1 /*-------------------------------------------------------------------------
2  *
3  * tableam.h
4  *	  POSTGRES table access method definitions.
5  *
6  *
7  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/access/tableam.h
11  *
12  * NOTES
13  *		See tableam.sgml for higher level documentation.
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef TABLEAM_H
18 #define TABLEAM_H
19 
20 #include "access/relscan.h"
21 #include "access/sdir.h"
22 #include "utils/guc.h"
23 #include "utils/rel.h"
24 #include "utils/snapshot.h"
25 
26 
27 #define DEFAULT_TABLE_ACCESS_METHOD	"heap"
28 
29 /* GUCs */
30 extern char *default_table_access_method;
31 extern bool synchronize_seqscans;
32 
33 
34 struct BulkInsertStateData;
35 struct IndexInfo;
36 struct SampleScanState;
37 struct TBMIterateResult;
38 struct VacuumParams;
39 struct ValidateIndexState;
40 
41 /*
42  * Bitmask values for the flags argument to the scan_begin callback.
43  */
44 typedef enum ScanOptions
45 {
46 	/* one of SO_TYPE_* may be specified */
47 	SO_TYPE_SEQSCAN = 1 << 0,
48 	SO_TYPE_BITMAPSCAN = 1 << 1,
49 	SO_TYPE_SAMPLESCAN = 1 << 2,
50 	SO_TYPE_TIDSCAN = 1 << 3,
51 	SO_TYPE_ANALYZE = 1 << 4,
52 
53 	/* several of SO_ALLOW_* may be specified */
54 	/* allow or disallow use of access strategy */
55 	SO_ALLOW_STRAT = 1 << 5,
56 	/* report location to syncscan logic? */
57 	SO_ALLOW_SYNC = 1 << 6,
58 	/* verify visibility page-at-a-time? */
59 	SO_ALLOW_PAGEMODE = 1 << 7,
60 
61 	/* unregister snapshot at scan end? */
62 	SO_TEMP_SNAPSHOT = 1 << 8
63 } ScanOptions;
64 
65 /*
66  * Result codes for table_{update,delete,lock_tuple}, and for visibility
67  * routines inside table AMs.
68  */
69 typedef enum TM_Result
70 {
71 	/*
72 	 * Signals that the action succeeded (i.e. update/delete performed, lock
73 	 * was acquired)
74 	 */
75 	TM_Ok,
76 
77 	/* The affected tuple wasn't visible to the relevant snapshot */
78 	TM_Invisible,
79 
80 	/* The affected tuple was already modified by the calling backend */
81 	TM_SelfModified,
82 
83 	/*
84 	 * The affected tuple was updated by another transaction. This includes
85 	 * the case where tuple was moved to another partition.
86 	 */
87 	TM_Updated,
88 
89 	/* The affected tuple was deleted by another transaction */
90 	TM_Deleted,
91 
92 	/*
93 	 * The affected tuple is currently being modified by another session. This
94 	 * will only be returned if table_(update/delete/lock_tuple) are
95 	 * instructed not to wait.
96 	 */
97 	TM_BeingModified,
98 
99 	/* lock couldn't be acquired, action skipped. Only used by lock_tuple */
100 	TM_WouldBlock
101 } TM_Result;
102 
103 /*
104  * When table_tuple_update, table_tuple_delete, or table_tuple_lock fail
105  * because the target tuple is already outdated, they fill in this struct to
106  * provide information to the caller about what happened.
107  *
108  * ctid is the target's ctid link: it is the same as the target's TID if the
109  * target was deleted, or the location of the replacement tuple if the target
110  * was updated.
111  *
112  * xmax is the outdating transaction's XID.  If the caller wants to visit the
113  * replacement tuple, it must check that this matches before believing the
114  * replacement is really a match.
115  *
116  * cmax is the outdating command's CID, but only when the failure code is
117  * TM_SelfModified (i.e., something in the current transaction outdated the
118  * tuple); otherwise cmax is zero.  (We make this restriction because
119  * HeapTupleHeaderGetCmax doesn't work for tuples outdated in other
120  * transactions.)
121  */
122 typedef struct TM_FailureData
123 {
124 	ItemPointerData ctid;
125 	TransactionId xmax;
126 	CommandId	cmax;
127 	bool		traversed;
128 } TM_FailureData;
129 
130 /* "options" flag bits for table_tuple_insert */
131 /* TABLE_INSERT_SKIP_WAL was 0x0001; RelationNeedsWAL() now governs */
132 #define TABLE_INSERT_SKIP_FSM		0x0002
133 #define TABLE_INSERT_FROZEN			0x0004
134 #define TABLE_INSERT_NO_LOGICAL		0x0008
135 
136 /* flag bits for table_tuple_lock */
137 /* Follow tuples whose update is in progress if lock modes don't conflict  */
138 #define TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS	(1 << 0)
139 /* Follow update chain and lock latest version of tuple */
140 #define TUPLE_LOCK_FLAG_FIND_LAST_VERSION		(1 << 1)
141 
142 
143 /* Typedef for callback function for table_index_build_scan */
144 typedef void (*IndexBuildCallback) (Relation index,
145 									ItemPointer tid,
146 									Datum *values,
147 									bool *isnull,
148 									bool tupleIsAlive,
149 									void *state);
150 
151 /*
152  * API struct for a table AM.  Note this must be allocated in a
153  * server-lifetime manner, typically as a static const struct, which then gets
154  * returned by FormData_pg_am.amhandler.
155  *
156  * In most cases it's not appropriate to call the callbacks directly, use the
157  * table_* wrapper functions instead.
158  *
159  * GetTableAmRoutine() asserts that required callbacks are filled in, remember
160  * to update when adding a callback.
161  */
162 typedef struct TableAmRoutine
163 {
164 	/* this must be set to T_TableAmRoutine */
165 	NodeTag		type;
166 
167 
168 	/* ------------------------------------------------------------------------
169 	 * Slot related callbacks.
170 	 * ------------------------------------------------------------------------
171 	 */
172 
173 	/*
174 	 * Return slot implementation suitable for storing a tuple of this AM.
