1 /*-------------------------------------------------------------------------
2  *
3  * relnode.c
4  *	  Relation-node lookup/construction routines
5  *
6  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/optimizer/util/relnode.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <limits.h>
18 
19 #include "miscadmin.h"
20 #include "optimizer/appendinfo.h"
21 #include "optimizer/clauses.h"
22 #include "optimizer/cost.h"
23 #include "optimizer/inherit.h"
24 #include "optimizer/pathnode.h"
25 #include "optimizer/paths.h"
26 #include "optimizer/placeholder.h"
27 #include "optimizer/plancat.h"
28 #include "optimizer/restrictinfo.h"
29 #include "optimizer/tlist.h"
30 #include "partitioning/partbounds.h"
31 #include "utils/hsearch.h"
32 
33 
34 typedef struct JoinHashEntry
35 {
36 	Relids		join_relids;	/* hash key --- MUST BE FIRST */
37 	RelOptInfo *join_rel;
38 } JoinHashEntry;
39 
40 static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
41 								RelOptInfo *input_rel);
42 static List *build_joinrel_restrictlist(PlannerInfo *root,
43 										RelOptInfo *joinrel,
44 										RelOptInfo *outer_rel,
45 										RelOptInfo *inner_rel);
46 static void build_joinrel_joinlist(RelOptInfo *joinrel,
47 								   RelOptInfo *outer_rel,
48 								   RelOptInfo *inner_rel);
49 static List *subbuild_joinrel_restrictlist(RelOptInfo *joinrel,
50 										   List *joininfo_list,
51 										   List *new_restrictlist);
52 static List *subbuild_joinrel_joinlist(RelOptInfo *joinrel,
53 									   List *joininfo_list,
54 									   List *new_joininfo);
55 static void set_foreign_rel_properties(RelOptInfo *joinrel,
56 									   RelOptInfo *outer_rel, RelOptInfo *inner_rel);
57 static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel);
58 static void build_joinrel_partition_info(RelOptInfo *joinrel,
59 										 RelOptInfo *outer_rel, RelOptInfo *inner_rel,
60 										 List *restrictlist, JoinType jointype);
61 static void build_child_join_reltarget(PlannerInfo *root,
62 									   RelOptInfo *parentrel,
63 									   RelOptInfo *childrel,
64 									   int nappinfos,
65 									   AppendRelInfo **appinfos);
66 
67 
68 /*
69  * setup_simple_rel_arrays
70  *	  Prepare the arrays we use for quickly accessing base relations.
71  */
72 void
73 setup_simple_rel_arrays(PlannerInfo *root)
74 {
75 	Index		rti;
76 	ListCell   *lc;
77 
78 	/* Arrays are accessed using RT indexes (1..N) */
79 	root->simple_rel_array_size = list_length(root->parse->rtable) + 1;
80 
81 	/* simple_rel_array is initialized to all NULLs */
82 	root->simple_rel_array = (RelOptInfo **)
83 		palloc0(root->simple_rel_array_size * sizeof(RelOptInfo *));
84 
85 	/* simple_rte_array is an array equivalent of the rtable list */
86 	root->simple_rte_array = (RangeTblEntry **)
87 		palloc0(root->simple_rel_array_size * sizeof(RangeTblEntry *));
88 	rti = 1;
89 	foreach(lc, root->parse->rtable)
90 	{
91 		RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
92 
93 		root->simple_rte_array[rti++] = rte;
94 	}
95 }
96 
97 /*
98  * setup_append_rel_array
99  *		Populate the append_rel_array to allow direct lookups of
100  *		AppendRelInfos by child relid.
101  *
102  * The array remains unallocated if there are no AppendRelInfos.
103  */
104 void
105 setup_append_rel_array(PlannerInfo *root)
106 {
107 	ListCell   *lc;
108 	int			size = list_length(root->parse->rtable) + 1;
109 
110 	if (root->append_rel_list == NIL)
111 	{
112 		root->append_rel_array = NULL;
113 		return;
114 	}
115 
116 	root->append_rel_array = (AppendRelInfo **)
117 		palloc0(size * sizeof(AppendRelInfo *));
118 
119 	foreach(lc, root->append_rel_list)
120 	{
121 		AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
122 		int			child_relid = appinfo->child_relid;
123 
124 		/* Sanity check */
125 		Assert(child_relid < size);
126 
127 		if (root->append_rel_array[child_relid])
128 			elog(ERROR, "child relation already exists");
129 
130 		root->append_rel_array[child_relid] = appinfo;
131 	}
132 }
133 
134 /*
135  * expand_planner_arrays
136  *		Expand the PlannerInfo's per-RTE arrays by add_size members
137  *		and initialize the newly added entries to NULLs
138  */
139 void
140 expand_planner_arrays(PlannerInfo *root, int add_size)
141 {
142 	int			new_size;
143 
144 	Assert(add_size > 0);
145 
146 	new_size = root->simple_rel_array_size + add_size;
147 
148 	root->simple_rte_array = (RangeTblEntry **)
149 		repalloc(root->simple_rte_array,
150 				 sizeof(RangeTblEntry *) * new_size);
151 	MemSet(root->simple_rte_array + root->simple_rel_array_size,
152 		   0, sizeof(RangeTblEntry *) * add_size);
153 
154 	root->simple_rel_array = (RelOptInfo **)
155 		repalloc(root->simple_rel_array,
156 				 sizeof(RelOptInfo *) * new_size);
157 	MemSet(root->simple_rel_array + root->simple_rel_array_size,
158 		   0, sizeof(RelOptInfo *) * add_size);
159 
160 	if (root->append_rel_array)
161 	{
162 		root->append_rel_array = (AppendRelInfo **)
163 			repalloc(root->append_rel_array,
164 					 sizeof(AppendRelInfo *) * new_size);
165 		MemSet(root->append_rel_array + root->simple_rel_array_size,
166 			   0, sizeof(AppendRelInfo *) * add_size);
167 	}
168 	else
169 	{
170 		root->append_rel_array = (AppendRelInfo **)
171 			palloc0(sizeof(AppendRelInfo *) * new_size);
172 	}
173 
174 	root->simple_rel_array_size = new_size;
175 }
176 
177 /*
178  * build_simple_rel
179  *	  Construct a new RelOptInfo for a base relation or 'other' relation.
180  */
181 RelOptInfo *
182 build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
183 {
184 	RelOptInfo *rel;
185 	RangeTblEntry *rte;
186 
187 	/* Rel should not exist already */
188 	Assert(relid > 0 && relid < root->simple_rel_array_size);
189 	if (root->simple_rel_array[relid] != NULL)
190 		elog(ERROR, "rel %d already exists", relid);
191 
192 	/* Fetch RTE for relation */
193 	rte = root->simple_rte_array[relid];
194 	Assert(rte != NULL);
195 
196 	rel = makeNode(RelOptInfo);
197 	rel->reloptkind = parent ? RELOPT_OTHER_MEMBER_REL : RELOPT_BASEREL;
198 	rel->relids = bms_make_singleton(relid);
199 	rel->rows = 0;
200 	/* cheap startup cost is interesting iff not all tuples to be retrieved */
201 	rel->consider_startup = (root->tuple_fraction > 0);
202 	rel->consider_param_startup = false;	/* might get changed later */
203 	rel->consider_parallel = false; /* might get changed later */
204 	rel->reltarget = create_empty_pathtarget();
205 	rel->pathlist = NIL;
206 	rel->ppilist = NIL;
207 	rel->partial_pathlist = NIL;
208 	rel->cheapest_startup_path = NULL;
209 	rel->cheapest_total_path = NULL;
210 	rel->cheapest_unique_path = NULL;
211 	rel->cheapest_parameterized_paths = NIL;
212 	rel->relid = relid;
213 	rel->rtekind = rte->rtekind;
214 	/* min_attr, max_attr, attr_needed, attr_widths are set below */
215 	rel->lateral_vars = NIL;
216 	rel->indexlist = NIL;
217 	rel->statlist = NIL;
218 	rel->pages = 0;
219 	rel->tuples = 0;
220 	rel->allvisfrac = 0;
221 	rel->subroot = NULL;
222 	rel->subplan_params = NIL;
223 	rel->rel_parallel_workers = -1; /* set up in get_relation_info */
224 	rel->serverid = InvalidOid;
225 	rel->userid = rte->checkAsUser;
226 	rel->useridiscurrent = false;
227 	rel->fdwroutine = NULL;
228 	rel->fdw_private = NULL;
229 	rel->unique_for_rels = NIL;
230 	rel->non_unique_for_rels = NIL;
231 	rel->baserestrictinfo = NIL;
232 	rel->baserestrictcost.startup = 0;
233 	rel->baserestrictcost.per_tuple = 0;
234 	rel->baserestrict_min_security = UINT_MAX;
235 	rel->joininfo = NIL;
236 	rel->has_eclass_joins = false;
237 	rel->consider_partitionwise_join = false;	/* might get changed later */
238 	rel->part_scheme = NULL;
239 	rel->nparts = 0;
240 	rel->boundinfo = NULL;
241 	rel->partition_qual = NIL;
242 	rel->part_rels = NULL;
243 	rel->partexprs = NULL;
244 	rel->nullable_partexprs = NULL;
245 	rel->partitioned_child_rels = NIL;
246 
247 	/*
248 	 * Pass assorted information down the inheritance hierarchy.
