1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  *	  code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  *		index_create()			- Create a cataloged index relation
16  *		index_drop()			- Removes index relation from catalogs
17  *		BuildIndexInfo()		- Prepare to insert index tuples
18  *		FormIndexDatum()		- Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/relscan.h"
30 #include "access/sysattr.h"
31 #include "access/tableam.h"
32 #include "access/transam.h"
33 #include "access/visibilitymap.h"
34 #include "access/xact.h"
35 #include "bootstrap/bootstrap.h"
36 #include "catalog/binary_upgrade.h"
37 #include "catalog/catalog.h"
38 #include "catalog/dependency.h"
39 #include "catalog/heap.h"
40 #include "catalog/index.h"
41 #include "catalog/objectaccess.h"
42 #include "catalog/partition.h"
43 #include "catalog/pg_am.h"
44 #include "catalog/pg_collation.h"
45 #include "catalog/pg_constraint.h"
46 #include "catalog/pg_description.h"
47 #include "catalog/pg_depend.h"
48 #include "catalog/pg_inherits.h"
49 #include "catalog/pg_operator.h"
50 #include "catalog/pg_opclass.h"
51 #include "catalog/pg_tablespace.h"
52 #include "catalog/pg_trigger.h"
53 #include "catalog/pg_type.h"
54 #include "catalog/storage.h"
55 #include "commands/event_trigger.h"
56 #include "commands/progress.h"
57 #include "commands/tablecmds.h"
58 #include "commands/trigger.h"
59 #include "executor/executor.h"
60 #include "miscadmin.h"
61 #include "nodes/makefuncs.h"
62 #include "nodes/nodeFuncs.h"
63 #include "optimizer/optimizer.h"
64 #include "parser/parser.h"
65 #include "pgstat.h"
66 #include "rewrite/rewriteManip.h"
67 #include "storage/bufmgr.h"
68 #include "storage/lmgr.h"
69 #include "storage/predicate.h"
70 #include "storage/procarray.h"
71 #include "storage/smgr.h"
72 #include "utils/builtins.h"
73 #include "utils/fmgroids.h"
74 #include "utils/guc.h"
75 #include "utils/inval.h"
76 #include "utils/lsyscache.h"
77 #include "utils/memutils.h"
78 #include "utils/pg_rusage.h"
79 #include "utils/syscache.h"
80 #include "utils/tuplesort.h"
81 #include "utils/snapmgr.h"
82 
83 
84 /* Potentially set by pg_upgrade_support functions */
85 Oid			binary_upgrade_next_index_pg_class_oid = InvalidOid;
86 
87 /*
88  * Pointer-free representation of variables used when reindexing system
89  * catalogs; we use this to propagate those values to parallel workers.
90  */
91 typedef struct
92 {
93 	Oid			currentlyReindexedHeap;
94 	Oid			currentlyReindexedIndex;
95 	int			numPendingReindexedIndexes;
96 	Oid			pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER];
97 } SerializedReindexState;
98 
99 /* non-export function prototypes */
100 static bool relationHasPrimaryKey(Relation rel);
101 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
102 										  IndexInfo *indexInfo,
103 										  List *indexColNames,
104 										  Oid accessMethodObjectId,
105 										  Oid *collationObjectId,
106 										  Oid *classObjectId);
107 static void InitializeAttributeOids(Relation indexRelation,
108 									int numatts, Oid indexoid);
109 static void AppendAttributeTuples(Relation indexRelation, int numatts);
110 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
111 								Oid parentIndexId,
112 								IndexInfo *indexInfo,
113 								Oid *collationOids,
114 								Oid *classOids,
115 								int16 *coloptions,
116 								bool primary,
117 								bool isexclusion,
118 								bool immediate,
119 								bool isvalid,
120 								bool isready);
121 static void index_update_stats(Relation rel,
122 							   bool hasindex,
123 							   double reltuples);
124 static void IndexCheckExclusion(Relation heapRelation,
125 								Relation indexRelation,
126 								IndexInfo *indexInfo);
127 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
128 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
129 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
130 static void ResetReindexProcessing(void);
131 static void SetReindexPending(List *indexes);
132 static void RemoveReindexPending(Oid indexOid);
133 
134 
135 /*
136  * relationHasPrimaryKey
137  *		See whether an existing relation has a primary key.
138  *
139  * Caller must have suitable lock on the relation.
140  *
141  * Note: we intentionally do not check indisvalid here; that's because this
142  * is used to enforce the rule that there can be only one indisprimary index,
143  * and we want that to be true even if said index is invalid.
144  */
145 static bool
relationHasPrimaryKey(Relation rel)146 relationHasPrimaryKey(Relation rel)
147 {
148 	bool		result = false;
149 	List	   *indexoidlist;
150 	ListCell   *indexoidscan;
151 
152 	/*
153 	 * Get the list of index OIDs for the table from the relcache, and look up
154 	 * each one in the pg_index syscache until we find one marked primary key
155 	 * (hopefully there isn't more than one such).
156 	 */
157 	indexoidlist = RelationGetIndexList(rel);
158 
159 	foreach(indexoidscan, indexoidlist)
160 	{
161 		Oid			indexoid = lfirst_oid(indexoidscan);
162 		HeapTuple	indexTuple;
163 
164 		indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
165 		if (!HeapTupleIsValid(indexTuple))	/* should not happen */
166 			elog(ERROR, "cache lookup failed for index %u", indexoid);
167 		result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
168 		ReleaseSysCache(indexTuple);
169 		if (result)
170 			break;
171 	}
172 
173 	list_free(indexoidlist);
174 
175 	return result;
176 }
177 
178 /*
179  * index_check_primary_key
180  *		Apply special checks needed before creating a PRIMARY KEY index
181  *
182  * This processing used to be in DefineIndex(), but has been split out
183  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
184  *
185  * We check for a pre-existing primary key, and that all columns of the index
186  * are simple column references (not expressions), and that all those
187  * columns are marked NOT NULL.  If not, fail.
188  *
189  * We used to automatically change unmarked columns to NOT NULL here by doing
190  * our own local ALTER TABLE command.  But that doesn't work well if we're
191  * executing one subcommand of an ALTER TABLE: the operations may not get
192  * performed in the right order overall.  Now we expect that the parser
193  * inserted any required ALTER TABLE SET NOT NULL operations before trying
194  * to create a primary-key index.
195  *
196  * Caller had better have at least ShareLock on the table, else the not-null
197  * checking isn't trustworthy.
198  */
199 void
index_check_primary_key(Relation heapRel,IndexInfo * indexInfo,bool is_alter_table,IndexStmt * stmt)200 index_check_primary_key(Relation heapRel,
201 						IndexInfo *indexInfo,
202 						bool is_alter_table,
203 						IndexStmt *stmt)
204 {
205 	int			i;
206 
207 	/*
208 	 * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
209 	 * already a PRIMARY KEY.  In CREATE TABLE for an ordinary relation, we
210 	 * have faith that the parser rejected multiple pkey clauses; and CREATE
211 	 * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
212 	 */
213 	if ((is_alter_table || heapRel->rd_rel->relispartition) &&
214 		relationHasPrimaryKey(heapRel))
215 	{
216 		ereport(ERROR,
217 				(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
218 				 errmsg("multiple primary keys for table \"%s\" are not allowed",
219 						RelationGetRelationName(heapRel))));
220 	}
221 
222 	/*
223 	 * Check that all of the attributes in a primary key are marked as not
224 	 * null.  (We don't really expect to see that; it'd mean the parser messed
225 	 * up.  But it seems wise to check anyway.)
226 	 */
227 	for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
228 	{
229 		AttrNumber	attnum = indexInfo->ii_IndexAttrNumbers[i];
230 		HeapTuple	atttuple;
231 		Form_pg_attribute attform;
232 
233 		if (attnum == 0)
234 			ereport(ERROR,
235 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
236 					 errmsg("primary keys cannot be expressions")));
237 
238 		/* System attributes are never null, so no need to check */
239 		if (attnum < 0)
240 			continue;
241 
242 		atttuple = SearchSysCache2(ATTNUM,
243 								   ObjectIdGetDatum(RelationGetRelid(heapRel)),
244 								   Int16GetDatum(attnum));
245 		if (!HeapTupleIsValid(atttuple))
246 			elog(ERROR, "cache lookup failed for attribute %d of relation %u",
247 				 attnum, RelationGetRelid(heapRel));
248 		attform = (Form_pg_attribute) GETSTRUCT(atttuple);
249 
250 		if (!attform->attnotnull)
251 			ereport(ERROR,
252 					(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
253 					 errmsg("primary key column \"%s\" is not marked NOT NULL",
254 							NameStr(attform->attname))));
255 
256 		ReleaseSysCache(atttuple);
257 	}
258 }
259 
260 /*
261  *		ConstructTupleDescriptor
262  *
263  * Build an index tuple descriptor for a new index
264  */
265 static TupleDesc
ConstructTupleDescriptor(Relation heapRelation,IndexInfo * indexInfo,List * indexColNames,Oid accessMethodObjectId,Oid * collationObjectId,Oid * classObjectId)266 ConstructTupleDescriptor(Relation heapRelation,
267 						 IndexInfo *indexInfo,
268 						 List *indexColNames,
269 						 Oid accessMethodObjectId,
270 						 Oid *collationObjectId,
271 						 Oid *classObjectId)
272 {
273 	int			numatts = indexInfo->ii_NumIndexAttrs;
274 	int			numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
275 	ListCell   *colnames_item = list_head(indexColNames);
276 	ListCell   *indexpr_item = list_head(indexInfo->ii_Expressions);
277 	IndexAmRoutine *amroutine;
278 	TupleDesc	heapTupDesc;
279 	TupleDesc	indexTupDesc;
280 	int			natts;			/* #atts in heap rel --- for error checks */
281 	int			i;
282 
283 	/* We need access to the index AM's API struct */
284 	amroutine = GetIndexAmRoutineByAmId(accessMethodObjectId, false);
285 
286 	/* ... and to the table's tuple descriptor */
287 	heapTupDesc = RelationGetDescr(heapRelation);
288 	natts = RelationGetForm(heapRelation)->relnatts;
289 
290 	/*
291 	 * allocate the new tuple descriptor
292 	 */
293 	indexTupDesc = CreateTemplateTupleDesc(numatts);
294 
295 	/*
296 	 * Fill in the pg_attribute row.
297 	 */
298 	for (i = 0; i < numatts; i++)
299 	{
300 		AttrNumber	atnum = indexInfo->ii_IndexAttrNumbers[i];
301 		Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
302 		HeapTuple	tuple;
303 		Form_pg_type typeTup;
304 		Form_pg_opclass opclassTup;
305 		Oid			keyType;
306 
307 		MemSet(to, 0, ATTRIBUTE_FIXED_PART_SIZE);
308 		to->attnum = i + 1;
309 		to->attstattarget = -1;
310 		to->attcacheoff = -1;
311 		to->attislocal = true;
312 		to->attcollation = (i < numkeyatts) ?
313 			collationObjectId[i] : InvalidOid;
314 
315 		/*
316 		 * Set the attribute name as specified by caller.
317 		 */
318 		if (colnames_item == NULL)	/* shouldn't happen */
319 			elog(ERROR, "too few entries in colnames list");
320 		namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
321 		colnames_item = lnext(colnames_item);
322 
323 		/*
324 		 * For simple index columns, we copy some pg_attribute fields from the
325 		 * parent relation.  For expressions we have to look at the expression
326 		 * result.
327 		 */
328 		if (atnum != 0)
329 		{
330 			/* Simple index column */
331 			const FormData_pg_attribute *from;
332 
333 			Assert(atnum > 0);	/* should've been caught above */
334 
335 			if (atnum > natts)	/* safety check */
336 				elog(ERROR, "invalid column number %d", atnum);
337 			from = TupleDescAttr(heapTupDesc,
338 								 AttrNumberGetAttrOffset(atnum));
339 
340 			to->atttypid = from->atttypid;
341 			to->attlen = from->attlen;
342 			to->attndims = from->attndims;
343 			to->atttypmod = from->atttypmod;
344 			to->attbyval = from->attbyval;
345 			to->attstorage = from->attstorage;
346 			to->attalign = from->attalign;
347 		}
348 		else
349 		{
350 			/* Expressional index */
351 			Node	   *indexkey;
352 
353 			if (indexpr_item == NULL)	/* shouldn't happen */
354 				elog(ERROR, "too few entries in indexprs list");
355 			indexkey = (Node *) lfirst(indexpr_item);
356 			indexpr_item = lnext(indexpr_item);
357 
358 			/*
359 			 * Lookup the expression type in pg_type for the type length etc.
360 			 */
361 			keyType = exprType(indexkey);
362 			tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
363 			if (!HeapTupleIsValid(tuple))
364 				elog(ERROR, "cache lookup failed for type %u", keyType);
365 			typeTup = (Form_pg_type) GETSTRUCT(tuple);
366 
367 			/*
368 			 * Assign some of the attributes values. Leave the rest.
369 			 */
370 			to->atttypid = keyType;
371 			to->attlen = typeTup->typlen;
372 			to->attbyval = typeTup->typbyval;
373 			to->attstorage = typeTup->typstorage;
374 			to->attalign = typeTup->typalign;
375 			to->atttypmod = exprTypmod(indexkey);
376 
377 			ReleaseSysCache(tuple);
378 
379 			/*
380 			 * Make sure the expression yields a type that's safe to store in
381 			 * an index.  We need this defense because we have index opclasses
382 			 * for pseudo-types such as "record", and the actually stored type
383 			 * had better be safe; eg, a named composite type is okay, an
384 			 * anonymous record type is not.  The test is the same as for
385 			 * whether a table column is of a safe type (which is why we
386 			 * needn't check for the non-expression case).
387 			 */
388 			CheckAttributeType(NameStr(to->attname),
389 							   to->atttypid, to->attcollation,
390 							   NIL, 0);
391 		}
392 
393 		/*
394 		 * We do not yet have the correct relation OID for the index, so just
395 		 * set it invalid for now.  InitializeAttributeOids() will fix it
396 		 * later.
397 		 */
398 		to->attrelid = InvalidOid;
399 
400 		/*
401 		 * Check the opclass and index AM to see if either provides a keytype
402 		 * (overriding the attribute type).  Opclass (if exists) takes
403 		 * precedence.
404 		 */
405 		keyType = amroutine->amkeytype;
406 
407 		/*
408 		 * Code below is concerned to the opclasses which are not used with
409 		 * the included columns.
410 		 */
411 		if (i < indexInfo->ii_NumIndexKeyAttrs)
412 		{
413 			tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(classObjectId[i]));
414 			if (!HeapTupleIsValid(tuple))
415 				elog(ERROR, "cache lookup failed for opclass %u",
416 					 classObjectId[i]);
417 			opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
418 			if (OidIsValid(opclassTup->opckeytype))
419 				keyType = opclassTup->opckeytype;
420 
421 			/*
422 			 * If keytype is specified as ANYELEMENT, and opcintype is
423 			 * ANYARRAY, then the attribute type must be an array (else it'd
424 			 * not have matched this opclass); use its element type.
425 			 */
426 			if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
427 			{
428 				keyType = get_base_element_type(to->atttypid);
429 				if (!OidIsValid(keyType))
430 					elog(ERROR, "could not get element type of array type %u",
431 						 to->atttypid);
432 			}
433 
434 			ReleaseSysCache(tuple);
435 		}
436 
437 		/*
438 		 * If a key type different from the heap value is specified, update
439 		 * the type-related fields in the index tupdesc.
440 		 */
441 		if (OidIsValid(keyType) && keyType != to->atttypid)
442 		{
443 			tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
444 			if (!HeapTupleIsValid(tuple))
445 				elog(ERROR, "cache lookup failed for type %u", keyType);
446 			typeTup = (Form_pg_type) GETSTRUCT(tuple);
447 
448 			to->atttypid = keyType;
449 			to->atttypmod = -1;
450 			to->attlen = typeTup->typlen;
451 			to->attbyval = typeTup->typbyval;
452 			to->attalign = typeTup->typalign;
453 			to->attstorage = typeTup->typstorage;
454 
455 			ReleaseSysCache(tuple);
456 		}
457 	}
458 
459 	pfree(amroutine);
460 
461 	return indexTupDesc;
462 }
463 
464 /* ----------------------------------------------------------------
465  *		InitializeAttributeOids
466  * ----------------------------------------------------------------
467  */
468 static void
InitializeAttributeOids(Relation indexRelation,int numatts,Oid indexoid)469 InitializeAttributeOids(Relation indexRelation,
470 						int numatts,
471 						Oid indexoid)
472 {
473 	TupleDesc	tupleDescriptor;
474 	int			i;
475 
476 	tupleDescriptor = RelationGetDescr(indexRelation);
477 
478 	for (i = 0; i < numatts; i += 1)
479 		TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
480 }
481 
482 /* ----------------------------------------------------------------
483  *		AppendAttributeTuples
484  * ----------------------------------------------------------------
485  */
486 static void
AppendAttributeTuples(Relation indexRelation,int numatts)487 AppendAttributeTuples(Relation indexRelation, int numatts)
488 {
489 	Relation	pg_attribute;
490 	CatalogIndexState indstate;
491 	TupleDesc	indexTupDesc;
492 	int			i;
493 
494 	/*
495 	 * open the attribute relation and its indexes
496 	 */
497 	pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
498 
499 	indstate = CatalogOpenIndexes(pg_attribute);
500 
501 	/*
502 	 * insert data from new index's tupdesc into pg_attribute
503 	 */
504 	indexTupDesc = RelationGetDescr(indexRelation);
505 
506 	for (i = 0; i < numatts; i++)
507 	{
508 		Form_pg_attribute attr = TupleDescAttr(indexTupDesc, i);
509 
510 		Assert(attr->attnum == i + 1);
511 
512 		InsertPgAttributeTuple(pg_attribute, attr, indstate);
513 	}
514 
515 	CatalogCloseIndexes(indstate);
516 
517 	table_close(pg_attribute, RowExclusiveLock);
518 }
519 
520 /* ----------------------------------------------------------------
521  *		UpdateIndexRelation
522  *
523  * Construct and insert a new entry in the pg_index catalog
524  * ----------------------------------------------------------------
525  */
526 static void
UpdateIndexRelation(Oid indexoid,Oid heapoid,Oid parentIndexId,IndexInfo * indexInfo,Oid * collationOids,Oid * classOids,int16 * coloptions,bool primary,bool isexclusion,bool immediate,bool isvalid,bool isready)527 UpdateIndexRelation(Oid indexoid,
528 					Oid heapoid,
529 					Oid parentIndexId,
530 					IndexInfo *indexInfo,
531 					Oid *collationOids,
532 					Oid *classOids,
533 					int16 *coloptions,
534 					bool primary,
535 					bool isexclusion,
536 					bool immediate,
537 					bool isvalid,
538 					bool isready)
539 {
540 	int2vector *indkey;
541 	oidvector  *indcollation;
542 	oidvector  *indclass;
543 	int2vector *indoption;
544 	Datum		exprsDatum;
545 	Datum		predDatum;
546 	Datum		values[Natts_pg_index];
547 	bool		nulls[Natts_pg_index];
548 	Relation	pg_index;
549 	HeapTuple	tuple;
550 	int			i;
551 
552 	/*
553 	 * Copy the index key, opclass, and indoption info into arrays (should we
554 	 * make the caller pass them like this to start with?)