175 	 */
176 	const TupleTableSlotOps *(*slot_callbacks) (Relation rel);
177 
178 
179 	/* ------------------------------------------------------------------------
180 	 * Table scan callbacks.
181 	 * ------------------------------------------------------------------------
182 	 */
183 
184 	/*
185 	 * Start a scan of `rel`.  The callback has to return a TableScanDesc,
186 	 * which will typically be embedded in a larger, AM specific, struct.
187 	 *
188 	 * If nkeys != 0, the results need to be filtered by those scan keys.
189 	 *
190 	 * pscan, if not NULL, will have already been initialized with
191 	 * parallelscan_initialize(), and has to be for the same relation. Will
192 	 * only be set coming from table_beginscan_parallel().
193 	 *
194 	 * `flags` is a bitmask indicating the type of scan (ScanOptions's
195 	 * SO_TYPE_*, currently only one may be specified), options controlling
196 	 * the scan's behaviour (ScanOptions's SO_ALLOW_*, several may be
197 	 * specified, an AM may ignore unsupported ones) and whether the snapshot
198 	 * needs to be deallocated at scan_end (ScanOptions's SO_TEMP_SNAPSHOT).
199 	 */
200 	TableScanDesc (*scan_begin) (Relation rel,
201 								 Snapshot snapshot,
202 								 int nkeys, struct ScanKeyData *key,
203 								 ParallelTableScanDesc pscan,
204 								 uint32 flags);
205 
206 	/*
207 	 * Release resources and deallocate scan. If TableScanDesc.temp_snap,
208 	 * TableScanDesc.rs_snapshot needs to be unregistered.
209 	 */
210 	void		(*scan_end) (TableScanDesc scan);
211 
212 	/*
213 	 * Restart relation scan.  If set_params is set to true, allow_{strat,
214 	 * sync, pagemode} (see scan_begin) changes should be taken into account.
215 	 */
216 	void		(*scan_rescan) (TableScanDesc scan, struct ScanKeyData *key,
217 								bool set_params, bool allow_strat,
218 								bool allow_sync, bool allow_pagemode);
219 
220 	/*
221 	 * Return next tuple from `scan`, store in slot.
222 	 */
223 	bool		(*scan_getnextslot) (TableScanDesc scan,
224 									 ScanDirection direction,
225 									 TupleTableSlot *slot);
226 
227 
228 	/* ------------------------------------------------------------------------
229 	 * Parallel table scan related functions.
230 	 * ------------------------------------------------------------------------
231 	 */
232 
233 	/*
234 	 * Estimate the size of shared memory needed for a parallel scan of this
235 	 * relation. The snapshot does not need to be accounted for.
236 	 */
237 	Size		(*parallelscan_estimate) (Relation rel);
238 
239 	/*
240 	 * Initialize ParallelTableScanDesc for a parallel scan of this relation.
241 	 * `pscan` will be sized according to parallelscan_estimate() for the same
242 	 * relation.
243 	 */
244 	Size		(*parallelscan_initialize) (Relation rel,
245 											ParallelTableScanDesc pscan);
246 
247 	/*
248 	 * Reinitialize `pscan` for a new scan. `rel` will be the same relation as
249 	 * when `pscan` was initialized by parallelscan_initialize.
250 	 */
251 	void		(*parallelscan_reinitialize) (Relation rel,
252 											  ParallelTableScanDesc pscan);
253 
254 
255 	/* ------------------------------------------------------------------------
256 	 * Index Scan Callbacks
257 	 * ------------------------------------------------------------------------
258 	 */
259 
260 	/*
261 	 * Prepare to fetch tuples from the relation, as needed when fetching
262 	 * tuples for an index scan.  The callback has to return an
263 	 * IndexFetchTableData, which the AM will typically embed in a larger
264 	 * structure with additional information.
265 	 *
266 	 * Tuples for an index scan can then be fetched via index_fetch_tuple.
267 	 */
268 	struct IndexFetchTableData *(*index_fetch_begin) (Relation rel);
269 
270 	/*
271 	 * Reset index fetch. Typically this will release cross index fetch
272 	 * resources held in IndexFetchTableData.
273 	 */
274 	void		(*index_fetch_reset) (struct IndexFetchTableData *data);
275 
276 	/*
277 	 * Release resources and deallocate index fetch.
278 	 */
279 	void		(*index_fetch_end) (struct IndexFetchTableData *data);
280 
281 	/*
282 	 * Fetch tuple at `tid` into `slot`, after doing a visibility test
283 	 * according to `snapshot`. If a tuple was found and passed the visibility
284 	 * test, return true, false otherwise.
285 	 *
286 	 * Note that AMs that do not necessarily update indexes when indexed
287 	 * columns do not change, need to return the current/correct version of
288 	 * the tuple that is visible to the snapshot, even if the tid points to an
289 	 * older version of the tuple.
290 	 *
291 	 * *call_again is false on the first call to index_fetch_tuple for a tid.
292 	 * If there potentially is another tuple matching the tid, *call_again
293 	 * needs to be set to true by index_fetch_tuple, signaling to the caller
294 	 * that index_fetch_tuple should be called again for the same tid.
295 	 *
296 	 * *all_dead, if all_dead is not NULL, should be set to true by
297 	 * index_fetch_tuple iff it is guaranteed that no backend needs to see
298 	 * that tuple. Index AMs can use that to avoid returning that tid in
299 	 * future searches.
300 	 */
301 	bool		(*index_fetch_tuple) (struct IndexFetchTableData *scan,
302 									  ItemPointer tid,
303 									  Snapshot snapshot,
304 									  TupleTableSlot *slot,
305 									  bool *call_again, bool *all_dead);
306 
307 
308 	/* ------------------------------------------------------------------------
309 	 * Callbacks for non-modifying operations on individual tuples
310 	 * ------------------------------------------------------------------------
311 	 */
312 
313 	/*
314 	 * Fetch tuple at `tid` into `slot`, after doing a visibility test
315 	 * according to `snapshot`. If a tuple was found and passed the visibility
316 	 * test, returns true, false otherwise.
