.h"
57 #include "storage/shmem.h"
58 #include "storage/smgr.h"
59 #include "storage/spin.h"
60 #include "utils/guc.h"
61 #include "utils/memutils.h"
62 #include "utils/resowner.h"
63 
64 
65 /*----------
66  * Shared memory area for communication between checkpointer and backends
67  *
68  * The ckpt counters allow backends to watch for completion of a checkpoint
69  * request they send.  Here's how it works:
70  *	* At start of a checkpoint, checkpointer reads (and clears) the request
71  *	  flags and increments ckpt_started, while holding ckpt_lck.
72  *	* On completion of a checkpoint, checkpointer sets ckpt_done to
73  *	  equal ckpt_started.
74  *	* On failure of a checkpoint, checkpointer increments ckpt_failed
75  *	  and sets ckpt_done to equal ckpt_started.
76  *
77  * The algorithm for backends is:
78  *	1. Record current values of ckpt_failed and ckpt_started, and
79  *	   set request flags, while holding ckpt_lck.
80  *	2. Send signal to request checkpoint.
81  *	3. Sleep until ckpt_started changes.  Now you know a checkpoint has
82  *	   begun since you started this algorithm (although *not* that it was
83  *	   specifically initiated by your signal), and that it is using your flags.
84  *	4. Record new value of ckpt_started.
85  *	5. Sleep until ckpt_done >= saved value of ckpt_started.  (Use modulo
86  *	   arithmetic here in case counters wrap around.)  Now you know a
87  *	   checkpoint has started and completed, but not whether it was
88  *	   successful.
89  *	6. If ckpt_failed is different from the originally saved value,
90  *	   assume request failed; otherwise it was definitely successful.
91  *
92  * ckpt_flags holds the OR of the checkpoint request flags sent by all
93  * requesting backends since the last checkpoint start.  The flags are
94  * chosen so that OR'ing is the correct way to combine multiple requests.
95  *
96  * num_backend_writes is used to count the number of buffer writes performed
97  * by user backend processes.  This counter should be wide enough that it
98  * can't overflow during a single processing cycle.  num_backend_fsync
99  * counts the subset of those writes that also had to do their own fsync,
100  * because the checkpointer failed to absorb their request.
101  *
102  * The requests array holds fsync requests sent by backends and not yet
103  * absorbed by the checkpointer.
104  *
105  * Unlike the checkpoint fields, num_backend_writes, num_backend_fsync, and
106  * the requests fields are protected by CheckpointerCommLock.
107  *----------
108  */
109 typedef struct
110 {
111 	SyncRequestType type;		/* request type */
112 	FileTag		ftag;			/* file identifier */
113 } CheckpointerRequest;
114 
115 typedef struct
116 {
117 	pid_t		checkpointer_pid;	/* PID (0 if not started) */
118 
119 	slock_t		ckpt_lck;		/* protects all the ckpt_* fields */
120 
121 	int			ckpt_started;	/* advances when checkpoint starts */
122 	int			ckpt_done;		/* advances when checkpoint done */
123 	int			ckpt_failed;	/* advances when checkpoint fails */
124 
125 	int			ckpt_flags;		/* checkpoint flags, as defined in xlog.h */
126 
127 	ConditionVariable start_cv; /* signaled when ckpt_started advances */
128 	ConditionVariable done_cv;	/* signaled when ckpt_done advances */
129 
130 	uint32		num_backend_writes; /* counts user backend buffer writes */
131 	uint32		num_backend_fsync;	/* counts user backend fsync calls */
132 
133 	int			num_requests;	/* current # of requests */
134 	int			max_requests;	/* allocated array size */
135 	CheckpointerRequest requests[FLEXIBLE_ARRAY_MEMBER];
136 } CheckpointerShmemStruct;
137 
138 static CheckpointerShmemStruct *CheckpointerShmem;
139 
140 /* interval for calling AbsorbSyncRequests in CheckpointWriteDelay */
141 #define WRITES_PER_ABSORB		1000
142 
143 /*
144  * GUC parameters
145  */
146 int			CheckPointTimeout = 300;
147 int			CheckPointWarning = 30;
148 double		CheckPointCompletionTarget = 0.5;
149 
150 /*
151  * Flags set by interrupt handlers for later service in the main loop.
152  */
153 static volatile sig_atomic_t got_SIGHUP = false;
154 static volatile sig_atomic_t shutdown_requested = false;
155 
156 /*
157  * Private state
158  */
159 static bool ckpt_active = false;
160 
161 /* these values are valid when ckpt_active is true: */
162 static pg_time_t ckpt_start_time;
163 static XLogRecPtr ckpt_start_recptr;
164 static double ckpt_cached_elapsed;
165 
166 static pg_time_t last_checkpoint_time;
167 static pg_time_t last_xlog_switch_time;
168 
169 /* Prototypes for private functions */
170 
171 static void CheckArchiveTimeout(void);
172 static bool IsCheckpointOnSchedule(double progress);
173 static bool ImmediateCheckpointRequested(void);
174 static bool CompactCheckpointerRequestQueue(void);
175 static void UpdateSharedMemoryConfig(void);
176 
177 /* Signal handlers */
178 
179 static void chkpt_quickdie(SIGNAL_ARGS);
180 static void ChkptSigHupHandler(SIGNAL_ARGS);
181 static void ReqCheckpointHandler(SIGNAL_ARGS);
182 static void chkpt_sigusr1_handler(SIGNAL_ARGS);
183 static void ReqShutdownHandler(SIGNAL_ARGS);
184 
185 
186 /*
187  * Main entry point for checkpointer process
188  *
189  * This is invoked from AuxiliaryProcessMain, which has already created the
190  * basic execution environment, but not enabled signals yet.
191  */
192 void
CheckpointerMain(void)193 CheckpointerMain(void)
194 {
195 	sigjmp_buf	local_sigjmp_buf;
196 	MemoryContext checkpointer_context;
197 
198 	CheckpointerShmem->checkpointer_pid = MyProcPid;
199 
200 	/*
201 	 * Properly accept or ignore signals the postmaster might send us
202 	 *
203 	 * Note: we deliberately ignore SIGTERM, because during a standard Unix
204 	 * system shutdown cycle, init will SIGTERM all processes at once.  We
205 	 * want to wait for the backends to exit, whereupon the postmaster will
206 	 * tell us it's okay to shut down (via SIGUSR2).