249 	 */
250 	if (parent)
251 	{
252 		/*
253 		 * Each direct or indirect child wants to know the relids of its
254 		 * topmost parent.
255 		 */
256 		if (parent->top_parent_relids)
257 			rel->top_parent_relids = parent->top_parent_relids;
258 		else
259 			rel->top_parent_relids = bms_copy(parent->relids);
260 
261 		/*
262 		 * Also propagate lateral-reference information from appendrel parent
263 		 * rels to their child rels.  We intentionally give each child rel the
264 		 * same minimum parameterization, even though it's quite possible that
265 		 * some don't reference all the lateral rels.  This is because any
266 		 * append path for the parent will have to have the same
267 		 * parameterization for every child anyway, and there's no value in
268 		 * forcing extra reparameterize_path() calls.  Similarly, a lateral
269 		 * reference to the parent prevents use of otherwise-movable join rels
270 		 * for each child.
271 		 *
272 		 * It's possible for child rels to have their own children, in which
273 		 * case the topmost parent's lateral info propagates all the way down.
274 		 */
275 		rel->direct_lateral_relids = parent->direct_lateral_relids;
276 		rel->lateral_relids = parent->lateral_relids;
277 		rel->lateral_referencers = parent->lateral_referencers;
278 	}
279 	else
280 	{
281 		rel->top_parent_relids = NULL;
282 		rel->direct_lateral_relids = NULL;
283 		rel->lateral_relids = NULL;
284 		rel->lateral_referencers = NULL;
285 	}
286 
287 	/* Check type of rtable entry */
288 	switch (rte->rtekind)
289 	{
290 		case RTE_RELATION:
291 			/* Table --- retrieve statistics from the system catalogs */
292 			get_relation_info(root, rte->relid, rte->inh, rel);
293 			break;
294 		case RTE_SUBQUERY:
295 		case RTE_FUNCTION:
296 		case RTE_TABLEFUNC:
297 		case RTE_VALUES:
298 		case RTE_CTE:
299 		case RTE_NAMEDTUPLESTORE:
300 
301 			/*
302 			 * Subquery, function, tablefunc, values list, CTE, or ENR --- set
303 			 * up attr range and arrays
304 			 *
305 			 * Note: 0 is included in range to support whole-row Vars
306 			 */
307 			rel->min_attr = 0;
308 			rel->max_attr = list_length(rte->eref->colnames);
309 			rel->attr_needed = (Relids *)
310 				palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
311 			rel->attr_widths = (int32 *)
312 				palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
313 			break;
314 		case RTE_RESULT:
315 			/* RTE_RESULT has no columns, nor could it have whole-row Var */
316 			rel->min_attr = 0;
317 			rel->max_attr = -1;
318 			rel->attr_needed = NULL;
319 			rel->attr_widths = NULL;
320 			break;
321 		default:
322 			elog(ERROR, "unrecognized RTE kind: %d",
323 				 (int) rte->rtekind);
324 			break;
325 	}
326 
327 	/*
328 	 * Copy the parent's quals to the child, with appropriate substitution of
329 	 * variables.  If any constant false or NULL clauses turn up, we can mark
330 	 * the child as dummy right away.  (We must do this immediately so that
331 	 * pruning works correctly when recursing in expand_partitioned_rtentry.)
332 	 */
333 	if (parent)
334 	{
335 		AppendRelInfo *appinfo = root->append_rel_array[relid];
336 
337 		Assert(appinfo != NULL);
338 		if (!apply_child_basequals(root, parent, rel, rte, appinfo))
339 		{
340 			/*
341 			 * Some restriction clause reduced to constant FALSE or NULL after
342 			 * substitution, so this child need not be scanned.
343 			 */
344 			mark_dummy_rel(rel);
345 		}
346 	}
347 
348 	/* Save the finished struct in the query's simple_rel_array */
349 	root->simple_rel_array[relid] = rel;
350 
351 	return rel;
352 }
353 
354 /*
355  * find_base_rel
356  *	  Find a base or other relation entry, which must already exist.
357  */
358 RelOptInfo *
359 find_base_rel(PlannerInfo *root, int relid)
360 {
361 	RelOptInfo *rel;
362 
363 	Assert(relid > 0);
364 
365 	if (relid < root->simple_rel_array_size)
366 	{
367 		rel = root->simple_rel_array[relid];
368 		if (rel)
369 			return rel;
370 	}
371 
372 	elog(ERROR, "no relation entry for relid %d", relid);
373 
374 	return NULL;				/* keep compiler quiet */
375 }
376 
377 /*
378  * build_join_rel_hash
379  *	  Construct the auxiliary hash table for join relations.
380  */
381 static void
382 build_join_rel_hash(PlannerInfo *root)
383 {
384 	HTAB	   *hashtab;
385 	HASHCTL		hash_ctl;
386 	ListCell   *l;
387 
388 	/* Create the hash table */
389 	MemSet(&hash_ctl, 0, sizeof(hash_ctl));
390 	hash_ctl.keysize = sizeof(Relids);
391 	hash_ctl.entrysize = sizeof(JoinHashEntry);
392 	hash_ctl.hash = bitmap_hash;
393 	hash_ctl.match = bitmap_match;
394 	hash_ctl.hcxt = CurrentMemoryContext;
395 	hashtab = hash_create("JoinRelHashTable",
396 						  256L,
397 						  &hash_ctl,
398 						  HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
399 
400 	/* Insert all the already-existing joinrels */
401 	foreach(l, root->join_rel_list)
402 	{
403 		RelOptInfo *rel = (RelOptInfo *) lfirst(l);
404 		JoinHashEntry *hentry;
405 		bool		found;
406 
407 		hentry = (JoinHashEntry *) hash_search(hashtab,
408 											   &(rel->relids),
409 											   HASH_ENTER,
410 											   &found);
411 		Assert(!found);
412 		hentry->join_rel = rel;
413 	}
414 
415 	root->join_rel_hash = hashtab;
416 }
417 
418 /*
419  * find_join_rel
420  *	  Returns relation entry corresponding to 'relids' (a set of RT indexes),
421  *	  or NULL if none exists.  This is for join relations.
422  */
423 RelOptInfo *
424 find_join_rel(PlannerInfo *root, Relids relids)
425 {
426 	/*
427 	 * Switch to using hash lookup when list grows "too long".  The threshold
428 	 * is arbitrary and is known only here.
429 	 */
430 	if (!root->join_rel_hash && list_length(root->join_rel_list) > 32)
431 		build_join_rel_hash(root);
432 
433 	/*
434 	 * Use either hashtable lookup or linear search, as appropriate.
435 	 *
436 	 * Note: the seemingly redundant hashkey variable is used to avoid taking
437 	 * the address of relids; unless the compiler is exceedingly smart, doing
438 	 * so would force relids out of a register and thus probably slow down the
439 	 * list-search case.
440 	 */
441 	if (root->join_rel_hash)
442 	{
443 		Relids		hashkey = relids;
444 		JoinHashEntry *hentry;
445 
446 		hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
447 											   &hashkey,
448 											   HASH_FIND,
449 											   NULL);
450 		if (hentry)
451 			return hentry->join_rel;
452 	}
453 	else
454 	{
455 		ListCell   *l;
456 
457 		foreach(l, root->join_rel_list)
458 		{
459 			RelOptInfo *rel = (RelOptInfo *) lfirst(l);
460 
461 			if (bms_equal(rel->relids, relids))
462 				return rel;
463 		}
464 	}
465 
466 	return NULL;
467 }
468 
469 /*
470  * set_foreign_rel_properties
471  *		Set up foreign-join fields if outer and inner relation are foreign
472  *		tables (or joins) belonging to the same server and assigned to the same
473  *		user to check access permissions as.
474  *
475  * In addition to an exact match of userid, we allow the case where one side
476  * has zero userid (implying current user) and the other side has explicit
477  * userid that happens to equal the current user; but in that case, pushdown of
478  * the join is only valid for the current user.  The useridiscurrent field
479  * records whether we had to make such an assumption for this join or any
480  * sub-join.
481  *
482  * Otherwise these fields are left invalid, so GetForeignJoinPaths will not be
483  * called for the join relation.