555 	 */
556 	indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
557 	for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
558 		indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
559 	indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
560 	indclass = buildoidvector(classOids, indexInfo->ii_NumIndexKeyAttrs);
561 	indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
562 
563 	/*
564 	 * Convert the index expressions (if any) to a text datum
565 	 */
566 	if (indexInfo->ii_Expressions != NIL)
567 	{
568 		char	   *exprsString;
569 
570 		exprsString = nodeToString(indexInfo->ii_Expressions);
571 		exprsDatum = CStringGetTextDatum(exprsString);
572 		pfree(exprsString);
573 	}
574 	else
575 		exprsDatum = (Datum) 0;
576 
577 	/*
578 	 * Convert the index predicate (if any) to a text datum.  Note we convert
579 	 * implicit-AND format to normal explicit-AND for storage.
580 	 */
581 	if (indexInfo->ii_Predicate != NIL)
582 	{
583 		char	   *predString;
584 
585 		predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
586 		predDatum = CStringGetTextDatum(predString);
587 		pfree(predString);
588 	}
589 	else
590 		predDatum = (Datum) 0;
591 
592 	/*
593 	 * open the system catalog index relation
594 	 */
595 	pg_index = table_open(IndexRelationId, RowExclusiveLock);
596 
597 	/*
598 	 * Build a pg_index tuple
599 	 */
600 	MemSet(nulls, false, sizeof(nulls));
601 
602 	values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
603 	values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
604 	values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
605 	values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
606 	values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
607 	values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
608 	values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
609 	values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
610 	values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
611 	values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
612 	values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
613 	values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
614 	values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
615 	values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
616 	values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
617 	values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
618 	values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
619 	values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
620 	values[Anum_pg_index_indexprs - 1] = exprsDatum;
621 	if (exprsDatum == (Datum) 0)
622 		nulls[Anum_pg_index_indexprs - 1] = true;
623 	values[Anum_pg_index_indpred - 1] = predDatum;
624 	if (predDatum == (Datum) 0)
625 		nulls[Anum_pg_index_indpred - 1] = true;
626 
627 	tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
628 
629 	/*
630 	 * insert the tuple into the pg_index catalog
631 	 */
632 	CatalogTupleInsert(pg_index, tuple);
633 
634 	/*
635 	 * close the relation and free the tuple
636 	 */
637 	table_close(pg_index, RowExclusiveLock);
638 	heap_freetuple(tuple);
639 }
640 
641 
642 /*
643  * index_create
644  *
645  * heapRelation: table to build index on (suitably locked by caller)
646  * indexRelationName: what it say
647  * indexRelationId: normally, pass InvalidOid to let this routine
648  *		generate an OID for the index.  During bootstrap this may be
649  *		nonzero to specify a preselected OID.
650  * parentIndexRelid: if creating an index partition, the OID of the
651  *		parent index; otherwise InvalidOid.
652  * parentConstraintId: if creating a constraint on a partition, the OID
653  *		of the constraint in the parent; otherwise InvalidOid.
654  * relFileNode: normally, pass InvalidOid to get new storage.  May be
655  *		nonzero to attach an existing valid build.
656  * indexInfo: same info executor uses to insert into the index
657  * indexColNames: column names to use for index (List of char *)
658  * accessMethodObjectId: OID of index AM to use
659  * tableSpaceId: OID of tablespace to use
660  * collationObjectId: array of collation OIDs, one per index column
661  * classObjectId: array of index opclass OIDs, one per index column
662  * coloptions: array of per-index-column indoption settings
663  * reloptions: AM-specific options
664  * flags: bitmask that can include any combination of these bits:
665  *		INDEX_CREATE_IS_PRIMARY
666  *			the index is a primary key
667  *		INDEX_CREATE_ADD_CONSTRAINT:
668  *			invoke index_constraint_create also
669  *		INDEX_CREATE_SKIP_BUILD:
670  *			skip the index_build() step for the moment; caller must do it
671  *			later (typically via reindex_index())
672  *		INDEX_CREATE_CONCURRENT:
673  *			do not lock the table against writers.  The index will be
674  *			marked "invalid" and the caller must take additional steps
675  *			to fix it up.
676  *		INDEX_CREATE_IF_NOT_EXISTS:
677  *			do not throw an error if a relation with the same name
678  *			already exists.
679  *		INDEX_CREATE_PARTITIONED:
680  *			create a partitioned index (table must be partitioned)
681  * constr_flags: flags passed to index_constraint_create
682  *		(only if INDEX_CREATE_ADD_CONSTRAINT is set)
683  * allow_system_table_mods: allow table to be a system catalog
684  * is_internal: if true, post creation hook for new index
685  * constraintId: if not NULL, receives OID of created constraint
686  *
687  * Returns the OID of the created index.
688  */
689 Oid
index_create(Relation heapRelation,const char * indexRelationName,Oid indexRelationId,Oid parentIndexRelid,Oid parentConstraintId,Oid relFileNode,IndexInfo * indexInfo,List * indexColNames,Oid accessMethodObjectId,Oid tableSpaceId,Oid * collationObjectId,Oid * classObjectId,int16 * coloptions,Datum reloptions,bits16 flags,bits16 constr_flags,bool allow_system_table_mods,bool is_internal,Oid * constraintId)690 index_create(Relation heapRelation,
691 			 const char *indexRelationName,
692 			 Oid indexRelationId,
693 			 Oid parentIndexRelid,
694 			 Oid parentConstraintId,
695 			 Oid relFileNode,
696 			 IndexInfo *indexInfo,
697 			 List *indexColNames,
698 			 Oid accessMethodObjectId,
699 			 Oid tableSpaceId,
700 			 Oid *collationObjectId,
701 			 Oid *classObjectId,
702 			 int16 *coloptions,
703 			 Datum reloptions,
704 			 bits16 flags,
705 			 bits16 constr_flags,
706 			 bool allow_system_table_mods,
707 			 bool is_internal,
708 			 Oid *constraintId)
709 {
710 	Oid			heapRelationId = RelationGetRelid(heapRelation);
711 	Relation	pg_class;
712 	Relation	indexRelation;
713 	TupleDesc	indexTupDesc;
714 	bool		shared_relation;
715 	bool		mapped_relation;
716 	bool		is_exclusion;
717 	Oid			namespaceId;
718 	int			i;
719 	char		relpersistence;
720 	bool		isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
721 	bool		invalid = (flags & INDEX_CREATE_INVALID) != 0;
722 	bool		concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
723 	bool		partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
724 	char		relkind;
725 	TransactionId relfrozenxid;
726 	MultiXactId relminmxid;
727 
728 	/* constraint flags can only be set when a constraint is requested */
729 	Assert((constr_flags == 0) ||
730 		   ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
731 	/* partitioned indexes must never be "built" by themselves */
732 	Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
733 
734 	relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
735 	is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
736 
737 	pg_class = table_open(RelationRelationId, RowExclusiveLock);
738 
739 	/*
740 	 * The index will be in the same namespace as its parent table, and is
741 	 * shared across databases if and only if the parent is.  Likewise, it
742 	 * will use the relfilenode map if and only if the parent does; and it
743 	 * inherits the parent's relpersistence.
744 	 */
745 	namespaceId = RelationGetNamespace(heapRelation);
746 	shared_relation = heapRelation->rd_rel->relisshared;
747 	mapped_relation = RelationIsMapped(heapRelation);
748 	relpersistence = heapRelation->rd_rel->relpersistence;
749 
750 	/*
751 	 * check parameters
752 	 */
753 	if (indexInfo->ii_NumIndexAttrs < 1)
754 		elog(ERROR, "must index at least one column");
755 
756 	if (!allow_system_table_mods &&
757 		IsSystemRelation(heapRelation) &&
758 		IsNormalProcessingMode())
759 		ereport(ERROR,
760 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
761 				 errmsg("user-defined indexes on system catalog tables are not supported")));
762 
763 	/*
764 	 * Btree text_pattern_ops uses text_eq as the equality operator, which is
765 	 * fine as long as the collation is deterministic; text_eq then reduces to
766 	 * bitwise equality and so it is semantically compatible with the other
767 	 * operators and functions in that opclass.  But with a nondeterministic
768 	 * collation, text_eq could yield results that are incompatible with the
769 	 * actual behavior of the index (which is determined by the opclass's
770 	 * comparison function).  We prevent such problems by refusing creation of
771 	 * an index with that opclass and a nondeterministic collation.
772 	 *
773 	 * The same applies to varchar_pattern_ops and bpchar_pattern_ops.  If we
774 	 * find more cases, we might decide to create a real mechanism for marking
775 	 * opclasses as incompatible with nondeterminism; but for now, this small
776 	 * hack suffices.
777 	 *
778 	 * Another solution is to use a special operator, not text_eq, as the
779 	 * equality opclass member; but that is undesirable because it would
780 	 * prevent index usage in many queries that work fine today.
781 	 */
782 	for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
783 	{
784 		Oid			collation = collationObjectId[i];
785 		Oid			opclass = classObjectId[i];
786 
787 		if (collation)
788 		{
789 			if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
790 				 opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
791 				 opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
792 				!get_collation_isdeterministic(collation))
793 			{
794 				HeapTuple	classtup;
795 
796 				classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
797 				if (!HeapTupleIsValid(classtup))
798 					elog(ERROR, "cache lookup failed for operator class %u", opclass);
799 				ereport(ERROR,
800 						(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
801 						 errmsg("nondeterministic collations are not supported for operator class \"%s\"",
802 								NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
803 				ReleaseSysCache(classtup);
804 			}
805 		}
806 	}
807 
808 	/*
809 	 * Concurrent index build on a system catalog is unsafe because we tend to
810 	 * release locks before committing in catalogs.
811 	 */
812 	if (concurrent &&
813 		IsCatalogRelation(heapRelation))
814 		ereport(ERROR,
815 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
816 				 errmsg("concurrent index creation on system catalog tables is not supported")));
817 
818 	/*
819 	 * This case is currently not supported.  There's no way to ask for it in
820 	 * the grammar with CREATE INDEX, but it can happen with REINDEX.
821 	 */
822 	if (concurrent && is_exclusion)
823 		ereport(ERROR,
824 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
825 				 errmsg("concurrent index creation for exclusion constraints is not supported")));
826 
827 	/*
828 	 * We cannot allow indexing a shared relation after initdb (because
829 	 * there's no way to make the entry in other databases' pg_class).
830 	 */
831 	if (shared_relation && !IsBootstrapProcessingMode())
832 		ereport(ERROR,
833 				(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
834 				 errmsg("shared indexes cannot be created after initdb")));
835 
836 	/*
837 	 * Shared relations must be in pg_global, too (last-ditch check)
838 	 */
839 	if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
840 		elog(ERROR, "shared relations must be placed in pg_global tablespace");
841 
842 	/*
843 	 * Check for duplicate name (both as to the index, and as to the
844 	 * associated constraint if any).  Such cases would fail on the relevant
845 	 * catalogs' unique indexes anyway, but we prefer to give a friendlier
846 	 * error message.
847 	 */
848 	if (get_relname_relid(indexRelationName, namespaceId))
849 	{
850 		if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
851 		{
852 			ereport(NOTICE,
853 					(errcode(ERRCODE_DUPLICATE_TABLE),
854 					 errmsg("relation \"%s\" already exists, skipping",
855 							indexRelationName)));
856 			table_close(pg_class, RowExclusiveLock);
857 			return InvalidOid;
858 		}
859 
860 		ereport(ERROR,
861 				(errcode(ERRCODE_DUPLICATE_TABLE),
862 				 errmsg("relation \"%s\" already exists",
863 						indexRelationName)));
864 	}
865 
866 	if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
867 		ConstraintNameIsUsed(CONSTRAINT_RELATION, heapRelationId,
868 							 indexRelationName))
869 	{
870 		/*
871 		 * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
872 		 * conflicting constraint is not an index.
873 		 */
874 		ereport(ERROR,
875 				(errcode(ERRCODE_DUPLICATE_OBJECT),
876 				 errmsg("constraint \"%s\" for relation \"%s\" already exists",
877 						indexRelationName, RelationGetRelationName(heapRelation))));
878 	}
879 
880 	/*
881 	 * construct tuple descriptor for index tuples
882 	 */
883 	indexTupDesc = ConstructTupleDescriptor(heapRelation,
884 											indexInfo,
885 											indexColNames,
886 											accessMethodObjectId,
887 											collationObjectId,
888 											classObjectId);
889 
890 	/*
891 	 * Allocate an OID for the index, unless we were told what to use.
892 	 *
893 	 * The OID will be the relfilenode as well, so make sure it doesn't
894 	 * collide with either pg_class OIDs or existing physical files.
895 	 */
896 	if (!OidIsValid(indexRelationId))
897 	{
898 		/* Use binary-upgrade override for pg_class.oid/relfilenode? */
899 		if (IsBinaryUpgrade)
900 		{
901 			if (!OidIsValid(binary_upgrade_next_index_pg_class_oid))
902 				ereport(ERROR,
903 						(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
904 						 errmsg("pg_class index OID value not set when in binary upgrade mode")));
905 
906 			indexRelationId = binary_upgrade_next_index_pg_class_oid;
907 			binary_upgrade_next_index_pg_class_oid = InvalidOid;
908 		}
909 		else
910 		{
911 			indexRelationId =
912 				GetNewRelFileNode(tableSpaceId, pg_class, relpersistence);
913 		}
914 	}
915 
916 	/*
917 	 * create the index relation's relcache entry and, if necessary, the
918 	 * physical disk file. (If we fail further down, it's the smgr's
919 	 * responsibility to remove the disk file again, if any.)
920 	 */
921 	indexRelation = heap_create(indexRelationName,
922 								namespaceId,
923 								tableSpaceId,
924 								indexRelationId,
925 								relFileNode,
926 								accessMethodObjectId,
927 								indexTupDesc,
928 								relkind,
929 								relpersistence,
930 								shared_relation,
931 								mapped_relation,
932 								allow_system_table_mods,
933 								&relfrozenxid,
934 								&relminmxid);
935 
936 	Assert(relfrozenxid == InvalidTransactionId);
937 	Assert(relminmxid == InvalidMultiXactId);
938 	Assert(indexRelationId == RelationGetRelid(indexRelation));
939 
940 	/*
941 	 * Obtain exclusive lock on it.  Although no other transactions can see it
942 	 * until we commit, this prevents deadlock-risk complaints from lock
943 	 * manager in cases such as CLUSTER.
944 	 */
945 	LockRelation(indexRelation, AccessExclusiveLock);
946 
947 	/*
948 	 * Fill in fields of the index's pg_class entry that are not set correctly
949 	 * by heap_create.
950 	 *
951 	 * XXX should have a cleaner way to create cataloged indexes
952 	 */
953 	indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
954 	indexRelation->rd_rel->relam = accessMethodObjectId;
955 	indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
956 
957 	/*
958 	 * store index's pg_class entry
959 	 */
960 	InsertPgClassTuple(pg_class, indexRelation,
961 					   RelationGetRelid(indexRelation),
962 					   (Datum) 0,
963 					   reloptions);
964 
965 	/* done with pg_class */
966 	table_close(pg_class, RowExclusiveLock);
967 
968 	/*
969 	 * now update the object id's of all the attribute tuple forms in the
970 	 * index relation's tuple descriptor
971 	 */
972 	InitializeAttributeOids(indexRelation,
973 							indexInfo->ii_NumIndexAttrs,
974 							indexRelationId);
975 
976 	/*
977 	 * append ATTRIBUTE tuples for the index
978 	 */
979 	AppendAttributeTuples(indexRelation, indexInfo->ii_NumIndexAttrs);
980 
981 	/* ----------------
982 	 *	  update pg_index
983 	 *	  (append INDEX tuple)
984 	 *
985 	 *	  Note that this stows away a representation of "predicate".
986 	 *	  (Or, could define a rule to maintain the predicate) --Nels, Feb '92
987 	 * ----------------
988 	 */
989 	UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
990 						indexInfo,
991 						collationObjectId, classObjectId, coloptions,
992 						isprimary, is_exclusion,
993 						(constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
994 						!concurrent && !invalid,
995 						!concurrent);
996 
997 	/*
998 	 * Register relcache invalidation on the indexes' heap relation, to
999 	 * maintain consistency of its index list
1000 	 */
1001 	CacheInvalidateRelcache(heapRelation);
1002 
1003 	/* update pg_inherits and the parent's relhassubclass, if needed */
1004 	if (OidIsValid(parentIndexRelid))
1005 	{
1006 		StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1007 		SetRelationHasSubclass(parentIndexRelid, true);
1008 	}
1009 
1010 	/*
1011 	 * Register constraint and dependencies for the index.
1012 	 *
1013 	 * If the index is from a CONSTRAINT clause, construct a pg_constraint
1014 	 * entry.  The index will be linked to the constraint, which in turn is
1015 	 * linked to the table.  If it's not a CONSTRAINT, we need to make a
1016 	 * dependency directly on the table.
1017 	 *
1018 	 * We don't need a dependency on the namespace, because there'll be an
1019 	 * indirect dependency via our parent table.
1020 	 *
1021 	 * During bootstrap we can't register any dependencies, and we don't try
1022 	 * to make a constraint either.
1023 	 */
1024 	if (!IsBootstrapProcessingMode())
1025 	{
1026 		ObjectAddress myself,
1027 					referenced;
1028 
1029 		myself.classId = RelationRelationId;
1030 		myself.objectId = indexRelationId;
1031 		myself.objectSubId = 0;
1032 
1033 		if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1034 		{
1035 			char		constraintType;
1036 			ObjectAddress localaddr;
1037 
1038 			if (isprimary)
1039 				constraintType = CONSTRAINT_PRIMARY;
1040 			else if (indexInfo->ii_Unique)
1041 				constraintType = CONSTRAINT_UNIQUE;
1042 			else if (is_exclusion)
1043 				constraintType = CONSTRAINT_EXCLUSION;
1044 			else
1045 			{
1046 				elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1047 				constraintType = 0; /* keep compiler quiet */
1048 			}
1049 
1050 			localaddr = index_constraint_create(heapRelation,
1051 												indexRelationId,
1052 												parentConstraintId,
1053 												indexInfo,
1054 												indexRelationName,
1055 												constraintType,
1056 												constr_flags,
1057 												allow_system_table_mods,
1058 												is_internal);
1059 			if (constraintId)
1060 				*constraintId = localaddr.objectId;
1061 		}
1062 		else
1063 		{
1064 			bool		have_simple_col = false;
1065 
1066 			/* Create auto dependencies on simply-referenced columns */
1067 			for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1068 			{
1069 				if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1070 				{
1071 					referenced.classId = RelationRelationId;
1072 					referenced.objectId = heapRelationId;
1073 					referenced.objectSubId = indexInfo->ii_IndexAttrNumbers[i];
1074 
1075 					recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1076 
1077 					have_simple_col = true;
1078 				}
1079 			}
1080 
1081 			/*
1082 			 * If there are no simply-referenced columns, give the index an
1083 			 * auto dependency on the whole table.  In most cases, this will
1084 			 * be redundant, but it might not be if the index expressions and
1085 			 * predicate contain no Vars or only whole-row Vars.