207 	 */
208 	pqsignal(SIGHUP, ChkptSigHupHandler);	/* set flag to read config file */
209 	pqsignal(SIGINT, ReqCheckpointHandler); /* request checkpoint */
210 	pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
211 	pqsignal(SIGQUIT, chkpt_quickdie);	/* hard crash time */
212 	pqsignal(SIGALRM, SIG_IGN);
213 	pqsignal(SIGPIPE, SIG_IGN);
214 	pqsignal(SIGUSR1, chkpt_sigusr1_handler);
215 	pqsignal(SIGUSR2, ReqShutdownHandler);	/* request shutdown */
216 
217 	/*
218 	 * Reset some signals that are accepted by postmaster but not here
219 	 */
220 	pqsignal(SIGCHLD, SIG_DFL);
221 
222 	/* We allow SIGQUIT (quickdie) at all times */
223 	sigdelset(&BlockSig, SIGQUIT);
224 
225 	/*
226 	 * Initialize so that first time-driven event happens at the correct time.
227 	 */
228 	last_checkpoint_time = last_xlog_switch_time = (pg_time_t) time(NULL);
229 
230 	/*
231 	 * Create a memory context that we will do all our work in.  We do this so
232 	 * that we can reset the context during error recovery and thereby avoid
233 	 * possible memory leaks.  Formerly this code just ran in
234 	 * TopMemoryContext, but resetting that would be a really bad idea.
235 	 */
236 	checkpointer_context = AllocSetContextCreate(TopMemoryContext,
237 												 "Checkpointer",
238 												 ALLOCSET_DEFAULT_SIZES);
239 	MemoryContextSwitchTo(checkpointer_context);
240 
241 	/*
242 	 * If an exception is encountered, processing resumes here.
243 	 *
244 	 * See notes in postgres.c about the design of this coding.
245 	 */
246 	if (sigsetjmp(local_sigjmp_buf, 1) != 0)
247 	{
248 		/* Since not using PG_TRY, must reset error stack by hand */
249 		error_context_stack = NULL;
250 
251 		/* Prevent interrupts while cleaning up */
252 		HOLD_INTERRUPTS();
253 
254 		/* Report the error to the server log */
255 		EmitErrorReport();
256 
257 		/*
258 		 * These operations are really just a minimal subset of
259 		 * AbortTransaction().  We don't have very many resources to worry
260 		 * about in checkpointer, but we do have LWLocks, buffers, and temp
261 		 * files.
262 		 */
263 		LWLockReleaseAll();
264 		ConditionVariableCancelSleep();
265 		pgstat_report_wait_end();
266 		AbortBufferIO();
267 		UnlockBuffers();
268 		ReleaseAuxProcessResources(false);
269 		AtEOXact_Buffers(false);
270 		AtEOXact_SMgr();
271 		AtEOXact_Files(false);
272 		AtEOXact_HashTables(false);
273 
274 		/* Warn any waiting backends that the checkpoint failed. */
275 		if (ckpt_active)
276 		{
277 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
278 			CheckpointerShmem->ckpt_failed++;
279 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
280 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
281 
282 			ConditionVariableBroadcast(&CheckpointerShmem->done_cv);
283 
284 			ckpt_active = false;
285 		}
286 
287 		/*
288 		 * Now return to normal top-level context and clear ErrorContext for
289 		 * next time.
290 		 */
291 		MemoryContextSwitchTo(checkpointer_context);
292 		FlushErrorState();
293 
294 		/* Flush any leaked data in the top-level context */
295 		MemoryContextResetAndDeleteChildren(checkpointer_context);
296 
297 		/* Now we can allow interrupts again */
298 		RESUME_INTERRUPTS();
299 
300 		/*
301 		 * Sleep at least 1 second after any error.  A write error is likely
302 		 * to be repeated, and we don't want to be filling the error logs as
303 		 * fast as we can.
304 		 */
305 		pg_usleep(1000000L);
306 
307 		/*
308 		 * Close all open files after any error.  This is helpful on Windows,
309 		 * where holding deleted files open causes various strange errors.
310 		 * It's not clear we need it elsewhere, but shouldn't hurt.
311 		 */
312 		smgrcloseall();
313 	}
314 
315 	/* We can now handle ereport(ERROR) */
316 	PG_exception_stack = &local_sigjmp_buf;
317 
318 	/*
319 	 * Unblock signals (they were blocked when the postmaster forked us)
320 	 */
321 	PG_SETMASK(&UnBlockSig);
322 
323 	/*
324 	 * Ensure all shared memory values are set correctly for the config. Doing
325 	 * this here ensures no race conditions from other concurrent updaters.
326 	 */
327 	UpdateSharedMemoryConfig();
328 
329 	/*
330 	 * Advertise our latch that backends can use to wake us up while we're
331 	 * sleeping.
332 	 */
333 	ProcGlobal->checkpointerLatch = &MyProc->procLatch;
334 
335 	/*
336 	 * Loop forever
337 	 */
338 	for (;;)
339 	{
340 		bool		do_checkpoint = false;
341 		int			flags = 0;
342 		pg_time_t	now;
343 		int			elapsed_secs;
344 		int			cur_timeout;
345 
346 		/* Clear any already-pending wakeups */
347 		ResetLatch(MyLatch);
348 
349 		/*
350 		 * Process any requests or signals received recently.
351 		 */
352 		AbsorbSyncRequests();
353 
354 		if (got_SIGHUP)
355 		{
356 			got_SIGHUP = false;
357 			ProcessConfigFile(PGC_SIGHUP);
358 
359 			/*
360 			 * Checkpointer is the last process to shut down, so we ask it to
361 			 * hold the keys for a range of other tasks required most of which
362 			 * have nothing to do with checkpointing at all.
363 			 *
364 			 * For various reasons, some config values can change dynamically
365 			 * so the primary copy of them is held in shared memory to make
366 			 * sure all backends see the same value.  We make Checkpointer
367 			 * responsible for updating the shared memory copy if the
368 			 * parameter setting changes because of SIGHUP.
