1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  *	  Definitions for "primitive" node types, those that are used in more
5  *	  than one of the parse/plan/execute stages of the query pipeline.
6  *	  Currently, these are mostly nodes for executable expressions
7  *	  and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  *						node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  *	  specifies an alias for a range variable; the alias might also
33  *	  specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings).  In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings ("").  See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
41 	NodeTag		type;
42 	char	   *aliasname;		/* aliased rel name (never qualified) */
43 	List	   *colnames;		/* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49 	ONCOMMIT_NOOP,				/* No ON COMMIT clause (do nothing) */
50 	ONCOMMIT_PRESERVE_ROWS,		/* ON COMMIT PRESERVE ROWS (do nothing) */
51 	ONCOMMIT_DELETE_ROWS,		/* ON COMMIT DELETE ROWS */
52 	ONCOMMIT_DROP				/* ON COMMIT DROP */
53 } OnCommitAction;
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables.  In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
65 	NodeTag		type;
66 	char	   *catalogname;	/* the catalog (database) name, or NULL */
67 	char	   *schemaname;		/* the schema name, or NULL */
68 	char	   *relname;		/* the relation/sequence name */
69 	bool		inh;			/* expand rel by inheritance? recursively act
70 								 * on children? */
71 	char		relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72 	Alias	   *alias;			/* table alias & optional column aliases */
73 	int			location;		/* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
84 	NodeTag		type;
85 	List	   *ns_uris;		/* list of namespace URI expressions */
86 	List	   *ns_names;		/* list of namespace names or NULL */
87 	Node	   *docexpr;		/* input document expression */
88 	Node	   *rowexpr;		/* row filter expression */
89 	List	   *colnames;		/* column names (list of String) */
90 	List	   *coltypes;		/* OID list of column type OIDs */
91 	List	   *coltypmods;		/* integer list of column typmods */
92 	List	   *colcollations;	/* OID list of column collation OIDs */
93 	List	   *colexprs;		/* list of column filter expressions */
94 	List	   *coldefexprs;	/* list of column default expressions */
95 	Bitmapset  *notnulls;		/* nullability flag for each output column */
96 	int			ordinalitycol;	/* counts from 0; -1 if none specified */
97 	int			location;		/* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL.  (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
110 	NodeTag		type;
111 
112 	RangeVar   *rel;			/* target relation name */
113 	List	   *colNames;		/* column names to assign, or NIL */
114 	char	   *accessMethod;	/* table access method */
115 	List	   *options;		/* options from WITH clause */
116 	OnCommitAction onCommit;	/* what do we do at COMMIT? */
117 	char	   *tableSpaceName; /* table space to use, or NULL */
118 	Node	   *viewQuery;		/* materialized view's SELECT query */
119 	bool		skipData;		/* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  *					node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field).  Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation.  See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
138 	NodeTag		type;
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * Note: during parsing/planning, varnoold/varoattno are always just copies
145  * of varno/varattno.  At the tail end of planning, Var nodes appearing in
146  * upper-level plan nodes are reassigned to point to the outputs of their
147  * subplans; for example, in a join node varno becomes INNER_VAR or OUTER_VAR
148  * and varattno becomes the index of the proper element of that subplan's
149  * target list.  Similarly, INDEX_VAR is used to identify Vars that reference
150  * an index column rather than a heap column.  (In ForeignScan and CustomScan
151  * plan nodes, INDEX_VAR is abused to signify references to columns of a
152  * custom scan tuple type.)  In all these cases, varnoold/varoattno hold the
153  * original values.  The code doesn't really need varnoold/varoattno, but they
154  * are very useful for debugging and interpreting completed plans, so we keep
155  * them around.
156  */
157 #define    INNER_VAR		65000	/* reference to inner subplan */
158 #define    OUTER_VAR		65001	/* reference to outer subplan */
159 #define    INDEX_VAR		65002	/* reference to index column */
160 
161 #define IS_SPECIAL_VARNO(varno)		((varno) >= INNER_VAR)
162 
163 /* Symbols for the indexes of the special RTE entries in rules */
164 #define    PRS2_OLD_VARNO			1
165 #define    PRS2_NEW_VARNO			2
166 
167 typedef struct Var
168 {
169 	Expr		xpr;
170 	Index		varno;			/* index of this var's relation in the range
171 								 * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
172 	AttrNumber	varattno;		/* attribute number of this var, or zero for
173 								 * all attrs ("whole-row Var") */
174 	Oid			vartype;		/* pg_type OID for the type of this var */
175 	int32		vartypmod;		/* pg_attribute typmod value */
176 	Oid			varcollid;		/* OID of collation, or InvalidOid if none */
177 	Index		varlevelsup;	/* for subquery variables referencing outer
178 								 * relations; 0 in a normal var, >0 means N
179 								 * levels up */
180 	Index		varnoold;		/* original value of varno, for debugging */
181 	AttrNumber	varoattno;		/* original value of varattno */
182 	int			location;		/* token location, or -1 if unknown */
183 } Var;
184 
185 /*
186  * Const
187  *
188  * Note: for varlena data types, we make a rule that a Const node's value
189  * must be in non-extended form (4-byte header, no compression or external
190  * references).  This ensures that the Const node is self-contained and makes
191  * it more likely that equal() will see logically identical values as equal.
192  */
193 typedef struct Const
194 {
195 	Expr		xpr;
196 	Oid			consttype;		/* pg_type OID of the constant's datatype */
197 	int32		consttypmod;	/* typmod value, if any */
198 	Oid			constcollid;	/* OID of collation, or InvalidOid if none */
199 	int			constlen;		/* typlen of the constant's datatype */
200 	Datum		constvalue;		/* the constant's value */
201 	bool		constisnull;	/* whether the constant is null (if true,
202 								 * constvalue is undefined) */
203 	bool		constbyval;		/* whether this datatype is passed by value.
204 								 * If true, then all the information is stored
205 								 * in the Datum. If false, then the Datum
206 								 * contains a pointer to the information. */
207 	int			location;		/* token location, or -1 if unknown */
208 } Const;
209 
210 /*
211  * Param
212  *
213  *		paramkind specifies the kind of parameter. The possible values
214  *		for this field are:
215  *
216  *		PARAM_EXTERN:  The parameter value is supplied from outside the plan.
217  *				Such parameters are numbered from 1 to n.
218  *
219  *		PARAM_EXEC:  The parameter is an internal executor parameter, used
220  *				for passing values into and out of sub-queries or from
221  *				nestloop joins to their inner scans.
222  *				For historical reasons, such parameters are numbered from 0.
223  *				These numbers are independent of PARAM_EXTERN numbers.
224  *
225  *		PARAM_SUBLINK:	The parameter represents an output column of a SubLink
226  *				node's sub-select.  The column number is contained in the
227  *				`paramid' field.  (This type of Param is converted to
228  *				PARAM_EXEC during planning.)
229  *
230  *		PARAM_MULTIEXPR:  Like PARAM_SUBLINK, the parameter represents an
231  *				output column of a SubLink node's sub-select, but here, the
232  *				SubLink is always a MULTIEXPR SubLink.  The high-order 16 bits
233  *				of the `paramid' field contain the SubLink's subLinkId, and
234  *				the low-order 16 bits contain the column number.  (This type
235  *				of Param is also converted to PARAM_EXEC during planning.)