317 	 */
318 	bool		(*tuple_fetch_row_version) (Relation rel,
319 											ItemPointer tid,
320 											Snapshot snapshot,
321 											TupleTableSlot *slot);
322 
323 	/*
324 	 * Is tid valid for a scan of this relation.
325 	 */
326 	bool		(*tuple_tid_valid) (TableScanDesc scan,
327 									ItemPointer tid);
328 
329 	/*
330 	 * Return the latest version of the tuple at `tid`, by updating `tid` to
331 	 * point at the newest version.
332 	 */
333 	void		(*tuple_get_latest_tid) (TableScanDesc scan,
334 										 ItemPointer tid);
335 
336 	/*
337 	 * Does the tuple in `slot` satisfy `snapshot`?  The slot needs to be of
338 	 * the appropriate type for the AM.
339 	 */
340 	bool		(*tuple_satisfies_snapshot) (Relation rel,
341 											 TupleTableSlot *slot,
342 											 Snapshot snapshot);
343 
344 	/* see table_compute_xid_horizon_for_tuples() */
345 	TransactionId (*compute_xid_horizon_for_tuples) (Relation rel,
346 													 ItemPointerData *items,
347 													 int nitems);
348 
349 
350 	/* ------------------------------------------------------------------------
351 	 * Manipulations of physical tuples.
352 	 * ------------------------------------------------------------------------
353 	 */
354 
355 	/* see table_tuple_insert() for reference about parameters */
356 	void		(*tuple_insert) (Relation rel, TupleTableSlot *slot,
357 								 CommandId cid, int options,
358 								 struct BulkInsertStateData *bistate);
359 
360 	/* see table_tuple_insert_speculative() for reference about parameters */
361 	void		(*tuple_insert_speculative) (Relation rel,
362 											 TupleTableSlot *slot,
363 											 CommandId cid,
364 											 int options,
365 											 struct BulkInsertStateData *bistate,
366 											 uint32 specToken);
367 
368 	/* see table_tuple_complete_speculative() for reference about parameters */
369 	void		(*tuple_complete_speculative) (Relation rel,
370 											   TupleTableSlot *slot,
371 											   uint32 specToken,
372 											   bool succeeded);
373 
374 	/* see table_multi_insert() for reference about parameters */
375 	void		(*multi_insert) (Relation rel, TupleTableSlot **slots, int nslots,
376 								 CommandId cid, int options, struct BulkInsertStateData *bistate);
377 
378 	/* see table_tuple_delete() for reference about parameters */
379 	TM_Result	(*tuple_delete) (Relation rel,
380 								 ItemPointer tid,
381 								 CommandId cid,
382 								 Snapshot snapshot,
383 								 Snapshot crosscheck,
384 								 bool wait,
385 								 TM_FailureData *tmfd,
386 								 bool changingPart);
387 
388 	/* see table_tuple_update() for reference about parameters */
389 	TM_Result	(*tuple_update) (Relation rel,
390 								 ItemPointer otid,
391 								 TupleTableSlot *slot,
392 								 CommandId cid,
393 								 Snapshot snapshot,
394 								 Snapshot crosscheck,
395 								 bool wait,
396 								 TM_FailureData *tmfd,
397 								 LockTupleMode *lockmode,
398 								 bool *update_indexes);
399 
400 	/* see table_tuple_lock() for reference about parameters */
401 	TM_Result	(*tuple_lock) (Relation rel,
402 							   ItemPointer tid,
403 							   Snapshot snapshot,
404 							   TupleTableSlot *slot,
405 							   CommandId cid,
406 							   LockTupleMode mode,
407 							   LockWaitPolicy wait_policy,
408 							   uint8 flags,
409 							   TM_FailureData *tmfd);
410 
411 	/*
412 	 * Perform operations necessary to complete insertions made via
413 	 * tuple_insert and multi_insert with a BulkInsertState specified. In-tree
414 	 * access methods ceased to use this.
415 	 *
416 	 * Typically callers of tuple_insert and multi_insert will just pass all
417 	 * the flags that apply to them, and each AM has to decide which of them
418 	 * make sense for it, and then only take actions in finish_bulk_insert for
419 	 * those flags, and ignore others.
420 	 *
421 	 * Optional callback.
422 	 */
423 	void		(*finish_bulk_insert) (Relation rel, int options);
424 
425 
426 	/* ------------------------------------------------------------------------
427 	 * DDL related functionality.
428 	 * ------------------------------------------------------------------------
429 	 */
430 
431 	/*
432 	 * This callback needs to create a new relation filenode for `rel`, with
433 	 * appropriate durability behaviour for `persistence`.
434 	 *
435 	 * Note that only the subset of the relcache filled by
436 	 * RelationBuildLocalRelation() can be relied upon and that the relation's
437 	 * catalog entries will either not yet exist (new relation), or will still
438 	 * reference the old relfilenode.
439 	 *
440 	 * As output *freezeXid, *minmulti must be set to the values appropriate
441 	 * for pg_class.{relfrozenxid, relminmxid}. For AMs that don't need those
442 	 * fields to be filled they can be set to InvalidTransactionId and
443 	 * InvalidMultiXactId, respectively.
444 	 *
445 	 * See also table_relation_set_new_filenode().
446 	 */
447 	void		(*relation_set_new_filenode) (Relation rel,
448 											  const RelFileNode *newrnode,
449 											  char persistence,
450 											  TransactionId *freezeXid,
451 											  MultiXactId *minmulti);
452 
453 	/*
454 	 * This callback needs to remove all contents from `rel`'s current
455 	 * relfilenode. No provisions for transactional behaviour need to be made.
456 	 * Often this can be implemented by truncating the underlying storage to
457 	 * its minimal size.
458 	 *
459 	 * See also table_relation_nontransactional_truncate().
460 	 */
461 	void		(*relation_nontransactional_truncate) (Relation rel);
462 
463 	/*
464 	 * See table_relation_copy_data().