369 			 */
370 			UpdateSharedMemoryConfig();
371 		}
372 		if (shutdown_requested)
373 		{
374 			/*
375 			 * From here on, elog(ERROR) should end with exit(1), not send
376 			 * control back to the sigsetjmp block above
377 			 */
378 			ExitOnAnyError = true;
379 			/* Close down the database */
380 			ShutdownXLOG(0, 0);
381 			/* Normal exit from the checkpointer is here */
382 			proc_exit(0);		/* done */
383 		}
384 
385 		/*
386 		 * Detect a pending checkpoint request by checking whether the flags
387 		 * word in shared memory is nonzero.  We shouldn't need to acquire the
388 		 * ckpt_lck for this.
389 		 */
390 		if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags)
391 		{
392 			do_checkpoint = true;
393 			BgWriterStats.m_requested_checkpoints++;
394 		}
395 
396 		/*
397 		 * Force a checkpoint if too much time has elapsed since the last one.
398 		 * Note that we count a timed checkpoint in stats only when this
399 		 * occurs without an external request, but we set the CAUSE_TIME flag
400 		 * bit even if there is also an external request.
401 		 */
402 		now = (pg_time_t) time(NULL);
403 		elapsed_secs = now - last_checkpoint_time;
404 		if (elapsed_secs >= CheckPointTimeout)
405 		{
406 			if (!do_checkpoint)
407 				BgWriterStats.m_timed_checkpoints++;
408 			do_checkpoint = true;
409 			flags |= CHECKPOINT_CAUSE_TIME;
410 		}
411 
412 		/*
413 		 * Do a checkpoint if requested.
414 		 */
415 		if (do_checkpoint)
416 		{
417 			bool		ckpt_performed = false;
418 			bool		do_restartpoint;
419 
420 			/*
421 			 * Check if we should perform a checkpoint or a restartpoint. As a
422 			 * side-effect, RecoveryInProgress() initializes TimeLineID if
423 			 * it's not set yet.
424 			 */
425 			do_restartpoint = RecoveryInProgress();
426 
427 			/*
428 			 * Atomically fetch the request flags to figure out what kind of a
429 			 * checkpoint we should perform, and increase the started-counter
430 			 * to acknowledge that we've started a new checkpoint.
431 			 */
432 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
433 			flags |= CheckpointerShmem->ckpt_flags;
434 			CheckpointerShmem->ckpt_flags = 0;
435 			CheckpointerShmem->ckpt_started++;
436 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
437 
438 			ConditionVariableBroadcast(&CheckpointerShmem->start_cv);
439 
440 			/*
441 			 * The end-of-recovery checkpoint is a real checkpoint that's
442 			 * performed while we're still in recovery.
443 			 */
444 			if (flags & CHECKPOINT_END_OF_RECOVERY)
445 				do_restartpoint = false;
446 
447 			/*
448 			 * We will warn if (a) too soon since last checkpoint (whatever
449 			 * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
450 			 * since the last checkpoint start.  Note in particular that this
451 			 * implementation will not generate warnings caused by
452 			 * CheckPointTimeout < CheckPointWarning.
453 			 */
454 			if (!do_restartpoint &&
455 				(flags & CHECKPOINT_CAUSE_XLOG) &&
456 				elapsed_secs < CheckPointWarning)
457 				ereport(LOG,
458 						(errmsg_plural("checkpoints are occurring too frequently (%d second apart)",
459 									   "checkpoints are occurring too frequently (%d seconds apart)",
460 									   elapsed_secs,
461 									   elapsed_secs),
462 						 errhint("Consider increasing the configuration parameter \"max_wal_size\".")));
463 
464 			/*
465 			 * Initialize checkpointer-private variables used during
466 			 * checkpoint.
467 			 */
468 			ckpt_active = true;
469 			if (do_restartpoint)
470 				ckpt_start_recptr = GetXLogReplayRecPtr(NULL);
471 			else
472 				ckpt_start_recptr = GetInsertRecPtr();
473 			ckpt_start_time = now;
474 			ckpt_cached_elapsed = 0;
475 
476 			/*
477 			 * Do the checkpoint.
478 			 */
479 			if (!do_restartpoint)
480 			{
481 				CreateCheckPoint(flags);
482 				ckpt_performed = true;
483 			}
484 			else
485 				ckpt_performed = CreateRestartPoint(flags);
486 
487 			/*
488 			 * After any checkpoint, close all smgr files.  This is so we
489 			 * won't hang onto smgr references to deleted files indefinitely.
490 			 */
491 			smgrcloseall();
492 
493 			/*
494 			 * Indicate checkpoint completion to any waiting backends.
495 			 */
496 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
497 			CheckpointerShmem->ckpt_done = CheckpointerShmem->ckpt_started;
498 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
499 
500 			ConditionVariableBroadcast(&CheckpointerShmem->done_cv);
501 
502 			if (ckpt_performed)
503 			{
504 				/*
505 				 * Note we record the checkpoint start time not end time as
506 				 * last_checkpoint_time.  This is so that time-driven
507 				 * checkpoints happen at a predictable spacing.
508 				 */
509 				last_checkpoint_time = now;
510 			}
511 			else
512 			{
513 				/*
514 				 * We were not able to perform the restartpoint (checkpoints
515 				 * throw an ERROR in case of error).  Most likely because we
516 				 * have not received any new checkpoint WAL records since the
517 				 * last restartpoint. Try again in 15 s.
518 				 */
519 				last_checkpoint_time = now - CheckPointTimeout + 15;
520 			}
521 
522 			ckpt_active = false;
523 		}
524 
525 		/* Check for archive_timeout and switch xlog files if necessary. */
526 		CheckArchiveTimeout();
527 
528 		/*
529 		 * Send off activity statistics to the stats collector.  (The reason
530 		 * why we re-use bgwriter-related code for this is that the bgwriter
531 		 * and checkpointer used to be just one process.  It's probably not
532 		 * worth the trouble to split the stats support into two independent
533 		 * stats message types.)
534 		 */
535 		pgstat_send_bgwriter();
536 
537 		/*
538 		 * Sleep until we are signaled or it's time for another checkpoint or
539 		 * xlog file switch.