1086 			 */
1087 			if (!have_simple_col)
1088 			{
1089 				referenced.classId = RelationRelationId;
1090 				referenced.objectId = heapRelationId;
1091 				referenced.objectSubId = 0;
1092 
1093 				recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
1094 			}
1095 		}
1096 
1097 		/*
1098 		 * If this is an index partition, create partition dependencies on
1099 		 * both the parent index and the table.  (Note: these must be *in
1100 		 * addition to*, not instead of, all other dependencies.  Otherwise
1101 		 * we'll be short some dependencies after DETACH PARTITION.)
1102 		 */
1103 		if (OidIsValid(parentIndexRelid))
1104 		{
1105 			referenced.classId = RelationRelationId;
1106 			referenced.objectId = parentIndexRelid;
1107 			referenced.objectSubId = 0;
1108 
1109 			recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1110 
1111 			referenced.classId = RelationRelationId;
1112 			referenced.objectId = heapRelationId;
1113 			referenced.objectSubId = 0;
1114 
1115 			recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1116 		}
1117 
1118 		/* Store dependency on collations */
1119 		/* The default collation is pinned, so don't bother recording it */
1120 		for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1121 		{
1122 			if (OidIsValid(collationObjectId[i]) &&
1123 				collationObjectId[i] != DEFAULT_COLLATION_OID)
1124 			{
1125 				referenced.classId = CollationRelationId;
1126 				referenced.objectId = collationObjectId[i];
1127 				referenced.objectSubId = 0;
1128 
1129 				recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1130 			}
1131 		}
1132 
1133 		/* Store dependency on operator classes */
1134 		for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1135 		{
1136 			referenced.classId = OperatorClassRelationId;
1137 			referenced.objectId = classObjectId[i];
1138 			referenced.objectSubId = 0;
1139 
1140 			recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
1141 		}
1142 
1143 		/* Store dependencies on anything mentioned in index expressions */
1144 		if (indexInfo->ii_Expressions)
1145 		{
1146 			recordDependencyOnSingleRelExpr(&myself,
1147 											(Node *) indexInfo->ii_Expressions,
1148 											heapRelationId,
1149 											DEPENDENCY_NORMAL,
1150 											DEPENDENCY_AUTO, false);
1151 		}
1152 
1153 		/* Store dependencies on anything mentioned in predicate */
1154 		if (indexInfo->ii_Predicate)
1155 		{
1156 			recordDependencyOnSingleRelExpr(&myself,
1157 											(Node *) indexInfo->ii_Predicate,
1158 											heapRelationId,
1159 											DEPENDENCY_NORMAL,
1160 											DEPENDENCY_AUTO, false);
1161 		}
1162 	}
1163 	else
1164 	{
1165 		/* Bootstrap mode - assert we weren't asked for constraint support */
1166 		Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1167 	}
1168 
1169 	/* Post creation hook for new index */
1170 	InvokeObjectPostCreateHookArg(RelationRelationId,
1171 								  indexRelationId, 0, is_internal);
1172 
1173 	/*
1174 	 * Advance the command counter so that we can see the newly-entered
1175 	 * catalog tuples for the index.
1176 	 */
1177 	CommandCounterIncrement();
1178 
1179 	/*
1180 	 * In bootstrap mode, we have to fill in the index strategy structure with
1181 	 * information from the catalogs.  If we aren't bootstrapping, then the
1182 	 * relcache entry has already been rebuilt thanks to sinval update during
1183 	 * CommandCounterIncrement.
1184 	 */
1185 	if (IsBootstrapProcessingMode())
1186 		RelationInitIndexAccessInfo(indexRelation);
1187 	else
1188 		Assert(indexRelation->rd_indexcxt != NULL);
1189 
1190 	indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1191 
1192 	/*
1193 	 * If this is bootstrap (initdb) time, then we don't actually fill in the
1194 	 * index yet.  We'll be creating more indexes and classes later, so we
1195 	 * delay filling them in until just before we're done with bootstrapping.
1196 	 * Similarly, if the caller specified to skip the build then filling the
1197 	 * index is delayed till later (ALTER TABLE can save work in some cases
1198 	 * with this).  Otherwise, we call the AM routine that constructs the
1199 	 * index.
1200 	 */
1201 	if (IsBootstrapProcessingMode())
1202 	{
1203 		index_register(heapRelationId, indexRelationId, indexInfo);
1204 	}
1205 	else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1206 	{
1207 		/*
1208 		 * Caller is responsible for filling the index later on.  However,
1209 		 * we'd better make sure that the heap relation is correctly marked as
1210 		 * having an index.
1211 		 */
1212 		index_update_stats(heapRelation,
1213 						   true,
1214 						   -1.0);
1215 		/* Make the above update visible */
1216 		CommandCounterIncrement();
1217 	}
1218 	else
1219 	{
1220 		index_build(heapRelation, indexRelation, indexInfo, false, true);
1221 	}
1222 
1223 	/*
1224 	 * Close the index; but we keep the lock that we acquired above until end
1225 	 * of transaction.  Closing the heap is caller's responsibility.
1226 	 */
1227 	index_close(indexRelation, NoLock);
1228 
1229 	return indexRelationId;
1230 }
1231 
1232 /*
1233  * index_concurrently_create_copy
1234  *
1235  * Create concurrently an index based on the definition of the one provided by
1236  * caller.  The index is inserted into catalogs and needs to be built later
1237  * on.  This is called during concurrent reindex processing.
1238  */
1239 Oid
index_concurrently_create_copy(Relation heapRelation,Oid oldIndexId,const char * newName)1240 index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, const char *newName)
1241 {
1242 	Relation	indexRelation;
1243 	IndexInfo  *oldInfo,
1244 			   *newInfo;
1245 	Oid			newIndexId = InvalidOid;
1246 	HeapTuple	indexTuple,
1247 				classTuple;
1248 	Datum		indclassDatum,
1249 				colOptionDatum,
1250 				optionDatum;
1251 	oidvector  *indclass;
1252 	int2vector *indcoloptions;
1253 	bool		isnull;
1254 	List	   *indexColNames = NIL;
1255 	List	   *indexExprs = NIL;
1256 	List	   *indexPreds = NIL;
1257 
1258 	indexRelation = index_open(oldIndexId, RowExclusiveLock);
1259 
1260 	/* The new index needs some information from the old index */
1261 	oldInfo = BuildIndexInfo(indexRelation);
1262 
1263 	/*
1264 	 * Concurrent build of an index with exclusion constraints is not
1265 	 * supported.
1266 	 */
1267 	if (oldInfo->ii_ExclusionOps != NULL)
1268 		ereport(ERROR,
1269 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1270 				 errmsg("concurrent index creation for exclusion constraints is not supported")));
1271 
1272 	/* Get the array of class and column options IDs from index info */
1273 	indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1274 	if (!HeapTupleIsValid(indexTuple))
1275 		elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1276 	indclassDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1277 									Anum_pg_index_indclass, &isnull);
1278 	Assert(!isnull);
1279 	indclass = (oidvector *) DatumGetPointer(indclassDatum);
1280 
1281 	colOptionDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1282 									 Anum_pg_index_indoption, &isnull);
1283 	Assert(!isnull);
1284 	indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1285 
1286 	/* Fetch options of index if any */
1287 	classTuple = SearchSysCache1(RELOID, oldIndexId);
1288 	if (!HeapTupleIsValid(classTuple))
1289 		elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1290 	optionDatum = SysCacheGetAttr(RELOID, classTuple,
1291 								  Anum_pg_class_reloptions, &isnull);
1292 
1293 	/*
1294 	 * Fetch the list of expressions and predicates directly from the
1295 	 * catalogs.  This cannot rely on the information from IndexInfo of the
1296 	 * old index as these have been flattened for the planner.
1297 	 */
1298 	if (oldInfo->ii_Expressions != NIL)
1299 	{
1300 		Datum		exprDatum;
1301 		char	   *exprString;
1302 
1303 		exprDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1304 									Anum_pg_index_indexprs, &isnull);
1305 		Assert(!isnull);
1306 		exprString = TextDatumGetCString(exprDatum);
1307 		indexExprs = (List *) stringToNode(exprString);
1308 		pfree(exprString);
1309 	}
1310 	if (oldInfo->ii_Predicate != NIL)
1311 	{
1312 		Datum		predDatum;
1313 		char	   *predString;
1314 
1315 		predDatum = SysCacheGetAttr(INDEXRELID, indexTuple,
1316 									Anum_pg_index_indpred, &isnull);
1317 		Assert(!isnull);
1318 		predString = TextDatumGetCString(predDatum);
1319 		indexPreds = (List *) stringToNode(predString);
1320 
1321 		/* Also convert to implicit-AND format */
1322 		indexPreds = make_ands_implicit((Expr *) indexPreds);
1323 		pfree(predString);
1324 	}
1325 
1326 	/*
1327 	 * Build the index information for the new index.  Note that rebuild of
1328 	 * indexes with exclusion constraints is not supported, hence there is no
1329 	 * need to fill all the ii_Exclusion* fields.
1330 	 */
1331 	newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1332 							oldInfo->ii_NumIndexKeyAttrs,
1333 							oldInfo->ii_Am,
1334 							indexExprs,
1335 							indexPreds,
1336 							oldInfo->ii_Unique,
1337 							false,	/* not ready for inserts */
1338 							true);
1339 
1340 	/*
1341 	 * Extract the list of column names and the column numbers for the new
1342 	 * index information.  All this information will be used for the index
1343 	 * creation.
1344 	 */
1345 	for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1346 	{
1347 		TupleDesc	indexTupDesc = RelationGetDescr(indexRelation);
1348 		Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1349 
1350 		indexColNames = lappend(indexColNames, NameStr(att->attname));
1351 		newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1352 	}
1353 
1354 	/*
1355 	 * Now create the new index.
1356 	 *
1357 	 * For a partition index, we adjust the partition dependency later, to
1358 	 * ensure a consistent state at all times.  That is why parentIndexRelid
1359 	 * is not set here.
1360 	 */
1361 	newIndexId = index_create(heapRelation,
1362 							  newName,
1363 							  InvalidOid,	/* indexRelationId */
1364 							  InvalidOid,	/* parentIndexRelid */
1365 							  InvalidOid,	/* parentConstraintId */
1366 							  InvalidOid,	/* relFileNode */
1367 							  newInfo,
1368 							  indexColNames,
1369 							  indexRelation->rd_rel->relam,
1370 							  indexRelation->rd_rel->reltablespace,
1371 							  indexRelation->rd_indcollation,
1372 							  indclass->values,
1373 							  indcoloptions->values,
1374 							  optionDatum,
1375 							  INDEX_CREATE_SKIP_BUILD | INDEX_CREATE_CONCURRENT,
1376 							  0,
1377 							  true, /* allow table to be a system catalog? */
1378 							  false,	/* is_internal? */
1379 							  NULL);
1380 
1381 	/* Close the relations used and clean up */
1382 	index_close(indexRelation, NoLock);
1383 	ReleaseSysCache(indexTuple);
1384 	ReleaseSysCache(classTuple);
1385 
1386 	return newIndexId;
1387 }
1388 
1389 /*
1390  * index_concurrently_build
1391  *
1392  * Build index for a concurrent operation.  Low-level locks are taken when
1393  * this operation is performed to prevent only schema changes, but they need
1394  * to be kept until the end of the transaction performing this operation.
1395  * 'indexOid' refers to an index relation OID already created as part of
1396  * previous processing, and 'heapOid' refers to its parent heap relation.
1397  */
1398 void
index_concurrently_build(Oid heapRelationId,Oid indexRelationId)1399 index_concurrently_build(Oid heapRelationId,
1400 						 Oid indexRelationId)
1401 {
1402 	Relation	heapRel;
1403 	Relation	indexRelation;
1404 	IndexInfo  *indexInfo;
1405 
1406 	/* This had better make sure that a snapshot is active */
1407 	Assert(ActiveSnapshotSet());
1408 
1409 	/* Open and lock the parent heap relation */
1410 	heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1411 
1412 	/* And the target index relation */
1413 	indexRelation = index_open(indexRelationId, RowExclusiveLock);
1414 
1415 	/*
1416 	 * We have to re-build the IndexInfo struct, since it was lost in the
1417 	 * commit of the transaction where this concurrent index was created at
1418 	 * the catalog level.
1419 	 */
1420 	indexInfo = BuildIndexInfo(indexRelation);
1421 	Assert(!indexInfo->ii_ReadyForInserts);
1422 	indexInfo->ii_Concurrent = true;
1423 	indexInfo->ii_BrokenHotChain = false;
1424 
1425 	/* Now build the index */
1426 	index_build(heapRel, indexRelation, indexInfo, false, true);
1427 
1428 	/* Close both the relations, but keep the locks */
1429 	table_close(heapRel, NoLock);
1430 	index_close(indexRelation, NoLock);
1431 
1432 	/*
1433 	 * Update the pg_index row to mark the index as ready for inserts. Once we
1434 	 * commit this transaction, any new transactions that open the table must
1435 	 * insert new entries into the index for insertions and non-HOT updates.
1436 	 */
1437 	index_set_state_flags(indexRelationId, INDEX_CREATE_SET_READY);
1438 }
1439 
1440 /*
1441  * index_concurrently_swap
1442  *
1443  * Swap name, dependencies, and constraints of the old index over to the new
1444  * index, while marking the old index as invalid and the new as valid.
1445  */
1446 void
index_concurrently_swap(Oid newIndexId,Oid oldIndexId,const char * oldName)1447 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1448 {
1449 	Relation	pg_class,
1450 				pg_index,
1451 				pg_constraint,
1452 				pg_trigger;
1453 	Relation	oldClassRel,
1454 				newClassRel;
1455 	HeapTuple	oldClassTuple,
1456 				newClassTuple;
1457 	Form_pg_class oldClassForm,
1458 				newClassForm;
1459 	HeapTuple	oldIndexTuple,
1460 				newIndexTuple;
1461 	Form_pg_index oldIndexForm,
1462 				newIndexForm;
1463 	bool		isPartition;
1464 	Oid			indexConstraintOid;
1465 	List	   *constraintOids = NIL;
1466 	ListCell   *lc;
1467 
1468 	/*
1469 	 * Take a necessary lock on the old and new index before swapping them.
1470 	 */
1471 	oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1472 	newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1473 
1474 	/* Now swap names and dependencies of those indexes */
1475 	pg_class = table_open(RelationRelationId, RowExclusiveLock);
1476 
1477 	oldClassTuple = SearchSysCacheCopy1(RELOID,
1478 										ObjectIdGetDatum(oldIndexId));
1479 	if (!HeapTupleIsValid(oldClassTuple))
1480 		elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1481 	newClassTuple = SearchSysCacheCopy1(RELOID,
1482 										ObjectIdGetDatum(newIndexId));
1483 	if (!HeapTupleIsValid(newClassTuple))
1484 		elog(ERROR, "could not find tuple for relation %u", newIndexId);
1485 
1486 	oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1487 	newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1488 
1489 	/* Swap the names */
1490 	namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1491 	namestrcpy(&oldClassForm->relname, oldName);
1492 
1493 	/* Swap the partition flags to track inheritance properly */
1494 	isPartition = newClassForm->relispartition;
1495 	newClassForm->relispartition = oldClassForm->relispartition;
1496 	oldClassForm->relispartition = isPartition;
1497 
1498 	CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1499 	CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1500 
1501 	heap_freetuple(oldClassTuple);
1502 	heap_freetuple(newClassTuple);
1503 
1504 	/* Now swap index info */
1505 	pg_index = table_open(IndexRelationId, RowExclusiveLock);
1506 
1507 	oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1508 										ObjectIdGetDatum(oldIndexId));
1509 	if (!HeapTupleIsValid(oldIndexTuple))
1510 		elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1511 	newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1512 										ObjectIdGetDatum(newIndexId));
1513 	if (!HeapTupleIsValid(newIndexTuple))
1514 		elog(ERROR, "could not find tuple for relation %u", newIndexId);
1515 
1516 	oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1517 	newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1518 
1519 	/*
1520 	 * Copy constraint flags from the old index. This is safe because the old
1521 	 * index guaranteed uniqueness.
1522 	 */
1523 	newIndexForm->indisprimary = oldIndexForm->indisprimary;
1524 	oldIndexForm->indisprimary = false;
1525 	newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1526 	oldIndexForm->indisexclusion = false;
1527 	newIndexForm->indimmediate = oldIndexForm->indimmediate;
1528 	oldIndexForm->indimmediate = true;
1529 
1530 	/* Preserve indisreplident in the new index */
1531 	newIndexForm->indisreplident = oldIndexForm->indisreplident;
1532 	oldIndexForm->indisreplident = false;
1533 
1534 	/* Preserve indisclustered in the new index */
1535 	newIndexForm->indisclustered = oldIndexForm->indisclustered;
1536 
1537 	/*
1538 	 * Mark the new index as valid, and the old index as invalid similarly to
1539 	 * what index_set_state_flags() does.