465 	 *
466 	 * This can typically be implemented by directly copying the underlying
467 	 * storage, unless it contains references to the tablespace internally.
468 	 */
469 	void		(*relation_copy_data) (Relation rel,
470 									   const RelFileNode *newrnode);
471 
472 	/* See table_relation_copy_for_cluster() */
473 	void		(*relation_copy_for_cluster) (Relation NewTable,
474 											  Relation OldTable,
475 											  Relation OldIndex,
476 											  bool use_sort,
477 											  TransactionId OldestXmin,
478 											  TransactionId *xid_cutoff,
479 											  MultiXactId *multi_cutoff,
480 											  double *num_tuples,
481 											  double *tups_vacuumed,
482 											  double *tups_recently_dead);
483 
484 	/*
485 	 * React to VACUUM command on the relation. The VACUUM can be triggered by
486 	 * a user or by autovacuum. The specific actions performed by the AM will
487 	 * depend heavily on the individual AM.
488 	 *
489 	 * On entry a transaction is already established, and the relation is
490 	 * locked with a ShareUpdateExclusive lock.
491 	 *
492 	 * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through
493 	 * this routine, even if (for ANALYZE) it is part of the same VACUUM
494 	 * command.
495 	 *
496 	 * There probably, in the future, needs to be a separate callback to
497 	 * integrate with autovacuum's scheduling.
498 	 */
499 	void		(*relation_vacuum) (Relation onerel,
500 									struct VacuumParams *params,
501 									BufferAccessStrategy bstrategy);
502 
503 	/*
504 	 * Prepare to analyze block `blockno` of `scan`. The scan has been started
505 	 * with table_beginscan_analyze().  See also
506 	 * table_scan_analyze_next_block().
507 	 *
508 	 * The callback may acquire resources like locks that are held until
509 	 * table_scan_analyze_next_tuple() returns false. It e.g. can make sense
510 	 * to hold a lock until all tuples on a block have been analyzed by
511 	 * scan_analyze_next_tuple.
512 	 *
513 	 * The callback can return false if the block is not suitable for
514 	 * sampling, e.g. because it's a metapage that could never contain tuples.
515 	 *
516 	 * XXX: This obviously is primarily suited for block-based AMs. It's not
517 	 * clear what a good interface for non block based AMs would be, so there
518 	 * isn't one yet.
519 	 */
520 	bool		(*scan_analyze_next_block) (TableScanDesc scan,
521 											BlockNumber blockno,
522 											BufferAccessStrategy bstrategy);
523 
524 	/*
525 	 * See table_scan_analyze_next_tuple().
526 	 *
527 	 * Not every AM might have a meaningful concept of dead rows, in which
528 	 * case it's OK to not increment *deadrows - but note that that may
529 	 * influence autovacuum scheduling (see comment for relation_vacuum
530 	 * callback).
531 	 */
532 	bool		(*scan_analyze_next_tuple) (TableScanDesc scan,
533 											TransactionId OldestXmin,
534 											double *liverows,
535 											double *deadrows,
536 											TupleTableSlot *slot);
537 
538 	/* see table_index_build_range_scan for reference about parameters */
539 	double		(*index_build_range_scan) (Relation table_rel,
540 										   Relation index_rel,
541 										   struct IndexInfo *index_info,
542 										   bool allow_sync,
543 										   bool anyvisible,
544 										   bool progress,
545 										   BlockNumber start_blockno,
546 										   BlockNumber numblocks,
547 										   IndexBuildCallback callback,
548 										   void *callback_state,
549 										   TableScanDesc scan);
550 
551 	/* see table_index_validate_scan for reference about parameters */
552 	void		(*index_validate_scan) (Relation table_rel,
553 										Relation index_rel,
554 										struct IndexInfo *index_info,
555 										Snapshot snapshot,
556 										struct ValidateIndexState *state);
557 
558 
559 	/* ------------------------------------------------------------------------
560 	 * Miscellaneous functions.
561 	 * ------------------------------------------------------------------------
562 	 */
563 
564 	/*
565 	 * See table_relation_size().
566 	 *
567 	 * Note that currently a few callers use the MAIN_FORKNUM size to figure
568 	 * out the range of potentially interesting blocks (brin, analyze). It's
569 	 * probable that we'll need to revise the interface for those at some
570 	 * point.
571 	 */
572 	uint64		(*relation_size) (Relation rel, ForkNumber forkNumber);
573 
574 
575 	/*
576 	 * This callback should return true if the relation requires a TOAST table
577 	 * and false if it does not.  It may wish to examine the relation's tuple
578 	 * descriptor before making a decision, but if it uses some other method
579 	 * of storing large values (or if it does not support them) it can simply
580 	 * return false.
581 	 */
582 	bool		(*relation_needs_toast_table) (Relation rel);
583 
584 	/*
585 	 * This callback should return the OID of the table AM that implements
586 	 * TOAST tables for this AM.  If the relation_needs_toast_table callback
587 	 * always returns false, this callback is not required.
588 	 */
589 	Oid			(*relation_toast_am) (Relation rel);
590 
591 	/*
592 	 * This callback is invoked when detoasting a value stored in a toast
593 	 * table implemented by this AM.  See table_relation_fetch_toast_slice()
594 	 * for more details.
595 	 */
596 	void		(*relation_fetch_toast_slice) (Relation toastrel, Oid valueid,
597 											   int32 attrsize,
598 											   int32 sliceoffset,
599 											   int32 slicelength,
600 											   struct varlena *result);
601 
602 
603 	/* ------------------------------------------------------------------------
604 	 * Planner related functions.
605 	 * ------------------------------------------------------------------------
606 	 */
607 
608 	/*
609 	 * See table_relation_estimate_size().
610 	 *
611 	 * While block oriented, it shouldn't be too hard for an AM that doesn't
612 	 * internally use blocks to convert into a usable representation.
613 	 *
614 	 * This differs from the relation_size callback by returning size
615 	 * estimates (both relation size and tuple count) for planning purposes,
616 	 * rather than returning a currently correct estimate.