540 		 */
541 		now = (pg_time_t) time(NULL);
542 		elapsed_secs = now - last_checkpoint_time;
543 		if (elapsed_secs >= CheckPointTimeout)
544 			continue;			/* no sleep for us ... */
545 		cur_timeout = CheckPointTimeout - elapsed_secs;
546 		if (XLogArchiveTimeout > 0 && !RecoveryInProgress())
547 		{
548 			elapsed_secs = now - last_xlog_switch_time;
549 			if (elapsed_secs >= XLogArchiveTimeout)
550 				continue;		/* no sleep for us ... */
551 			cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs);
552 		}
553 
554 		(void) WaitLatch(MyLatch,
555 						 WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH,
556 						 cur_timeout * 1000L /* convert to ms */ ,
557 						 WAIT_EVENT_CHECKPOINTER_MAIN);
558 	}
559 }
560 
561 /*
562  * CheckArchiveTimeout -- check for archive_timeout and switch xlog files
563  *
564  * This will switch to a new WAL file and force an archive file write if
565  * meaningful activity is recorded in the current WAL file. This includes most
566  * writes, including just a single checkpoint record, but excludes WAL records
567  * that were inserted with the XLOG_MARK_UNIMPORTANT flag being set (like
568  * snapshots of running transactions).  Such records, depending on
569  * configuration, occur on regular intervals and don't contain important
570  * information.  This avoids generating archives with a few unimportant
571  * records.
572  */
573 static void
CheckArchiveTimeout(void)574 CheckArchiveTimeout(void)
575 {
576 	pg_time_t	now;
577 	pg_time_t	last_time;
578 	XLogRecPtr	last_switch_lsn;
579 
580 	if (XLogArchiveTimeout <= 0 || RecoveryInProgress())
581 		return;
582 
583 	now = (pg_time_t) time(NULL);
584 
585 	/* First we do a quick check using possibly-stale local state. */
586 	if ((int) (now - last_xlog_switch_time) < XLogArchiveTimeout)
587 		return;
588 
589 	/*
590 	 * Update local state ... note that last_xlog_switch_time is the last time
591 	 * a switch was performed *or requested*.
592 	 */
593 	last_time = GetLastSegSwitchData(&last_switch_lsn);
594 
595 	last_xlog_switch_time = Max(last_xlog_switch_time, last_time);
596 
597 	/* Now we can do the real checks */
598 	if ((int) (now - last_xlog_switch_time) >= XLogArchiveTimeout)
599 	{
600 		/*
601 		 * Switch segment only when "important" WAL has been logged since the
602 		 * last segment switch (last_switch_lsn points to end of segment
603 		 * switch occurred in).
604 		 */
605 		if (GetLastImportantRecPtr() > last_switch_lsn)
606 		{
607 			XLogRecPtr	switchpoint;
608 
609 			/* mark switch as unimportant, avoids triggering checkpoints */
610 			switchpoint = RequestXLogSwitch(true);
611 
612 			/*
613 			 * If the returned pointer points exactly to a segment boundary,
614 			 * assume nothing happened.
615 			 */
616 			if (XLogSegmentOffset(switchpoint, wal_segment_size) != 0)
617 				elog(DEBUG1, "write-ahead log switch forced (archive_timeout=%d)",
618 					 XLogArchiveTimeout);
619 		}
620 
621 		/*
622 		 * Update state in any case, so we don't retry constantly when the
623 		 * system is idle.
624 		 */
625 		last_xlog_switch_time = now;
626 	}
627 }
628 
629 /*
630  * Returns true if an immediate checkpoint request is pending.  (Note that
631  * this does not check the *current* checkpoint's IMMEDIATE flag, but whether
632  * there is one pending behind it.)
633  */
634 static bool
ImmediateCheckpointRequested(void)635 ImmediateCheckpointRequested(void)
636 {
637 	volatile CheckpointerShmemStruct *cps = CheckpointerShmem;
638 
639 	/*
640 	 * We don't need to acquire the ckpt_lck in this case because we're only
641 	 * looking at a single flag bit.
642 	 */
643 	if (cps->ckpt_flags & CHECKPOINT_IMMEDIATE)
644 		return true;
645 	return false;
646 }
647 
648 /*
649  * CheckpointWriteDelay -- control rate of checkpoint
650  *
651  * This function is called after each page write performed by BufferSync().
652  * It is responsible for throttling BufferSync()'s write rate to hit
653  * checkpoint_completion_target.
654  *
655  * The checkpoint request flags should be passed in; currently the only one
656  * examined is CHECKPOINT_IMMEDIATE, which disables delays between writes.
657  *
658  * 'progress' is an estimate of how much of the work has been done, as a
659  * fraction between 0.0 meaning none, and 1.0 meaning all done.
660  */
661 void
CheckpointWriteDelay(int flags,double progress)662 CheckpointWriteDelay(int flags, double progress)
663 {
664 	static int	absorb_counter = WRITES_PER_ABSORB;
665 
666 	/* Do nothing if checkpoint is being executed by non-checkpointer process */
667 	if (!AmCheckpointerProcess())
668 		return;
669 
670 	/*
671 	 * Perform the usual duties and take a nap, unless we're behind schedule,
672 	 * in which case we just try to catch up as quickly as possible.
673 	 */
674 	if (!(flags & CHECKPOINT_IMMEDIATE) &&
675 		!shutdown_requested &&
676 		!ImmediateCheckpointRequested() &&
677 		IsCheckpointOnSchedule(progress))
678 	{
679 		if (got_SIGHUP)
680 		{
681 			got_SIGHUP = false;
682 			ProcessConfigFile(PGC_SIGHUP);
683 			/* update shmem copies of config variables */
684 			UpdateSharedMemoryConfig();
685 		}
686 
687 		AbsorbSyncRequests();
688 		absorb_counter = WRITES_PER_ABSORB;
689 
690 		CheckArchiveTimeout();
691 
692 		/*
693 		 * Report interim activity statistics to the stats collector.
694 		 */
695 		pgstat_send_bgwriter();
696 
697 		/*
698 		 * This sleep used to be connected to bgwriter_delay, typically 200ms.
699 		 * That resulted in more frequent wakeups if not much work to do.
700 		 * Checkpointer and bgwriter are no longer related so take the Big
701 		 * Sleep.
702 		 */
703 		pg_usleep(100000L);
704 	}
705 	else if (--absorb_counter <= 0)
706 	{
707 		/*
708 		 * Absorb pending fsync requests after each WRITES_PER_ABSORB write
709 		 * operations even when we don't sleep, to prevent overflow of the
710 		 * fsync request queue.
711 		 */
712 		AbsorbSyncRequests();
713 		absorb_counter = WRITES_PER_ABSORB;
714 	}
715 }
716 
717 /*
718  * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint
719  *		 (or restartpoint) in time?