484  *
485  */
486 static void
487 set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel,
488 						   RelOptInfo *inner_rel)
489 {
490 	if (OidIsValid(outer_rel->serverid) &&
491 		inner_rel->serverid == outer_rel->serverid)
492 	{
493 		if (inner_rel->userid == outer_rel->userid)
494 		{
495 			joinrel->serverid = outer_rel->serverid;
496 			joinrel->userid = outer_rel->userid;
497 			joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent;
498 			joinrel->fdwroutine = outer_rel->fdwroutine;
499 		}
500 		else if (!OidIsValid(inner_rel->userid) &&
501 				 outer_rel->userid == GetUserId())
502 		{
503 			joinrel->serverid = outer_rel->serverid;
504 			joinrel->userid = outer_rel->userid;
505 			joinrel->useridiscurrent = true;
506 			joinrel->fdwroutine = outer_rel->fdwroutine;
507 		}
508 		else if (!OidIsValid(outer_rel->userid) &&
509 				 inner_rel->userid == GetUserId())
510 		{
511 			joinrel->serverid = outer_rel->serverid;
512 			joinrel->userid = inner_rel->userid;
513 			joinrel->useridiscurrent = true;
514 			joinrel->fdwroutine = outer_rel->fdwroutine;
515 		}
516 	}
517 }
518 
519 /*
520  * add_join_rel
521  *		Add given join relation to the list of join relations in the given
522  *		PlannerInfo. Also add it to the auxiliary hashtable if there is one.
523  */
524 static void
525 add_join_rel(PlannerInfo *root, RelOptInfo *joinrel)
526 {
527 	/* GEQO requires us to append the new joinrel to the end of the list! */
528 	root->join_rel_list = lappend(root->join_rel_list, joinrel);
529 
530 	/* store it into the auxiliary hashtable if there is one. */
531 	if (root->join_rel_hash)
532 	{
533 		JoinHashEntry *hentry;
534 		bool		found;
535 
536 		hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
537 											   &(joinrel->relids),
538 											   HASH_ENTER,
539 											   &found);
540 		Assert(!found);
541 		hentry->join_rel = joinrel;
542 	}
543 }
544 
545 /*
546  * build_join_rel
547  *	  Returns relation entry corresponding to the union of two given rels,
548  *	  creating a new relation entry if none already exists.
549  *
550  * 'joinrelids' is the Relids set that uniquely identifies the join
551  * 'outer_rel' and 'inner_rel' are relation nodes for the relations to be
552  *		joined
553  * 'sjinfo': join context info
554  * 'restrictlist_ptr': result variable.  If not NULL, *restrictlist_ptr
555  *		receives the list of RestrictInfo nodes that apply to this
556  *		particular pair of joinable relations.
557  *
558  * restrictlist_ptr makes the routine's API a little grotty, but it saves
559  * duplicated calculation of the restrictlist...
560  */
561 RelOptInfo *
562 build_join_rel(PlannerInfo *root,
563 			   Relids joinrelids,
564 			   RelOptInfo *outer_rel,
565 			   RelOptInfo *inner_rel,
566 			   SpecialJoinInfo *sjinfo,
567 			   List **restrictlist_ptr)
568 {
569 	RelOptInfo *joinrel;
570 	List	   *restrictlist;
571 
572 	/* This function should be used only for join between parents. */
573 	Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel));
574 
575 	/*
576 	 * See if we already have a joinrel for this set of base rels.
577 	 */
578 	joinrel = find_join_rel(root, joinrelids);
579 
580 	if (joinrel)
581 	{
582 		/*
583 		 * Yes, so we only need to figure the restrictlist for this particular
584 		 * pair of component relations.
585 		 */
586 		if (restrictlist_ptr)
587 			*restrictlist_ptr = build_joinrel_restrictlist(root,
588 														   joinrel,
589 														   outer_rel,
590 														   inner_rel);
591 		return joinrel;
592 	}
593 
594 	/*
595 	 * Nope, so make one.
596 	 */
597 	joinrel = makeNode(RelOptInfo);
598 	joinrel->reloptkind = RELOPT_JOINREL;
599 	joinrel->relids = bms_copy(joinrelids);
600 	joinrel->rows = 0;
601 	/* cheap startup cost is interesting iff not all tuples to be retrieved */
602 	joinrel->consider_startup = (root->tuple_fraction > 0);
603 	joinrel->consider_param_startup = false;
604 	joinrel->consider_parallel = false;
605 	joinrel->reltarget = create_empty_pathtarget();
606 	joinrel->pathlist = NIL;
607 	joinrel->ppilist = NIL;
608 	joinrel->partial_pathlist = NIL;
609 	joinrel->cheapest_startup_path = NULL;
610 	joinrel->cheapest_total_path = NULL;
611 	joinrel->cheapest_unique_path = NULL;
612 	joinrel->cheapest_parameterized_paths = NIL;
613 	/* init direct_lateral_relids from children; we'll finish it up below */
614 	joinrel->direct_lateral_relids =
615 		bms_union(outer_rel->direct_lateral_relids,
616 				  inner_rel->direct_lateral_relids);
617 	joinrel->lateral_relids = min_join_parameterization(root, joinrel->relids,
618 														outer_rel, inner_rel);
619 	joinrel->relid = 0;			/* indicates not a baserel */
620 	joinrel->rtekind = RTE_JOIN;
621 	joinrel->min_attr = 0;
622 	joinrel->max_attr = 0;
623 	joinrel->attr_needed = NULL;
624 	joinrel->attr_widths = NULL;
625 	joinrel->lateral_vars = NIL;
626 	joinrel->lateral_referencers = NULL;
627 	joinrel->indexlist = NIL;
628 	joinrel->statlist = NIL;
629 	joinrel->pages = 0;
630 	joinrel->tuples = 0;
631 	joinrel->allvisfrac = 0;
632 	joinrel->subroot = NULL;
633 	joinrel->subplan_params = NIL;
634 	joinrel->rel_parallel_workers = -1;
635 	joinrel->serverid = InvalidOid;
636 	joinrel->userid = InvalidOid;
637 	joinrel->useridiscurrent = false;
638 	joinrel->fdwroutine = NULL;
639 	joinrel->fdw_private = NULL;
640 	joinrel->unique_for_rels = NIL;
641 	joinrel->non_unique_for_rels = NIL;
642 	joinrel->baserestrictinfo = NIL;
643 	joinrel->baserestrictcost.startup = 0;
644 	joinrel->baserestrictcost.per_tuple = 0;
645 	joinrel->baserestrict_min_security = UINT_MAX;
646 	joinrel->joininfo = NIL;
647 	joinrel->has_eclass_joins = false;
648 	joinrel->consider_partitionwise_join = false;	/* might get changed later */
649 	joinrel->top_parent_relids = NULL;
650 	joinrel->part_scheme = NULL;
ioctl(fd: ::c_int, request: ::c_int, ...) -> ::c_int651 	joinrel->nparts = 0;
652 	joinrel->boundinfo = NULL;
653 	joinrel->partition_qual = NIL;
654 	joinrel->part_rels = NULL;
655 	joinrel->partexprs = NULL;
656 	joinrel->nullable_partexprs = NULL;
657 	joinrel->partitioned_child_rels = NIL;
658 
659 	/* Compute information relevant to the foreign relations. */
660 	set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
661 
662 	/*
663 	 * Create a new tlist containing just the vars that need to be output from
664 	 * this join (ie, are needed for higher joinclauses or final output).
665 	 *
666 	 * NOTE: the tlist order for a join rel will depend on which pair of outer
667 	 * and inner rels we first try to build it from.  But the contents should
668 	 * be the same regardless.
669 	 */
670 	build_joinrel_tlist(root, joinrel, outer_rel);
671 	build_joinrel_tlist(root, joinrel, inner_rel);
672 	add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel);
673 
674 	/*
675 	 * add_placeholders_to_joinrel also took care of adding the ph_lateral
676 	 * sets of any PlaceHolderVars computed here to direct_lateral_relids, so
677 	 * now we can finish computing that.  This is much like the computation of
678 	 * the transitively-closed lateral_relids in min_join_parameterization,
679 	 * except that here we *do* have to consider the added PHVs.
680 	 */
681 	joinrel->direct_lateral_relids =
682 		bms_del_members(joinrel->direct_lateral_relids, joinrel->relids);
683 	if (bms_is_empty(joinrel->direct_lateral_relids))
684 		joinrel->direct_lateral_relids = NULL;
685 
686 	/*
687 	 * Construct restrict and join clause lists for the new joinrel. (The
688 	 * caller might or might not need the restrictlist, but I need it anyway
689 	 * for set_joinrel_size_estimates().)
690 	 */
691 	restrictlist = build_joinrel_restrictlist(root, joinrel,
692 											  outer_rel, inner_rel);
693 	if (restrictlist_ptr)
694 		*restrictlist_ptr = restrictlist;
695 	build_joinrel_joinlist(joinrel, outer_rel, inner_rel);
696 
697 	/*
698 	 * This is also the right place to check whether the joinrel has any
699 	 * pending EquivalenceClass joins.
700 	 */
701 	joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel);
702 
703 	/* Store the partition information. */
704 	build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist,
705 								 sjinfo->jointype);
706 
707 	/*
708 	 * Set estimates of the joinrel's size.