617 	 */
618 	void		(*relation_estimate_size) (Relation rel, int32 *attr_widths,
619 										   BlockNumber *pages, double *tuples,
620 										   double *allvisfrac);
621 
622 
623 	/* ------------------------------------------------------------------------
624 	 * Executor related functions.
625 	 * ------------------------------------------------------------------------
626 	 */
627 
628 	/*
629 	 * Prepare to fetch / check / return tuples from `tbmres->blockno` as part
630 	 * of a bitmap table scan. `scan` was started via table_beginscan_bm().
631 	 * Return false if there are no tuples to be found on the page, true
632 	 * otherwise.
633 	 *
634 	 * This will typically read and pin the target block, and do the necessary
635 	 * work to allow scan_bitmap_next_tuple() to return tuples (e.g. it might
636 	 * make sense to perform tuple visibility checks at this time). For some
637 	 * AMs it will make more sense to do all the work referencing `tbmres`
638 	 * contents here, for others it might be better to defer more work to
639 	 * scan_bitmap_next_tuple.
640 	 *
641 	 * If `tbmres->blockno` is -1, this is a lossy scan and all visible tuples
642 	 * on the page have to be returned, otherwise the tuples at offsets in
643 	 * `tbmres->offsets` need to be returned.
644 	 *
645 	 * XXX: Currently this may only be implemented if the AM uses md.c as its
646 	 * storage manager, and uses ItemPointer->ip_blkid in a manner that maps
647 	 * blockids directly to the underlying storage. nodeBitmapHeapscan.c
648 	 * performs prefetching directly using that interface.  This probably
649 	 * needs to be rectified at a later point.
650 	 *
651 	 * XXX: Currently this may only be implemented if the AM uses the
652 	 * visibilitymap, as nodeBitmapHeapscan.c unconditionally accesses it to
653 	 * perform prefetching.  This probably needs to be rectified at a later
654 	 * point.
655 	 *
656 	 * Optional callback, but either both scan_bitmap_next_block and
657 	 * scan_bitmap_next_tuple need to exist, or neither.
658 	 */
659 	bool		(*scan_bitmap_next_block) (TableScanDesc scan,
660 										   struct TBMIterateResult *tbmres);
661 
662 	/*
663 	 * Fetch the next tuple of a bitmap table scan into `slot` and return true
664 	 * if a visible tuple was found, false otherwise.
665 	 *
666 	 * For some AMs it will make more sense to do all the work referencing
667 	 * `tbmres` contents in scan_bitmap_next_block, for others it might be
668 	 * better to defer more work to this callback.
669 	 *
670 	 * Optional callback, but either both scan_bitmap_next_block and
671 	 * scan_bitmap_next_tuple need to exist, or neither.
672 	 */
673 	bool		(*scan_bitmap_next_tuple) (TableScanDesc scan,
674 										   struct TBMIterateResult *tbmres,
675 										   TupleTableSlot *slot);
676 
677 	/*
678 	 * Prepare to fetch tuples from the next block in a sample scan. Return
679 	 * false if the sample scan is finished, true otherwise. `scan` was
680 	 * started via table_beginscan_sampling().
681 	 *
682 	 * Typically this will first determine the target block by calling the
683 	 * TsmRoutine's NextSampleBlock() callback if not NULL, or alternatively
684 	 * perform a sequential scan over all blocks.  The determined block is
685 	 * then typically read and pinned.
686 	 *
687 	 * As the TsmRoutine interface is block based, a block needs to be passed
688 	 * to NextSampleBlock(). If that's not appropriate for an AM, it
689 	 * internally needs to perform mapping between the internal and a block
690 	 * based representation.
691 	 *
692 	 * Note that it's not acceptable to hold deadlock prone resources such as
693 	 * lwlocks until scan_sample_next_tuple() has exhausted the tuples on the
694 	 * block - the tuple is likely to be returned to an upper query node, and
695 	 * the next call could be off a long while. Holding buffer pins and such
696 	 * is obviously OK.
697 	 *
698 	 * Currently it is required to implement this interface, as there's no
699 	 * alternative way (contrary e.g. to bitmap scans) to implement sample
700 	 * scans. If infeasible to implement, the AM may raise an error.
701 	 */
702 	bool		(*scan_sample_next_block) (TableScanDesc scan,
703 										   struct SampleScanState *scanstate);
704 
705 	/*
706 	 * This callback, only called after scan_sample_next_block has returned
707 	 * true, should determine the next tuple to be returned from the selected
708 	 * block using the TsmRoutine's NextSampleTuple() callback.
709 	 *
710 	 * The callback needs to perform visibility checks, and only return
711 	 * visible tuples. That obviously can mean calling NextSampleTuple()
712 	 * multiple times.
713 	 *
714 	 * The TsmRoutine interface assumes that there's a maximum offset on a
715 	 * given page, so if that doesn't apply to an AM, it needs to emulate that
716 	 * assumption somehow.
717 	 */
718 	bool		(*scan_sample_next_tuple) (TableScanDesc scan,
719 										   struct SampleScanState *scanstate,
720 										   TupleTableSlot *slot);
721 
722 } TableAmRoutine;
723 
724 
725 /* ----------------------------------------------------------------------------
726  * Slot functions.
727  * ----------------------------------------------------------------------------
728  */
729 
730 /*
731  * Returns slot callbacks suitable for holding tuples of the appropriate type
732  * for the relation.  Works for tables, views, foreign tables and partitioned
733  * tables.
734  */
735 extern const TupleTableSlotOps *table_slot_callbacks(Relation rel);
736 
737 /*
738  * Returns slot using the callbacks returned by table_slot_callbacks(), and
739  * registers it on *reglist.
740  */
741 extern TupleTableSlot *table_slot_create(Relation rel, List **reglist);
742 
743 
744 /* ----------------------------------------------------------------------------
745  * Table scan functions.
746  * ----------------------------------------------------------------------------
747  */
748 
749 /*
750  * Start a scan of `rel`. Returned tuples pass a visibility test of
751  * `snapshot`, and if nkeys != 0, the results are filtered by those scan keys.