720  *
721  * Compares the current progress against the time/segments elapsed since last
722  * checkpoint, and returns true if the progress we've made this far is greater
723  * than the elapsed time/segments.
724  */
725 static bool
IsCheckpointOnSchedule(double progress)726 IsCheckpointOnSchedule(double progress)
727 {
728 	XLogRecPtr	recptr;
729 	struct timeval now;
730 	double		elapsed_xlogs,
731 				elapsed_time;
732 
733 	Assert(ckpt_active);
734 
735 	/* Scale progress according to checkpoint_completion_target. */
736 	progress *= CheckPointCompletionTarget;
737 
738 	/*
739 	 * Check against the cached value first. Only do the more expensive
740 	 * calculations once we reach the target previously calculated. Since
741 	 * neither time or WAL insert pointer moves backwards, a freshly
742 	 * calculated value can only be greater than or equal to the cached value.
743 	 */
744 	if (progress < ckpt_cached_elapsed)
745 		return false;
746 
747 	/*
748 	 * Check progress against WAL segments written and CheckPointSegments.
749 	 *
750 	 * We compare the current WAL insert location against the location
751 	 * computed before calling CreateCheckPoint. The code in XLogInsert that
752 	 * actually triggers a checkpoint when CheckPointSegments is exceeded
753 	 * compares against RedoRecptr, so this is not completely accurate.
754 	 * However, it's good enough for our purposes, we're only calculating an
755 	 * estimate anyway.
756 	 *
757 	 * During recovery, we compare last replayed WAL record's location with
758 	 * the location computed before calling CreateRestartPoint. That maintains
759 	 * the same pacing as we have during checkpoints in normal operation, but
760 	 * we might exceed max_wal_size by a fair amount. That's because there can
761 	 * be a large gap between a checkpoint's redo-pointer and the checkpoint
762 	 * record itself, and we only start the restartpoint after we've seen the
763 	 * checkpoint record. (The gap is typically up to CheckPointSegments *
764 	 * checkpoint_completion_target where checkpoint_completion_target is the
765 	 * value that was in effect when the WAL was generated).
766 	 */
767 	if (RecoveryInProgress())
768 		recptr = GetXLogReplayRecPtr(NULL);
769 	else
770 		recptr = GetInsertRecPtr();
771 	elapsed_xlogs = (((double) (recptr - ckpt_start_recptr)) /
772 					 wal_segment_size) / CheckPointSegments;
773 
774 	if (progress < elapsed_xlogs)
775 	{
776 		ckpt_cached_elapsed = elapsed_xlogs;
777 		return false;
778 	}
779 
780 	/*
781 	 * Check progress against time elapsed and checkpoint_timeout.
782 	 */
783 	gettimeofday(&now, NULL);
784 	elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) +
785 					now.tv_usec / 1000000.0) / CheckPointTimeout;
786 
787 	if (progress < elapsed_time)
788 	{
789 		ckpt_cached_elapsed = elapsed_time;
790 		return false;
791 	}
792 
793 	/* It looks like we're on schedule. */
794 	return true;
795 }
796 
797 
798 /* --------------------------------
799  *		signal handler routines
800  * --------------------------------
801  */
802 
803 /*
804  * chkpt_quickdie() occurs when signalled SIGQUIT by the postmaster.
805  *
806  * Some backend has bought the farm,
807  * so we need to stop what we're doing and exit.
808  */
809 static void
chkpt_quickdie(SIGNAL_ARGS)810 chkpt_quickdie(SIGNAL_ARGS)
811 {
812 	/*
813 	 * We DO NOT want to run proc_exit() or atexit() callbacks -- we're here
814 	 * because shared memory may be corrupted, so we don't want to try to
815 	 * clean up our transaction.  Just nail the windows shut and get out of
816 	 * town.  The callbacks wouldn't be safe to run from a signal handler,
817 	 * anyway.
818 	 *
819 	 * Note we do _exit(2) not _exit(0).  This is to force the postmaster into
820 	 * a system reset cycle if someone sends a manual SIGQUIT to a random
821 	 * backend.  This is necessary precisely because we don't clean up our
822 	 * shared memory state.  (The "dead man switch" mechanism in pmsignal.c
823 	 * should ensure the postmaster sees this as a crash, too, but no harm in
824 	 * being doubly sure.)
825 	 */
826 	_exit(2);
827 }
828 
829 /* SIGHUP: set flag to re-read config file at next convenient time */
830 static void
ChkptSigHupHandler(SIGNAL_ARGS)831 ChkptSigHupHandler(SIGNAL_ARGS)
832 {
833 	int			save_errno = errno;
834 
835 	got_SIGHUP = true;
836 	SetLatch(MyLatch);
837 
838 	errno = save_errno;
839 }
840 
841 /* SIGINT: set flag to run a normal checkpoint right away */
842 static void
ReqCheckpointHandler(SIGNAL_ARGS)843 ReqCheckpointHandler(SIGNAL_ARGS)
844 {
845 	int			save_errno = errno;
846 
847 	/*
848 	 * The signalling process should have set ckpt_flags nonzero, so all we
849 	 * need do is ensure that our main loop gets kicked out of any wait.
850 	 */
851 	SetLatch(MyLatch);
852 
853 	errno = save_errno;
854 }
855 
856 /* SIGUSR1: used for latch wakeups */
857 static void
chkpt_sigusr1_handler(SIGNAL_ARGS)858 chkpt_sigusr1_handler(SIGNAL_ARGS)
859 {
860 	int			save_errno = errno;
861 
862 	latch_sigusr1_handler();
863 
864 	errno = save_errno;
865 }
866 
867 /* SIGUSR2: set flag to run a shutdown checkpoint and exit */
868 static void
ReqShutdownHandler(SIGNAL_ARGS)869 ReqShutdownHandler(SIGNAL_ARGS)
870 {
871 	int			save_errno = errno;
872 
873 	shutdown_requested = true;
874 	SetLatch(MyLatch);
875 
876 	errno = save_errno;
877 }
878 
879 
880 /* --------------------------------
881  *		communication with backends
882  * --------------------------------
883  */
884 
885 /*
886  * CheckpointerShmemSize
887  *		Compute space needed for checkpointer-related shared memory
888  */
889 Size
CheckpointerShmemSize(void)890 CheckpointerShmemSize(void)
891 {
892 	Size		size;
893 
894 	/*
895 	 * Currently, the size of the requests[] array is arbitrarily set equal to
896 	 * NBuffers.  This may prove too large or small ...