709 	 */
710 	set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
711 							   sjinfo, restrictlist);
712 
713 	/*
714 	 * Set the consider_parallel flag if this joinrel could potentially be
715 	 * scanned within a parallel worker.  If this flag is false for either
716 	 * inner_rel or outer_rel, then it must be false for the joinrel also.
717 	 * Even if both are true, there might be parallel-restricted expressions
718 	 * in the targetlist or quals.
719 	 *
720 	 * Note that if there are more than two rels in this relation, they could
721 	 * be divided between inner_rel and outer_rel in any arbitrary way.  We
722 	 * assume this doesn't matter, because we should hit all the same baserels
723 	 * and joinclauses while building up to this joinrel no matter which we
724 	 * take; therefore, we should make the same decision here however we get
725 	 * here.
726 	 */
727 	if (inner_rel->consider_parallel && outer_rel->consider_parallel &&
728 		is_parallel_safe(root, (Node *) restrictlist) &&
729 		is_parallel_safe(root, (Node *) joinrel->reltarget->exprs))
730 		joinrel->consider_parallel = true;
731 
732 	/* Add the joinrel to the PlannerInfo. */
733 	add_join_rel(root, joinrel);
734 
735 	/*
736 	 * Also, if dynamic-programming join search is active, add the new joinrel
737 	 * to the appropriate sublist.  Note: you might think the Assert on number
738 	 * of members should be for equality, but some of the level 1 rels might
739 	 * have been joinrels already, so we can only assert <=.
740 	 */
741 	if (root->join_rel_level)
742 	{
743 		Assert(root->join_cur_level > 0);
744 		Assert(root->join_cur_level <= bms_num_members(joinrel->relids));
745 		root->join_rel_level[root->join_cur_level] =
746 			lappend(root->join_rel_level[root->join_cur_level], joinrel);
747 	}
748 
749 	return joinrel;
750 }
751 
752 /*
753  * build_child_join_rel
754  *	  Builds RelOptInfo representing join between given two child relations.
755  *
756  * 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being
757  *		joined
758  * 'parent_joinrel' is the RelOptInfo representing the join between parent
759  *		relations. Some of the members of new RelOptInfo are produced by
760  *		translating corresponding members of this RelOptInfo
761  * 'sjinfo': child-join context info
762  * 'restrictlist': list of RestrictInfo nodes that apply to this particular
763  *		pair of joinable relations
764  * 'jointype' is the join type (inner, left, full, etc)
765  */
766 RelOptInfo *
767 build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel,
768 					 RelOptInfo *inner_rel, RelOptInfo *parent_joinrel,
769 					 List *restrictlist, SpecialJoinInfo *sjinfo,
770 					 JoinType jointype)
771 {
772 	RelOptInfo *joinrel = makeNode(RelOptInfo);
773 	AppendRelInfo **appinfos;
774 	int			nappinfos;
775 
776 	/* Only joins between "other" relations land here. */
777 	Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel));
778 
779 	/* The parent joinrel should have consider_partitionwise_join set. */
780 	Assert(parent_joinrel->consider_partitionwise_join);
781 
782 	joinrel->reloptkind = RELOPT_OTHER_JOINREL;
783 	joinrel->relids = bms_union(outer_rel->relids, inner_rel->relids);
784 	joinrel->rows = 0;
785 	/* cheap startup cost is interesting iff not all tuples to be retrieved */
786 	joinrel->consider_startup = (root->tuple_fraction > 0);
787 	joinrel->consider_param_startup = false;
788 	joinrel->consider_parallel = false;
789 	joinrel->reltarget = create_empty_pathtarget();
790 	joinrel->pathlist = NIL;
791 	joinrel->ppilist = NIL;
792 	joinrel->partial_pathlist = NIL;
793 	joinrel->cheapest_startup_path = NULL;
794 	joinrel->cheapest_total_path = NULL;
795 	joinrel->cheapest_unique_path = NULL;
796 	joinrel->cheapest_parameterized_paths = NIL;
797 	joinrel->direct_lateral_relids = NULL;
798 	joinrel->lateral_relids = NULL;
799 	joinrel->relid = 0;			/* indicates not a baserel */
800 	joinrel->rtekind = RTE_JOIN;
801 	joinrel->min_attr = 0;
802 	joinrel->max_attr = 0;
803 	joinrel->attr_needed = NULL;
804 	joinrel->attr_widths = NULL;
805 	joinrel->lateral_vars = NIL;
806 	joinrel->lateral_referencers = NULL;
807 	joinrel->indexlist = NIL;
808 	joinrel->pages = 0;
809 	joinrel->tuples = 0;
810 	joinrel->allvisfrac = 0;
811 	joinrel->subroot = NULL;
812 	joinrel->subplan_params = NIL;
813 	joinrel->serverid = InvalidOid;
814 	joinrel->userid = InvalidOid;
815 	joinrel->useridiscurrent = false;
816 	joinrel->fdwroutine = NULL;
817 	joinrel->fdw_private = NULL;
818 	joinrel->baserestrictinfo = NIL;
819 	joinrel->baserestrictcost.startup = 0;
820 	joinrel->baserestrictcost.per_tuple = 0;
821 	joinrel->joininfo = NIL;
822 	joinrel->has_eclass_joins = false;
823 	joinrel->consider_partitionwise_join = false;	/* might get changed later */
824 	joinrel->top_parent_relids = NULL;
825 	joinrel->part_scheme = NULL;
826 	joinrel->nparts = 0;
827 	joinrel->boundinfo = NULL;
828 	joinrel->partition_qual = NIL;
829 	joinrel->part_rels = NULL;
830 	joinrel->partexprs = NULL;
831 	joinrel->nullable_partexprs = NULL;
832 	joinrel->partitioned_child_rels = NIL;
833 
834 	joinrel->top_parent_relids = bms_union(outer_rel->top_parent_relids,
835 										   inner_rel->top_parent_relids);
836 
837 	/* Compute information relevant to foreign relations. */
838 	set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
839 
840 	/* Compute information needed for mapping Vars to the child rel */
841 	appinfos = find_appinfos_by_relids(root, joinrel->relids, &nappinfos);
842 
843 	/* Set up reltarget struct */
844 	build_child_join_reltarget(root, parent_joinrel, joinrel,
845 							   nappinfos, appinfos);
846 
847 	/* Construct joininfo list. */
848 	joinrel->joininfo = (List *) adjust_appendrel_attrs(root,
849 														(Node *) parent_joinrel->joininfo,
850 														nappinfos,
851 														appinfos);
852 
853 	/*
854 	 * Lateral relids referred in child join will be same as that referred in
855 	 * the parent relation. Throw any partial result computed while building
856 	 * the targetlist.
857 	 */
858 	bms_free(joinrel->direct_lateral_relids);
859 	bms_free(joinrel->lateral_relids);
860 	joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids);
861 	joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids);
862 
863 	/*
864 	 * If the parent joinrel has pending equivalence classes, so does the
865 	 * child.
866 	 */
867 	joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins;
868 
869 	/* Is the join between partitions itself partitioned? */
870 	build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist,
871 								 jointype);
872 
873 	/* Child joinrel is parallel safe if parent is parallel safe. */
874 	joinrel->consider_parallel = parent_joinrel->consider_parallel;
875 
876 	/* Set estimates of the child-joinrel's size. */
877 	set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
878 							   sjinfo, restrictlist);
879 
880 	/* We build the join only once. */
881 	Assert(!find_join_rel(root, joinrel->relids));
882 
883 	/* Add the relation to the PlannerInfo. */
884 	add_join_rel(root, joinrel);
885 
886 	/*
887 	 * We might need EquivalenceClass members corresponding to the child join,
888 	 * so that we can represent sort pathkeys for it.  As with children of
889 	 * baserels, we shouldn't need this unless there are relevant eclass joins
890 	 * (implying that a merge join might be possible) or pathkeys to sort by.
891 	 */
892 	if (joinrel->has_eclass_joins || has_useful_pathkeys(root, parent_joinrel))
893 		add_child_join_rel_equivalences(root,
894 										nappinfos, appinfos,
895 										parent_joinrel, joinrel);
896 
897 	pfree(appinfos);
898 
899 	return joinrel;
900 }
901 
902 /*
903  * min_join_parameterization
904  *
905  * Determine the minimum possible parameterization of a joinrel, that is, the
906  * set of other rels it contains LATERAL references to.  We save this value in
907  * the join's RelOptInfo.  This function is split out of build_join_rel()
908  * because join_is_legal() needs the value to check a prospective join.
909  */
910 Relids
911 min_join_parameterization(PlannerInfo *root,
912 						  Relids joinrelids,
913 						  RelOptInfo *outer_rel,
914 						  RelOptInfo *inner_rel)
915 {
916 	Relids		result;
917 
918 	/*
919 	 * Basically we just need the union of the inputs' lateral_relids, less
920 	 * whatever is already in the join.