236  */
237 typedef enum ParamKind
238 {
239 	PARAM_EXTERN,
240 	PARAM_EXEC,
241 	PARAM_SUBLINK,
242 	PARAM_MULTIEXPR
243 } ParamKind;
244 
245 typedef struct Param
246 {
247 	Expr		xpr;
248 	ParamKind	paramkind;		/* kind of parameter. See above */
249 	int			paramid;		/* numeric ID for parameter */
250 	Oid			paramtype;		/* pg_type OID of parameter's datatype */
251 	int32		paramtypmod;	/* typmod value, if known */
252 	Oid			paramcollid;	/* OID of collation, or InvalidOid if none */
253 	int			location;		/* token location, or -1 if unknown */
254 } Param;
255 
256 /*
257  * Aggref
258  *
259  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
260  *
261  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
262  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
263  * be added at the end to represent ORDER BY expressions that are not also
264  * arguments.  As in a top-level Query, the TLEs can be marked with
265  * ressortgroupref indexes to let them be referenced by SortGroupClause
266  * entries in the aggorder and/or aggdistinct lists.  This represents ORDER BY
267  * and DISTINCT operations to be applied to the aggregate input rows before
268  * they are passed to the transition function.  The grammar only allows a
269  * simple "DISTINCT" specifier for the arguments, but we use the full
270  * query-level representation to allow more code sharing.
271  *
272  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
273  * (aggregated) arguments, all of which will be listed in the aggorder list.
274  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
275  * The direct arguments appear in aggdirectargs (as a list of plain
276  * expressions, not TargetEntry nodes).
277  *
278  * aggtranstype is the data type of the state transition values for this
279  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
280  * This is determined during planning and is InvalidOid before that.
281  *
282  * aggargtypes is an OID list of the data types of the direct and regular
283  * arguments.  Normally it's redundant with the aggdirectargs and args lists,
284  * but in a combining aggregate, it's not because the args list has been
285  * replaced with a single argument representing the partial-aggregate
286  * transition values.
287  *
288  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
289  * parent plan node.  It's always set to AGGSPLIT_SIMPLE in the parser, but
290  * the planner might change it to something else.  We use this mainly as
291  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
292  * indicates a non-final mode, aggtype reflects the transition data type
293  * not the SQL-level output type of the aggregate.
294  */
295 typedef struct Aggref
296 {
297 	Expr		xpr;
298 	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
299 	Oid			aggtype;		/* type Oid of result of the aggregate */
300 	Oid			aggcollid;		/* OID of collation of result */
301 	Oid			inputcollid;	/* OID of collation that function should use */
302 	Oid			aggtranstype;	/* type Oid of aggregate's transition value */
303 	List	   *aggargtypes;	/* type Oids of direct and aggregated args */
304 	List	   *aggdirectargs;	/* direct arguments, if an ordered-set agg */
305 	List	   *args;			/* aggregated arguments and sort expressions */
306 	List	   *aggorder;		/* ORDER BY (list of SortGroupClause) */
307 	List	   *aggdistinct;	/* DISTINCT (list of SortGroupClause) */
308 	Expr	   *aggfilter;		/* FILTER expression, if any */
309 	bool		aggstar;		/* true if argument list was really '*' */
310 	bool		aggvariadic;	/* true if variadic arguments have been
311 								 * combined into an array last argument */
312 	char		aggkind;		/* aggregate kind (see pg_aggregate.h) */
313 	Index		agglevelsup;	/* > 0 if agg belongs to outer query */
314 	AggSplit	aggsplit;		/* expected agg-splitting mode of parent Agg */
315 	int			location;		/* token location, or -1 if unknown */
316 } Aggref;
317 
318 /*
319  * GroupingFunc
320  *
321  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
322  * like an aggregate function (e.g. it "belongs" to a specific query level,
323  * which might not be the one immediately containing it), but also differs in
324  * an important respect: it never evaluates its arguments, they merely
325  * designate expressions from the GROUP BY clause of the query level to which
326  * it belongs.
327  *
328  * The spec defines the evaluation of GROUPING() purely by syntactic
329  * replacement, but we make it a real expression for optimization purposes so
330  * that one Agg node can handle multiple grouping sets at once.  Evaluating the
331  * result only needs the column positions to check against the grouping set
332  * being projected.  However, for EXPLAIN to produce meaningful output, we have
333  * to keep the original expressions around, since expression deparse does not
334  * give us any feasible way to get at the GROUP BY clause.
335  *
336  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
337  * lists and agglevelsup, without comparing the refs and cols annotations.
338  *
339  * In raw parse output we have only the args list; parse analysis fills in the
340  * refs list, and the planner fills in the cols list.
341  */
342 typedef struct GroupingFunc
343 {
344 	Expr		xpr;
345 	List	   *args;			/* arguments, not evaluated but kept for
346 								 * benefit of EXPLAIN etc. */
347 	List	   *refs;			/* ressortgrouprefs of arguments */
348 	List	   *cols;			/* actual column positions set by planner */
349 	Index		agglevelsup;	/* same as Aggref.agglevelsup */
350 	int			location;		/* token location */
351 } GroupingFunc;
352 
353 /*
354  * WindowFunc
355  */
356 typedef struct WindowFunc
357 {
358 	Expr		xpr;
359 	Oid			winfnoid;		/* pg_proc Oid of the function */
360 	Oid			wintype;		/* type Oid of result of the window function */
361 	Oid			wincollid;		/* OID of collation of result */
362 	Oid			inputcollid;	/* OID of collation that function should use */
363 	List	   *args;			/* arguments to the window function */
364 	Expr	   *aggfilter;		/* FILTER expression, if any */
365 	Index		winref;			/* index of associated WindowClause */
366 	bool		winstar;		/* true if argument list was really '*' */
367 	bool		winagg;			/* is function a simple aggregate? */
368 	int			location;		/* token location, or -1 if unknown */
369 } WindowFunc;
370 
371 /* ----------------
372  *	SubscriptingRef: describes a subscripting operation over a container
373  *			(array, etc).
374  *
375  * A SubscriptingRef can describe fetching a single element from a container,
376  * fetching a part of container (e.g. array slice), storing a single element into
377  * a container, or storing a slice.  The "store" cases work with an
378  * initial container value and a source value that is inserted into the
379  * appropriate part of the container; the result of the operation is an
380  * entire new modified container value.
381  *
382  * If reflowerindexpr = NIL, then we are fetching or storing a single container
383  * element at the subscripts given by refupperindexpr. Otherwise we are
384  * fetching or storing a container slice, that is a rectangular subcontainer
385  * with lower and upper bounds given by the index expressions.
386  * reflowerindexpr must be the same length as refupperindexpr when it
387  * is not NIL.
388  *
389  * In the slice case, individual expressions in the subscript lists can be
390  * NULL, meaning "substitute the array's current lower or upper bound".
391  *
392  * Note: the result datatype is the element type when fetching a single
393  * element; but it is the array type when doing subarray fetch or either
394  * type of store.
395  *
396  * Note: for the cases where a container is returned, if refexpr yields a R/W
397  * expanded container, then the implementation is allowed to modify that object
398  * in-place and return the same object.)
399  * ----------------
400  */
401 typedef struct SubscriptingRef
402 {
403 	Expr		xpr;
404 	Oid			refcontainertype;	/* type of the container proper */
405 	Oid			refelemtype;	/* type of the container elements */
406 	int32		reftypmod;		/* typmod of the container (and elements too) */
407 	Oid			refcollid;		/* OID of collation, or InvalidOid if none */
408 	List	   *refupperindexpr;	/* expressions that evaluate to upper
409 									 * container indexes */
410 	List	   *reflowerindexpr;	/* expressions that evaluate to lower
411 									 * container indexes, or NIL for single
412 									 * container element */
413 	Expr	   *refexpr;		/* the expression that evaluates to a
414 								 * container value */
415 
416 	Expr	   *refassgnexpr;	/* expression for the source value, or NULL if
417 								 * fetch */
418 } SubscriptingRef;
419 
420 /*
421  * CoercionContext - distinguishes the allowed set of type casts
422  *
423  * NB: ordering of the alternatives is significant; later (larger) values
424  * allow more casts than earlier ones.