897 	 */
898 	size = offsetof(CheckpointerShmemStruct, requests);
899 	size = add_size(size, mul_size(NBuffers, sizeof(CheckpointerRequest)));
900 
901 	return size;
902 }
903 
904 /*
905  * CheckpointerShmemInit
906  *		Allocate and initialize checkpointer-related shared memory
907  */
908 void
CheckpointerShmemInit(void)909 CheckpointerShmemInit(void)
910 {
911 	Size		size = CheckpointerShmemSize();
912 	bool		found;
913 
914 	CheckpointerShmem = (CheckpointerShmemStruct *)
915 		ShmemInitStruct("Checkpointer Data",
916 						size,
917 						&found);
918 
919 	if (!found)
920 	{
921 		/*
922 		 * First time through, so initialize.  Note that we zero the whole
923 		 * requests array; this is so that CompactCheckpointerRequestQueue can
924 		 * assume that any pad bytes in the request structs are zeroes.
925 		 */
926 		MemSet(CheckpointerShmem, 0, size);
927 		SpinLockInit(&CheckpointerShmem->ckpt_lck);
928 		CheckpointerShmem->max_requests = NBuffers;
929 		ConditionVariableInit(&CheckpointerShmem->start_cv);
930 		ConditionVariableInit(&CheckpointerShmem->done_cv);
931 	}
932 }
933 
934 /*
935  * RequestCheckpoint
936  *		Called in backend processes to request a checkpoint
937  *
938  * flags is a bitwise OR of the following:
939  *	CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
940  *	CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
941  *	CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
942  *		ignoring checkpoint_completion_target parameter.
943  *	CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
944  *		since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
945  *		CHECKPOINT_END_OF_RECOVERY).
946  *	CHECKPOINT_WAIT: wait for completion before returning (otherwise,
947  *		just signal checkpointer to do it, and return).
948  *	CHECKPOINT_CAUSE_XLOG: checkpoint is requested due to xlog filling.
949  *		(This affects logging, and in particular enables CheckPointWarning.)
950  */
951 void
RequestCheckpoint(int flags)952 RequestCheckpoint(int flags)
953 {
954 	int			ntries;
955 	int			old_failed,
956 				old_started;
957 
958 	/*
959 	 * If in a standalone backend, just do it ourselves.
960 	 */
961 	if (!IsPostmasterEnvironment)
962 	{
963 		/*
964 		 * There's no point in doing slow checkpoints in a standalone backend,
965 		 * because there's no other backends the checkpoint could disrupt.
966 		 */
967 		CreateCheckPoint(flags | CHECKPOINT_IMMEDIATE);
968 
969 		/*
970 		 * After any checkpoint, close all smgr files.  This is so we won't
971 		 * hang onto smgr references to deleted files indefinitely.
972 		 */
973 		smgrcloseall();
974 
975 		return;
976 	}
977 
978 	/*
979 	 * Atomically set the request flags, and take a snapshot of the counters.
980 	 * When we see ckpt_started > old_started, we know the flags we set here
981 	 * have been seen by checkpointer.
982 	 *
983 	 * Note that we OR the flags with any existing flags, to avoid overriding
984 	 * a "stronger" request by another backend.  The flag senses must be
985 	 * chosen to make this work!
986 	 */
987 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
988 
989 	old_failed = CheckpointerShmem->ckpt_failed;
990 	old_started = CheckpointerShmem->ckpt_started;
991 	CheckpointerShmem->ckpt_flags |= (flags | CHECKPOINT_REQUESTED);
992 
993 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
994 
995 	/*
996 	 * Send signal to request checkpoint.  It's possible that the checkpointer
997 	 * hasn't started yet, or is in process of restarting, so we will retry a
998 	 * few times if needed.  (Actually, more than a few times, since on slow
999 	 * or overloaded buildfarm machines, it's been observed that the
1000 	 * checkpointer can take several seconds to start.)  However, if not told
1001 	 * to wait for the checkpoint to occur, we consider failure to send the
1002 	 * signal to be nonfatal and merely LOG it.  The checkpointer should see
1003 	 * the request when it does start, with or without getting a signal.
1004 	 */
1005 #define MAX_SIGNAL_TRIES 600	/* max wait 60.0 sec */
1006 	for (ntries = 0;; ntries++)
1007 	{
1008 		if (CheckpointerShmem->checkpointer_pid == 0)
1009 		{
1010 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1011 			{
1012 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1013 					 "could not signal for checkpoint: checkpointer is not running");
1014 				break;
1015 			}
1016 		}
1017 		else if (kill(CheckpointerShmem->checkpointer_pid, SIGINT) != 0)
1018 		{
1019 			if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1020 			{
1021 				elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1022 					 "could not signal for checkpoint: %m");
1023 				break;
1024 			}
1025 		}
1026 		else
1027 			break;				/* signal sent successfully */
1028 
1029 		CHECK_FOR_INTERRUPTS();
1030 		pg_usleep(100000L);		/* wait 0.1 sec, then retry */
1031 	}
1032 
1033 	/*
1034 	 * If requested, wait for completion.  We detect completion according to
1035 	 * the algorithm given above.
1036 	 */
1037 	if (flags & CHECKPOINT_WAIT)
1038 	{
1039 		int			new_started,
1040 					new_failed;
1041 
1042 		/* Wait for a new checkpoint to start. */
1043 		ConditionVariablePrepareToSleep(&CheckpointerShmem->start_cv);
1044 		for (;;)
1045 		{
1046 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1047 			new_started = CheckpointerShmem->ckpt_started;
1048 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1049 
1050 			if (new_started != old_started)
1051 				break;
1052 
1053 			ConditionVariableSleep(&CheckpointerShmem->start_cv,
1054 								   WAIT_EVENT_CHECKPOINT_START);
1055 		}
1056 		ConditionVariableCancelSleep();
1057 
1058 		/*
1059 		 * We are waiting for ckpt_done >= new_started, in a modulo sense.