752  */
753 static inline TableScanDesc
table_beginscan(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key)754 table_beginscan(Relation rel, Snapshot snapshot,
755 				int nkeys, struct ScanKeyData *key)
756 {
757 	uint32		flags = SO_TYPE_SEQSCAN |
758 	SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
759 
760 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
761 }
762 
763 /*
764  * Like table_beginscan(), but for scanning catalog. It'll automatically use a
765  * snapshot appropriate for scanning catalog relations.
766  */
767 extern TableScanDesc table_beginscan_catalog(Relation rel, int nkeys,
768 											 struct ScanKeyData *key);
769 
770 /*
771  * Like table_beginscan(), but table_beginscan_strat() offers an extended API
772  * that lets the caller control whether a nondefault buffer access strategy
773  * can be used, and whether syncscan can be chosen (possibly resulting in the
774  * scan not starting from block zero).  Both of these default to true with
775  * plain table_beginscan.
776  */
777 static inline TableScanDesc
table_beginscan_strat(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key,bool allow_strat,bool allow_sync)778 table_beginscan_strat(Relation rel, Snapshot snapshot,
779 					  int nkeys, struct ScanKeyData *key,
780 					  bool allow_strat, bool allow_sync)
781 {
782 	uint32		flags = SO_TYPE_SEQSCAN | SO_ALLOW_PAGEMODE;
783 
784 	if (allow_strat)
785 		flags |= SO_ALLOW_STRAT;
786 	if (allow_sync)
787 		flags |= SO_ALLOW_SYNC;
788 
789 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
790 }
791 
792 /*
793  * table_beginscan_bm is an alternative entry point for setting up a
794  * TableScanDesc for a bitmap heap scan.  Although that scan technology is
795  * really quite unlike a standard seqscan, there is just enough commonality to
796  * make it worth using the same data structure.
797  */
798 static inline TableScanDesc
table_beginscan_bm(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key)799 table_beginscan_bm(Relation rel, Snapshot snapshot,
800 				   int nkeys, struct ScanKeyData *key)
801 {
802 	uint32		flags = SO_TYPE_BITMAPSCAN | SO_ALLOW_PAGEMODE;
803 
804 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
805 }
806 
807 /*
808  * table_beginscan_sampling is an alternative entry point for setting up a
809  * TableScanDesc for a TABLESAMPLE scan.  As with bitmap scans, it's worth
810  * using the same data structure although the behavior is rather different.
811  * In addition to the options offered by table_beginscan_strat, this call
812  * also allows control of whether page-mode visibility checking is used.
813  */
814 static inline TableScanDesc
table_beginscan_sampling(Relation rel,Snapshot snapshot,int nkeys,struct ScanKeyData * key,bool allow_strat,bool allow_sync,bool allow_pagemode)815 table_beginscan_sampling(Relation rel, Snapshot snapshot,
816 						 int nkeys, struct ScanKeyData *key,
817 						 bool allow_strat, bool allow_sync,
818 						 bool allow_pagemode)
819 {
820 	uint32		flags = SO_TYPE_SAMPLESCAN;
821 
822 	if (allow_strat)
823 		flags |= SO_ALLOW_STRAT;
824 	if (allow_sync)
825 		flags |= SO_ALLOW_SYNC;
826 	if (allow_pagemode)
827 		flags |= SO_ALLOW_PAGEMODE;
828 
829 	return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
830 }
831 
832 /*
833  * table_beginscan_tid is an alternative entry point for setting up a
834  * TableScanDesc for a Tid scan. As with bitmap scans, it's worth using
835  * the same data structure although the behavior is rather different.
836  */
837 static inline TableScanDesc
table_beginscan_tid(Relation rel,Snapshot snapshot)838 table_beginscan_tid(Relation rel, Snapshot snapshot)
839 {
840 	uint32		flags = SO_TYPE_TIDSCAN;
841 
842 	return rel->rd_tableam->scan_begin(rel, snapshot, 0, NULL, NULL, flags);
843 }
844 
845 /*
846  * table_beginscan_analyze is an alternative entry point for setting up a
847  * TableScanDesc for an ANALYZE scan.  As with bitmap scans, it's worth using
848  * the same data structure although the behavior is rather different.
849  */
850 static inline TableScanDesc
table_beginscan_analyze(Relation rel)851 table_beginscan_analyze(Relation rel)
852 {
853 	uint32		flags = SO_TYPE_ANALYZE;
854 
855 	return rel->rd_tableam->scan_begin(rel, NULL, 0, NULL, NULL, flags);
856 }
857 
858 /*
859  * End relation scan.
860  */
861 static inline void
table_endscan(TableScanDesc scan)862 table_endscan(TableScanDesc scan)
863 {
864 	scan->rs_rd->rd_tableam->scan_end(scan);
865 }
866 
867 /*
868  * Restart a relation scan.
869  */
870 static inline void
table_rescan(TableScanDesc scan,struct ScanKeyData * key)871 table_rescan(TableScanDesc scan,
872 			 struct ScanKeyData *key)
873 {
874 	scan->rs_rd->rd_tableam->scan_rescan(scan, key, false, false, false, false);
875 }
876 
877 /*
878  * Restart a relation scan after changing params.
879  *
880  * This call allows changing the buffer strategy, syncscan, and pagemode
881  * options before starting a fresh scan.  Note that although the actual use of
882  * syncscan might change (effectively, enabling or disabling reporting), the
883  * previously selected startblock will be kept.
884  */
885 static inline void
table_rescan_set_params(TableScanDesc scan,struct ScanKeyData * key,bool allow_strat,bool allow_sync,bool allow_pagemode)886 table_rescan_set_params(TableScanDesc scan, struct ScanKeyData *key,
887 						bool allow_strat, bool allow_sync, bool allow_pagemode)
888 {
889 	scan->rs_rd->rd_tableam->scan_rescan(scan, key, true,
890 										 allow_strat, allow_sync,
891 										 allow_pagemode);
892 }
893 
894 /*
895  * Update snapshot used by the scan.