921 	 *
922 	 * It's not immediately obvious that this is a valid way to compute the
923 	 * result, because it might seem that we're ignoring possible lateral refs
924 	 * of PlaceHolderVars that are due to be computed at the join but not in
925 	 * either input.  However, because create_lateral_join_info() already
926 	 * charged all such PHV refs to each member baserel of the join, they'll
927 	 * be accounted for already in the inputs' lateral_relids.  Likewise, we
928 	 * do not need to worry about doing transitive closure here, because that
929 	 * was already accounted for in the original baserel lateral_relids.
930 	 */
931 	result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids);
932 	result = bms_del_members(result, joinrelids);
933 
934 	/* Maintain invariant that result is exactly NULL if empty */
935 	if (bms_is_empty(result))
936 		result = NULL;
937 
938 	return result;
939 }
940 
941 /*
942  * build_joinrel_tlist
943  *	  Builds a join relation's target list from an input relation.
944  *	  (This is invoked twice to handle the two input relations.)
945  *
946  * The join's targetlist includes all Vars of its member relations that
947  * will still be needed above the join.  This subroutine adds all such
948  * Vars from the specified input rel's tlist to the join rel's tlist.
949  *
950  * We also compute the expected width of the join's output, making use
951  * of data that was cached at the baserel level by set_rel_width().
952  */
953 static void
954 build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
955 					RelOptInfo *input_rel)
956 {
957 	Relids		relids = joinrel->relids;
958 	ListCell   *vars;
959 
960 	foreach(vars, input_rel->reltarget->exprs)
961 	{
962 		Var		   *var = (Var *) lfirst(vars);
963 		RelOptInfo *baserel;
964 		int			ndx;
965 
966 		/*
967 		 * Ignore PlaceHolderVars in the input tlists; we'll make our own
968 		 * decisions about whether to copy them.
969 		 */
970 		if (IsA(var, PlaceHolderVar))
971 			continue;
972 
973 		/*
974 		 * Otherwise, anything in a baserel or joinrel targetlist ought to be
975 		 * a Var.  (More general cases can only appear in appendrel child
976 		 * rels, which will never be seen here.)
977 		 */
978 		if (!IsA(var, Var))
979 			elog(ERROR, "unexpected node type in rel targetlist: %d",
980 				 (int) nodeTag(var));
981 
982 		/* Get the Var's original base rel */
983 		baserel = find_base_rel(root, var->varno);
984 
985 		/* Is it still needed above this joinrel? */
986 		ndx = var->varattno - baserel->min_attr;
987 		if (bms_nonempty_difference(baserel->attr_needed[ndx], relids))
988 		{
989 			/* Yup, add it to the output */
990 			joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs, var);
991 			/* Vars have cost zero, so no need to adjust reltarget->cost */
992 			joinrel->reltarget->width += baserel->attr_widths[ndx];
993 		}
994 	}
995 }
996 
997 /*
998  * build_joinrel_restrictlist
999  * build_joinrel_joinlist
1000  *	  These routines build lists of restriction and join clauses for a
1001  *	  join relation from the joininfo lists of the relations it joins.
1002  *
1003  *	  These routines are separate because the restriction list must be
1004  *	  built afresh for each pair of input sub-relations we consider, whereas
1005  *	  the join list need only be computed once for any join RelOptInfo.
1006  *	  The join list is fully determined by the set of rels making up the
1007  *	  joinrel, so we should get the same results (up to ordering) from any
1008  *	  candidate pair of sub-relations.  But the restriction list is whatever
1009  *	  is not handled in the sub-relations, so it depends on which
1010  *	  sub-relations are considered.
1011  *
1012  *	  If a join clause from an input relation refers to base rels still not
1013  *	  present in the joinrel, then it is still a join clause for the joinrel;
1014  *	  we put it into the joininfo list for the joinrel.  Otherwise,
1015  *	  the clause is now a restrict clause for the joined relation, and we
1016  *	  return it to the caller of build_joinrel_restrictlist() to be stored in
1017  *	  join paths made from this pair of sub-relations.  (It will not need to
1018  *	  be considered further up the join tree.)
1019  *
1020  *	  In many cases we will find the same RestrictInfos in both input
1021  *	  relations' joinlists, so be careful to eliminate duplicates.
1022  *	  Pointer equality should be a sufficient test for dups, since all
1023  *	  the various joinlist entries ultimately refer to RestrictInfos
1024  *	  pushed into them by distribute_restrictinfo_to_rels().
1025  *
1026  * 'joinrel' is a join relation node
1027  * 'outer_rel' and 'inner_rel' are a pair of relations that can be joined
1028  *		to form joinrel.
1029  *
1030  * build_joinrel_restrictlist() returns a list of relevant restrictinfos,
1031  * whereas build_joinrel_joinlist() stores its results in the joinrel's
1032  * joininfo list.  One or the other must accept each given clause!
1033  *
1034  * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
1035  * up to the join relation.  I believe this is no longer necessary, because
1036  * RestrictInfo nodes are no longer context-dependent.  Instead, just include
1037  * the original nodes in the lists made for the join relation.
1038  */
1039 static List *
1040 build_joinrel_restrictlist(PlannerInfo *root,
1041 						   RelOptInfo *joinrel,
1042 						   RelOptInfo *outer_rel,
1043 						   RelOptInfo *inner_rel)
1044 {
1045 	List	   *result;
1046 
1047 	/*
1048 	 * Collect all the clauses that syntactically belong at this level,
1049 	 * eliminating any duplicates (important since we will see many of the
1050 	 * same clauses arriving from both input relations).
1051 	 */
1052 	result = subbuild_joinrel_restrictlist(joinrel, outer_rel->joininfo, NIL);
1053 	result = subbuild_joinrel_restrictlist(joinrel, inner_rel->joininfo, result);
1054 
1055 	/*
1056 	 * Add on any clauses derived from EquivalenceClasses.  These cannot be
1057 	 * redundant with the clauses in the joininfo lists, so don't bother
1058 	 * checking.
1059 	 */
1060 	result = list_concat(result,
1061 						 generate_join_implied_equalities(root,
1062 														  joinrel->relids,
1063 														  outer_rel->relids,
1064 														  inner_rel));
1065 
1066 	return result;
1067 }
1068 
1069 static void
1070 build_joinrel_joinlist(RelOptInfo *joinrel,
1071 					   RelOptInfo *outer_rel,
1072 					   RelOptInfo *inner_rel)
1073 {
1074 	List	   *result;
1075 
1076 	/*
1077 	 * Collect all the clauses that syntactically belong above this level,
1078 	 * eliminating any duplicates (important since we will see many of the
1079 	 * same clauses arriving from both input relations).
1080 	 */
1081 	result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL);
1082 	result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result);
1083 
1084 	joinrel->joininfo = result;
1085 }
1086 
1087 static List *
1088 subbuild_joinrel_restrictlist(RelOptInfo *joinrel,
1089 							  List *joininfo_list,
1090 							  List *new_restrictlist)
1091 {
1092 	ListCell   *l;
1093 
1094 	foreach(l, joininfo_list)
1095 	{
1096 		RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1097 
1098 		if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1099 		{
1100 			/*
1101 			 * This clause becomes a restriction clause for the joinrel, since
1102 			 * it refers to no outside rels.  Add it to the list, being
1103 			 * careful to eliminate duplicates. (Since RestrictInfo nodes in
1104 			 * different joinlists will have been multiply-linked rather than
1105 			 * copied, pointer equality should be a sufficient test.)
1106 			 */
1107 			new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo);
1108 		}
1109 		else
1110 		{
1111 			/*
1112 			 * This clause is still a join clause at this level, so we ignore
1113 			 * it in this routine.
1114 			 */
1115 		}
1116 	}
1117 
1118 	return new_restrictlist;
1119 }
1120 
1121 static List *
1122 subbuild_joinrel_joinlist(RelOptInfo *joinrel,
1123 						  List *joininfo_list,
1124 						  List *new_joininfo)
1125 {
1126 	ListCell   *l;
1127 
1128 	/* Expected to be called only for join between parent relations. */
1129 	Assert(joinrel->reloptkind == RELOPT_JOINREL);
1130 
1131 	foreach(l, joininfo_list)
1132 	{
1133 		RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1134 
1135 		if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1136 		{
1137 			/*
1138 			 * This clause becomes a restriction clause for the joinrel, since
1139 			 * it refers to no outside rels.  So we can ignore it in this
1140 			 * routine.
1141 			 */
1142 		}
1143 		else
1144 		{
1145 			/*
1146 			 * This clause is still a join clause at this level, so add it to
1147 			 * the new joininfo list, being careful to eliminate duplicates.
1148 			 * (Since RestrictInfo nodes in different joinlists will have been
1149 			 * multiply-linked rather than copied, pointer equality should be
1150 			 * a sufficient test.)
1151 			 */
1152 			new_joininfo = list_append_unique_ptr(new_joininfo, rinfo);
1153 		}
1154 	}
1155 
1156 	return new_joininfo;
1157 }
1158 
1159 
1160 /*
1161  * fetch_upper_rel
1162  *		Build a RelOptInfo describing some post-scan/join query processing,
1163  *		or return a pre-existing one if somebody already built it.