1060 		 */
1061 		ConditionVariablePrepareToSleep(&CheckpointerShmem->done_cv);
1062 		for (;;)
1063 		{
1064 			int			new_done;
1065 
1066 			SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1067 			new_done = CheckpointerShmem->ckpt_done;
1068 			new_failed = CheckpointerShmem->ckpt_failed;
1069 			SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1070 
1071 			if (new_done - new_started >= 0)
1072 				break;
1073 
1074 			ConditionVariableSleep(&CheckpointerShmem->done_cv,
1075 								   WAIT_EVENT_CHECKPOINT_DONE);
1076 		}
1077 		ConditionVariableCancelSleep();
1078 
1079 		if (new_failed != old_failed)
1080 			ereport(ERROR,
1081 					(errmsg("checkpoint request failed"),
1082 					 errhint("Consult recent messages in the server log for details.")));
1083 	}
1084 }
1085 
1086 /*
1087  * ForwardSyncRequest
1088  *		Forward a file-fsync request from a backend to the checkpointer
1089  *
1090  * Whenever a backend is compelled to write directly to a relation
1091  * (which should be seldom, if the background writer is getting its job done),
1092  * the backend calls this routine to pass over knowledge that the relation
1093  * is dirty and must be fsync'd before next checkpoint.  We also use this
1094  * opportunity to count such writes for statistical purposes.
1095  *
1096  * To avoid holding the lock for longer than necessary, we normally write
1097  * to the requests[] queue without checking for duplicates.  The checkpointer
1098  * will have to eliminate dups internally anyway.  However, if we discover
1099  * that the queue is full, we make a pass over the entire queue to compact
1100  * it.  This is somewhat expensive, but the alternative is for the backend
1101  * to perform its own fsync, which is far more expensive in practice.  It
1102  * is theoretically possible a backend fsync might still be necessary, if
1103  * the queue is full and contains no duplicate entries.  In that case, we
1104  * let the backend know by returning false.
1105  */
1106 bool
ForwardSyncRequest(const FileTag * ftag,SyncRequestType type)1107 ForwardSyncRequest(const FileTag *ftag, SyncRequestType type)
1108 {
1109 	CheckpointerRequest *request;
1110 	bool		too_full;
1111 
1112 	if (!IsUnderPostmaster)
1113 		return false;			/* probably shouldn't even get here */
1114 
1115 	if (AmCheckpointerProcess())
1116 		elog(ERROR, "ForwardSyncRequest must not be called in checkpointer");
1117 
1118 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1119 
1120 	/* Count all backend writes regardless of if they fit in the queue */
1121 	if (!AmBackgroundWriterProcess())
1122 		CheckpointerShmem->num_backend_writes++;
1123 
1124 	/*
1125 	 * If the checkpointer isn't running or the request queue is full, the
1126 	 * backend will have to perform its own fsync request.  But before forcing
1127 	 * that to happen, we can try to compact the request queue.
1128 	 */
1129 	if (CheckpointerShmem->checkpointer_pid == 0 ||
1130 		(CheckpointerShmem->num_requests >= CheckpointerShmem->max_requests &&
1131 		 !CompactCheckpointerRequestQueue()))
1132 	{
1133 		/*
1134 		 * Count the subset of writes where backends have to do their own
1135 		 * fsync
1136 		 */
1137 		if (!AmBackgroundWriterProcess())
1138 			CheckpointerShmem->num_backend_fsync++;
1139 		LWLockRelease(CheckpointerCommLock);
1140 		return false;
1141 	}
1142 
1143 	/* OK, insert request */
1144 	request = &CheckpointerShmem->requests[CheckpointerShmem->num_requests++];
1145 	request->ftag = *ftag;
1146 	request->type = type;
1147 
1148 	/* If queue is more than half full, nudge the checkpointer to empty it */
1149 	too_full = (CheckpointerShmem->num_requests >=
1150 				CheckpointerShmem->max_requests / 2);
1151 
1152 	LWLockRelease(CheckpointerCommLock);
1153 
1154 	/* ... but not till after we release the lock */
1155 	if (too_full && ProcGlobal->checkpointerLatch)
1156 		SetLatch(ProcGlobal->checkpointerLatch);
1157 
1158 	return true;
1159 }
1160 
1161 /*
1162  * CompactCheckpointerRequestQueue
1163  *		Remove duplicates from the request queue to avoid backend fsyncs.
1164  *		Returns "true" if any entries were removed.
1165  *
1166  * Although a full fsync request queue is not common, it can lead to severe
1167  * performance problems when it does happen.  So far, this situation has
1168  * only been observed to occur when the system is under heavy write load,
1169  * and especially during the "sync" phase of a checkpoint.  Without this
1170  * logic, each backend begins doing an fsync for every block written, which
1171  * gets very expensive and can slow down the whole system.
1172  *
1173  * Trying to do this every time the queue is full could lose if there
1174  * aren't any removable entries.  But that should be vanishingly rare in
1175  * practice: there's one queue entry per shared buffer.
1176  */
1177 static bool
CompactCheckpointerRequestQueue(void)1178 CompactCheckpointerRequestQueue(void)
1179 {
1180 	struct CheckpointerSlotMapping
1181 	{
1182 		CheckpointerRequest request;
1183 		int			slot;
1184 	};
1185 
1186 	int			n,
1187 				preserve_count;
1188 	int			num_skipped = 0;
1189 	HASHCTL		ctl;
1190 	HTAB	   *htab;
1191 	bool	   *skip_slot;
1192 
1193 	/* must hold CheckpointerCommLock in exclusive mode */
1194 	Assert(LWLockHeldByMe(CheckpointerCommLock));
1195 
1196 	/* Initialize skip_slot array */
1197 	skip_slot = palloc0(sizeof(bool) * CheckpointerShmem->num_requests);
1198 
1199 	/* Initialize temporary hash table */
1200 	MemSet(&ctl, 0, sizeof(ctl));
1201 	ctl.keysize = sizeof(CheckpointerRequest);
1202 	ctl.entrysize = sizeof(struct CheckpointerSlotMapping);
1203 	ctl.hcxt = CurrentMemoryContext;
1204 
1205 	htab = hash_create("CompactCheckpointerRequestQueue",
1206 					   CheckpointerShmem->num_requests,
1207 					   &ctl,
1208 					   HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
1209 
1210 	/*
1211 	 * The basic idea here is that a request can be skipped if it's followed
1212 	 * by a later, identical request.  It might seem more sensible to work
1213 	 * backwards from the end of the queue and check whether a request is
1214 	 * *preceded* by an earlier, identical request, in the hopes of doing less
1215 	 * copying.  But that might change the semantics, if there's an
1216 	 * intervening SYNC_FORGET_REQUEST or SYNC_FILTER_REQUEST, so we do it
1217 	 * this way.  It would be possible to be even smarter if we made the code
1218 	 * below understand the specific semantics of such requests (it could blow
1219 	 * away preceding entries that would end up being canceled anyhow), but
1220 	 * it's not clear that the extra complexity would buy us anything.