896  */
897 extern void table_scan_update_snapshot(TableScanDesc scan, Snapshot snapshot);
898 
899 /*
900  * Return next tuple from `scan`, store in slot.
901  */
902 static inline bool
table_scan_getnextslot(TableScanDesc sscan,ScanDirection direction,TupleTableSlot * slot)903 table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
904 {
905 	slot->tts_tableOid = RelationGetRelid(sscan->rs_rd);
906 	return sscan->rs_rd->rd_tableam->scan_getnextslot(sscan, direction, slot);
907 }
908 
909 
910 /* ----------------------------------------------------------------------------
911  * Parallel table scan related functions.
912  * ----------------------------------------------------------------------------
913  */
914 
915 /*
916  * Estimate the size of shared memory needed for a parallel scan of this
917  * relation.
918  */
919 extern Size table_parallelscan_estimate(Relation rel, Snapshot snapshot);
920 
921 /*
922  * Initialize ParallelTableScanDesc for a parallel scan of this
923  * relation. `pscan` needs to be sized according to parallelscan_estimate()
924  * for the same relation.  Call this just once in the leader process; then,
925  * individual workers attach via table_beginscan_parallel.
926  */
927 extern void table_parallelscan_initialize(Relation rel,
928 										  ParallelTableScanDesc pscan,
929 										  Snapshot snapshot);
930 
931 /*
932  * Begin a parallel scan. `pscan` needs to have been initialized with
933  * table_parallelscan_initialize(), for the same relation. The initialization
934  * does not need to have happened in this backend.
935  *
936  * Caller must hold a suitable lock on the relation.
937  */
938 extern TableScanDesc table_beginscan_parallel(Relation rel,
939 											  ParallelTableScanDesc pscan);
940 
941 /*
942  * Restart a parallel scan.  Call this in the leader process.  Caller is
943  * responsible for making sure that all workers have finished the scan
944  * beforehand.
945  */
946 static inline void
table_parallelscan_reinitialize(Relation rel,ParallelTableScanDesc pscan)947 table_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
948 {
949 	rel->rd_tableam->parallelscan_reinitialize(rel, pscan);
950 }
951 
952 
953 /* ----------------------------------------------------------------------------
954  *  Index scan related functions.
955  * ----------------------------------------------------------------------------
956  */
957 
958 /*
959  * Prepare to fetch tuples from the relation, as needed when fetching tuples
960  * for an index scan.
961  *
962  * Tuples for an index scan can then be fetched via table_index_fetch_tuple().
963  */
964 static inline IndexFetchTableData *
table_index_fetch_begin(Relation rel)965 table_index_fetch_begin(Relation rel)
966 {
967 	return rel->rd_tableam->index_fetch_begin(rel);
968 }
969 
970 /*
971  * Reset index fetch. Typically this will release cross index fetch resources
972  * held in IndexFetchTableData.
973  */
974 static inline void
table_index_fetch_reset(struct IndexFetchTableData * scan)975 table_index_fetch_reset(struct IndexFetchTableData *scan)
976 {
977 	scan->rel->rd_tableam->index_fetch_reset(scan);
978 }
979 
980 /*
981  * Release resources and deallocate index fetch.
982  */
983 static inline void
table_index_fetch_end(struct IndexFetchTableData * scan)984 table_index_fetch_end(struct IndexFetchTableData *scan)
985 {
986 	scan->rel->rd_tableam->index_fetch_end(scan);
987 }
988 
989 /*
990  * Fetches, as part of an index scan, tuple at `tid` into `slot`, after doing
991  * a visibility test according to `snapshot`. If a tuple was found and passed
992  * the visibility test, returns true, false otherwise. Note that *tid may be
993  * modified when we return true (see later remarks on multiple row versions
994  * reachable via a single index entry).
995  *
996  * *call_again needs to be false on the first call to table_index_fetch_tuple() for
997  * a tid. If there potentially is another tuple matching the tid, *call_again
998  * will be set to true, signaling that table_index_fetch_tuple() should be called
999  * again for the same tid.
1000  *
1001  * *all_dead, if all_dead is not NULL, will be set to true by
1002  * table_index_fetch_tuple() iff it is guaranteed that no backend needs to see
1003  * that tuple. Index AMs can use that to avoid returning that tid in future
1004  * searches.
1005  *
1006  * The difference between this function and table_tuple_fetch_row_version()
1007  * is that this function returns the currently visible version of a row if
1008  * the AM supports storing multiple row versions reachable via a single index
1009  * entry (like heap's HOT). Whereas table_tuple_fetch_row_version() only
1010  * evaluates the tuple exactly at `tid`. Outside of index entry ->table tuple
1011  * lookups, table_tuple_fetch_row_version() is what's usually needed.
1012  */
1013 static inline bool
table_index_fetch_tuple(struct IndexFetchTableData * scan,ItemPointer tid,Snapshot snapshot,TupleTableSlot * slot,bool * call_again,bool * all_dead)1014 table_index_fetch_tuple(struct IndexFetchTableData *scan,
1015 						ItemPointer tid,
1016 						Snapshot snapshot,
1017 						TupleTableSlot *slot,
1018 						bool *call_again, bool *all_dead)
1019 {
1020 
1021 	return scan->rel->rd_tableam->index_fetch_tuple(scan, tid, snapshot,
1022 													slot, call_again,
1023 													all_dead);
1024 }
1025 
1026 /*
1027  * This is a convenience wrapper around table_index_fetch_tuple() which
1028  * returns whether there are table tuple items corresponding to an index
1029  * entry.  This likely is only useful to verify if there's a conflict in a
1030  * unique index.
1031  */
1032 extern bool table_index_fetch_tuple_check(Relation rel,
1033 										  ItemPointer tid,
1034 										  Snapshot snapshot,
1035 										  bool *all_dead);
1036 
1037 
1038 /* ------------------------------------------------------------------------
1039  * Functions for non-modifying operations on individual tuples
1040  * ------------------------------------------------------------------------
1041  */
1042 
1043 
1044 /*
1045  * Fetch tuple at `tid` into `slot`, after doing a visibility test according to
1046  * `snapshot`. If a tuple was found and passed the visibility test, returns
1047  * true, false otherwise.