1164  *
1165  * An "upper" relation is identified by an UpperRelationKind and a Relids set.
1166  * The meaning of the Relids set is not specified here, and very likely will
1167  * vary for different relation kinds.
1168  *
1169  * Most of the fields in an upper-level RelOptInfo are not used and are not
1170  * set here (though makeNode should ensure they're zeroes).  We basically only
1171  * care about fields that are of interest to add_path() and set_cheapest().
1172  */
1173 RelOptInfo *
1174 fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
1175 {
1176 	RelOptInfo *upperrel;
1177 	ListCell   *lc;
1178 
1179 	/*
1180 	 * For the moment, our indexing data structure is just a List for each
1181 	 * relation kind.  If we ever get so many of one kind that this stops
1182 	 * working well, we can improve it.  No code outside this function should
1183 	 * assume anything about how to find a particular upperrel.
1184 	 */
1185 
1186 	/* If we already made this upperrel for the query, return it */
1187 	foreach(lc, root->upper_rels[kind])
1188 	{
1189 		upperrel = (RelOptInfo *) lfirst(lc);
1190 
1191 		if (bms_equal(upperrel->relids, relids))
1192 			return upperrel;
1193 	}
1194 
1195 	upperrel = makeNode(RelOptInfo);
1196 	upperrel->reloptkind = RELOPT_UPPER_REL;
1197 	upperrel->relids = bms_copy(relids);
1198 
1199 	/* cheap startup cost is interesting iff not all tuples to be retrieved */
1200 	upperrel->consider_startup = (root->tuple_fraction > 0);
1201 	upperrel->consider_param_startup = false;
1202 	upperrel->consider_parallel = false;	/* might get changed later */
1203 	upperrel->reltarget = create_empty_pathtarget();
1204 	upperrel->pathlist = NIL;
1205 	upperrel->cheapest_startup_path = NULL;
1206 	upperrel->cheapest_total_path = NULL;
1207 	upperrel->cheapest_unique_path = NULL;
1208 	upperrel->cheapest_parameterized_paths = NIL;
1209 
1210 	root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel);
1211 
1212 	return upperrel;
1213 }
1214 
1215 
1216 /*
1217  * find_childrel_parents
1218  *		Compute the set of parent relids of an appendrel child rel.
1219  *
1220  * Since appendrels can be nested, a child could have multiple levels of
1221  * appendrel ancestors.  This function computes a Relids set of all the
1222  * parent relation IDs.
1223  */
1224 Relids
1225 find_childrel_parents(PlannerInfo *root, RelOptInfo *rel)
1226 {
1227 	Relids		result = NULL;
1228 
1229 	Assert(rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
1230 	Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size);
1231 
1232 	do
1233 	{
1234 		AppendRelInfo *appinfo = root->append_rel_array[rel->relid];
1235 		Index		prelid = appinfo->parent_relid;
1236 
1237 		result = bms_add_member(result, prelid);
1238 
1239 		/* traverse up to the parent rel, loop if it's also a child rel */
1240 		rel = find_base_rel(root, prelid);
1241 	} while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
1242 
1243 	Assert(rel->reloptkind == RELOPT_BASEREL);
1244 
1245 	return result;
1246 }
1247 
1248 
1249 /*
1250  * get_baserel_parampathinfo
1251  *		Get the ParamPathInfo for a parameterized path for a base relation,
1252  *		constructing one if we don't have one already.
1253  *
1254  * This centralizes estimating the rowcounts for parameterized paths.
1255  * We need to cache those to be sure we use the same rowcount for all paths
1256  * of the same parameterization for a given rel.  This is also a convenient
1257  * place to determine which movable join clauses the parameterized path will
1258  * be responsible for evaluating.
1259  */
1260 ParamPathInfo *
1261 get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel,
1262 						  Relids required_outer)
1263 {
1264 	ParamPathInfo *ppi;
1265 	Relids		joinrelids;
1266 	List	   *pclauses;
1267 	double		rows;
1268 	ListCell   *lc;
1269 
1270 	/* If rel has LATERAL refs, every path for it should account for them */
1271 	Assert(bms_is_subset(baserel->lateral_relids, required_outer));
1272 
1273 	/* Unparameterized paths have no ParamPathInfo */
1274 	if (bms_is_empty(required_outer))
1275 		return NULL;
1276 
1277 	Assert(!bms_overlap(baserel->relids, required_outer));
1278 
1279 	/* If we already have a PPI for this parameterization, just return it */
1280 	if ((ppi = find_param_path_info(baserel, required_outer)))
1281 		return ppi;
1282 
1283 	/*
1284 	 * Identify all joinclauses that are movable to this base rel given this
1285 	 * parameterization.
1286 	 */
1287 	joinrelids = bms_union(baserel->relids, required_outer);
1288 	pclauses = NIL;
1289 	foreach(lc, baserel->joininfo)
1290 	{
1291 		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1292 
1293 		if (join_clause_is_movable_into(rinfo,
1294 										baserel->relids,
1295 										joinrelids))
1296 			pclauses = lappend(pclauses, rinfo);
1297 	}
1298 
1299 	/*
1300 	 * Add in joinclauses generated by EquivalenceClasses, too.  (These
1301 	 * necessarily satisfy join_clause_is_movable_into.)
1302 	 */
1303 	pclauses = list_concat(pclauses,
1304 						   generate_join_implied_equalities(root,
1305 															joinrelids,
1306 															required_outer,
1307 															baserel));
1308 
1309 	/* Estimate the number of rows returned by the parameterized scan */
1310 	rows = get_parameterized_baserel_size(root, baserel, pclauses);
1311 
1312 	/* And now we can build the ParamPathInfo */
1313 	ppi = makeNode(ParamPathInfo);
1314 	ppi->ppi_req_outer = required_outer;
1315 	ppi->ppi_rows = rows;
1316 	ppi->ppi_clauses = pclauses;
1317 	baserel->ppilist = lappend(baserel->ppilist, ppi);
1318 
1319 	return ppi;
1320 }
1321 
1322 /*
1323  * get_joinrel_parampathinfo
1324  *		Get the ParamPathInfo for a parameterized path for a join relation,
1325  *		constructing one if we don't have one already.
1326  *
1327  * This centralizes estimating the rowcounts for parameterized paths.
1328  * We need to cache those to be sure we use the same rowcount for all paths
1329  * of the same parameterization for a given rel.  This is also a convenient
1330  * place to determine which movable join clauses the parameterized path will
1331  * be responsible for evaluating.
1332  *
1333  * outer_path and inner_path are a pair of input paths that can be used to
1334  * construct the join, and restrict_clauses is the list of regular join
1335  * clauses (including clauses derived from EquivalenceClasses) that must be
1336  * applied at the join node when using these inputs.
1337  *
1338  * Unlike the situation for base rels, the set of movable join clauses to be
1339  * enforced at a join varies with the selected pair of input paths, so we
1340  * must calculate that and pass it back, even if we already have a matching
1341  * ParamPathInfo.  We handle this by adding any clauses moved down to this
1342  * join to *restrict_clauses, which is an in/out parameter.  (The addition
1343  * is done in such a way as to not modify the passed-in List structure.)
1344  *
1345  * Note: when considering a nestloop join, the caller must have removed from
1346  * restrict_clauses any movable clauses that are themselves scheduled to be
1347  * pushed into the right-hand path.  We do not do that here since it's
1348  * unnecessary for other join types.
1349  */
1350 ParamPathInfo *
1351 get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel,
1352 						  Path *outer_path,
1353 						  Path *inner_path,
1354 						  SpecialJoinInfo *sjinfo,
1355 						  Relids required_outer,
1356 						  List **restrict_clauses)
1357 {
1358 	ParamPathInfo *ppi;
1359 	Relids		join_and_req;
1360 	Relids		outer_and_req;
1361 	Relids		inner_and_req;
1362 	List	   *pclauses;
1363 	List	   *eclauses;
1364 	List	   *dropped_ecs;
1365 	double		rows;
1366 	ListCell   *lc;
1367 
1368 	/* If rel has LATERAL refs, every path for it should account for them */
1369 	Assert(bms_is_subset(joinrel->lateral_relids, required_outer));
1370 
1371 	/* Unparameterized paths have no ParamPathInfo or extra join clauses */
1372 	if (bms_is_empty(required_outer))
1373 		return NULL;
1374 
1375 	Assert(!bms_overlap(joinrel->relids, required_outer));
1376 
1377 	/*
1378 	 * Identify all joinclauses that are movable to this join rel given this
1379 	 * parameterization.  These are the clauses that are movable into this
1380 	 * join, but not movable into either input path.  Treat an unparameterized
1381 	 * input path as not accepting parameterized clauses (because it won't,
1382 	 * per the shortcut exit above), even though the joinclause movement rules
1383 	 * might allow the same clauses to be moved into a parameterized path for
1384 	 * that rel.