1221 	 */
1222 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1223 	{
1224 		CheckpointerRequest *request;
1225 		struct CheckpointerSlotMapping *slotmap;
1226 		bool		found;
1227 
1228 		/*
1229 		 * We use the request struct directly as a hashtable key.  This
1230 		 * assumes that any padding bytes in the structs are consistently the
1231 		 * same, which should be okay because we zeroed them in
1232 		 * CheckpointerShmemInit.  Note also that RelFileNode had better
1233 		 * contain no pad bytes.
1234 		 */
1235 		request = &CheckpointerShmem->requests[n];
1236 		slotmap = hash_search(htab, request, HASH_ENTER, &found);
1237 		if (found)
1238 		{
1239 			/* Duplicate, so mark the previous occurrence as skippable */
1240 			skip_slot[slotmap->slot] = true;
1241 			num_skipped++;
1242 		}
1243 		/* Remember slot containing latest occurrence of this request value */
1244 		slotmap->slot = n;
1245 	}
1246 
1247 	/* Done with the hash table. */
1248 	hash_destroy(htab);
1249 
1250 	/* If no duplicates, we're out of luck. */
1251 	if (!num_skipped)
1252 	{
1253 		pfree(skip_slot);
1254 		return false;
1255 	}
1256 
1257 	/* We found some duplicates; remove them. */
1258 	preserve_count = 0;
1259 	for (n = 0; n < CheckpointerShmem->num_requests; n++)
1260 	{
1261 		if (skip_slot[n])
1262 			continue;
1263 		CheckpointerShmem->requests[preserve_count++] = CheckpointerShmem->requests[n];
1264 	}
1265 	ereport(DEBUG1,
1266 			(errmsg("compacted fsync request queue from %d entries to %d entries",
1267 					CheckpointerShmem->num_requests, preserve_count)));
1268 	CheckpointerShmem->num_requests = preserve_count;
1269 
1270 	/* Cleanup. */
1271 	pfree(skip_slot);
1272 	return true;
1273 }
1274 
1275 /*
1276  * AbsorbSyncRequests
1277  *		Retrieve queued sync requests and pass them to sync mechanism.
1278  *
1279  * This is exported because it must be called during CreateCheckPoint;
1280  * we have to be sure we have accepted all pending requests just before
1281  * we start fsync'ing.  Since CreateCheckPoint sometimes runs in
1282  * non-checkpointer processes, do nothing if not checkpointer.
1283  */
1284 void
AbsorbSyncRequests(void)1285 AbsorbSyncRequests(void)
1286 {
1287 	CheckpointerRequest *requests = NULL;
1288 	CheckpointerRequest *request;
1289 	int			n;
1290 
1291 	if (!AmCheckpointerProcess())
1292 		return;
1293 
1294 	LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1295 
1296 	/* Transfer stats counts into pending pgstats message */
1297 	BgWriterStats.m_buf_written_backend += CheckpointerShmem->num_backend_writes;
1298 	BgWriterStats.m_buf_fsync_backend += CheckpointerShmem->num_backend_fsync;
1299 
1300 	CheckpointerShmem->num_backend_writes = 0;
1301 	CheckpointerShmem->num_backend_fsync = 0;
1302 
1303 	/*
1304 	 * We try to avoid holding the lock for a long time by copying the request
1305 	 * array, and processing the requests after releasing the lock.
1306 	 *
1307 	 * Once we have cleared the requests from shared memory, we have to PANIC
1308 	 * if we then fail to absorb them (eg, because our hashtable runs out of
1309 	 * memory).  This is because the system cannot run safely if we are unable
1310 	 * to fsync what we have been told to fsync.  Fortunately, the hashtable
1311 	 * is so small that the problem is quite unlikely to arise in practice.
1312 	 */
1313 	n = CheckpointerShmem->num_requests;
1314 	if (n > 0)
1315 	{
1316 		requests = (CheckpointerRequest *) palloc(n * sizeof(CheckpointerRequest));
1317 		memcpy(requests, CheckpointerShmem->requests, n * sizeof(CheckpointerRequest));
1318 	}
1319 
1320 	START_CRIT_SECTION();
1321 
1322 	CheckpointerShmem->num_requests = 0;
1323 
1324 	LWLockRelease(CheckpointerCommLock);
1325 
1326 	for (request = requests; n > 0; request++, n--)
1327 		RememberSyncRequest(&request->ftag, request->type);
1328 
1329 	END_CRIT_SECTION();
1330 
1331 	if (requests)
1332 		pfree(requests);
1333 }
1334 
1335 /*
1336  * Update any shared memory configurations based on config parameters
1337  */
1338 static void
UpdateSharedMemoryConfig(void)1339 UpdateSharedMemoryConfig(void)
1340 {
1341 	/* update global shmem state for sync rep */
1342 	SyncRepUpdateSyncStandbysDefined();
1343 
1344 	/*
1345 	 * If full_page_writes has been changed by SIGHUP, we update it in shared
1346 	 * memory and write an XLOG_FPW_CHANGE record.
1347 	 */
1348 	UpdateFullPageWrites();
1349 
1350 	elog(DEBUG2, "checkpointer updated shared memory configuration values");
1351 }
1352 
1353 /*
1354  * FirstCallSinceLastCheckpoint allows a process to take an action once
1355  * per checkpoint cycle by asynchronously checking for checkpoint completion.
1356  */
1357 bool
FirstCallSinceLastCheckpoint(void)1358 FirstCallSinceLastCheckpoint(void)
1359 {
1360 	static int	ckpt_done = 0;
1361 	int			new_done;
1362 	bool		FirstCall = false;
1363 
1364 	SpinLockAcquire(&CheckpointerShmem->ckpt_lck);
1365 	new_done = CheckpointerShmem->ckpt_done;
1366 	SpinLockRelease(&CheckpointerShmem->ckpt_lck);
1367 
1368 	if (new_done != ckpt_done)
1369 		FirstCall = true;
1370 
1371 	ckpt_done = new_done;
1372 
1373 	return FirstCall;
1374 }
1375