1540 	 */
1541 	newIndexForm->indisvalid = true;
1542 	oldIndexForm->indisvalid = false;
1543 	oldIndexForm->indisclustered = false;
1544 
1545 	CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1546 	CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1547 
1548 	heap_freetuple(oldIndexTuple);
1549 	heap_freetuple(newIndexTuple);
1550 
1551 	/*
1552 	 * Move constraints and triggers over to the new index
1553 	 */
1554 
1555 	constraintOids = get_index_ref_constraints(oldIndexId);
1556 
1557 	indexConstraintOid = get_index_constraint(oldIndexId);
1558 
1559 	if (OidIsValid(indexConstraintOid))
1560 		constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1561 
1562 	pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1563 	pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1564 
1565 	foreach(lc, constraintOids)
1566 	{
1567 		HeapTuple	constraintTuple,
1568 					triggerTuple;
1569 		Form_pg_constraint conForm;
1570 		ScanKeyData key[1];
1571 		SysScanDesc scan;
1572 		Oid			constraintOid = lfirst_oid(lc);
1573 
1574 		/* Move the constraint from the old to the new index */
1575 		constraintTuple = SearchSysCacheCopy1(CONSTROID,
1576 											  ObjectIdGetDatum(constraintOid));
1577 		if (!HeapTupleIsValid(constraintTuple))
1578 			elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1579 
1580 		conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1581 
1582 		if (conForm->conindid == oldIndexId)
1583 		{
1584 			conForm->conindid = newIndexId;
1585 
1586 			CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1587 		}
1588 
1589 		heap_freetuple(constraintTuple);
1590 
1591 		/* Search for trigger records */
1592 		ScanKeyInit(&key[0],
1593 					Anum_pg_trigger_tgconstraint,
1594 					BTEqualStrategyNumber, F_OIDEQ,
1595 					ObjectIdGetDatum(constraintOid));
1596 
1597 		scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1598 								  NULL, 1, key);
1599 
1600 		while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1601 		{
1602 			Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1603 
1604 			if (tgForm->tgconstrindid != oldIndexId)
1605 				continue;
1606 
1607 			/* Make a modifiable copy */
1608 			triggerTuple = heap_copytuple(triggerTuple);
1609 			tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1610 
1611 			tgForm->tgconstrindid = newIndexId;
1612 
1613 			CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1614 
1615 			heap_freetuple(triggerTuple);
1616 		}
1617 
1618 		systable_endscan(scan);
1619 	}
1620 
1621 	/*
1622 	 * Move comment if any
1623 	 */
1624 	{
1625 		Relation	description;
1626 		ScanKeyData skey[3];
1627 		SysScanDesc sd;
1628 		HeapTuple	tuple;
1629 		Datum		values[Natts_pg_description] = {0};
1630 		bool		nulls[Natts_pg_description] = {0};
1631 		bool		replaces[Natts_pg_description] = {0};
1632 
1633 		values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1634 		replaces[Anum_pg_description_objoid - 1] = true;
1635 
1636 		ScanKeyInit(&skey[0],
1637 					Anum_pg_description_objoid,
1638 					BTEqualStrategyNumber, F_OIDEQ,
1639 					ObjectIdGetDatum(oldIndexId));
1640 		ScanKeyInit(&skey[1],
1641 					Anum_pg_description_classoid,
1642 					BTEqualStrategyNumber, F_OIDEQ,
1643 					ObjectIdGetDatum(RelationRelationId));
1644 		ScanKeyInit(&skey[2],
1645 					Anum_pg_description_objsubid,
1646 					BTEqualStrategyNumber, F_INT4EQ,
1647 					Int32GetDatum(0));
1648 
1649 		description = table_open(DescriptionRelationId, RowExclusiveLock);
1650 
1651 		sd = systable_beginscan(description, DescriptionObjIndexId, true,
1652 								NULL, 3, skey);
1653 
1654 		while ((tuple = systable_getnext(sd)) != NULL)
1655 		{
1656 			tuple = heap_modify_tuple(tuple, RelationGetDescr(description),
1657 									  values, nulls, replaces);
1658 			CatalogTupleUpdate(description, &tuple->t_self, tuple);
1659 
1660 			break;				/* Assume there can be only one match */
1661 		}
1662 
1663 		systable_endscan(sd);
1664 		table_close(description, NoLock);
1665 	}
1666 
1667 	/*
1668 	 * Swap inheritance relationship with parent index
1669 	 */
1670 	if (get_rel_relispartition(oldIndexId))
1671 	{
1672 		List	   *ancestors = get_partition_ancestors(oldIndexId);
1673 		Oid			parentIndexRelid = linitial_oid(ancestors);
1674 
1675 		DeleteInheritsTuple(oldIndexId, parentIndexRelid);
1676 		StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1677 
1678 		list_free(ancestors);
1679 	}
1680 
1681 	/*
1682 	 * Swap all dependencies of and on the old index to the new one, and
1683 	 * vice-versa.  Note that a call to CommandCounterIncrement() would cause
1684 	 * duplicate entries in pg_depend, so this should not be done.
1685 	 */
1686 	changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1687 	changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1688 
1689 	changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1690 	changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1691 
1692 	/*
1693 	 * Copy over statistics from old to new index
1694 	 */
1695 	{
1696 		PgStat_StatTabEntry *tabentry;
1697 
1698 		tabentry = pgstat_fetch_stat_tabentry(oldIndexId);
1699 		if (tabentry)
1700 		{
1701 			if (newClassRel->pgstat_info)
1702 			{
1703 				newClassRel->pgstat_info->t_counts.t_numscans = tabentry->numscans;
1704 				newClassRel->pgstat_info->t_counts.t_tuples_returned = tabentry->tuples_returned;
1705 				newClassRel->pgstat_info->t_counts.t_tuples_fetched = tabentry->tuples_fetched;
1706 				newClassRel->pgstat_info->t_counts.t_blocks_fetched = tabentry->blocks_fetched;
1707 				newClassRel->pgstat_info->t_counts.t_blocks_hit = tabentry->blocks_hit;
1708 
1709 				/*
1710 				 * The data will be sent by the next pgstat_report_stat()
1711 				 * call.
1712 				 */
1713 			}
1714 		}
1715 	}
1716 
1717 	/* Copy data of pg_statistic from the old index to the new one */
1718 	CopyStatistics(oldIndexId, newIndexId);
1719 
1720 	/* Copy pg_attribute.attstattarget for each index attribute */
1721 	{
1722 		HeapTuple	attrTuple;
1723 		Relation	pg_attribute;
1724 		SysScanDesc scan;
1725 		ScanKeyData key[1];
1726 
1727 		pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
1728 		ScanKeyInit(&key[0],
1729 					Anum_pg_attribute_attrelid,
1730 					BTEqualStrategyNumber, F_OIDEQ,
1731 					ObjectIdGetDatum(newIndexId));
1732 		scan = systable_beginscan(pg_attribute, AttributeRelidNumIndexId,
1733 								  true, NULL, 1, key);
1734 
1735 		while (HeapTupleIsValid((attrTuple = systable_getnext(scan))))
1736 		{
1737 			Form_pg_attribute att = (Form_pg_attribute) GETSTRUCT(attrTuple);
1738 			Datum		repl_val[Natts_pg_attribute];
1739 			bool		repl_null[Natts_pg_attribute];
1740 			bool		repl_repl[Natts_pg_attribute];
1741 			int			attstattarget;
1742 			HeapTuple	newTuple;
1743 
1744 			/* Ignore dropped columns */
1745 			if (att->attisdropped)
1746 				continue;
1747 
1748 			/*
1749 			 * Get attstattarget from the old index and refresh the new value.
1750 			 */
1751 			attstattarget = get_attstattarget(oldIndexId, att->attnum);
1752 
1753 			/* no need for a refresh if both match */
1754 			if (attstattarget == att->attstattarget)
1755 				continue;
1756 
1757 			memset(repl_val, 0, sizeof(repl_val));
1758 			memset(repl_null, false, sizeof(repl_null));
1759 			memset(repl_repl, false, sizeof(repl_repl));
1760 
1761 			repl_repl[Anum_pg_attribute_attstattarget - 1] = true;
1762 			repl_val[Anum_pg_attribute_attstattarget - 1] = Int32GetDatum(attstattarget);
1763 
1764 			newTuple = heap_modify_tuple(attrTuple,
1765 										 RelationGetDescr(pg_attribute),
1766 										 repl_val, repl_null, repl_repl);
1767 			CatalogTupleUpdate(pg_attribute, &newTuple->t_self, newTuple);
1768 
1769 			heap_freetuple(newTuple);
1770 		}
1771 
1772 		systable_endscan(scan);
1773 		table_close(pg_attribute, RowExclusiveLock);
1774 	}
1775 
1776 	/* Close relations */
1777 	table_close(pg_class, RowExclusiveLock);
1778 	table_close(pg_index, RowExclusiveLock);
1779 	table_close(pg_constraint, RowExclusiveLock);
1780 	table_close(pg_trigger, RowExclusiveLock);
1781 
1782 	/* The lock taken previously is not released until the end of transaction */
1783 	relation_close(oldClassRel, NoLock);
1784 	relation_close(newClassRel, NoLock);
1785 }
1786 
1787 /*
1788  * index_concurrently_set_dead
1789  *
1790  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1791  * CONCURRENTLY before actually dropping the index.  After calling this
1792  * function, the index is seen by all the backends as dead.  Low-level locks
1793  * taken here are kept until the end of the transaction calling this function.
1794  */
1795 void
index_concurrently_set_dead(Oid heapId,Oid indexId)1796 index_concurrently_set_dead(Oid heapId, Oid indexId)
1797 {
1798 	Relation	userHeapRelation;
1799 	Relation	userIndexRelation;
1800 
1801 	/*
1802 	 * No more predicate locks will be acquired on this index, and we're about
1803 	 * to stop doing inserts into the index which could show conflicts with
1804 	 * existing predicate locks, so now is the time to move them to the heap
1805 	 * relation.
1806 	 */
1807 	userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1808 	userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1809 	TransferPredicateLocksToHeapRelation(userIndexRelation);
1810 
1811 	/*
1812 	 * Now we are sure that nobody uses the index for queries; they just might
1813 	 * have it open for updating it.  So now we can unset indisready and
1814 	 * indislive, then wait till nobody could be using it at all anymore.
1815 	 */
1816 	index_set_state_flags(indexId, INDEX_DROP_SET_DEAD);
1817 
1818 	/*
1819 	 * Invalidate the relcache for the table, so that after this commit all
1820 	 * sessions will refresh the table's index list.  Forgetting just the
1821 	 * index's relcache entry is not enough.
1822 	 */
1823 	CacheInvalidateRelcache(userHeapRelation);
1824 
1825 	/*
1826 	 * Close the relations again, though still holding session lock.
1827 	 */
1828 	table_close(userHeapRelation, NoLock);
1829 	index_close(userIndexRelation, NoLock);
1830 }
1831 
1832 /*
1833  * index_constraint_create
1834  *
1835  * Set up a constraint associated with an index.  Return the new constraint's
1836  * address.
1837  *
1838  * heapRelation: table owning the index (must be suitably locked by caller)
1839  * indexRelationId: OID of the index
1840  * parentConstraintId: if constraint is on a partition, the OID of the
1841  *		constraint in the parent.
1842  * indexInfo: same info executor uses to insert into the index
1843  * constraintName: what it say (generally, should match name of index)
1844  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1845  *		CONSTRAINT_EXCLUSION
1846  * flags: bitmask that can include any combination of these bits:
1847  *		INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1848  *		INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1849  *		INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1850  *		INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1851  *		INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1852  *			of index on table's columns
1853  * allow_system_table_mods: allow table to be a system catalog
1854  * is_internal: index is constructed due to internal process
1855  */
1856 ObjectAddress
index_constraint_create(Relation heapRelation,Oid indexRelationId,Oid parentConstraintId,IndexInfo * indexInfo,const char * constraintName,char constraintType,bits16 constr_flags,bool allow_system_table_mods,bool is_internal)1857 index_constraint_create(Relation heapRelation,
1858 						Oid indexRelationId,
1859 						Oid parentConstraintId,
1860 						IndexInfo *indexInfo,
1861 						const char *constraintName,
1862 						char constraintType,
1863 						bits16 constr_flags,
1864 						bool allow_system_table_mods,
1865 						bool is_internal)
1866 {
1867 	Oid			namespaceId = RelationGetNamespace(heapRelation);
1868 	ObjectAddress myself,
1869 				idxaddr;
1870 	Oid			conOid;
1871 	bool		deferrable;
1872 	bool		initdeferred;
1873 	bool		mark_as_primary;
1874 	bool		islocal;
1875 	bool		noinherit;
1876 	int			inhcount;
1877 
1878 	deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1879 	initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1880 	mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1881 
1882 	/* constraint creation support doesn't work while bootstrapping */
1883 	Assert(!IsBootstrapProcessingMode());
1884 
1885 	/* enforce system-table restriction */
1886 	if (!allow_system_table_mods &&
1887 		IsSystemRelation(heapRelation) &&
1888 		IsNormalProcessingMode())
1889 		ereport(ERROR,
1890 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1891 				 errmsg("user-defined indexes on system catalog tables are not supported")));
1892 
1893 	/* primary/unique constraints shouldn't have any expressions */
1894 	if (indexInfo->ii_Expressions &&
1895 		constraintType != CONSTRAINT_EXCLUSION)
1896 		elog(ERROR, "constraints cannot have index expressions");
1897 
1898 	/*
1899 	 * If we're manufacturing a constraint for a pre-existing index, we need
1900 	 * to get rid of the existing auto dependencies for the index (the ones
1901 	 * that index_create() would have made instead of calling this function).
1902 	 *
1903 	 * Note: this code would not necessarily do the right thing if the index
1904 	 * has any expressions or predicate, but we'd never be turning such an
1905 	 * index into a UNIQUE or PRIMARY KEY constraint.
1906 	 */
1907 	if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1908 		deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1909 										RelationRelationId, DEPENDENCY_AUTO);
1910 
1911 	if (OidIsValid(parentConstraintId))
1912 	{
1913 		islocal = false;
1914 		inhcount = 1;
1915 		noinherit = false;
1916 	}
1917 	else
1918 	{
1919 		islocal = true;
1920 		inhcount = 0;
1921 		noinherit = true;
1922 	}
1923 
1924 	/*
1925 	 * Construct a pg_constraint entry.
1926 	 */
1927 	conOid = CreateConstraintEntry(constraintName,
1928 								   namespaceId,
1929 								   constraintType,
1930 								   deferrable,
1931 								   initdeferred,
1932 								   true,
1933 								   parentConstraintId,
1934 								   RelationGetRelid(heapRelation),
1935 								   indexInfo->ii_IndexAttrNumbers,
1936 								   indexInfo->ii_NumIndexKeyAttrs,
1937 								   indexInfo->ii_NumIndexAttrs,
1938 								   InvalidOid,	/* no domain */
1939 								   indexRelationId, /* index OID */
1940 								   InvalidOid,	/* no foreign key */
1941 								   NULL,
1942 								   NULL,
1943 								   NULL,
1944 								   NULL,
1945 								   0,
1946 								   ' ',
1947 								   ' ',
1948 								   ' ',
1949 								   indexInfo->ii_ExclusionOps,
1950 								   NULL,	/* no check constraint */
1951 								   NULL,
1952 								   islocal,
1953 								   inhcount,
1954 								   noinherit,
1955 								   is_internal);
1956 
1957 	/*
1958 	 * Register the index as internally dependent on the constraint.
1959 	 *
1960 	 * Note that the constraint has a dependency on the table, so we don't
1961 	 * need (or want) any direct dependency from the index to the table.
1962 	 */
1963 	ObjectAddressSet(myself, ConstraintRelationId, conOid);
1964 	ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1965 	recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1966 
1967 	/*
1968 	 * Also, if this is a constraint on a partition, give it partition-type
1969 	 * dependencies on the parent constraint as well as the table.
1970 	 */
1971 	if (OidIsValid(parentConstraintId))
1972 	{
1973 		ObjectAddress referenced;
1974 
1975 		ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
1976 		recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1977 		ObjectAddressSet(referenced, RelationRelationId,
1978 						 RelationGetRelid(heapRelation));
1979 		recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1980 	}
1981 
1982 	/*
1983 	 * If the constraint is deferrable, create the deferred uniqueness
1984 	 * checking trigger.  (The trigger will be given an internal dependency on
1985 	 * the constraint by CreateTrigger.)
1986 	 */
1987 	if (deferrable)
1988 	{
1989 		CreateTrigStmt *trigger;
1990 
1991 		trigger = makeNode(CreateTrigStmt);
1992 		trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
1993 			"PK_ConstraintTrigger" :
1994 			"Unique_ConstraintTrigger";
1995 		trigger->relation = NULL;
1996 		trigger->funcname = SystemFuncName("unique_key_recheck");
1997 		trigger->args = NIL;
1998 		trigger->row = true;
1999 		trigger->timing = TRIGGER_TYPE_AFTER;
2000 		trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2001 		trigger->columns = NIL;
2002 		trigger->whenClause = NULL;
2003 		trigger->isconstraint = true;
2004 		trigger->deferrable = true;
2005 		trigger->initdeferred = initdeferred;
2006 		trigger->constrrel = NULL;
2007 
2008 		(void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2009 							 InvalidOid, conOid, indexRelationId, InvalidOid,
2010 							 InvalidOid, NULL, true, false);
2011 	}
2012 
2013 	/*
2014 	 * If needed, mark the index as primary and/or deferred in pg_index.
2015 	 *
2016 	 * Note: When making an existing index into a constraint, caller must have
2017 	 * a table lock that prevents concurrent table updates; otherwise, there
2018 	 * is a risk that concurrent readers of the table will miss seeing this
2019 	 * index at all.
2020 	 */
2021 	if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2022 		(mark_as_primary || deferrable))
2023 	{
2024 		Relation	pg_index;
2025 		HeapTuple	indexTuple;
2026 		Form_pg_index indexForm;
2027 		bool		dirty = false;
2028 
2029 		pg_index = table_open(IndexRelationId, RowExclusiveLock);
2030 
2031 		indexTuple = SearchSysCacheCopy1(INDEXRELID,
2032 										 ObjectIdGetDatum(indexRelationId));
2033 		if (!HeapTupleIsValid(indexTuple))
2034 			elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2035 		indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2036 
2037 		if (mark_as_primary && !indexForm->indisprimary)
2038 		{
2039 			indexForm->indisprimary = true;
2040 			dirty = true;
2041 		}
2042 
2043 		if (deferrable && indexForm->indimmediate)
2044 		{
2045 			indexForm->indimmediate = false;
2046 			dirty = true;
2047 		}
2048 
2049 		if (dirty)
2050 		{
2051 			CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2052 
2053 			InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2054 										 InvalidOid, is_internal);
2055 		}
2056 
2057 		heap_freetuple(indexTuple);
2058 		table_close(pg_index, RowExclusiveLock);
2059 	}
2060 
2061 	return myself;
2062 }
2063 
2064 /*
2065  *		index_drop
2066  *
2067  * NOTE: this routine should now only be called through performDeletion(),
2068  * else associated dependencies won't be cleaned up.
2069  *
2070  * If concurrent is true, do a DROP INDEX CONCURRENTLY.  If concurrent is
2071  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2072  * take a lock for CONCURRENTLY processing.  That is used as part of REINDEX
2073  * CONCURRENTLY.
2074  */
2075 void
index_drop(Oid indexId,bool concurrent,bool concurrent_lock_mode)2076 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2077 {
2078 	Oid			heapId;
2079 	Relation	userHeapRelation;
2080 	Relation	userIndexRelation;
2081 	Relation	indexRelation;
2082 	HeapTuple	tuple;
2083 	bool		hasexprs;
2084 	LockRelId	heaprelid,
2085 				indexrelid;
2086 	LOCKTAG		heaplocktag;
2087 	LOCKMODE	lockmode;
2088 
2089 	/*
2090 	 * A temporary relation uses a non-concurrent DROP.  Other backends can't
2091 	 * access a temporary relation, so there's no harm in grabbing a stronger
2092 	 * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2093 	 * more efficient.
2094 	 */
2095 	Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2096 		   (!concurrent && !concurrent_lock_mode));
2097 
2098 	/*
2099 	 * To drop an index safely, we must grab exclusive lock on its parent
2100 	 * table.  Exclusive lock on the index alone is insufficient because
2101 	 * another backend might be about to execute a query on the parent table.