425  */
426 typedef enum CoercionContext
427 {
428 	COERCION_IMPLICIT,			/* coercion in context of expression */
429 	COERCION_ASSIGNMENT,		/* coercion in context of assignment */
430 	COERCION_EXPLICIT			/* explicit cast operation */
431 } CoercionContext;
432 
433 /*
434  * CoercionForm - how to display a node that could have come from a cast
435  *
436  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
437  * any semantically significant information.  We need that behavior so that
438  * the planner will consider equivalent implicit and explicit casts to be
439  * equivalent.  In cases where those actually behave differently, the coercion
440  * function's arguments will be different.
441  */
442 typedef enum CoercionForm
443 {
444 	COERCE_EXPLICIT_CALL,		/* display as a function call */
445 	COERCE_EXPLICIT_CAST,		/* display as an explicit cast */
446 	COERCE_IMPLICIT_CAST		/* implicit cast, so hide it */
447 } CoercionForm;
448 
449 /*
450  * FuncExpr - expression node for a function call
451  */
452 typedef struct FuncExpr
453 {
454 	Expr		xpr;
455 	Oid			funcid;			/* PG_PROC OID of the function */
456 	Oid			funcresulttype; /* PG_TYPE OID of result value */
457 	bool		funcretset;		/* true if function returns set */
458 	bool		funcvariadic;	/* true if variadic arguments have been
459 								 * combined into an array last argument */
460 	CoercionForm funcformat;	/* how to display this function call */
461 	Oid			funccollid;		/* OID of collation of result */
462 	Oid			inputcollid;	/* OID of collation that function should use */
463 	List	   *args;			/* arguments to the function */
464 	int			location;		/* token location, or -1 if unknown */
465 } FuncExpr;
466 
467 /*
468  * NamedArgExpr - a named argument of a function
469  *
470  * This node type can only appear in the args list of a FuncCall or FuncExpr
471  * node.  We support pure positional call notation (no named arguments),
472  * named notation (all arguments are named), and mixed notation (unnamed
473  * arguments followed by named ones).
474  *
475  * Parse analysis sets argnumber to the positional index of the argument,
476  * but doesn't rearrange the argument list.
477  *
478  * The planner will convert argument lists to pure positional notation
479  * during expression preprocessing, so execution never sees a NamedArgExpr.
480  */
481 typedef struct NamedArgExpr
482 {
483 	Expr		xpr;
484 	Expr	   *arg;			/* the argument expression */
485 	char	   *name;			/* the name */
486 	int			argnumber;		/* argument's number in positional notation */
487 	int			location;		/* argument name location, or -1 if unknown */
488 } NamedArgExpr;
489 
490 /*
491  * OpExpr - expression node for an operator invocation
492  *
493  * Semantically, this is essentially the same as a function call.
494  *
495  * Note that opfuncid is not necessarily filled in immediately on creation
496  * of the node.  The planner makes sure it is valid before passing the node
497  * tree to the executor, but during parsing/planning opfuncid can be 0.
498  */
499 typedef struct OpExpr
500 {
501 	Expr		xpr;
502 	Oid			opno;			/* PG_OPERATOR OID of the operator */
503 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
504 	Oid			opresulttype;	/* PG_TYPE OID of result value */
505 	bool		opretset;		/* true if operator returns set */
506 	Oid			opcollid;		/* OID of collation of result */
507 	Oid			inputcollid;	/* OID of collation that operator should use */
508 	List	   *args;			/* arguments to the operator (1 or 2) */
509 	int			location;		/* token location, or -1 if unknown */
510 } OpExpr;
511 
512 /*
513  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
514  *
515  * Except for the nodetag, this is represented identically to an OpExpr
516  * referencing the "=" operator for x and y.
517  * We use "=", not the more obvious "<>", because more datatypes have "="
518  * than "<>".  This means the executor must invert the operator result.
519  * Note that the operator function won't be called at all if either input
520  * is NULL, since then the result can be determined directly.
521  */
522 typedef OpExpr DistinctExpr;
523 
524 /*
525  * NullIfExpr - a NULLIF expression
526  *
527  * Like DistinctExpr, this is represented the same as an OpExpr referencing
528  * the "=" operator for x and y.
529  */
530 typedef OpExpr NullIfExpr;
531 
532 /*
533  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
534  *
535  * The operator must yield boolean.  It is applied to the left operand
536  * and each element of the righthand array, and the results are combined
537  * with OR or AND (for ANY or ALL respectively).  The node representation
538  * is almost the same as for the underlying operator, but we need a useOr
539  * flag to remember whether it's ANY or ALL, and we don't have to store
540  * the result type (or the collation) because it must be boolean.
541  */
542 typedef struct ScalarArrayOpExpr
543 {
544 	Expr		xpr;
545 	Oid			opno;			/* PG_OPERATOR OID of the operator */
546 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
547 	bool		useOr;			/* true for ANY, false for ALL */
548 	Oid			inputcollid;	/* OID of collation that operator should use */
549 	List	   *args;			/* the scalar and array operands */
550 	int			location;		/* token location, or -1 if unknown */
551 } ScalarArrayOpExpr;
552 
553 /*
554  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
555  *
556  * Notice the arguments are given as a List.  For NOT, of course the list
557  * must always have exactly one element.  For AND and OR, there can be two
558  * or more arguments.
559  */
560 typedef enum BoolExprType
561 {
562 	AND_EXPR, OR_EXPR, NOT_EXPR
563 } BoolExprType;
564 
565 typedef struct BoolExpr
566 {
567 	Expr		xpr;
568 	BoolExprType boolop;
569 	List	   *args;			/* arguments to this expression */
570 	int			location;		/* token location, or -1 if unknown */
571 } BoolExpr;
572 
573 /*
574  * SubLink
575  *
576  * A SubLink represents a subselect appearing in an expression, and in some
577  * cases also the combining operator(s) just above it.  The subLinkType
578  * indicates the form of the expression represented:
579  *	EXISTS_SUBLINK		EXISTS(SELECT ...)
580  *	ALL_SUBLINK			(lefthand) op ALL (SELECT ...)
581  *	ANY_SUBLINK			(lefthand) op ANY (SELECT ...)
582  *	ROWCOMPARE_SUBLINK	(lefthand) op (SELECT ...)
583  *	EXPR_SUBLINK		(SELECT with single targetlist item ...)
584  *	MULTIEXPR_SUBLINK	(SELECT with multiple targetlist items ...)
585  *	ARRAY_SUBLINK		ARRAY(SELECT with single targetlist item ...)
586  *	CTE_SUBLINK			WITH query (never actually part of an expression)
587  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
588  * same length as the subselect's targetlist.  ROWCOMPARE will *always* have
589  * a list with more than one entry; if the subselect has just one target
590  * then the parser will create an EXPR_SUBLINK instead (and any operator
591  * above the subselect will be represented separately).
592  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
593  * one row (if it returns no rows, the result is NULL).
594  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
595  * results.  ALL and ANY combine the per-row results using AND and OR
596  * semantics respectively.
597  * ARRAY requires just one target column, and creates an array of the target
598  * column's type using any number of rows resulting from the subselect.
599  *
600  * SubLink is classed as an Expr node, but it is not actually executable;
601  * it must be replaced in the expression tree by a SubPlan node during
602  * planning.
603  *
604  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
605  * of the lefthand expression (if any), and operName is the String name of
606  * the combining operator.  Also, subselect is a raw parsetree.  During parse
607  * analysis, the parser transforms testexpr into a complete boolean expression
608  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
609  * output columns of the subselect.  And subselect is transformed to a Query.
610  * This is the representation seen in saved rules and in the rewriter.
611  *
612  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
613  * are unused and are always null.
614  *
615  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
616  * other SubLinks.  This number identifies different multiple-assignment
617  * subqueries within an UPDATE statement's SET list.  It is unique only
618  * within a particular targetlist.  The output column(s) of the MULTIEXPR
619  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
620  *
621  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
622  * in SubPlans generated for WITH subqueries.