1385 	 */
1386 	join_and_req = bms_union(joinrel->relids, required_outer);
1387 	if (outer_path->param_info)
1388 		outer_and_req = bms_union(outer_path->parent->relids,
1389 								  PATH_REQ_OUTER(outer_path));
1390 	else
1391 		outer_and_req = NULL;	/* outer path does not accept parameters */
1392 	if (inner_path->param_info)
1393 		inner_and_req = bms_union(inner_path->parent->relids,
1394 								  PATH_REQ_OUTER(inner_path));
1395 	else
1396 		inner_and_req = NULL;	/* inner path does not accept parameters */
1397 
1398 	pclauses = NIL;
1399 	foreach(lc, joinrel->joininfo)
1400 	{
1401 		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1402 
1403 		if (join_clause_is_movable_into(rinfo,
1404 										joinrel->relids,
1405 										join_and_req) &&
1406 			!join_clause_is_movable_into(rinfo,
1407 										 outer_path->parent->relids,
1408 										 outer_and_req) &&
1409 			!join_clause_is_movable_into(rinfo,
1410 										 inner_path->parent->relids,
1411 										 inner_and_req))
1412 			pclauses = lappend(pclauses, rinfo);
1413 	}
1414 
1415 	/* Consider joinclauses generated by EquivalenceClasses, too */
1416 	eclauses = generate_join_implied_equalities(root,
1417 												join_and_req,
1418 												required_outer,
1419 												joinrel);
1420 	/* We only want ones that aren't movable to lower levels */
1421 	dropped_ecs = NIL;
1422 	foreach(lc, eclauses)
1423 	{
1424 		RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1425 
1426 		/*
1427 		 * In principle, join_clause_is_movable_into() should accept anything
1428 		 * returned by generate_join_implied_equalities(); but because its
1429 		 * analysis is only approximate, sometimes it doesn't.  So we
1430 		 * currently cannot use this Assert; instead just assume it's okay to
1431 		 * apply the joinclause at this level.
1432 		 */
1433 #ifdef NOT_USED
1434 		Assert(join_clause_is_movable_into(rinfo,
1435 										   joinrel->relids,
1436 										   join_and_req));
1437 #endif
1438 		if (join_clause_is_movable_into(rinfo,
1439 										outer_path->parent->relids,
1440 										outer_and_req))
1441 			continue;			/* drop if movable into LHS */
1442 		if (join_clause_is_movable_into(rinfo,
1443 										inner_path->parent->relids,
1444 										inner_and_req))
1445 		{
1446 			/* drop if movable into RHS, but remember EC for use below */
1447 			Assert(rinfo->left_ec == rinfo->right_ec);
1448 			dropped_ecs = lappend(dropped_ecs, rinfo->left_ec);
1449 			continue;
1450 		}
1451 		pclauses = lappend(pclauses, rinfo);
1452 	}
1453 
1454 	/*
1455 	 * EquivalenceClasses are harder to deal with than we could wish, because
1456 	 * of the fact that a given EC can generate different clauses depending on
1457 	 * context.  Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the
1458 	 * LHS and RHS of the current join and Z is in required_outer, and further
1459 	 * suppose that the inner_path is parameterized by both X and Z.  The code
1460 	 * above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC,
1461 	 * and in the latter case will have discarded it as being movable into the
1462 	 * RHS.  However, the EC machinery might have produced either Y.Y = X.X or
1463 	 * Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will
1464 	 * not have produced both, and we can't readily tell from here which one
1465 	 * it did pick.  If we add no clause to this join, we'll end up with
1466 	 * insufficient enforcement of the EC; either Z.Z or X.X will fail to be
1467 	 * constrained to be equal to the other members of the EC.  (When we come
1468 	 * to join Z to this X/Y path, we will certainly drop whichever EC clause
1469 	 * is generated at that join, so this omission won't get fixed later.)
1470 	 *
1471 	 * To handle this, for each EC we discarded such a clause from, try to
1472 	 * generate a clause connecting the required_outer rels to the join's LHS
1473 	 * ("Z.Z = X.X" in the terms of the above example).  If successful, and if
1474 	 * the clause can't be moved to the LHS, add it to the current join's
1475 	 * restriction clauses.  (If an EC cannot generate such a clause then it
1476 	 * has nothing that needs to be enforced here, while if the clause can be
1477 	 * moved into the LHS then it should have been enforced within that path.)
1478 	 *
1479 	 * Note that we don't need similar processing for ECs whose clause was
1480 	 * considered to be movable into the LHS, because the LHS can't refer to
1481 	 * the RHS so there is no comparable ambiguity about what it might
1482 	 * actually be enforcing internally.
1483 	 */
1484 	if (dropped_ecs)
1485 	{
1486 		Relids		real_outer_and_req;
1487 
1488 		real_outer_and_req = bms_union(outer_path->parent->relids,
1489 									   required_outer);
1490 		eclauses =
1491 			generate_join_implied_equalities_for_ecs(root,
1492 													 dropped_ecs,
1493 													 real_outer_and_req,
1494 													 required_outer,
1495 													 outer_path->parent);
1496 		foreach(lc, eclauses)
1497 		{
1498 			RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1499 
1500 			/* As above, can't quite assert this here */
1501 #ifdef NOT_USED
1502 			Assert(join_clause_is_movable_into(rinfo,
1503 											   outer_path->parent->relids,
1504 											   real_outer_and_req));
1505 #endif
1506 			if (!join_clause_is_movable_into(rinfo,
1507 											 outer_path->parent->relids,
1508 											 outer_and_req))
1509 				pclauses = lappend(pclauses, rinfo);
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * Now, attach the identified moved-down clauses to the caller's
1515 	 * restrict_clauses list.  By using list_concat in this order, we leave
1516 	 * the original list structure of restrict_clauses undamaged.
1517 	 */
1518 	*restrict_clauses = list_concat(pclauses, *restrict_clauses);
1519 
1520 	/* If we already have a PPI for this parameterization, just return it */
1521 	if ((ppi = find_param_path_info(joinrel, required_outer)))
1522 		return ppi;
1523 
1524 	/* Estimate the number of rows returned by the parameterized join */
1525 	rows = get_parameterized_joinrel_size(root, joinrel,
1526 										  outer_path,
1527 										  inner_path,
1528 										  sjinfo,
1529 										  *restrict_clauses);
1530 
1531 	/*
1532 	 * And now we can build the ParamPathInfo.  No point in saving the
1533 	 * input-pair-dependent clause list, though.
1534 	 *
1535 	 * Note: in GEQO mode, we'll be called in a temporary memory context, but
1536 	 * the joinrel structure is there too, so no problem.
1537 	 */
1538 	ppi = makeNode(ParamPathInfo);
1539 	ppi->ppi_req_outer = required_outer;
1540 	ppi->ppi_rows = rows;
1541 	ppi->ppi_clauses = NIL;
1542 	joinrel->ppilist = lappend(joinrel->ppilist, ppi);
1543 
1544 	return ppi;
1545 }
1546 
1547 /*
1548  * get_appendrel_parampathinfo
1549  *		Get the ParamPathInfo for a parameterized path for an append relation.
1550  *
1551  * For an append relation, the rowcount estimate will just be the sum of
1552  * the estimates for its children.  However, we still need a ParamPathInfo
1553  * to flag the fact that the path requires parameters.  So this just creates
1554  * a suitable struct with zero ppi_rows (and no ppi_clauses either, since
1555  * the Append node isn't responsible for checking quals).
1556  */
1557 ParamPathInfo *
1558 get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
1559 {
1560 	ParamPathInfo *ppi;
1561 
1562 	/* If rel has LATERAL refs, every path for it should account for them */
1563 	Assert(bms_is_subset(appendrel->lateral_relids, required_outer));
1564 
1565 	/* Unparameterized paths have no ParamPathInfo */
1566 	if (bms_is_empty(required_outer))
1567 		return NULL;
1568 
1569 	Assert(!bms_overlap(appendrel->relids, required_outer));
1570 
1571 	/* If we already have a PPI for this parameterization, just return it */
1572 	if ((ppi = find_param_path_info(appendrel, required_outer)))
1573 		return ppi;
1574 
1575 	/* Else build the ParamPathInfo */
1576 	ppi = makeNode(ParamPathInfo);
1577 	ppi->ppi_req_outer = required_outer;
1578 	ppi->ppi_rows = 0;
1579 	ppi->ppi_clauses = NIL;
1580 	appendrel->ppilist = lappend(appendrel->ppilist, ppi);
1581 
1582 	return ppi;
1583 }
1584 
1585 /*
1586  * Returns a ParamPathInfo for the parameterization given by required_outer, if
1587  * already available in the given rel. Returns NULL otherwise.