2102 	 * If it relies on a previously cached list of index OIDs, then it could
2103 	 * attempt to access the just-dropped index.  We must therefore take a
2104 	 * table lock strong enough to prevent all queries on the table from
2105 	 * proceeding until we commit and send out a shared-cache-inval notice
2106 	 * that will make them update their index lists.
2107 	 *
2108 	 * In the concurrent case we avoid this requirement by disabling index use
2109 	 * in multiple steps and waiting out any transactions that might be using
2110 	 * the index, so we don't need exclusive lock on the parent table. Instead
2111 	 * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2112 	 * doing CREATE/DROP INDEX CONCURRENTLY on the same index.  (We will get
2113 	 * AccessExclusiveLock on the index below, once we're sure nobody else is
2114 	 * using it.)
2115 	 */
2116 	heapId = IndexGetRelation(indexId, false);
2117 	lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2118 	userHeapRelation = table_open(heapId, lockmode);
2119 	userIndexRelation = index_open(indexId, lockmode);
2120 
2121 	/*
2122 	 * We might still have open queries using it in our own session, which the
2123 	 * above locking won't prevent, so test explicitly.
2124 	 */
2125 	CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2126 
2127 	/*
2128 	 * Drop Index Concurrently is more or less the reverse process of Create
2129 	 * Index Concurrently.
2130 	 *
2131 	 * First we unset indisvalid so queries starting afterwards don't use the
2132 	 * index to answer queries anymore.  We have to keep indisready = true so
2133 	 * transactions that are still scanning the index can continue to see
2134 	 * valid index contents.  For instance, if they are using READ COMMITTED
2135 	 * mode, and another transaction makes changes and commits, they need to
2136 	 * see those new tuples in the index.
2137 	 *
2138 	 * After all transactions that could possibly have used the index for
2139 	 * queries end, we can unset indisready and indislive, then wait till
2140 	 * nobody could be touching it anymore.  (Note: we need indislive because
2141 	 * this state must be distinct from the initial state during CREATE INDEX
2142 	 * CONCURRENTLY, which has indislive true while indisready and indisvalid
2143 	 * are false.  That's because in that state, transactions must examine the
2144 	 * index for HOT-safety decisions, while in this state we don't want them
2145 	 * to open it at all.)
2146 	 *
2147 	 * Since all predicate locks on the index are about to be made invalid, we
2148 	 * must promote them to predicate locks on the heap.  In the
2149 	 * non-concurrent case we can just do that now.  In the concurrent case
2150 	 * it's a bit trickier.  The predicate locks must be moved when there are
2151 	 * no index scans in progress on the index and no more can subsequently
2152 	 * start, so that no new predicate locks can be made on the index.  Also,
2153 	 * they must be moved before heap inserts stop maintaining the index, else
2154 	 * the conflict with the predicate lock on the index gap could be missed
2155 	 * before the lock on the heap relation is in place to detect a conflict
2156 	 * based on the heap tuple insert.
2157 	 */
2158 	if (concurrent)
2159 	{
2160 		/*
2161 		 * We must commit our transaction in order to make the first pg_index
2162 		 * state update visible to other sessions.  If the DROP machinery has
2163 		 * already performed any other actions (removal of other objects,
2164 		 * pg_depend entries, etc), the commit would make those actions
2165 		 * permanent, which would leave us with inconsistent catalog state if
2166 		 * we fail partway through the following sequence.  Since DROP INDEX
2167 		 * CONCURRENTLY is restricted to dropping just one index that has no
2168 		 * dependencies, we should get here before anything's been done ---
2169 		 * but let's check that to be sure.  We can verify that the current
2170 		 * transaction has not executed any transactional updates by checking
2171 		 * that no XID has been assigned.
2172 		 */
2173 		if (GetTopTransactionIdIfAny() != InvalidTransactionId)
2174 			ereport(ERROR,
2175 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2176 					 errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2177 
2178 		/*
2179 		 * Mark index invalid by updating its pg_index entry
2180 		 */
2181 		index_set_state_flags(indexId, INDEX_DROP_CLEAR_VALID);
2182 
2183 		/*
2184 		 * Invalidate the relcache for the table, so that after this commit
2185 		 * all sessions will refresh any cached plans that might reference the
2186 		 * index.
2187 		 */
2188 		CacheInvalidateRelcache(userHeapRelation);
2189 
2190 		/* save lockrelid and locktag for below, then close but keep locks */
2191 		heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2192 		SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2193 		indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2194 
2195 		table_close(userHeapRelation, NoLock);
2196 		index_close(userIndexRelation, NoLock);
2197 
2198 		/*
2199 		 * We must commit our current transaction so that the indisvalid
2200 		 * update becomes visible to other transactions; then start another.
2201 		 * Note that any previously-built data structures are lost in the
2202 		 * commit.  The only data we keep past here are the relation IDs.
2203 		 *
2204 		 * Before committing, get a session-level lock on the table, to ensure
2205 		 * that neither it nor the index can be dropped before we finish. This
2206 		 * cannot block, even if someone else is waiting for access, because
2207 		 * we already have the same lock within our transaction.
2208 		 */
2209 		LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
2210 		LockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock);
2211 
2212 		PopActiveSnapshot();
2213 		CommitTransactionCommand();
2214 		StartTransactionCommand();
2215 
2216 		/*
2217 		 * Now we must wait until no running transaction could be using the
2218 		 * index for a query.  Use AccessExclusiveLock here to check for
2219 		 * running transactions that hold locks of any kind on the table. Note
2220 		 * we do not need to worry about xacts that open the table for reading
2221 		 * after this point; they will see the index as invalid when they open
2222 		 * the relation.
2223 		 *
2224 		 * Note: the reason we use actual lock acquisition here, rather than
2225 		 * just checking the ProcArray and sleeping, is that deadlock is
2226 		 * possible if one of the transactions in question is blocked trying
2227 		 * to acquire an exclusive lock on our table.  The lock code will
2228 		 * detect deadlock and error out properly.
2229 		 *
2230 		 * Note: we report progress through WaitForLockers() unconditionally
2231 		 * here, even though it will only be used when we're called by REINDEX
2232 		 * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2233 		 */
2234 		WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2235 
2236 		/* Finish invalidation of index and mark it as dead */
2237 		index_concurrently_set_dead(heapId, indexId);
2238 
2239 		/*
2240 		 * Again, commit the transaction to make the pg_index update visible
2241 		 * to other sessions.
2242 		 */
2243 		CommitTransactionCommand();
2244 		StartTransactionCommand();
2245 
2246 		/*
2247 		 * Wait till every transaction that saw the old index state has
2248 		 * finished.  See above about progress reporting.
2249 		 */
2250 		WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2251 
2252 		/*
2253 		 * Re-open relations to allow us to complete our actions.
2254 		 *
2255 		 * At this point, nothing should be accessing the index, but lets
2256 		 * leave nothing to chance and grab AccessExclusiveLock on the index
2257 		 * before the physical deletion.
2258 		 */
2259 		userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2260 		userIndexRelation = index_open(indexId, AccessExclusiveLock);
2261 	}
2262 	else
2263 	{
2264 		/* Not concurrent, so just transfer predicate locks and we're good */
2265 		TransferPredicateLocksToHeapRelation(userIndexRelation);
2266 	}
2267 
2268 	/*
2269 	 * Schedule physical removal of the files (if any)
2270 	 */
2271 	if (userIndexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
2272 		RelationDropStorage(userIndexRelation);
2273 
2274 	/*
2275 	 * Close and flush the index's relcache entry, to ensure relcache doesn't
2276 	 * try to rebuild it while we're deleting catalog entries. We keep the
2277 	 * lock though.
2278 	 */
2279 	index_close(userIndexRelation, NoLock);
2280 
2281 	RelationForgetRelation(indexId);
2282 
2283 	/*
2284 	 * fix INDEX relation, and check for expressional index
2285 	 */
2286 	indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2287 
2288 	tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2289 	if (!HeapTupleIsValid(tuple))
2290 		elog(ERROR, "cache lookup failed for index %u", indexId);
2291 
2292 	hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2293 							   RelationGetDescr(indexRelation));
2294 
2295 	CatalogTupleDelete(indexRelation, &tuple->t_self);
2296 
2297 	ReleaseSysCache(tuple);
2298 	table_close(indexRelation, RowExclusiveLock);
2299 
2300 	/*
2301 	 * if it has any expression columns, we might have stored statistics about
2302 	 * them.
2303 	 */
2304 	if (hasexprs)
2305 		RemoveStatistics(indexId, 0);
2306 
2307 	/*
2308 	 * fix ATTRIBUTE relation
2309 	 */
2310 	DeleteAttributeTuples(indexId);
2311 
2312 	/*
2313 	 * fix RELATION relation
2314 	 */
2315 	DeleteRelationTuple(indexId);
2316 
2317 	/*
2318 	 * fix INHERITS relation
2319 	 */
2320 	DeleteInheritsTuple(indexId, InvalidOid);
2321 
2322 	/*
2323 	 * We are presently too lazy to attempt to compute the new correct value
2324 	 * of relhasindex (the next VACUUM will fix it if necessary). So there is
2325 	 * no need to update the pg_class tuple for the owning relation. But we
2326 	 * must send out a shared-cache-inval notice on the owning relation to
2327 	 * ensure other backends update their relcache lists of indexes.  (In the
2328 	 * concurrent case, this is redundant but harmless.)
2329 	 */
2330 	CacheInvalidateRelcache(userHeapRelation);
2331 
2332 	/*
2333 	 * Close owning rel, but keep lock
2334 	 */
2335 	table_close(userHeapRelation, NoLock);
2336 
2337 	/*
2338 	 * Release the session locks before we go.
2339 	 */
2340 	if (concurrent)
2341 	{
2342 		UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
2343 		UnlockRelationIdForSession(&indexrelid, ShareUpdateExclusiveLock);
2344 	}
2345 }
2346 
2347 /* ----------------------------------------------------------------
2348  *						index_build support
2349  * ----------------------------------------------------------------
2350  */
2351 
2352 /* ----------------
2353  *		BuildIndexInfo
2354  *			Construct an IndexInfo record for an open index
2355  *
2356  * IndexInfo stores the information about the index that's needed by
2357  * FormIndexDatum, which is used for both index_build() and later insertion
2358  * of individual index tuples.  Normally we build an IndexInfo for an index
2359  * just once per command, and then use it for (potentially) many tuples.
2360  * ----------------
2361  */
2362 IndexInfo *
BuildIndexInfo(Relation index)2363 BuildIndexInfo(Relation index)
2364 {
2365 	IndexInfo  *ii = makeNode(IndexInfo);
2366 	Form_pg_index indexStruct = index->rd_index;
2367 	int			i;
2368 	int			numAtts;
2369 
2370 	/* check the number of keys, and copy attr numbers into the IndexInfo */
2371 	numAtts = indexStruct->indnatts;
2372 	if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2373 		elog(ERROR, "invalid indnatts %d for index %u",
2374 			 numAtts, RelationGetRelid(index));
2375 	ii->ii_NumIndexAttrs = numAtts;
2376 	ii->ii_NumIndexKeyAttrs = indexStruct->indnkeyatts;
2377 	Assert(ii->ii_NumIndexKeyAttrs != 0);
2378 	Assert(ii->ii_NumIndexKeyAttrs <= ii->ii_NumIndexAttrs);
2379 
2380 	for (i = 0; i < numAtts; i++)
2381 		ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2382 
2383 	/* fetch any expressions needed for expressional indexes */
2384 	ii->ii_Expressions = RelationGetIndexExpressions(index);
2385 	ii->ii_ExpressionsState = NIL;
2386 
2387 	/* fetch index predicate if any */
2388 	ii->ii_Predicate = RelationGetIndexPredicate(index);
2389 	ii->ii_PredicateState = NULL;
2390 
2391 	/* fetch exclusion constraint info if any */
2392 	if (indexStruct->indisexclusion)
2393 	{
2394 		RelationGetExclusionInfo(index,
2395 								 &ii->ii_ExclusionOps,
2396 								 &ii->ii_ExclusionProcs,
2397 								 &ii->ii_ExclusionStrats);
2398 	}
2399 	else
2400 	{
2401 		ii->ii_ExclusionOps = NULL;
2402 		ii->ii_ExclusionProcs = NULL;
2403 		ii->ii_ExclusionStrats = NULL;
2404 	}
2405 
2406 	/* other info */
2407 	ii->ii_Unique = indexStruct->indisunique;
2408 	ii->ii_ReadyForInserts = indexStruct->indisready;
2409 	/* assume not doing speculative insertion for now */
2410 	ii->ii_UniqueOps = NULL;
2411 	ii->ii_UniqueProcs = NULL;
2412 	ii->ii_UniqueStrats = NULL;
2413 
2414 	/* initialize index-build state to default */
2415 	ii->ii_Concurrent = false;
2416 	ii->ii_BrokenHotChain = false;
2417 	ii->ii_ParallelWorkers = 0;
2418 
2419 	/* set up for possible use by index AM */
2420 	ii->ii_Am = index->rd_rel->relam;
2421 	ii->ii_AmCache = NULL;
2422 	ii->ii_Context = CurrentMemoryContext;
2423 
2424 	return ii;
2425 }
2426 
2427 /* ----------------
2428  *		BuildDummyIndexInfo
2429  *			Construct a dummy IndexInfo record for an open index
2430  *
2431  * This differs from the real BuildIndexInfo in that it will never run any
2432  * user-defined code that might exist in index expressions or predicates.
2433  * Instead of the real index expressions, we return null constants that have
2434  * the right types/typmods/collations.  Predicates and exclusion clauses are
2435  * just ignored.  This is sufficient for the purpose of truncating an index,
2436  * since we will not need to actually evaluate the expressions or predicates;
2437  * the only thing that's likely to be done with the data is construction of
2438  * a tupdesc describing the index's rowtype.
2439  * ----------------
2440  */
2441 IndexInfo *
BuildDummyIndexInfo(Relation index)2442 BuildDummyIndexInfo(Relation index)
2443 {
2444 	IndexInfo  *ii;
2445 	Form_pg_index indexStruct = index->rd_index;
2446 	int			i;
2447 	int			numAtts;
2448 
2449 	/* check the number of keys, and copy attr numbers into the IndexInfo */
2450 	numAtts = indexStruct->indnatts;
2451 	if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2452 		elog(ERROR, "invalid indnatts %d for index %u",
2453 			 numAtts, RelationGetRelid(index));
2454 
2455 	/*
2456 	 * Create the node, using dummy index expressions, and pretending there is
2457 	 * no predicate.
2458 	 */
2459 	ii = makeIndexInfo(indexStruct->indnatts,
2460 					   indexStruct->indnkeyatts,
2461 					   index->rd_rel->relam,
2462 					   RelationGetDummyIndexExpressions(index),
2463 					   NIL,
2464 					   indexStruct->indisunique,
2465 					   indexStruct->indisready,
2466 					   false);
2467 
2468 	/* fill in attribute numbers */
2469 	for (i = 0; i < numAtts; i++)
2470 		ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2471 
2472 	/* We ignore the exclusion constraint if any */
2473 
2474 	return ii;
2475 }
2476 
2477 /*
2478  * CompareIndexInfo
2479  *		Return whether the properties of two indexes (in different tables)
2480  *		indicate that they have the "same" definitions.
2481  *
2482  * Note: passing collations and opfamilies separately is a kludge.  Adding
2483  * them to IndexInfo may result in better coding here and elsewhere.
2484  *
2485  * Use convert_tuples_by_name_map(index2, index1) to build the attmap.
2486  */
2487 bool
CompareIndexInfo(IndexInfo * info1,IndexInfo * info2,Oid * collations1,Oid * collations2,Oid * opfamilies1,Oid * opfamilies2,AttrNumber * attmap,int maplen)2488 CompareIndexInfo(IndexInfo *info1, IndexInfo *info2,
2489 				 Oid *collations1, Oid *collations2,
2490 				 Oid *opfamilies1, Oid *opfamilies2,
2491 				 AttrNumber *attmap, int maplen)
2492 {
2493 	int			i;
2494 
2495 	if (info1->ii_Unique != info2->ii_Unique)
2496 		return false;
2497 
2498 	/* indexes are only equivalent if they have the same access method */
2499 	if (info1->ii_Am != info2->ii_Am)
2500 		return false;
2501 
2502 	/* and same number of attributes */
2503 	if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2504 		return false;
2505 
2506 	/* and same number of key attributes */
2507 	if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2508 		return false;
2509 
2510 	/*
2511 	 * and columns match through the attribute map (actual attribute numbers
2512 	 * might differ!)  Note that this implies that index columns that are
2513 	 * expressions appear in the same positions.  We will next compare the
2514 	 * expressions themselves.
2515 	 */
2516 	for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2517 	{
2518 		if (maplen < info2->ii_IndexAttrNumbers[i])
2519 			elog(ERROR, "incorrect attribute map");
2520 
2521 		/* ignore expressions at this stage */
2522 		if ((info1->ii_IndexAttrNumbers[i] != InvalidAttrNumber) &&
2523 			(attmap[info2->ii_IndexAttrNumbers[i] - 1] !=
2524 			 info1->ii_IndexAttrNumbers[i]))
2525 			return false;
2526 
2527 		/* collation and opfamily is not valid for including columns */
2528 		if (i >= info1->ii_NumIndexKeyAttrs)
2529 			continue;
2530 
2531 		if (collations1[i] != collations2[i])
2532 			return false;
2533 		if (opfamilies1[i] != opfamilies2[i])
2534 			return false;
2535 	}
2536 
2537 	/*
2538 	 * For expression indexes: either both are expression indexes, or neither
2539 	 * is; if they are, make sure the expressions match.
2540 	 */
2541 	if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2542 		return false;
2543 	if (info1->ii_Expressions != NIL)
2544 	{
2545 		bool		found_whole_row;
2546 		Node	   *mapped;
2547 
2548 		mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2549 									 1, 0, attmap, maplen,
2550 									 InvalidOid, &found_whole_row);
2551 		if (found_whole_row)
2552 		{
2553 			/*
2554 			 * we could throw an error here, but seems out of scope for this
2555 			 * routine.
2556 			 */
2557 			return false;
2558 		}
2559 
2560 		if (!equal(info1->ii_Expressions, mapped))
2561 			return false;
2562 	}
2563 
2564 	/* Partial index predicates must be identical, if they exist */
2565 	if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2566 		return false;
2567 	if (info1->ii_Predicate != NULL)
2568 	{
2569 		bool		found_whole_row;
2570 		Node	   *mapped;
2571 
2572 		mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2573 									 1, 0, attmap, maplen,
2574 									 InvalidOid, &found_whole_row);
2575 		if (found_whole_row)
2576 		{
2577 			/*
2578 			 * we could throw an error here, but seems out of scope for this
2579 			 * routine.