623  */
624 typedef enum SubLinkType
625 {
626 	EXISTS_SUBLINK,
627 	ALL_SUBLINK,
628 	ANY_SUBLINK,
629 	ROWCOMPARE_SUBLINK,
630 	EXPR_SUBLINK,
631 	MULTIEXPR_SUBLINK,
632 	ARRAY_SUBLINK,
633 	CTE_SUBLINK					/* for SubPlans only */
634 } SubLinkType;
635 
636 
637 typedef struct SubLink
638 {
639 	Expr		xpr;
640 	SubLinkType subLinkType;	/* see above */
641 	int			subLinkId;		/* ID (1..n); 0 if not MULTIEXPR */
642 	Node	   *testexpr;		/* outer-query test for ALL/ANY/ROWCOMPARE */
643 	List	   *operName;		/* originally specified operator name */
644 	Node	   *subselect;		/* subselect as Query* or raw parsetree */
645 	int			location;		/* token location, or -1 if unknown */
646 } SubLink;
647 
648 /*
649  * SubPlan - executable expression node for a subplan (sub-SELECT)
650  *
651  * The planner replaces SubLink nodes in expression trees with SubPlan
652  * nodes after it has finished planning the subquery.  SubPlan references
653  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
654  * (We avoid a direct link to make it easier to copy expression trees
655  * without causing multiple processing of the subplan.)
656  *
657  * In an ordinary subplan, testexpr points to an executable expression
658  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
659  * operator(s); the left-hand arguments are the original lefthand expressions,
660  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
661  * outputs of the sub-select.  (NOTE: runtime coercion functions may be
662  * inserted as well.)  This is just the same expression tree as testexpr in
663  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
664  * suitably numbered PARAM_EXEC nodes.
665  *
666  * If the sub-select becomes an initplan rather than a subplan, the executable
667  * expression is part of the outer plan's expression tree (and the SubPlan
668  * node itself is not, but rather is found in the outer plan's initPlan
669  * list).  In this case testexpr is NULL to avoid duplication.
670  *
671  * The planner also derives lists of the values that need to be passed into
672  * and out of the subplan.  Input values are represented as a list "args" of
673  * expressions to be evaluated in the outer-query context (currently these
674  * args are always just Vars, but in principle they could be any expression).
675  * The values are assigned to the global PARAM_EXEC params indexed by parParam
676  * (the parParam and args lists must have the same ordering).  setParam is a
677  * list of the PARAM_EXEC params that are computed by the sub-select, if it
678  * is an initplan; they are listed in order by sub-select output column
679  * position.  (parParam and setParam are integer Lists, not Bitmapsets,
680  * because their ordering is significant.)
681  *
682  * Also, the planner computes startup and per-call costs for use of the
683  * SubPlan.  Note that these include the cost of the subquery proper,
684  * evaluation of the testexpr if any, and any hashtable management overhead.
685  */
686 typedef struct SubPlan
687 {
688 	Expr		xpr;
689 	/* Fields copied from original SubLink: */
690 	SubLinkType subLinkType;	/* see above */
691 	/* The combining operators, transformed to an executable expression: */
692 	Node	   *testexpr;		/* OpExpr or RowCompareExpr expression tree */
693 	List	   *paramIds;		/* IDs of Params embedded in the above */
694 	/* Identification of the Plan tree to use: */
695 	int			plan_id;		/* Index (from 1) in PlannedStmt.subplans */
696 	/* Identification of the SubPlan for EXPLAIN and debugging purposes: */
697 	char	   *plan_name;		/* A name assigned during planning */
698 	/* Extra data useful for determining subplan's output type: */
699 	Oid			firstColType;	/* Type of first column of subplan result */
700 	int32		firstColTypmod; /* Typmod of first column of subplan result */
701 	Oid			firstColCollation;	/* Collation of first column of subplan
702 									 * result */
703 	/* Information about execution strategy: */
704 	bool		useHashTable;	/* true to store subselect output in a hash
705 								 * table (implies we are doing "IN") */
706 	bool		unknownEqFalse; /* true if it's okay to return FALSE when the
707 								 * spec result is UNKNOWN; this allows much
708 								 * simpler handling of null values */
709 	bool		parallel_safe;	/* is the subplan parallel-safe? */
710 	/* Note: parallel_safe does not consider contents of testexpr or args */
711 	/* Information for passing params into and out of the subselect: */
712 	/* setParam and parParam are lists of integers (param IDs) */
713 	List	   *setParam;		/* initplan subqueries have to set these
714 								 * Params for parent plan */
715 	List	   *parParam;		/* indices of input Params from parent plan */
716 	List	   *args;			/* exprs to pass as parParam values */
717 	/* Estimated execution costs: */
718 	Cost		startup_cost;	/* one-time setup cost */
719 	Cost		per_call_cost;	/* cost for each subplan evaluation */
720 } SubPlan;
721 
722 /*
723  * AlternativeSubPlan - expression node for a choice among SubPlans
724  *
725  * The subplans are given as a List so that the node definition need not
726  * change if there's ever more than two alternatives.  For the moment,
727  * though, there are always exactly two; and the first one is the fast-start
728  * plan.
729  */
730 typedef struct AlternativeSubPlan
731 {
732 	Expr		xpr;
733 	List	   *subplans;		/* SubPlan(s) with equivalent results */
734 } AlternativeSubPlan;
735 
736 /* ----------------
737  * FieldSelect
738  *
739  * FieldSelect represents the operation of extracting one field from a tuple
740  * value.  At runtime, the input expression is expected to yield a rowtype
741  * Datum.  The specified field number is extracted and returned as a Datum.
742  * ----------------
743  */
744 
745 typedef struct FieldSelect
746 {
747 	Expr		xpr;
748 	Expr	   *arg;			/* input expression */
749 	AttrNumber	fieldnum;		/* attribute number of field to extract */
750 	Oid			resulttype;		/* type of the field (result type of this
751 								 * node) */
752 	int32		resulttypmod;	/* output typmod (usually -1) */
753 	Oid			resultcollid;	/* OID of collation of the field */
754 } FieldSelect;
755 
756 /* ----------------
757  * FieldStore
758  *
759  * FieldStore represents the operation of modifying one field in a tuple
760  * value, yielding a new tuple value (the input is not touched!).  Like
761  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
762  * portion of a column.
763  *
764  * resulttype is always a named composite type (not a domain).  To update
765  * a composite domain value, apply CoerceToDomain to the FieldStore.
766  *
767  * A single FieldStore can actually represent updates of several different
768  * fields.  The parser only generates FieldStores with single-element lists,
769  * but the planner will collapse multiple updates of the same base column
770  * into one FieldStore.
771  * ----------------
772  */
773 
774 typedef struct FieldStore
775 {
776 	Expr		xpr;
777 	Expr	   *arg;			/* input tuple value */
778 	List	   *newvals;		/* new value(s) for field(s) */
779 	List	   *fieldnums;		/* integer list of field attnums */
780 	Oid			resulttype;		/* type of result (same as type of arg) */
781 	/* Like RowExpr, we deliberately omit a typmod and collation here */
782 } FieldStore;
783 
784 /* ----------------
785  * RelabelType
786  *
787  * RelabelType represents a "dummy" type coercion between two binary-
788  * compatible datatypes, such as reinterpreting the result of an OID
789  * expression as an int4.  It is a no-op at runtime; we only need it
790  * to provide a place to store the correct type to be attributed to
791  * the expression result during type resolution.  (We can't get away
792  * with just overwriting the type field of the input expression node,
793  * so we need a separate node to show the coercion's result type.)