1588  */
1589 ParamPathInfo *
1590 find_param_path_info(RelOptInfo *rel, Relids required_outer)
1591 {
1592 	ListCell   *lc;
1593 
1594 	foreach(lc, rel->ppilist)
1595 	{
1596 		ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc);
1597 
1598 		if (bms_equal(ppi->ppi_req_outer, required_outer))
1599 			return ppi;
1600 	}
1601 
1602 	return NULL;
1603 }
1604 
1605 /*
1606  * build_joinrel_partition_info
1607  *		If the two relations have same partitioning scheme, their join may be
1608  *		partitioned and will follow the same partitioning scheme as the joining
1609  *		relations. Set the partition scheme and partition key expressions in
1610  *		the join relation.
1611  */
1612 static void
1613 build_joinrel_partition_info(RelOptInfo *joinrel, RelOptInfo *outer_rel,
1614 							 RelOptInfo *inner_rel, List *restrictlist,
1615 							 JoinType jointype)
1616 {
1617 	int			partnatts;
1618 	int			cnt;
1619 	PartitionScheme part_scheme;
1620 
1621 	/* Nothing to do if partitionwise join technique is disabled. */
1622 	if (!enable_partitionwise_join)
1623 	{
1624 		Assert(!IS_PARTITIONED_REL(joinrel));
1625 		return;
1626 	}
1627 
1628 	/*
1629 	 * We can only consider this join as an input to further partitionwise
1630 	 * joins if (a) the input relations are partitioned and have
1631 	 * consider_partitionwise_join=true, (b) the partition schemes match, and
1632 	 * (c) we can identify an equi-join between the partition keys.  Note that
1633 	 * if it were possible for have_partkey_equi_join to return different
1634 	 * answers for the same joinrel depending on which join ordering we try
1635 	 * first, this logic would break.  That shouldn't happen, though, because
1636 	 * of the way the query planner deduces implied equalities and reorders
1637 	 * the joins.  Please see optimizer/README for details.
1638 	 */
1639 	if (!IS_PARTITIONED_REL(outer_rel) || !IS_PARTITIONED_REL(inner_rel) ||
1640 		!outer_rel->consider_partitionwise_join ||
1641 		!inner_rel->consider_partitionwise_join ||
1642 		outer_rel->part_scheme != inner_rel->part_scheme ||
1643 		!have_partkey_equi_join(joinrel, outer_rel, inner_rel,
1644 								jointype, restrictlist))
1645 	{
1646 		Assert(!IS_PARTITIONED_REL(joinrel));
1647 		return;
1648 	}
1649 
1650 	part_scheme = outer_rel->part_scheme;
1651 
1652 	Assert(REL_HAS_ALL_PART_PROPS(outer_rel) &&
1653 		   REL_HAS_ALL_PART_PROPS(inner_rel));
1654 
1655 	/*
1656 	 * For now, our partition matching algorithm can match partitions only
1657 	 * when the partition bounds of the joining relations are exactly same.
1658 	 * So, bail out otherwise.
1659 	 */
1660 	if (outer_rel->nparts != inner_rel->nparts ||
1661 		!partition_bounds_equal(part_scheme->partnatts,
1662 								part_scheme->parttyplen,
1663 								part_scheme->parttypbyval,
1664 								outer_rel->boundinfo, inner_rel->boundinfo))
1665 	{
1666 		Assert(!IS_PARTITIONED_REL(joinrel));
1667 		return;
1668 	}
1669 
1670 	/*
1671 	 * This function will be called only once for each joinrel, hence it
1672 	 * should not have partition scheme, partition bounds, partition key
1673 	 * expressions and array for storing child relations set.
1674 	 */
1675 	Assert(!joinrel->part_scheme && !joinrel->partexprs &&
1676 		   !joinrel->nullable_partexprs && !joinrel->part_rels &&
1677 		   !joinrel->boundinfo);
1678 
1679 	/*
1680 	 * Join relation is partitioned using the same partitioning scheme as the
1681 	 * joining relations and has same bounds.
1682 	 */
1683 	joinrel->part_scheme = part_scheme;
1684 	joinrel->boundinfo = outer_rel->boundinfo;
1685 	partnatts = joinrel->part_scheme->partnatts;
1686 	joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts);
1687 	joinrel->nullable_partexprs =
1688 		(List **) palloc0(sizeof(List *) * partnatts);
1689 	joinrel->nparts = outer_rel->nparts;
1690 	joinrel->part_rels =
1691 		(RelOptInfo **) palloc0(sizeof(RelOptInfo *) * joinrel->nparts);
1692 
1693 	/*
1694 	 * Set the consider_partitionwise_join flag.
1695 	 */
1696 	Assert(outer_rel->consider_partitionwise_join);
1697 	Assert(inner_rel->consider_partitionwise_join);
1698 	joinrel->consider_partitionwise_join = true;
1699 
1700 	/*
1701 	 * Construct partition keys for the join.
1702 	 *
1703 	 * An INNER join between two partitioned relations can be regarded as
1704 	 * partitioned by either key expression.  For example, A INNER JOIN B ON
1705 	 * A.a = B.b can be regarded as partitioned on A.a or on B.b; they are
1706 	 * equivalent.
1707 	 *
1708 	 * For a SEMI or ANTI join, the result can only be regarded as being
1709 	 * partitioned in the same manner as the outer side, since the inner
1710 	 * columns are not retained.
1711 	 *
1712 	 * An OUTER join like (A LEFT JOIN B ON A.a = B.b) may produce rows with
1713 	 * B.b NULL. These rows may not fit the partitioning conditions imposed on
1714 	 * B.b. Hence, strictly speaking, the join is not partitioned by B.b and
1715 	 * thus partition keys of an OUTER join should include partition key
1716 	 * expressions from the OUTER side only.  However, because all
1717 	 * commonly-used comparison operators are strict, the presence of nulls on
1718 	 * the outer side doesn't cause any problem; they can't match anything at
1719 	 * future join levels anyway.  Therefore, we track two sets of
1720 	 * expressions: those that authentically partition the relation
1721 	 * (partexprs) and those that partition the relation with the exception
1722 	 * that extra nulls may be present (nullable_partexprs).  When the
1723 	 * comparison operator is strict, the latter is just as good as the
1724 	 * former.
1725 	 */
1726 	for (cnt = 0; cnt < partnatts; cnt++)
1727 	{
1728 		List	   *outer_expr;
1729 		List	   *outer_null_expr;
1730 		List	   *inner_expr;
1731 		List	   *inner_null_expr;
1732 		List	   *partexpr = NIL;
1733 		List	   *nullable_partexpr = NIL;
1734 
1735 		outer_expr = list_copy(outer_rel->partexprs[cnt]);
1736 		outer_null_expr = list_copy(outer_rel->nullable_partexprs[cnt]);
1737 		inner_expr = list_copy(inner_rel->partexprs[cnt]);
1738 		inner_null_expr = list_copy(inner_rel->nullable_partexprs[cnt]);
1739 
1740 		switch (jointype)
1741 		{
1742 			case JOIN_INNER:
1743 				partexpr = list_concat(outer_expr, inner_expr);
1744 				nullable_partexpr = list_concat(outer_null_expr,
1745 												inner_null_expr);
1746 				break;
1747 
1748 			case JOIN_SEMI:
1749 			case JOIN_ANTI:
1750 				partexpr = outer_expr;
1751 				nullable_partexpr = outer_null_expr;
1752 				break;
1753 
1754 			case JOIN_LEFT:
1755 				partexpr = outer_expr;
1756 				nullable_partexpr = list_concat(inner_expr,
1757 												outer_null_expr);
1758 				nullable_partexpr = list_concat(nullable_partexpr,
1759 												inner_null_expr);
1760 				break;
1761 
1762 			case JOIN_FULL:
1763 				nullable_partexpr = list_concat(outer_expr,
1764 												inner_expr);
1765 				nullable_partexpr = list_concat(nullable_partexpr,
1766 												outer_null_expr);
1767 				nullable_partexpr = list_concat(nullable_partexpr,
1768 												inner_null_expr);
1769 				break;
1770 
1771 			default:
1772 				elog(ERROR, "unrecognized join type: %d", (int) jointype);
1773 
1774 		}
1775 
1776 		joinrel->partexprs[cnt] = partexpr;
1777 		joinrel->nullable_partexprs[cnt] = nullable_partexpr;
1778 	}
1779 }
1780 
1781 /*
1782  * build_child_join_reltarget
1783  *	  Set up a child-join relation's reltarget from a parent-join relation.
1784  */
1785 static void
1786 build_child_join_reltarget(PlannerInfo *root,
1787 						   RelOptInfo *parentrel,
1788 						   RelOptInfo *childrel,
1789 						   int nappinfos,
1790 						   AppendRelInfo **appinfos)
1791 {
1792 	/* Build the targetlist */
1793 	childrel->reltarget->exprs = (List *)
1794 		adjust_appendrel_attrs(root,
1795 							   (Node *) parentrel->reltarget->exprs,
1796 							   nappinfos, appinfos);
1797 
1798 	/* Set the cost and width fields */
1799 	childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup;
1800 	childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple;
1801 	childrel->reltarget->width = parentrel->reltarget->width;
1802 }
1803