2580 			 */
2581 			return false;
2582 		}
2583 		if (!equal(info1->ii_Predicate, mapped))
2584 			return false;
2585 	}
2586 
2587 	/* No support currently for comparing exclusion indexes. */
2588 	if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2589 		return false;
2590 
2591 	return true;
2592 }
2593 
2594 /* ----------------
2595  *		BuildSpeculativeIndexInfo
2596  *			Add extra state to IndexInfo record
2597  *
2598  * For unique indexes, we usually don't want to add info to the IndexInfo for
2599  * checking uniqueness, since the B-Tree AM handles that directly.  However,
2600  * in the case of speculative insertion, additional support is required.
2601  *
2602  * Do this processing here rather than in BuildIndexInfo() to not incur the
2603  * overhead in the common non-speculative cases.
2604  * ----------------
2605  */
2606 void
BuildSpeculativeIndexInfo(Relation index,IndexInfo * ii)2607 BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
2608 {
2609 	int			indnkeyatts;
2610 	int			i;
2611 
2612 	indnkeyatts = IndexRelationGetNumberOfKeyAttributes(index);
2613 
2614 	/*
2615 	 * fetch info for checking unique indexes
2616 	 */
2617 	Assert(ii->ii_Unique);
2618 
2619 	if (index->rd_rel->relam != BTREE_AM_OID)
2620 		elog(ERROR, "unexpected non-btree speculative unique index");
2621 
2622 	ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2623 	ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2624 	ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2625 
2626 	/*
2627 	 * We have to look up the operator's strategy number.  This provides a
2628 	 * cross-check that the operator does match the index.
2629 	 */
2630 	/* We need the func OIDs and strategy numbers too */
2631 	for (i = 0; i < indnkeyatts; i++)
2632 	{
2633 		ii->ii_UniqueStrats[i] = BTEqualStrategyNumber;
2634 		ii->ii_UniqueOps[i] =
2635 			get_opfamily_member(index->rd_opfamily[i],
2636 								index->rd_opcintype[i],
2637 								index->rd_opcintype[i],
2638 								ii->ii_UniqueStrats[i]);
2639 		if (!OidIsValid(ii->ii_UniqueOps[i]))
2640 			elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2641 				 ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2642 				 index->rd_opcintype[i], index->rd_opfamily[i]);
2643 		ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2644 	}
2645 }
2646 
2647 /* ----------------
2648  *		FormIndexDatum
2649  *			Construct values[] and isnull[] arrays for a new index tuple.
2650  *
2651  *	indexInfo		Info about the index
2652  *	slot			Heap tuple for which we must prepare an index entry
2653  *	estate			executor state for evaluating any index expressions
2654  *	values			Array of index Datums (output area)
2655  *	isnull			Array of is-null indicators (output area)
2656  *
2657  * When there are no index expressions, estate may be NULL.  Otherwise it
2658  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2659  * context must point to the heap tuple passed in.
2660  *
2661  * Notice we don't actually call index_form_tuple() here; we just prepare
2662  * its input arrays values[] and isnull[].  This is because the index AM
2663  * may wish to alter the data before storage.
2664  * ----------------
2665  */
2666 void
FormIndexDatum(IndexInfo * indexInfo,TupleTableSlot * slot,EState * estate,Datum * values,bool * isnull)2667 FormIndexDatum(IndexInfo *indexInfo,
2668 			   TupleTableSlot *slot,
2669 			   EState *estate,
2670 			   Datum *values,
2671 			   bool *isnull)
2672 {
2673 	ListCell   *indexpr_item;
2674 	int			i;
2675 
2676 	if (indexInfo->ii_Expressions != NIL &&
2677 		indexInfo->ii_ExpressionsState == NIL)
2678 	{
2679 		/* First time through, set up expression evaluation state */
2680 		indexInfo->ii_ExpressionsState =
2681 			ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2682 		/* Check caller has set up context correctly */
2683 		Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2684 	}
2685 	indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2686 
2687 	for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2688 	{
2689 		int			keycol = indexInfo->ii_IndexAttrNumbers[i];
2690 		Datum		iDatum;
2691 		bool		isNull;
2692 
2693 		if (keycol < 0)
2694 			iDatum = slot_getsysattr(slot, keycol, &isNull);
2695 		else if (keycol != 0)
2696 		{
2697 			/*
2698 			 * Plain index column; get the value we need directly from the
2699 			 * heap tuple.
2700 			 */
2701 			iDatum = slot_getattr(slot, keycol, &isNull);
2702 		}
2703 		else
2704 		{
2705 			/*
2706 			 * Index expression --- need to evaluate it.
2707 			 */
2708 			if (indexpr_item == NULL)
2709 				elog(ERROR, "wrong number of index expressions");
2710 			iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2711 											   GetPerTupleExprContext(estate),
2712 											   &isNull);
2713 			indexpr_item = lnext(indexpr_item);
2714 		}
2715 		values[i] = iDatum;
2716 		isnull[i] = isNull;
2717 	}
2718 
2719 	if (indexpr_item != NULL)
2720 		elog(ERROR, "wrong number of index expressions");
2721 }
2722 
2723 
2724 /*
2725  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2726  *
2727  * This routine updates the pg_class row of either an index or its parent
2728  * relation after CREATE INDEX or REINDEX.  Its rather bizarre API is designed
2729  * to ensure we can do all the necessary work in just one update.
2730  *
2731  * hasindex: set relhasindex to this value
2732  * reltuples: if >= 0, set reltuples to this value; else no change
2733  *
2734  * If reltuples >= 0, relpages and relallvisible are also updated (using
2735  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2736  *
2737  * NOTE: an important side-effect of this operation is that an SI invalidation
2738  * message is sent out to all backends --- including me --- causing relcache
2739  * entries to be flushed or updated with the new data.  This must happen even
2740  * if we find that no change is needed in the pg_class row.  When updating
2741  * a heap entry, this ensures that other backends find out about the new
2742  * index.  When updating an index, it's important because some index AMs
2743  * expect a relcache flush to occur after REINDEX.
2744  */
2745 static void
index_update_stats(Relation rel,bool hasindex,double reltuples)2746 index_update_stats(Relation rel,
2747 				   bool hasindex,
2748 				   double reltuples)
2749 {
2750 	Oid			relid = RelationGetRelid(rel);
2751 	Relation	pg_class;
2752 	HeapTuple	tuple;
2753 	Form_pg_class rd_rel;
2754 	bool		dirty;
2755 
2756 	/*
2757 	 * We always update the pg_class row using a non-transactional,
2758 	 * overwrite-in-place update.  There are several reasons for this:
2759 	 *
2760 	 * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2761 	 *
2762 	 * 2. We could be reindexing pg_class itself, in which case we can't move
2763 	 * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2764 	 * not know about all the indexes yet (see reindex_relation).
2765 	 *
2766 	 * 3. Because we execute CREATE INDEX with just share lock on the parent
2767 	 * rel (to allow concurrent index creations), an ordinary update could
2768 	 * suffer a tuple-concurrently-updated failure against another CREATE
2769 	 * INDEX committing at about the same time.  We can avoid that by having
2770 	 * them both do nontransactional updates (we assume they will both be
2771 	 * trying to change the pg_class row to the same thing, so it doesn't
2772 	 * matter which goes first).
2773 	 *
2774 	 * It is safe to use a non-transactional update even though our
2775 	 * transaction could still fail before committing.  Setting relhasindex
2776 	 * true is safe even if there are no indexes (VACUUM will eventually fix
2777 	 * it).  And of course the new relpages and reltuples counts are correct
2778 	 * regardless.  However, we don't want to change relpages (or
2779 	 * relallvisible) if the caller isn't providing an updated reltuples
2780 	 * count, because that would bollix the reltuples/relpages ratio which is
2781 	 * what's really important.
2782 	 */
2783 
2784 	pg_class = table_open(RelationRelationId, RowExclusiveLock);
2785 
2786 	/*
2787 	 * Make a copy of the tuple to update.  Normally we use the syscache, but
2788 	 * we can't rely on that during bootstrap or while reindexing pg_class
2789 	 * itself.
2790 	 */
2791 	if (IsBootstrapProcessingMode() ||
2792 		ReindexIsProcessingHeap(RelationRelationId))
2793 	{
2794 		/* don't assume syscache will work */
2795 		TableScanDesc pg_class_scan;
2796 		ScanKeyData key[1];
2797 
2798 		ScanKeyInit(&key[0],
2799 					Anum_pg_class_oid,
2800 					BTEqualStrategyNumber, F_OIDEQ,
2801 					ObjectIdGetDatum(relid));
2802 
2803 		pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2804 		tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2805 		tuple = heap_copytuple(tuple);
2806 		table_endscan(pg_class_scan);
2807 	}
2808 	else
2809 	{
2810 		/* normal case, use syscache */
2811 		tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2812 	}
2813 
2814 	if (!HeapTupleIsValid(tuple))
2815 		elog(ERROR, "could not find tuple for relation %u", relid);
2816 	rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2817 
2818 	/* Should this be a more comprehensive test? */
2819 	Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2820 
2821 	/* Apply required updates, if any, to copied tuple */
2822 
2823 	dirty = false;
2824 	if (rd_rel->relhasindex != hasindex)
2825 	{
2826 		rd_rel->relhasindex = hasindex;
2827 		dirty = true;
2828 	}
2829 
2830 	if (reltuples >= 0)
2831 	{
2832 		BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2833 		BlockNumber relallvisible;
2834 
2835 		if (rd_rel->relkind != RELKIND_INDEX)
2836 			visibilitymap_count(rel, &relallvisible, NULL);
2837 		else					/* don't bother for indexes */
2838 			relallvisible = 0;
2839 
2840 		if (rd_rel->relpages != (int32) relpages)
2841 		{
2842 			rd_rel->relpages = (int32) relpages;
2843 			dirty = true;
2844 		}
2845 		if (rd_rel->reltuples != (float4) reltuples)
2846 		{
2847 			rd_rel->reltuples = (float4) reltuples;
2848 			dirty = true;
2849 		}
2850 		if (rd_rel->relallvisible != (int32) relallvisible)
2851 		{
2852 			rd_rel->relallvisible = (int32) relallvisible;
2853 			dirty = true;
2854 		}
2855 	}
2856 
2857 	/*
2858 	 * If anything changed, write out the tuple
2859 	 */
2860 	if (dirty)
2861 	{
2862 		heap_inplace_update(pg_class, tuple);
2863 		/* the above sends a cache inval message */
2864 	}
2865 	else
2866 	{
2867 		/* no need to change tuple, but force relcache inval anyway */
2868 		CacheInvalidateRelcacheByTuple(tuple);
2869 	}
2870 
2871 	heap_freetuple(tuple);
2872 
2873 	table_close(pg_class, RowExclusiveLock);
2874 }
2875 
2876 
2877 /*
2878  * index_build - invoke access-method-specific index build procedure
2879  *
2880  * On entry, the index's catalog entries are valid, and its physical disk
2881  * file has been created but is empty.  We call the AM-specific build
2882  * procedure to fill in the index contents.  We then update the pg_class
2883  * entries of the index and heap relation as needed, using statistics
2884  * returned by ambuild as well as data passed by the caller.
2885  *
2886  * isreindex indicates we are recreating a previously-existing index.
2887  * parallel indicates if parallelism may be useful.
2888  *
2889  * Note: before Postgres 8.2, the passed-in heap and index Relations
2890  * were automatically closed by this routine.  This is no longer the case.
2891  * The caller opened 'em, and the caller should close 'em.
2892  */
2893 void
index_build(Relation heapRelation,Relation indexRelation,IndexInfo * indexInfo,bool isreindex,bool parallel)2894 index_build(Relation heapRelation,
2895 			Relation indexRelation,
2896 			IndexInfo *indexInfo,
2897 			bool isreindex,
2898 			bool parallel)
2899 {
2900 	IndexBuildResult *stats;
2901 	Oid			save_userid;
2902 	int			save_sec_context;
2903 	int			save_nestlevel;
2904 
2905 	/*
2906 	 * sanity checks
2907 	 */
2908 	Assert(RelationIsValid(indexRelation));
2909 	Assert(PointerIsValid(indexRelation->rd_indam));
2910 	Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2911 	Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2912 
2913 	/*
2914 	 * Determine worker process details for parallel CREATE INDEX.  Currently,
2915 	 * only btree has support for parallel builds.
2916 	 *
2917 	 * Note that planner considers parallel safety for us.
2918 	 */
2919 	if (parallel && IsNormalProcessingMode() &&
2920 		indexRelation->rd_rel->relam == BTREE_AM_OID)
2921 		indexInfo->ii_ParallelWorkers =
2922 			plan_create_index_workers(RelationGetRelid(heapRelation),
2923 									  RelationGetRelid(indexRelation));
2924 
2925 	if (indexInfo->ii_ParallelWorkers == 0)
2926 		ereport(DEBUG1,
2927 				(errmsg("building index \"%s\" on table \"%s\" serially",
2928 						RelationGetRelationName(indexRelation),
2929 						RelationGetRelationName(heapRelation))));
2930 	else
2931 		ereport(DEBUG1,
2932 				(errmsg_plural("building index \"%s\" on table \"%s\" with request for %d parallel worker",
2933 							   "building index \"%s\" on table \"%s\" with request for %d parallel workers",
2934 							   indexInfo->ii_ParallelWorkers,
2935 							   RelationGetRelationName(indexRelation),
2936 							   RelationGetRelationName(heapRelation),
2937 							   indexInfo->ii_ParallelWorkers)));
2938 
2939 	/*
2940 	 * Switch to the table owner's userid, so that any index functions are run
2941 	 * as that user.  Also lock down security-restricted operations and
2942 	 * arrange to make GUC variable changes local to this command.
2943 	 */
2944 	GetUserIdAndSecContext(&save_userid, &save_sec_context);
2945 	SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2946 						   save_sec_context | SECURITY_RESTRICTED_OPERATION);
2947 	save_nestlevel = NewGUCNestLevel();
2948 
2949 	/* Set up initial progress report status */
2950 	{
2951 		const int	index[] = {
2952 			PROGRESS_CREATEIDX_PHASE,
2953 			PROGRESS_CREATEIDX_SUBPHASE,
2954 			PROGRESS_CREATEIDX_TUPLES_DONE,
2955 			PROGRESS_CREATEIDX_TUPLES_TOTAL,
2956 			PROGRESS_SCAN_BLOCKS_DONE,
2957 			PROGRESS_SCAN_BLOCKS_TOTAL
2958 		};
2959 		const int64 val[] = {
2960 			PROGRESS_CREATEIDX_PHASE_BUILD,
2961 			PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE,
2962 			0, 0, 0, 0
2963 		};
2964 
2965 		pgstat_progress_update_multi_param(6, index, val);
2966 	}
2967 
2968 	/*
2969 	 * Call the access method's build procedure
2970 	 */
2971 	stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
2972 											 indexInfo);
2973 	Assert(PointerIsValid(stats));
2974 
2975 	/*
2976 	 * If this is an unlogged index, we may need to write out an init fork for
2977 	 * it -- but we must first check whether one already exists.  If, for
2978 	 * example, an unlogged relation is truncated in the transaction that
2979 	 * created it, or truncated twice in a subsequent transaction, the
2980 	 * relfilenode won't change, and nothing needs to be done here.
2981 	 */
2982 	if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
2983 		!smgrexists(indexRelation->rd_smgr, INIT_FORKNUM))
2984 	{
2985 		RelationOpenSmgr(indexRelation);
2986 		smgrcreate(indexRelation->rd_smgr, INIT_FORKNUM, false);
2987 		indexRelation->rd_indam->ambuildempty(indexRelation);
2988 	}
2989 
2990 	/*
2991 	 * If we found any potentially broken HOT chains, mark the index as not
2992 	 * being usable until the current transaction is below the event horizon.
2993 	 * See src/backend/access/heap/README.HOT for discussion.  Also set this
2994 	 * if early pruning/vacuuming is enabled for the heap relation.  While it
2995 	 * might become safe to use the index earlier based on actual cleanup
2996 	 * activity and other active transactions, the test for that would be much
2997 	 * more complex and would require some form of blocking, so keep it simple
2998 	 * and fast by just using the current transaction.
2999 	 *
3000 	 * However, when reindexing an existing index, we should do nothing here.
3001 	 * Any HOT chains that are broken with respect to the index must predate
3002 	 * the index's original creation, so there is no need to change the
3003 	 * index's usability horizon.  Moreover, we *must not* try to change the
3004 	 * index's pg_index entry while reindexing pg_index itself, and this
3005 	 * optimization nicely prevents that.  The more complex rules needed for a
3006 	 * reindex are handled separately after this function returns.
3007 	 *
3008 	 * We also need not set indcheckxmin during a concurrent index build,
3009 	 * because we won't set indisvalid true until all transactions that care
3010 	 * about the broken HOT chains or early pruning/vacuuming are gone.
3011 	 *
3012 	 * Therefore, this code path can only be taken during non-concurrent
3013 	 * CREATE INDEX.  Thus the fact that heap_update will set the pg_index
3014 	 * tuple's xmin doesn't matter, because that tuple was created in the
3015 	 * current transaction anyway.  That also means we don't need to worry
3016 	 * about any concurrent readers of the tuple; no other transaction can see
3017 	 * it yet.
3018 	 */
3019 	if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) &&
3020 		!isreindex &&
3021 		!indexInfo->ii_Concurrent)
3022 	{
3023 		Oid			indexId = RelationGetRelid(indexRelation);
3024 		Relation	pg_index;
3025 		HeapTuple	indexTuple;
3026 		Form_pg_index indexForm;
3027 
3028 		pg_index = table_open(IndexRelationId, RowExclusiveLock);
3029 
3030 		indexTuple = SearchSysCacheCopy1(INDEXRELID,
3031 										 ObjectIdGetDatum(indexId));
3032 		if (!HeapTupleIsValid(indexTuple))
3033 			elog(ERROR, "cache lookup failed for index %u", indexId);
3034 		indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3035 
3036 		/* If it's a new index, indcheckxmin shouldn't be set ... */
3037 		Assert(!indexForm->indcheckxmin);
3038 
3039 		indexForm->indcheckxmin = true;
3040 		CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3041 
3042 		heap_freetuple(indexTuple);
3043 		table_close(pg_index, RowExclusiveLock);
3044 	}
3045 
3046 	/*
3047 	 * Update heap and index pg_class rows
3048 	 */
3049 	index_update_stats(heapRelation,
3050 					   true,
3051 					   stats->heap_tuples);
3052 
3053 	index_update_stats(indexRelation,
3054 					   false,
3055 					   stats->index_tuples);
3056 
3057 	/* Make the updated catalog row versions visible */
3058 	CommandCounterIncrement();
3059 
3060 	/*
3061 	 * If it's for an exclusion constraint, make a second pass over the heap
3062 	 * to verify that the constraint is satisfied.  We must not do this until
3063 	 * the index is fully valid.  (Broken HOT chains shouldn't matter, though;
3064 	 * see comments for IndexCheckExclusion.)