794  * ----------------
795  */
796 
797 typedef struct RelabelType
798 {
799 	Expr		xpr;
800 	Expr	   *arg;			/* input expression */
801 	Oid			resulttype;		/* output type of coercion expression */
802 	int32		resulttypmod;	/* output typmod (usually -1) */
803 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
804 	CoercionForm relabelformat; /* how to display this node */
805 	int			location;		/* token location, or -1 if unknown */
806 } RelabelType;
807 
808 /* ----------------
809  * CoerceViaIO
810  *
811  * CoerceViaIO represents a type coercion between two types whose textual
812  * representations are compatible, implemented by invoking the source type's
813  * typoutput function then the destination type's typinput function.
814  * ----------------
815  */
816 
817 typedef struct CoerceViaIO
818 {
819 	Expr		xpr;
820 	Expr	   *arg;			/* input expression */
821 	Oid			resulttype;		/* output type of coercion */
822 	/* output typmod is not stored, but is presumed -1 */
823 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
824 	CoercionForm coerceformat;	/* how to display this node */
825 	int			location;		/* token location, or -1 if unknown */
826 } CoerceViaIO;
827 
828 /* ----------------
829  * ArrayCoerceExpr
830  *
831  * ArrayCoerceExpr represents a type coercion from one array type to another,
832  * which is implemented by applying the per-element coercion expression
833  * "elemexpr" to each element of the source array.  Within elemexpr, the
834  * source element is represented by a CaseTestExpr node.  Note that even if
835  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
836  * coercion still requires some effort: we have to fix the element type OID
837  * stored in the array header.
838  * ----------------
839  */
840 
841 typedef struct ArrayCoerceExpr
842 {
843 	Expr		xpr;
844 	Expr	   *arg;			/* input expression (yields an array) */
845 	Expr	   *elemexpr;		/* expression representing per-element work */
846 	Oid			resulttype;		/* output type of coercion (an array type) */
847 	int32		resulttypmod;	/* output typmod (also element typmod) */
848 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
849 	CoercionForm coerceformat;	/* how to display this node */
850 	int			location;		/* token location, or -1 if unknown */
851 } ArrayCoerceExpr;
852 
853 /* ----------------
854  * ConvertRowtypeExpr
855  *
856  * ConvertRowtypeExpr represents a type coercion from one composite type
857  * to another, where the source type is guaranteed to contain all the columns
858  * needed for the destination type plus possibly others; the columns need not
859  * be in the same positions, but are matched up by name.  This is primarily
860  * used to convert a whole-row value of an inheritance child table into a
861  * valid whole-row value of its parent table's rowtype.  Both resulttype
862  * and the exposed type of "arg" must be named composite types (not domains).
863  * ----------------
864  */
865 
866 typedef struct ConvertRowtypeExpr
867 {
868 	Expr		xpr;
869 	Expr	   *arg;			/* input expression */
870 	Oid			resulttype;		/* output type (always a composite type) */
871 	/* Like RowExpr, we deliberately omit a typmod and collation here */
872 	CoercionForm convertformat; /* how to display this node */
873 	int			location;		/* token location, or -1 if unknown */
874 } ConvertRowtypeExpr;
875 
876 /*----------
877  * CollateExpr - COLLATE
878  *
879  * The planner replaces CollateExpr with RelabelType during expression
880  * preprocessing, so execution never sees a CollateExpr.
881  *----------
882  */
883 typedef struct CollateExpr
884 {
885 	Expr		xpr;
886 	Expr	   *arg;			/* input expression */
887 	Oid			collOid;		/* collation's OID */
888 	int			location;		/* token location, or -1 if unknown */
889 } CollateExpr;
890 
891 /*----------
892  * CaseExpr - a CASE expression
893  *
894  * We support two distinct forms of CASE expression:
895  *		CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
896  *		CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
897  * These are distinguishable by the "arg" field being NULL in the first case
898  * and the testexpr in the second case.
899  *
900  * In the raw grammar output for the second form, the condition expressions
901  * of the WHEN clauses are just the comparison values.  Parse analysis
902  * converts these to valid boolean expressions of the form
903  *		CaseTestExpr '=' compexpr
904  * where the CaseTestExpr node is a placeholder that emits the correct
905  * value at runtime.  This structure is used so that the testexpr need be
906  * evaluated only once.  Note that after parse analysis, the condition
907  * expressions always yield boolean.
908  *
909  * Note: we can test whether a CaseExpr has been through parse analysis
910  * yet by checking whether casetype is InvalidOid or not.
911  *----------
912  */
913 typedef struct CaseExpr
914 {
915 	Expr		xpr;
916 	Oid			casetype;		/* type of expression result */
917 	Oid			casecollid;		/* OID of collation, or InvalidOid if none */
918 	Expr	   *arg;			/* implicit equality comparison argument */
919 	List	   *args;			/* the arguments (list of WHEN clauses) */
920 	Expr	   *defresult;		/* the default result (ELSE clause) */
921 	int			location;		/* token location, or -1 if unknown */
922 } CaseExpr;
923 
924 /*
925  * CaseWhen - one arm of a CASE expression
926  */
927 typedef struct CaseWhen
928 {
929 	Expr		xpr;
930 	Expr	   *expr;			/* condition expression */
931 	Expr	   *result;			/* substitution result */
932 	int			location;		/* token location, or -1 if unknown */
933 } CaseWhen;
934 
935 /*
936  * Placeholder node for the test value to be processed by a CASE expression.
937  * This is effectively like a Param, but can be implemented more simply
938  * since we need only one replacement value at a time.
939  *
940  * We also abuse this node type for some other purposes, including:
941  *	* Placeholder for the current array element value in ArrayCoerceExpr;
942  *	  see build_coercion_expression().
943  *	* Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
944  *	  see transformAssignmentIndirection().
945  *
946  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
947  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
948  * node and its child CaseTestExpr(s).  This is true in the parse analysis
949  * output, but the planner's function-inlining logic has to be careful not to
950  * break it.
951  *
952  * The nested-assignment-expression case is safe because the only node types
953  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
954  */
955 typedef struct CaseTestExpr
956 {
957 	Expr		xpr;
958 	Oid			typeId;			/* type for substituted value */
959 	int32		typeMod;		/* typemod for substituted value */
960 	Oid			collation;		/* collation for the substituted value */
961 } CaseTestExpr;
962 
963 /*
964  * ArrayExpr - an ARRAY[] expression
965  *
966  * Note: if multidims is false, the constituent expressions all yield the
967  * scalar type identified by element_typeid.  If multidims is true, the
968  * constituent expressions all yield arrays of element_typeid (ie, the same
969  * type as array_typeid); at runtime we must check for compatible subscripts.
970  */
971 typedef struct ArrayExpr
972 {
973 	Expr		xpr;
974 	Oid			array_typeid;	/* type of expression result */
975 	Oid			array_collid;	/* OID of collation, or InvalidOid if none */
976 	Oid			element_typeid; /* common type of array elements */
977 	List	   *elements;		/* the array elements or sub-arrays */
978 	bool		multidims;		/* true if elements are sub-arrays */
979 	int			location;		/* token location, or -1 if unknown */
980 } ArrayExpr;
981 
982 /*
983  * RowExpr - a ROW() expression
984  *
985  * Note: the list of fields must have a one-for-one correspondence with
986  * physical fields of the associated rowtype, although it is okay for it
987  * to be shorter than the rowtype.  That is, the N'th list element must
988  * match up with the N'th physical field.  When the N'th physical field
989  * is a dropped column (attisdropped) then the N'th list element can just
990  * be a NULL constant.  (This case can only occur for named composite types,
991  * not RECORD types, since those are built from the RowExpr itself rather
992  * than vice versa.)  It is important not to assume that length(args) is
993  * the same as the number of columns logically present in the rowtype.
994  *
995  * colnames provides field names in cases where the names can't easily be
996  * obtained otherwise.  Names *must* be provided if row_typeid is RECORDOID.
997  * If row_typeid identifies a known composite type, colnames can be NIL to
998  * indicate the type's cataloged field names apply.  Note that colnames can
999  * be non-NIL even for a composite type, and typically is when the RowExpr
1000  * was created by expanding a whole-row Var.  This is so that we can retain
1001  * the column alias names of the RTE that the Var referenced (which would
1002  * otherwise be very difficult to extract from the parsetree).  Like the
1003  * args list, colnames is one-for-one with physical fields of the rowtype.
1004  */
1005 typedef struct RowExpr
1006 {
1007 	Expr		xpr;
1008 	List	   *args;			/* the fields */
1009 	Oid			row_typeid;		/* RECORDOID or a composite type's ID */
1010 
1011 	/*
1012 	 * row_typeid cannot be a domain over composite, only plain composite.  To
1013 	 * create a composite domain value, apply CoerceToDomain to the RowExpr.
1014 	 *
1015 	 * Note: we deliberately do NOT store a typmod.  Although a typmod will be
1016 	 * associated with specific RECORD types at runtime, it will differ for
1017 	 * different backends, and so cannot safely be stored in stored
1018 	 * parsetrees.  We must assume typmod -1 for a RowExpr node.
1019 	 *
1020 	 * We don't need to store a collation either.  The result type is
1021 	 * necessarily composite, and composite types never have a collation.
1022 	 */
1023 	CoercionForm row_format;	/* how to display this node */
1024 	List	   *colnames;		/* list of String, or NIL */
1025 	int			location;		/* token location, or -1 if unknown */
1026 } RowExpr;
1027 
1028 /*
1029  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1030  *
1031  * We support row comparison for any operator that can be determined to
1032  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1033  * operator in btree opfamilies).  Note that the same operator name might
1034  * map to a different operator for each pair of row elements, since the
1035  * element datatypes can vary.
1036  *
1037  * A RowCompareExpr node is only generated for the < <= > >= cases;
1038  * the = and <> cases are translated to simple AND or OR combinations
1039  * of the pairwise comparisons.  However, we include = and <> in the
1040  * RowCompareType enum for the convenience of parser logic.
1041  */
1042 typedef enum RowCompareType
1043 {
1044 	/* Values of this enum are chosen to match btree strategy numbers */
1045 	ROWCOMPARE_LT = 1,			/* BTLessStrategyNumber */
1046 	ROWCOMPARE_LE = 2,			/* BTLessEqualStrategyNumber */
1047 	ROWCOMPARE_EQ = 3,			/* BTEqualStrategyNumber */
1048 	ROWCOMPARE_GE = 4,			/* BTGreaterEqualStrategyNumber */
1049 	ROWCOMPARE_GT = 5,			/* BTGreaterStrategyNumber */
1050 	ROWCOMPARE_NE = 6			/* no such btree strategy */
1051 } RowCompareType;
1052 
1053 typedef struct RowCompareExpr
1054 {
1055 	Expr		xpr;
1056 	RowCompareType rctype;		/* LT LE GE or GT, never EQ or NE */
1057 	List	   *opnos;			/* OID list of pairwise comparison ops */
1058 	List	   *opfamilies;		/* OID list of containing operator families */
1059 	List	   *inputcollids;	/* OID list of collations for comparisons */
1060 	List	   *largs;			/* the left-hand input arguments */
1061 	List	   *rargs;			/* the right-hand input arguments */
1062 } RowCompareExpr;
1063 
1064 /*
1065  * CoalesceExpr - a COALESCE expression
1066  */
1067 typedef struct CoalesceExpr
1068 {
1069 	Expr		xpr;
1070 	Oid			coalescetype;	/* type of expression result */
1071 	Oid			coalescecollid; /* OID of collation, or InvalidOid if none */
1072 	List	   *args;			/* the arguments */
1073 	int			location;		/* token location, or -1 if unknown */
1074 } CoalesceExpr;
1075 
1076 /*
1077  * MinMaxExpr - a GREATEST or LEAST function
1078  */
1079 typedef enum MinMaxOp
1080 {
1081 	IS_GREATEST,
1082 	IS_LEAST
1083 } MinMaxOp;
1084 
1085 typedef struct MinMaxExpr
1086 {
1087 	Expr		xpr;
1088 	Oid			minmaxtype;		/* common type of arguments and result */
1089 	Oid			minmaxcollid;	/* OID of collation of result */
1090 	Oid			inputcollid;	/* OID of collation that function should use */
1091 	MinMaxOp	op;				/* function to execute */
1092 	List	   *args;			/* the arguments */
1093 	int			location;		/* token location, or -1 if unknown */
1094 } MinMaxExpr;
1095 
1096 /*
1097  * SQLValueFunction - parameterless functions with special grammar productions
1098  *
1099  * The SQL standard categorizes some of these as <datetime value function>
1100  * and others as <general value specification>.  We call 'em SQLValueFunctions
1101  * for lack of a better term.  We store type and typmod of the result so that
1102  * some code doesn't need to know each function individually, and because
1103  * we would need to store typmod anyway for some of the datetime functions.
1104  * Note that currently, all variants return non-collating datatypes, so we do
1105  * not need a collation field; also, all these functions are stable.
1106  */
1107 typedef enum SQLValueFunctionOp
1108 {
1109 	SVFOP_CURRENT_DATE,
1110 	SVFOP_CURRENT_TIME,
1111 	SVFOP_CURRENT_TIME_N,
1112 	SVFOP_CURRENT_TIMESTAMP,
1113 	SVFOP_CURRENT_TIMESTAMP_N,
1114 	SVFOP_LOCALTIME,
1115 	SVFOP_LOCALTIME_N,
1116 	SVFOP_LOCALTIMESTAMP,
1117 	SVFOP_LOCALTIMESTAMP_N,
1118 	SVFOP_CURRENT_ROLE,
1119 	SVFOP_CURRENT_USER,
1120 	SVFOP_USER,
1121 	SVFOP_SESSION_USER,
1122 	SVFOP_CURRENT_CATALOG,
1123 	SVFOP_CURRENT_SCHEMA
1124 } SQLValueFunctionOp;
1125 
1126 typedef struct SQLValueFunction
1127 {
1128 	Expr		xpr;
1129 	SQLValueFunctionOp op;		/* which function this is */
1130 	Oid			type;			/* result type/typmod */
1131 	int32		typmod;
1132 	int			location;		/* token location, or -1 if unknown */
1133 } SQLValueFunction;
1134 
1135 /*
1136  * XmlExpr - various SQL/XML functions requiring special grammar productions
1137  *
1138  * 'name' carries the "NAME foo" argument (already XML-escaped).
1139  * 'named_args' and 'arg_names' represent an xml_attribute list.
1140  * 'args' carries all other arguments.
1141  *
1142  * Note: result type/typmod/collation are not stored, but can be deduced
1143  * from the XmlExprOp.  The type/typmod fields are just used for display
1144  * purposes, and are NOT necessarily the true result type of the node.
1145  */
1146 typedef enum XmlExprOp
1147 {
1148 	IS_XMLCONCAT,				/* XMLCONCAT(args) */
1149 	IS_XMLELEMENT,				/* XMLELEMENT(name, xml_attributes, args) */
1150 	IS_XMLFOREST,				/* XMLFOREST(xml_attributes) */
1151 	IS_XMLPARSE,				/* XMLPARSE(text, is_doc, preserve_ws) */
1152 	IS_XMLPI,					/* XMLPI(name [, args]) */
1153 	IS_XMLROOT,					/* XMLROOT(xml, version, standalone) */
1154 	IS_XMLSERIALIZE,			/* XMLSERIALIZE(is_document, xmlval) */
1155 	IS_DOCUMENT					/* xmlval IS DOCUMENT */
1156 } XmlExprOp;
1157 
1158 typedef enum
1159 {
1160 	XMLOPTION_DOCUMENT,
1161 	XMLOPTION_CONTENT
1162 } XmlOptionType;
1163 
1164 typedef struct XmlExpr
1165 {
1166 	Expr		xpr;
1167 	XmlExprOp	op;				/* xml function ID */
1168 	char	   *name;			/* name in xml(NAME foo ...) syntaxes */
1169 	List	   *named_args;		/* non-XML expressions for xml_attributes */
1170 	List	   *arg_names;		/* parallel list of Value strings */
1171 	List	   *args;			/* list of expressions */
1172 	XmlOptionType xmloption;	/* DOCUMENT or CONTENT */
1173 	Oid			type;			/* target type/typmod for XMLSERIALIZE */
1174 	int32		typmod;
1175 	int			location;		/* token location, or -1 if unknown */
1176 } XmlExpr;
1177 
1178 /* ----------------
1179  * NullTest
1180  *
1181  * NullTest represents the operation of testing a value for NULLness.