3065 	 */
3066 	if (indexInfo->ii_ExclusionOps != NULL)
3067 		IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3068 
3069 	/* Roll back any GUC changes executed by index functions */
3070 	AtEOXact_GUC(false, save_nestlevel);
3071 
3072 	/* Restore userid and security context */
3073 	SetUserIdAndSecContext(save_userid, save_sec_context);
3074 }
3075 
3076 /*
3077  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3078  *
3079  * When creating an exclusion constraint, we first build the index normally
3080  * and then rescan the heap to check for conflicts.  We assume that we only
3081  * need to validate tuples that are live according to an up-to-date snapshot,
3082  * and that these were correctly indexed even in the presence of broken HOT
3083  * chains.  This should be OK since we are holding at least ShareLock on the
3084  * table, meaning there can be no uncommitted updates from other transactions.
3085  * (Note: that wouldn't necessarily work for system catalogs, since many
3086  * operations release write lock early on the system catalogs.)
3087  */
3088 static void
IndexCheckExclusion(Relation heapRelation,Relation indexRelation,IndexInfo * indexInfo)3089 IndexCheckExclusion(Relation heapRelation,
3090 					Relation indexRelation,
3091 					IndexInfo *indexInfo)
3092 {
3093 	TableScanDesc scan;
3094 	Datum		values[INDEX_MAX_KEYS];
3095 	bool		isnull[INDEX_MAX_KEYS];
3096 	ExprState  *predicate;
3097 	TupleTableSlot *slot;
3098 	EState	   *estate;
3099 	ExprContext *econtext;
3100 	Snapshot	snapshot;
3101 
3102 	/*
3103 	 * If we are reindexing the target index, mark it as no longer being
3104 	 * reindexed, to forestall an Assert in index_beginscan when we try to use
3105 	 * the index for probes.  This is OK because the index is now fully valid.
3106 	 */
3107 	if (ReindexIsCurrentlyProcessingIndex(RelationGetRelid(indexRelation)))
3108 		ResetReindexProcessing();
3109 
3110 	/*
3111 	 * Need an EState for evaluation of index expressions and partial-index
3112 	 * predicates.  Also a slot to hold the current tuple.
3113 	 */
3114 	estate = CreateExecutorState();
3115 	econtext = GetPerTupleExprContext(estate);
3116 	slot = table_slot_create(heapRelation, NULL);
3117 
3118 	/* Arrange for econtext's scan tuple to be the tuple under test */
3119 	econtext->ecxt_scantuple = slot;
3120 
3121 	/* Set up execution state for predicate, if any. */
3122 	predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3123 
3124 	/*
3125 	 * Scan all live tuples in the base relation.
3126 	 */
3127 	snapshot = RegisterSnapshot(GetLatestSnapshot());
3128 	scan = table_beginscan_strat(heapRelation,	/* relation */
3129 								 snapshot,	/* snapshot */
3130 								 0, /* number of keys */
3131 								 NULL,	/* scan key */
3132 								 true,	/* buffer access strategy OK */
3133 								 true); /* syncscan OK */
3134 
3135 	while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3136 	{
3137 		CHECK_FOR_INTERRUPTS();
3138 
3139 		/*
3140 		 * In a partial index, ignore tuples that don't satisfy the predicate.
3141 		 */
3142 		if (predicate != NULL)
3143 		{
3144 			if (!ExecQual(predicate, econtext))
3145 				continue;
3146 		}
3147 
3148 		/*
3149 		 * Extract index column values, including computing expressions.
3150 		 */
3151 		FormIndexDatum(indexInfo,
3152 					   slot,
3153 					   estate,
3154 					   values,
3155 					   isnull);
3156 
3157 		/*
3158 		 * Check that this tuple has no conflicts.
3159 		 */
3160 		check_exclusion_constraint(heapRelation,
3161 								   indexRelation, indexInfo,
3162 								   &(slot->tts_tid), values, isnull,
3163 								   estate, true);
3164 
3165 		MemoryContextReset(econtext->ecxt_per_tuple_memory);
3166 	}
3167 
3168 	table_endscan(scan);
3169 	UnregisterSnapshot(snapshot);
3170 
3171 	ExecDropSingleTupleTableSlot(slot);
3172 
3173 	FreeExecutorState(estate);
3174 
3175 	/* These may have been pointing to the now-gone estate */
3176 	indexInfo->ii_ExpressionsState = NIL;
3177 	indexInfo->ii_PredicateState = NULL;
3178 }
3179 
3180 
3181 /*
3182  * validate_index - support code for concurrent index builds
3183  *
3184  * We do a concurrent index build by first inserting the catalog entry for the
3185  * index via index_create(), marking it not indisready and not indisvalid.
3186  * Then we commit our transaction and start a new one, then we wait for all
3187  * transactions that could have been modifying the table to terminate.  Now
3188  * we know that any subsequently-started transactions will see the index and
3189  * honor its constraints on HOT updates; so while existing HOT-chains might
3190  * be broken with respect to the index, no currently live tuple will have an
3191  * incompatible HOT update done to it.  We now build the index normally via
3192  * index_build(), while holding a weak lock that allows concurrent
3193  * insert/update/delete.  Also, we index only tuples that are valid
3194  * as of the start of the scan (see table_index_build_scan), whereas a normal
3195  * build takes care to include recently-dead tuples.  This is OK because
3196  * we won't mark the index valid until all transactions that might be able
3197  * to see those tuples are gone.  The reason for doing that is to avoid
3198  * bogus unique-index failures due to concurrent UPDATEs (we might see
3199  * different versions of the same row as being valid when we pass over them,
3200  * if we used HeapTupleSatisfiesVacuum).  This leaves us with an index that
3201  * does not contain any tuples added to the table while we built the index.
3202  *
3203  * Next, we mark the index "indisready" (but still not "indisvalid") and
3204  * commit the second transaction and start a third.  Again we wait for all
3205  * transactions that could have been modifying the table to terminate.  Now
3206  * we know that any subsequently-started transactions will see the index and
3207  * insert their new tuples into it.  We then take a new reference snapshot
3208  * which is passed to validate_index().  Any tuples that are valid according
3209  * to this snap, but are not in the index, must be added to the index.
3210  * (Any tuples committed live after the snap will be inserted into the
3211  * index by their originating transaction.  Any tuples committed dead before
3212  * the snap need not be indexed, because we will wait out all transactions
3213  * that might care about them before we mark the index valid.)
3214  *
3215  * validate_index() works by first gathering all the TIDs currently in the
3216  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3217  * ever say "delete it".  (This should be faster than a plain indexscan;
3218  * also, not all index AMs support full-index indexscan.)  Then we sort the
3219  * TIDs, and finally scan the table doing a "merge join" against the TID list
3220  * to see which tuples are missing from the index.  Thus we will ensure that
3221  * all tuples valid according to the reference snapshot are in the index.
3222  *
3223  * Building a unique index this way is tricky: we might try to insert a
3224  * tuple that is already dead or is in process of being deleted, and we
3225  * mustn't have a uniqueness failure against an updated version of the same
3226  * row.  We could try to check the tuple to see if it's already dead and tell
3227  * index_insert() not to do the uniqueness check, but that still leaves us
3228  * with a race condition against an in-progress update.  To handle that,
3229  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3230  * before it declares a uniqueness error.
3231  *
3232  * After completing validate_index(), we wait until all transactions that
3233  * were alive at the time of the reference snapshot are gone; this is
3234  * necessary to be sure there are none left with a transaction snapshot
3235  * older than the reference (and hence possibly able to see tuples we did
3236  * not index).  Then we mark the index "indisvalid" and commit.  Subsequent
3237  * transactions will be able to use it for queries.
3238  *
3239  * Doing two full table scans is a brute-force strategy.  We could try to be
3240  * cleverer, eg storing new tuples in a special area of the table (perhaps
3241  * making the table append-only by setting use_fsm).  However that would
3242  * add yet more locking issues.
3243  */
3244 void
validate_index(Oid heapId,Oid indexId,Snapshot snapshot)3245 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3246 {
3247 	Relation	heapRelation,
3248 				indexRelation;
3249 	IndexInfo  *indexInfo;
3250 	IndexVacuumInfo ivinfo;
3251 	ValidateIndexState state;
3252 	Oid			save_userid;
3253 	int			save_sec_context;
3254 	int			save_nestlevel;
3255 
3256 	{
3257 		const int	index[] = {
3258 			PROGRESS_CREATEIDX_PHASE,
3259 			PROGRESS_CREATEIDX_TUPLES_DONE,
3260 			PROGRESS_CREATEIDX_TUPLES_TOTAL,
3261 			PROGRESS_SCAN_BLOCKS_DONE,
3262 			PROGRESS_SCAN_BLOCKS_TOTAL
3263 		};
3264 		const int64 val[] = {
3265 			PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN,
3266 			0, 0, 0, 0
3267 		};
3268 
3269 		pgstat_progress_update_multi_param(5, index, val);
3270 	}
3271 
3272 	/* Open and lock the parent heap relation */
3273 	heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3274 	/* And the target index relation */
3275 	indexRelation = index_open(indexId, RowExclusiveLock);
3276 
3277 	/*
3278 	 * Fetch info needed for index_insert.  (You might think this should be
3279 	 * passed in from DefineIndex, but its copy is long gone due to having
3280 	 * been built in a previous transaction.)
3281 	 */
3282 	indexInfo = BuildIndexInfo(indexRelation);
3283 
3284 	/* mark build is concurrent just for consistency */
3285 	indexInfo->ii_Concurrent = true;
3286 
3287 	/*
3288 	 * Switch to the table owner's userid, so that any index functions are run
3289 	 * as that user.  Also lock down security-restricted operations and
3290 	 * arrange to make GUC variable changes local to this command.
3291 	 */
3292 	GetUserIdAndSecContext(&save_userid, &save_sec_context);
3293 	SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3294 						   save_sec_context | SECURITY_RESTRICTED_OPERATION);
3295 	save_nestlevel = NewGUCNestLevel();
3296 
3297 	/*
3298 	 * Scan the index and gather up all the TIDs into a tuplesort object.
3299 	 */
3300 	ivinfo.index = indexRelation;
3301 	ivinfo.analyze_only = false;
3302 	ivinfo.report_progress = true;
3303 	ivinfo.estimated_count = true;
3304 	ivinfo.message_level = DEBUG2;
3305 	ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3306 	ivinfo.strategy = NULL;
3307 
3308 	/*
3309 	 * Encode TIDs as int8 values for the sort, rather than directly sorting
3310 	 * item pointers.  This can be significantly faster, primarily because TID
3311 	 * is a pass-by-reference type on all platforms, whereas int8 is
3312 	 * pass-by-value on most platforms.
3313 	 */
3314 	state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3315 											InvalidOid, false,
3316 											maintenance_work_mem,
3317 											NULL, false);
3318 	state.htups = state.itups = state.tups_inserted = 0;
3319 
3320 	/* ambulkdelete updates progress metrics */
3321 	(void) index_bulk_delete(&ivinfo, NULL,
3322 							 validate_index_callback, (void *) &state);
3323 
3324 	/* Execute the sort */
3325 	{
3326 		const int	index[] = {
3327 			PROGRESS_CREATEIDX_PHASE,
3328 			PROGRESS_SCAN_BLOCKS_DONE,
3329 			PROGRESS_SCAN_BLOCKS_TOTAL
3330 		};
3331 		const int64 val[] = {
3332 			PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT,
3333 			0, 0
3334 		};
3335 
3336 		pgstat_progress_update_multi_param(3, index, val);
3337 	}
3338 	tuplesort_performsort(state.tuplesort);
3339 
3340 	/*
3341 	 * Now scan the heap and "merge" it with the index
3342 	 */
3343 	pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
3344 								 PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN);
3345 	table_index_validate_scan(heapRelation,
3346 							  indexRelation,
3347 							  indexInfo,
3348 							  snapshot,
3349 							  &state);
3350 
3351 	/* Done with tuplesort object */
3352 	tuplesort_end(state.tuplesort);
3353 
3354 	elog(DEBUG2,
3355 		 "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3356 		 state.htups, state.itups, state.tups_inserted);
3357 
3358 	/* Roll back any GUC changes executed by index functions */
3359 	AtEOXact_GUC(false, save_nestlevel);
3360 
3361 	/* Restore userid and security context */
3362 	SetUserIdAndSecContext(save_userid, save_sec_context);
3363 
3364 	/* Close rels, but keep locks */
3365 	index_close(indexRelation, NoLock);
3366 	table_close(heapRelation, NoLock);
3367 }
3368 
3369 /*
3370  * validate_index_callback - bulkdelete callback to collect the index TIDs
3371  */
3372 static bool
validate_index_callback(ItemPointer itemptr,void * opaque)3373 validate_index_callback(ItemPointer itemptr, void *opaque)
3374 {
3375 	ValidateIndexState *state = (ValidateIndexState *) opaque;
3376 	int64		encoded = itemptr_encode(itemptr);
3377 
3378 	tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3379 	state->itups += 1;
3380 	return false;				/* never actually delete anything */
3381 }
3382 
3383 /*
3384  * index_set_state_flags - adjust pg_index state flags
3385  *
3386  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3387  * flags that denote the index's state.
3388  *
3389  * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3390  * tuple, so other sessions will hear about the update as soon as we commit.
3391  */
3392 void
index_set_state_flags(Oid indexId,IndexStateFlagsAction action)3393 index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
3394 {
3395 	Relation	pg_index;
3396 	HeapTuple	indexTuple;
3397 	Form_pg_index indexForm;
3398 
3399 	/* Open pg_index and fetch a writable copy of the index's tuple */
3400 	pg_index = table_open(IndexRelationId, RowExclusiveLock);
3401 
3402 	indexTuple = SearchSysCacheCopy1(INDEXRELID,
3403 									 ObjectIdGetDatum(indexId));
3404 	if (!HeapTupleIsValid(indexTuple))
3405 		elog(ERROR, "cache lookup failed for index %u", indexId);
3406 	indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3407 
3408 	/* Perform the requested state change on the copy */
3409 	switch (action)
3410 	{
3411 		case INDEX_CREATE_SET_READY:
3412 			/* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3413 			Assert(indexForm->indislive);
3414 			Assert(!indexForm->indisready);
3415 			Assert(!indexForm->indisvalid);
3416 			indexForm->indisready = true;
3417 			break;
3418 		case INDEX_CREATE_SET_VALID:
3419 			/* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3420 			Assert(indexForm->indislive);
3421 			Assert(indexForm->indisready);
3422 			Assert(!indexForm->indisvalid);
3423 			indexForm->indisvalid = true;
3424 			break;
3425 		case INDEX_DROP_CLEAR_VALID:
3426 
3427 			/*
3428 			 * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3429 			 *
3430 			 * If indisready == true we leave it set so the index still gets
3431 			 * maintained by active transactions.  We only need to ensure that
3432 			 * indisvalid is false.  (We don't assert that either is initially
3433 			 * true, though, since we want to be able to retry a DROP INDEX
3434 			 * CONCURRENTLY that failed partway through.)
3435 			 *
3436 			 * Note: the CLUSTER logic assumes that indisclustered cannot be
3437 			 * set on any invalid index, so clear that flag too.
3438 			 */
3439 			indexForm->indisvalid = false;
3440 			indexForm->indisclustered = false;
3441 			break;
3442 		case INDEX_DROP_SET_DEAD:
3443 
3444 			/*
3445 			 * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3446 			 *
3447 			 * We clear both indisready and indislive, because we not only
3448 			 * want to stop updates, we want to prevent sessions from touching
3449 			 * the index at all.
3450 			 */
3451 			Assert(!indexForm->indisvalid);
3452 			indexForm->indisready = false;
3453 			indexForm->indislive = false;
3454 			break;
3455 	}
3456 
3457 	/* ... and update it */
3458 	CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3459 
3460 	table_close(pg_index, RowExclusiveLock);
3461 }
3462 
3463 
3464 /*
3465  * IndexGetRelation: given an index's relation OID, get the OID of the
3466  * relation it is an index on.  Uses the system cache.
3467  */
3468 Oid
IndexGetRelation(Oid indexId,bool missing_ok)3469 IndexGetRelation(Oid indexId, bool missing_ok)
3470 {
3471 	HeapTuple	tuple;
3472 	Form_pg_index index;
3473 	Oid			result;
3474 
3475 	tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3476 	if (!HeapTupleIsValid(tuple))
3477 	{
3478 		if (missing_ok)
3479 			return InvalidOid;
3480 		elog(ERROR, "cache lookup failed for index %u", indexId);
3481 	}
3482 	index = (Form_pg_index) GETSTRUCT(tuple);
3483 	Assert(index->indexrelid == indexId);
3484 
3485 	result = index->indrelid;
3486 	ReleaseSysCache(tuple);
3487 	return result;
3488 }
3489 
3490 /*
3491  * reindex_index - This routine is used to recreate a single index
3492  */
3493 void
reindex_index(Oid indexId,bool skip_constraint_checks,char persistence,int options)3494 reindex_index(Oid indexId, bool skip_constraint_checks, char persistence,
3495 			  int options)
3496 {
3497 	Relation	iRel,
3498 				heapRelation;
3499 	Oid			heapId;
3500 	IndexInfo  *indexInfo;
3501 	volatile bool skipped_constraint = false;
3502 	PGRUsage	ru0;
3503 	bool		progress = (options & REINDEXOPT_REPORT_PROGRESS) != 0;
3504 
3505 	pg_rusage_init(&ru0);
3506 
3507 	/*
3508 	 * Open and lock the parent heap relation.  ShareLock is sufficient since
3509 	 * we only need to be sure no schema or data changes are going on.
3510 	 */
3511 	heapId = IndexGetRelation(indexId, false);
3512 	heapRelation = table_open(heapId, ShareLock);
3513 
3514 	if (progress)
3515 	{
3516 		pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX,
3517 									  heapId);
3518 		pgstat_progress_update_param(PROGRESS_CREATEIDX_COMMAND,
3519 									 PROGRESS_CREATEIDX_COMMAND_REINDEX);
3520 		pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID,
3521 									 indexId);
3522 	}
3523 
3524 	/*
3525 	 * Open the target index relation and get an exclusive lock on it, to
3526 	 * ensure that no one else is touching this particular index.
3527 	 */
3528 	iRel = index_open(indexId, AccessExclusiveLock);
3529 
3530 	if (progress)
3531 		pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID,
3532 									 iRel->rd_rel->relam);
3533 
3534 	/*
3535 	 * The case of reindexing partitioned tables and indexes is handled
3536 	 * differently by upper layers, so this case shouldn't arise.
3537 	 */
3538 	if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3539 		elog(ERROR, "unsupported relation kind for index \"%s\"",
3540 			 RelationGetRelationName(iRel));
3541 
3542 	/*
3543 	 * Don't allow reindex on temp tables of other backends ... their local
3544 	 * buffer manager is not going to cope.
3545 	 */
3546 	if (RELATION_IS_OTHER_TEMP(iRel))
3547 		ereport(ERROR,
3548 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3549 				 errmsg("cannot reindex temporary tables of other sessions")));
3550 
3551 	/*
3552 	 * Don't allow reindex of an invalid index on TOAST table.  This is a
3553 	 * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3554 	 * not be possible to drop it anymore.
3555 	 */
3556 	if (IsToastNamespace(RelationGetNamespace(iRel)) &&
3557 		!get_index_isvalid(indexId))
3558 		ereport(ERROR,
3559 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3560 				 errmsg("cannot reindex invalid index on TOAST table")));
3561 
3562 	/*
3563 	 * Also check for active uses of the index in the current transaction; we
3564 	 * don't want to reindex underneath an open indexscan.
3565 	 */
3566 	CheckTableNotInUse(iRel, "REINDEX INDEX");
3567 
3568 	/*
3569 	 * All predicate locks on the index are about to be made invalid. Promote
3570 	 * them to relation locks on the heap.
3571 	 */
3572 	TransferPredicateLocksToHeapRelation(iRel);
3573 
3574 	/* Fetch info needed for index_build */
3575 	indexInfo = BuildIndexInfo(iRel);
3576 
3577 	/* If requested, skip checking uniqueness/exclusion constraints */
3578 	if (skip_constraint_checks)
3579 	{
3580 		if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3581 			skipped_constraint = true;
3582 		indexInfo->ii_Unique = false;
3583 		indexInfo->ii_ExclusionOps = NULL;
3584 		indexInfo->ii_ExclusionProcs = NULL;
3585 		indexInfo->ii_ExclusionStrats = NULL;
3586 	}
3587 
3588 	/* Suppress use of the target index while rebuilding it */
3589 	SetReindexProcessing(heapId, indexId);
3590 
3591 	/* Create a new physical relation for the index */
3592 	RelationSetNewRelfilenode(iRel, persistence);
3593 
3594 	/* Initialize the index and rebuild */
3595 	/* Note: we do not need to re-establish pkey setting */
3596 	index_build(heapRelation, iRel, indexInfo, true, true);
3597 
3598 	/* Re-allow use of target index */
3599 	ResetReindexProcessing();
3600 
3601 	/*
3602 	 * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3603 	 * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3604 	 * and we didn't skip a uniqueness check, we can now mark it valid.  This
3605 	 * allows REINDEX to be used to clean up in such cases.
3606 	 *
3607 	 * We can also reset indcheckxmin, because we have now done a
3608 	 * non-concurrent index build, *except* in the case where index_build
3609 	 * found some still-broken HOT chains. If it did, and we don't have to
3610 	 * change any of the other flags, we just leave indcheckxmin alone (note
3611 	 * that index_build won't have changed it, because this is a reindex).
3612 	 * This is okay and desirable because not updating the tuple leaves the
3613 	 * index's usability horizon (recorded as the tuple's xmin value) the same
3614 	 * as it was.
3615 	 *
3616 	 * But, if the index was invalid/not-ready/dead and there were broken HOT
3617 	 * chains, we had better force indcheckxmin true, because the normal
3618 	 * argument that the HOT chains couldn't conflict with the index is
3619 	 * suspect for an invalid index.  (A conflict is definitely possible if
3620 	 * the index was dead.  It probably shouldn't happen otherwise, but let's
3621 	 * be conservative.)  In this case advancing the usability horizon is
3622 	 * appropriate.
3623 	 *
3624 	 * Another reason for avoiding unnecessary updates here is that while
3625 	 * reindexing pg_index itself, we must not try to update tuples in it.
3626 	 * pg_index's indexes should always have these flags in their clean state,
3627 	 * so that won't happen.
3628 	 *
3629 	 * If early pruning/vacuuming is enabled for the heap relation, the
3630 	 * usability horizon must be advanced to the current transaction on every
3631 	 * build or rebuild.  pg_index is OK in this regard because catalog tables
3632 	 * are not subject to early cleanup.
3633 	 */
3634 	if (!skipped_constraint)
3635 	{
3636 		Relation	pg_index;
3637 		HeapTuple	indexTuple;
3638 		Form_pg_index indexForm;
3639 		bool		index_bad;
3640 		bool		early_pruning_enabled = EarlyPruningEnabled(heapRelation);
3641 
3642 		pg_index = table_open(IndexRelationId, RowExclusiveLock);
3643 
3644 		indexTuple = SearchSysCacheCopy1(INDEXRELID,
3645 										 ObjectIdGetDatum(indexId));
3646 		if (!HeapTupleIsValid(indexTuple))
3647 			elog(ERROR, "cache lookup failed for index %u", indexId);
3648 		indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3649 
3650 		index_bad = (!indexForm->indisvalid ||
3651 					 !indexForm->indisready ||
3652 					 !indexForm->indislive);
3653 		if (index_bad ||
3654 			(indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain) ||
3655 			early_pruning_enabled)
3656 		{
3657 			if (!indexInfo->ii_BrokenHotChain && !early_pruning_enabled)
3658 				indexForm->indcheckxmin = false;
3659 			else if (index_bad || early_pruning_enabled)
3660 				indexForm->indcheckxmin = true;
3661 			indexForm->indisvalid = true;
3662 			indexForm->indisready = true;
3663 			indexForm->indislive = true;
3664 			CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3665 
3666 			/*
3667 			 * Invalidate the relcache for the table, so that after we commit
3668 			 * all sessions will refresh the table's index list.  This ensures
3669 			 * that if anyone misses seeing the pg_index row during this
3670 			 * update, they'll refresh their list before attempting any update
3671 			 * on the table.
3672 			 */
3673 			CacheInvalidateRelcache(heapRelation);
3674 		}
3675 
3676 		table_close(pg_index, RowExclusiveLock);
3677 	}
3678 
3679 	/* Log what we did */
3680 	if (options & REINDEXOPT_VERBOSE)
3681 		ereport(INFO,
3682 				(errmsg("index \"%s\" was reindexed",
3683 						get_rel_name(indexId)),
3684 				 errdetail_internal("%s",
3685 									pg_rusage_show(&ru0))));
3686 
3687 	if (progress)
3688 		pgstat_progress_end_command();
3689 
3690 	/* Close rels, but keep locks */
3691 	index_close(iRel, NoLock);
3692 	table_close(heapRelation, NoLock);
3693 }
3694 
3695 /*
3696  * reindex_relation - This routine is used to recreate all indexes
3697  * of a relation (and optionally its toast relation too, if any).
3698  *
3699  * "flags" is a bitmask that can include any combination of these bits:
3700  *
3701  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3702  *
3703  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3704  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3705  * indexes are inconsistent with it.  This makes things tricky if the relation
3706  * is a system catalog that we might consult during the reindexing.  To deal
3707  * with that case, we mark all of the indexes as pending rebuild so that they
3708  * won't be trusted until rebuilt.  The caller is required to call us *without*
3709  * having made the rebuilt table visible by doing CommandCounterIncrement;
3710  * we'll do CCI after having collected the index list.  (This way we can still
3711  * use catalog indexes while collecting the list.)
3712  *
3713  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3714  * constraint conditions, else don't.  To avoid deadlocks, VACUUM FULL or
3715  * CLUSTER on a system catalog must omit this flag.  REINDEX should be used to
3716  * rebuild an index if constraint inconsistency is suspected.  For optimal
3717  * performance, other callers should include the flag only after transforming
3718  * the data in a manner that risks a change in constraint validity.
3719  *
3720  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3721  * rebuilt indexes to unlogged.
3722  *
3723  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3724  * rebuilt indexes to permanent.
3725  *
3726  * Returns true if any indexes were rebuilt (including toast table's index
3727  * when relevant).  Note that a CommandCounterIncrement will occur after each
3728  * index rebuild.
3729  */
3730 bool
reindex_relation(Oid relid,int flags,int options)3731 reindex_relation(Oid relid, int flags, int options)
3732 {
3733 	Relation	rel;
3734 	Oid			toast_relid;
3735 	List	   *indexIds;
3736 	char		persistence;
3737 	bool		result;
3738 	ListCell   *indexId;
3739 	int			i;
3740 
3741 	/*
3742 	 * Open and lock the relation.  ShareLock is sufficient since we only need
3743 	 * to prevent schema and data changes in it.  The lock level used here
3744 	 * should match ReindexTable().
3745 	 */
3746 	rel = table_open(relid, ShareLock);
3747 
3748 	/*
3749 	 * This may be useful when implemented someday; but that day is not today.
3750 	 * For now, avoid erroring out when called in a multi-table context
3751 	 * (REINDEX SCHEMA) and happen to come across a partitioned table.  The
3752 	 * partitions may be reindexed on their own anyway.
3753 	 */
3754 	if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3755 	{
3756 		ereport(WARNING,
3757 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3758 				 errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"",
3759 						RelationGetRelationName(rel))));
3760 		table_close(rel, ShareLock);
3761 		return false;
3762 	}
3763 
3764 	toast_relid = rel->rd_rel->reltoastrelid;
3765 
3766 	/*
3767 	 * Get the list of index OIDs for this relation.  (We trust to the
3768 	 * relcache to get this with a sequential scan if ignoring system
3769 	 * indexes.)
3770 	 */
3771 	indexIds = RelationGetIndexList(rel);
3772 
3773 	if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3774 	{
3775 		/* Suppress use of all the indexes until they are rebuilt */
3776 		SetReindexPending(indexIds);
3777 
3778 		/*
3779 		 * Make the new heap contents visible --- now things might be
3780 		 * inconsistent!
3781 		 */
3782 		CommandCounterIncrement();
3783 	}
3784 
3785 	/*
3786 	 * Compute persistence of indexes: same as that of owning rel, unless
3787 	 * caller specified otherwise.
3788 	 */
3789 	if (flags & REINDEX_REL_FORCE_INDEXES_UNLOGGED)
3790 		persistence = RELPERSISTENCE_UNLOGGED;
3791 	else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3792 		persistence = RELPERSISTENCE_PERMANENT;
3793 	else
3794 		persistence = rel->rd_rel->relpersistence;
3795 
3796 	/* Reindex all the indexes. */
3797 	i = 1;
3798 	foreach(indexId, indexIds)
3799 	{
3800 		Oid			indexOid = lfirst_oid(indexId);
3801 		Oid			indexNamespaceId = get_rel_namespace(indexOid);
3802 
3803 		/*
3804 		 * Skip any invalid indexes on a TOAST table.  These can only be
3805 		 * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3806 		 * rebuilt it would not be possible to drop them anymore.
3807 		 */
3808 		if (IsToastNamespace(indexNamespaceId) &&
3809 			!get_index_isvalid(indexOid))
3810 		{
3811 			ereport(WARNING,
3812 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3813 					 errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
3814 							get_namespace_name(indexNamespaceId),
3815 							get_rel_name(indexOid))));
3816 			continue;
3817 		}
3818 
3819 		reindex_index(indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
3820 					  persistence, options);
3821 
3822 		CommandCounterIncrement();
3823 
3824 		/* Index should no longer be in the pending list */
3825 		Assert(!ReindexIsProcessingIndex(indexOid));
3826 
3827 		/* Set index rebuild count */
3828 		pgstat_progress_update_param(PROGRESS_CLUSTER_INDEX_REBUILD_COUNT,
3829 									 i);
3830 		i++;
3831 	}
3832 
3833 	/*
3834 	 * Close rel, but continue to hold the lock.
3835 	 */
3836 	table_close(rel, NoLock);
3837 
3838 	result = (indexIds != NIL);
3839 
3840 	/*
3841 	 * If the relation has a secondary toast rel, reindex that too while we
3842 	 * still hold the lock on the master table.
3843 	 */
3844 	if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3845 		result |= reindex_relation(toast_relid, flags, options);
3846 
3847 	return result;
3848 }
3849 
3850 
3851 /* ----------------------------------------------------------------
3852  *		System index reindexing support
3853  *
3854  * When we are busy reindexing a system index, this code provides support
3855  * for preventing catalog lookups from using that index.  We also make use
3856  * of this to catch attempted uses of user indexes during reindexing of
3857  * those indexes.  This information is propagated to parallel workers;
3858  * attempting to change it during a parallel operation is not permitted.
3859  * ----------------------------------------------------------------
3860  */
3861 
3862 static Oid	currentlyReindexedHeap = InvalidOid;
3863 static Oid	currentlyReindexedIndex = InvalidOid;
3864 static List *pendingReindexedIndexes = NIL;
3865 static int	reindexingNestLevel = 0;
3866 
3867 /*
3868  * ReindexIsProcessingHeap
3869  *		True if heap specified by OID is currently being reindexed.
3870  */
3871 bool
ReindexIsProcessingHeap(Oid heapOid)3872 ReindexIsProcessingHeap(Oid heapOid)
3873 {
3874 	return heapOid == currentlyReindexedHeap;
3875 }
3876 
3877 /*
3878  * ReindexIsCurrentlyProcessingIndex
3879  *		True if index specified by OID is currently being reindexed.
3880  */
3881 static bool
ReindexIsCurrentlyProcessingIndex(Oid indexOid)3882 ReindexIsCurrentlyProcessingIndex(Oid indexOid)
3883 {
3884 	return indexOid == currentlyReindexedIndex;
3885 }
3886 
3887 /*
3888  * ReindexIsProcessingIndex
3889  *		True if index specified by OID is currently being reindexed,
3890  *		or should be treated as invalid because it is awaiting reindex.
3891  */
3892 bool
ReindexIsProcessingIndex(Oid indexOid)3893 ReindexIsProcessingIndex(Oid indexOid)
3894 {
3895 	return indexOid == currentlyReindexedIndex ||
3896 		list_member_oid(pendingReindexedIndexes, indexOid);
3897 }
3898 
3899 /*
3900  * SetReindexProcessing
3901  *		Set flag that specified heap/index are being reindexed.
3902  */
3903 static void
SetReindexProcessing(Oid heapOid,Oid indexOid)3904 SetReindexProcessing(Oid heapOid, Oid indexOid)
3905 {
3906 	Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
3907 	/* Reindexing is not re-entrant. */
3908 	if (OidIsValid(currentlyReindexedHeap))
3909 		elog(ERROR, "cannot reindex while reindexing");
3910 	currentlyReindexedHeap = heapOid;
3911 	currentlyReindexedIndex = indexOid;
3912 	/* Index is no longer "pending" reindex. */
3913 	RemoveReindexPending(indexOid);
3914 	/* This may have been set already, but in case it isn't, do so now. */
3915 	reindexingNestLevel = GetCurrentTransactionNestLevel();
3916 }
3917 
3918 /*
3919  * ResetReindexProcessing
3920  *		Unset reindexing status.
3921  */
3922 static void
ResetReindexProcessing(void)3923 ResetReindexProcessing(void)
3924 {
3925 	currentlyReindexedHeap = InvalidOid;
3926 	currentlyReindexedIndex = InvalidOid;
3927 	/* reindexingNestLevel remains set till end of (sub)transaction */
3928 }
3929 
3930 /*
3931  * SetReindexPending
3932  *		Mark the given indexes as pending reindex.
3933  *
3934  * NB: we assume that the current memory context stays valid throughout.
3935  */
3936 static void
SetReindexPending(List * indexes)3937 SetReindexPending(List *indexes)
3938 {
3939 	/* Reindexing is not re-entrant. */
3940 	if (pendingReindexedIndexes)
3941 		elog(ERROR, "cannot reindex while reindexing");
3942 	if (IsInParallelMode())
3943 		elog(ERROR, "cannot modify reindex state during a parallel operation");
3944 	pendingReindexedIndexes = list_copy(indexes);
3945 	reindexingNestLevel = GetCurrentTransactionNestLevel();
3946 }
3947 
3948 /*
3949  * RemoveReindexPending
3950  *		Remove the given index from the pending list.
3951  */
3952 static void
RemoveReindexPending(Oid indexOid)3953 RemoveReindexPending(Oid indexOid)
3954 {
3955 	if (IsInParallelMode())
3956 		elog(ERROR, "cannot modify reindex state during a parallel operation");
3957 	pendingReindexedIndexes = list_delete_oid(pendingReindexedIndexes,
3958 											  indexOid);
3959 }
3960 
3961 /*
3962  * ResetReindexState
3963  *		Clear all reindexing state during (sub)transaction abort.
3964  */
3965 void
ResetReindexState(int nestLevel)3966 ResetReindexState(int nestLevel)
3967 {
3968 	/*
3969 	 * Because reindexing is not re-entrant, we don't need to cope with nested
3970 	 * reindexing states.  We just need to avoid messing up the outer-level
3971 	 * state in case a subtransaction fails within a REINDEX.  So checking the
3972 	 * current nest level against that of the reindex operation is sufficient.
3973 	 */
3974 	if (reindexingNestLevel >= nestLevel)
3975 	{
3976 		currentlyReindexedHeap = InvalidOid;
3977 		currentlyReindexedIndex = InvalidOid;
3978 
3979 		/*
3980 		 * We needn't try to release the contents of pendingReindexedIndexes;
3981 		 * that list should be in a transaction-lifespan context, so it will
3982 		 * go away automatically.
3983 		 */
3984 		pendingReindexedIndexes = NIL;
3985 
3986 		reindexingNestLevel = 0;
3987 	}
3988 }
3989 
3990 /*
3991  * EstimateReindexStateSpace
3992  *		Estimate space needed to pass reindex state to parallel workers.
3993  */
3994 Size
EstimateReindexStateSpace(void)3995 EstimateReindexStateSpace(void)
3996 {
3997 	return offsetof(SerializedReindexState, pendingReindexedIndexes)
3998 		+ mul_size(sizeof(Oid), list_length(pendingReindexedIndexes));
3999 }
4000 
4001 /*
4002  * SerializeReindexState
4003  *		Serialize reindex state for parallel workers.
4004  */
4005 void
SerializeReindexState(Size maxsize,char * start_address)4006 SerializeReindexState(Size maxsize, char *start_address)
4007 {
4008 	SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4009 	int			c = 0;
4010 	ListCell   *lc;
4011 
4012 	sistate->currentlyReindexedHeap = currentlyReindexedHeap;
4013 	sistate->currentlyReindexedIndex = currentlyReindexedIndex;
4014 	sistate->numPendingReindexedIndexes = list_length(pendingReindexedIndexes);
4015 	foreach(lc, pendingReindexedIndexes)
4016 		sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4017 }
4018 
4019 /*
4020  * RestoreReindexState
4021  *		Restore reindex state in a parallel worker.
4022  */
4023 void
RestoreReindexState(void * reindexstate)4024 RestoreReindexState(void *reindexstate)
4025 {
4026 	SerializedReindexState *sistate = (SerializedReindexState *) reindexstate;
4027 	int			c = 0;
4028 	MemoryContext oldcontext;
4029 
4030 	currentlyReindexedHeap = sistate->currentlyReindexedHeap;
4031 	currentlyReindexedIndex = sistate->currentlyReindexedIndex;
4032 
4033 	Assert(pendingReindexedIndexes == NIL);
4034 	oldcontext = MemoryContextSwitchTo(TopMemoryContext);
4035 	for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4036 		pendingReindexedIndexes =
4037 			lappend_oid(pendingReindexedIndexes,
4038 						sistate->pendingReindexedIndexes[c]);
4039 	MemoryContextSwitchTo(oldcontext);
4040 
4041 	/* Note the worker has its own transaction nesting level */
4042 	reindexingNestLevel = GetCurrentTransactionNestLevel();
4043 }
4044