1182  * The appropriate test is performed and returned as a boolean Datum.
1183  *
1184  * When argisrow is false, this simply represents a test for the null value.
1185  *
1186  * When argisrow is true, the input expression must yield a rowtype, and
1187  * the node implements "row IS [NOT] NULL" per the SQL standard.  This
1188  * includes checking individual fields for NULLness when the row datum
1189  * itself isn't NULL.
1190  *
1191  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1192  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1193  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1194  * ----------------
1195  */
1196 
1197 typedef enum NullTestType
1198 {
1199 	IS_NULL, IS_NOT_NULL
1200 } NullTestType;
1201 
1202 typedef struct NullTest
1203 {
1204 	Expr		xpr;
1205 	Expr	   *arg;			/* input expression */
1206 	NullTestType nulltesttype;	/* IS NULL, IS NOT NULL */
1207 	bool		argisrow;		/* T to perform field-by-field null checks */
1208 	int			location;		/* token location, or -1 if unknown */
1209 } NullTest;
1210 
1211 /*
1212  * BooleanTest
1213  *
1214  * BooleanTest represents the operation of determining whether a boolean
1215  * is TRUE, FALSE, or UNKNOWN (ie, NULL).  All six meaningful combinations
1216  * are supported.  Note that a NULL input does *not* cause a NULL result.
1217  * The appropriate test is performed and returned as a boolean Datum.
1218  */
1219 
1220 typedef enum BoolTestType
1221 {
1222 	IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN
1223 } BoolTestType;
1224 
1225 typedef struct BooleanTest
1226 {
1227 	Expr		xpr;
1228 	Expr	   *arg;			/* input expression */
1229 	BoolTestType booltesttype;	/* test type */
1230 	int			location;		/* token location, or -1 if unknown */
1231 } BooleanTest;
1232 
1233 /*
1234  * CoerceToDomain
1235  *
1236  * CoerceToDomain represents the operation of coercing a value to a domain
1237  * type.  At runtime (and not before) the precise set of constraints to be
1238  * checked will be determined.  If the value passes, it is returned as the
1239  * result; if not, an error is raised.  Note that this is equivalent to
1240  * RelabelType in the scenario where no constraints are applied.
1241  */
1242 typedef struct CoerceToDomain
1243 {
1244 	Expr		xpr;
1245 	Expr	   *arg;			/* input expression */
1246 	Oid			resulttype;		/* domain type ID (result type) */
1247 	int32		resulttypmod;	/* output typmod (currently always -1) */
1248 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
1249 	CoercionForm coercionformat;	/* how to display this node */
1250 	int			location;		/* token location, or -1 if unknown */
1251 } CoerceToDomain;
1252 
1253 /*
1254  * Placeholder node for the value to be processed by a domain's check
1255  * constraint.  This is effectively like a Param, but can be implemented more
1256  * simply since we need only one replacement value at a time.
1257  *
1258  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1259  * not the domain itself.  This is because we shouldn't consider the value
1260  * to be a member of the domain if we haven't yet checked its constraints.
1261  */
1262 typedef struct CoerceToDomainValue
1263 {
1264 	Expr		xpr;
1265 	Oid			typeId;			/* type for substituted value */
1266 	int32		typeMod;		/* typemod for substituted value */
1267 	Oid			collation;		/* collation for the substituted value */
1268 	int			location;		/* token location, or -1 if unknown */
1269 } CoerceToDomainValue;
1270 
1271 /*
1272  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1273  *
1274  * This is not an executable expression: it must be replaced by the actual
1275  * column default expression during rewriting.  But it is convenient to
1276  * treat it as an expression node during parsing and rewriting.
1277  */
1278 typedef struct SetToDefault
1279 {
1280 	Expr		xpr;
1281 	Oid			typeId;			/* type for substituted value */
1282 	int32		typeMod;		/* typemod for substituted value */
1283 	Oid			collation;		/* collation for the substituted value */
1284 	int			location;		/* token location, or -1 if unknown */
1285 } SetToDefault;
1286 
1287 /*
1288  * Node representing [WHERE] CURRENT OF cursor_name
1289  *
1290  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1291  * of the target relation being constrained; this aids placing the expression
1292  * correctly during planning.  We can assume however that its "levelsup" is
1293  * always zero, due to the syntactic constraints on where it can appear.
1294  *
1295  * The referenced cursor can be represented either as a hardwired string
1296  * or as a reference to a run-time parameter of type REFCURSOR.  The latter
1297  * case is for the convenience of plpgsql.
1298  */
1299 typedef struct CurrentOfExpr
1300 {
1301 	Expr		xpr;
1302 	Index		cvarno;			/* RT index of target relation */
1303 	char	   *cursor_name;	/* name of referenced cursor, or NULL */
1304 	int			cursor_param;	/* refcursor parameter number, or 0 */
1305 } CurrentOfExpr;
1306 
1307 /*
1308  * NextValueExpr - get next value from sequence
1309  *
1310  * This has the same effect as calling the nextval() function, but it does not
1311  * check permissions on the sequence.  This is used for identity columns,
1312  * where the sequence is an implicit dependency without its own permissions.
1313  */
1314 typedef struct NextValueExpr
1315 {
1316 	Expr		xpr;
1317 	Oid			seqid;
1318 	Oid			typeId;
1319 } NextValueExpr;
1320 
1321 /*
1322  * InferenceElem - an element of a unique index inference specification
1323  *
1324  * This mostly matches the structure of IndexElems, but having a dedicated
1325  * primnode allows for a clean separation between the use of index parameters
1326  * by utility commands, and this node.
1327  */
1328 typedef struct InferenceElem
1329 {
1330 	Expr		xpr;
1331 	Node	   *expr;			/* expression to infer from, or NULL */
1332 	Oid			infercollid;	/* OID of collation, or InvalidOid */
1333 	Oid			inferopclass;	/* OID of att opclass, or InvalidOid */
1334 } InferenceElem;
1335 
1336 /*--------------------
1337  * TargetEntry -
1338  *	   a target entry (used in query target lists)
1339  *
1340  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1341  * be evaluated by ExecEvalExpr).  But we treat it as one anyway, since in
1342  * very many places it's convenient to process a whole query targetlist as a
1343  * single expression tree.
1344  *
1345  * In a SELECT's targetlist, resno should always be equal to the item's
1346  * ordinal position (counting from 1).  However, in an INSERT or UPDATE
1347  * targetlist, resno represents the attribute number of the destination
1348  * column for the item; so there may be missing or out-of-order resnos.
1349  * It is even legal to have duplicated resnos; consider
1350  *		UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1351  * The two meanings come together in the executor, because the planner
1352  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1353  * one entry for each column of the destination table.  Before that's
1354  * happened, however, it is risky to assume that resno == position.
1355  * Generally get_tle_by_resno() should be used rather than list_nth()
1356  * to fetch tlist entries by resno, and only in SELECT should you assume
1357  * that resno is a unique identifier.
1358  *
1359  * resname is required to represent the correct column name in non-resjunk
1360  * entries of top-level SELECT targetlists, since it will be used as the
1361  * column title sent to the frontend.  In most other contexts it is only
1362  * a debugging aid, and may be wrong or even NULL.  (In particular, it may
1363  * be wrong in a tlist from a stored rule, if the referenced column has been
1364  * renamed by ALTER TABLE since the rule was made.  Also, the planner tends
1365  * to store NULL rather than look up a valid name for tlist entries in
1366  * non-toplevel plan nodes.)  In resjunk entries, resname should be either
1367  * a specific system-generated name (such as "ctid") or NULL; anything else
1368  * risks confusing ExecGetJunkAttribute!
1369  *
1370  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1371  * DISTINCT items.  Targetlist entries with ressortgroupref=0 are not
1372  * sort/group items.  If ressortgroupref>0, then this item is an ORDER BY,
1373  * GROUP BY, and/or DISTINCT target value.  No two entries in a targetlist
1374  * may have the same nonzero ressortgroupref --- but there is no particular
1375  * meaning to the nonzero values, except as tags.  (For example, one must
1376  * not assume that lower ressortgroupref means a more significant sort key.)
1377  * The order of the associated SortGroupClause lists determine the semantics.
1378  *
1379  * resorigtbl/resorigcol identify the source of the column, if it is a
1380  * simple reference to a column of a base table (or view).  If it is not
1381  * a simple reference, these fields are zeroes.
1382  *
1383  * If resjunk is true then the column is a working column (such as a sort key)
1384  * that should be removed from the final output of the query.  Resjunk columns
1385  * must have resnos that cannot duplicate any regular column's resno.  Also
1386  * note that there are places that assume resjunk columns come after non-junk
1387  * columns.
1388  *--------------------
1389  */
1390 typedef struct TargetEntry
1391 {
1392 	Expr		xpr;
1393 	Expr	   *expr;			/* expression to evaluate */
1394 	AttrNumber	resno;			/* attribute number (see notes above) */
1395 	char	   *resname;		/* name of the column (could be NULL) */
1396 	Index		ressortgroupref;	/* nonzero if referenced by a sort/group
1397 									 * clause */
1398 	Oid			resorigtbl;		/* OID of column's source table */
1399 	AttrNumber	resorigcol;		/* column's number in source table */
1400 	bool		resjunk;		/* set to true to eliminate the attribute from
1401 								 * final target list */
1402 } TargetEntry;
1403 
1404 
1405 /* ----------------------------------------------------------------
1406  *					node types for join trees
1407  *
1408  * The leaves of a join tree structure are RangeTblRef nodes.  Above
1409  * these, JoinExpr nodes can appear to denote a specific kind of join
1410  * or qualified join.  Also, FromExpr nodes can appear to denote an
1411  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1412  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1413  * may have any number of child nodes, not just two.
1414  *
1415  * NOTE: the top level of a Query's jointree is always a FromExpr.
1416  * Even if the jointree contains no rels, there will be a FromExpr.
1417  *
1418  * NOTE: the qualification expressions present in JoinExpr nodes are
1419  * *in addition to* the query's main WHERE clause, which appears as the
1420  * qual of the top-level FromExpr.  The reason for associating quals with
1421  * specific nodes in the jointree is that the position of a qual is critical
1422  * when outer joins are present.  (If we enforce a qual too soon or too late,
1423  * that may cause the outer join to produce the wrong set of NULL-extended
1424  * rows.)  If all joins are inner joins then all the qual positions are
1425  * semantically interchangeable.
1426  *
1427  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1428  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1429  * RangeTblRef nodes during the parse analysis phase.  Also, the top-level
1430  * FromExpr is added during parse analysis; the grammar regards FROM and
1431  * WHERE as separate.
1432  * ----------------------------------------------------------------
1433  */
1434 
1435 /*
1436  * RangeTblRef - reference to an entry in the query's rangetable
1437  *
1438  * We could use direct pointers to the RT entries and skip having these
1439  * nodes, but multiple pointers to the same node in a querytree cause
1440  * lots of headaches, so it seems better to store an index into the RT.
1441  */
1442 typedef struct RangeTblRef
1443 {
1444 	NodeTag		type;
1445 	int			rtindex;
1446 } RangeTblRef;
1447 
1448 /*----------
1449  * JoinExpr - for SQL JOIN expressions
1450  *
1451  * isNatural, usingClause, and quals are interdependent.  The user can write
1452  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1453  * If he writes NATURAL then parse analysis generates the equivalent USING()
1454  * list, and from that fills in "quals" with the right equality comparisons.
1455  * If he writes USING() then "quals" is filled with equality comparisons.
1456  * If he writes ON() then only "quals" is set.  Note that NATURAL/USING
1457  * are not equivalent to ON() since they also affect the output column list.
1458  *
1459  * alias is an Alias node representing the AS alias-clause attached to the
1460  * join expression, or NULL if no clause.  NB: presence or absence of the
1461  * alias has a critical impact on semantics, because a join with an alias
1462  * restricts visibility of the tables/columns inside it.
1463  *
1464  * During parse analysis, an RTE is created for the Join, and its index
1465  * is filled into rtindex.  This RTE is present mainly so that Vars can
1466  * be created that refer to the outputs of the join.  The planner sometimes
1467  * generates JoinExprs internally; these can have rtindex = 0 if there are
1468  * no join alias variables referencing such joins.
1469  *----------
1470  */
1471 typedef struct JoinExpr
1472 {
1473 	NodeTag		type;
1474 	JoinType	jointype;		/* type of join */
1475 	bool		isNatural;		/* Natural join? Will need to shape table */
1476 	Node	   *larg;			/* left subtree */
1477 	Node	   *rarg;			/* right subtree */
1478 	List	   *usingClause;	/* USING clause, if any (list of String) */
1479 	Node	   *quals;			/* qualifiers on join, if any */
1480 	Alias	   *alias;			/* user-written alias clause, if any */
1481 	int			rtindex;		/* RT index assigned for join, or 0 */
1482 } JoinExpr;
1483 
1484 /*----------
1485  * FromExpr - represents a FROM ... WHERE ... construct
1486  *
1487  * This is both more flexible than a JoinExpr (it can have any number of
1488  * children, including zero) and less so --- we don't need to deal with
1489  * aliases and so on.  The output column set is implicitly just the union
1490  * of the outputs of the children.
1491  *----------
1492  */
1493 typedef struct FromExpr
1494 {
1495 	NodeTag		type;
1496 	List	   *fromlist;		/* List of join subtrees */
1497 	Node	   *quals;			/* qualifiers on join, if any */
1498 } FromExpr;
1499 
1500 /*----------
1501  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1502  *
1503  * The optimizer requires a list of inference elements, and optionally a WHERE
1504  * clause to infer a unique index.  The unique index (or, occasionally,
1505  * indexes) inferred are used to arbitrate whether or not the alternative ON
1506  * CONFLICT path is taken.
1507  *----------
1508  */
1509 typedef struct OnConflictExpr
1510 {
1511 	NodeTag		type;
1512 	OnConflictAction action;	/* DO NOTHING or UPDATE? */
1513 
1514 	/* Arbiter */
1515 	List	   *arbiterElems;	/* unique index arbiter list (of
1516 								 * InferenceElem's) */
1517 	Node	   *arbiterWhere;	/* unique index arbiter WHERE clause */
1518 	Oid			constraint;		/* pg_constraint OID for arbiter */
1519 
1520 	/* ON CONFLICT UPDATE */
1521 	List	   *onConflictSet;	/* List of ON CONFLICT SET TargetEntrys */
1522 	Node	   *onConflictWhere;	/* qualifiers to restrict UPDATE to */
1523 	int			exclRelIndex;	/* RT index of 'excluded' relation */
1524 	List	   *exclRelTlist;	/* tlist of the EXCLUDED pseudo relation */
1525 } OnConflictExpr;
1526 
1527 #endif							/* PRIMNODES_H */
1528