1048  *
1049  * See table_index_fetch_tuple's comment about what the difference between
1050  * these functions is. It is correct to use this function outside of index
1051  * entry->table tuple lookups.
1052  */
1053 static inline bool
table_tuple_fetch_row_version(Relation rel,ItemPointer tid,Snapshot snapshot,TupleTableSlot * slot)1054 table_tuple_fetch_row_version(Relation rel,
1055 							  ItemPointer tid,
1056 							  Snapshot snapshot,
1057 							  TupleTableSlot *slot)
1058 {
1059 	return rel->rd_tableam->tuple_fetch_row_version(rel, tid, snapshot, slot);
1060 }
1061 
1062 /*
1063  * Verify that `tid` is a potentially valid tuple identifier. That doesn't
1064  * mean that the pointed to row needs to exist or be visible, but that
1065  * attempting to fetch the row (e.g. with table_tuple_get_latest_tid() or
1066  * table_tuple_fetch_row_version()) should not error out if called with that
1067  * tid.
1068  *
1069  * `scan` needs to have been started via table_beginscan().
1070  */
1071 static inline bool
table_tuple_tid_valid(TableScanDesc scan,ItemPointer tid)1072 table_tuple_tid_valid(TableScanDesc scan, ItemPointer tid)
1073 {
1074 	return scan->rs_rd->rd_tableam->tuple_tid_valid(scan, tid);
1075 }
1076 
1077 /*
1078  * Return the latest version of the tuple at `tid`, by updating `tid` to
1079  * point at the newest version.
1080  */
1081 extern void table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid);
1082 
1083 /*
1084  * Return true iff tuple in slot satisfies the snapshot.
1085  *
1086  * This assumes the slot's tuple is valid, and of the appropriate type for the
1087  * AM.
1088  *
1089  * Some AMs might modify the data underlying the tuple as a side-effect. If so
1090  * they ought to mark the relevant buffer dirty.
1091  */
1092 static inline bool
table_tuple_satisfies_snapshot(Relation rel,TupleTableSlot * slot,Snapshot snapshot)1093 table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot,
1094 							   Snapshot snapshot)
1095 {
1096 	return rel->rd_tableam->tuple_satisfies_snapshot(rel, slot, snapshot);
1097 }
1098 
1099 /*
1100  * Compute the newest xid among the tuples pointed to by items. This is used
1101  * to compute what snapshots to conflict with when replaying WAL records for
1102  * page-level index vacuums.
1103  */
1104 static inline TransactionId
table_compute_xid_horizon_for_tuples(Relation rel,ItemPointerData * items,int nitems)1105 table_compute_xid_horizon_for_tuples(Relation rel,
1106 									 ItemPointerData *items,
1107 									 int nitems)
1108 {
1109 	return rel->rd_tableam->compute_xid_horizon_for_tuples(rel, items, nitems);
1110 }
1111 
1112 
1113 /* ----------------------------------------------------------------------------
1114  *  Functions for manipulations of physical tuples.
1115  * ----------------------------------------------------------------------------
1116  */
1117 
1118 /*
1119  * Insert a tuple from a slot into table AM routine.
1120  *
1121  * The options bitmask allows the caller to specify options that may change the
1122  * behaviour of the AM. The AM will ignore options that it does not support.
1123  *
1124  * If the TABLE_INSERT_SKIP_FSM option is specified, AMs are free to not reuse
1125  * free space in the relation. This can save some cycles when we know the
1126  * relation is new and doesn't contain useful amounts of free space.
1127  * TABLE_INSERT_SKIP_FSM is commonly passed directly to
1128  * RelationGetBufferForTuple. See that method for more information.
1129  *
1130  * TABLE_INSERT_FROZEN should only be specified for inserts into
1131  * relfilenodes created during the current subtransaction and when
1132  * there are no prior snapshots or pre-existing portals open.
1133  * This causes rows to be frozen, which is an MVCC violation and
1134  * requires explicit options chosen by user.
1135  *
1136  * TABLE_INSERT_NO_LOGICAL force-disables the emitting of logical decoding
1137  * information for the tuple. This should solely be used during table rewrites
1138  * where RelationIsLogicallyLogged(relation) is not yet accurate for the new
1139  * relation.
1140  *
1141  * Note that most of these options will be applied when inserting into the
1142  * heap's TOAST table, too, if the tuple requires any out-of-line data.
1143  *
1144  * The BulkInsertState object (if any; bistate can be NULL for default
1145  * behavior) is also just passed through to RelationGetBufferForTuple. If
1146  * `bistate` is provided, table_finish_bulk_insert() needs to be called.
1147  *
1148  * On return the slot's tts_tid and tts_tableOid are updated to reflect the
1149  * insertion. But note that any toasting of fields within the slot is NOT
1150  * reflected in the slots contents.
1151  */
1152 static inline void
table_tuple_insert(Relation rel,TupleTableSlot * slot,CommandId cid,int options,struct BulkInsertStateData * bistate)1153 table_tuple_insert(Relation rel, TupleTableSlot *slot, CommandId cid,
1154 				   int options, struct BulkInsertStateData *bistate)
1155 {
1156 	rel->rd_tableam->tuple_insert(rel, slot, cid, options,
1157 								  bistate);
1158 }
1159 
1160 /*
1161  * Perform a "speculative insertion". These can be backed out afterwards
1162  * without aborting the whole transaction.  Other sessions can wait for the
1163  * speculative insertion to be confirmed, turning it into a regular tuple, or
1164  * aborted, as if it never existed.  Speculatively inserted tuples behave as
1165  * "value locks" of short duration, used to implement INSERT .. ON CONFLICT.
1166  *
1167  * A transaction having performed a speculative insertion has to either abort,
1168  * or finish the speculative insertion with
1169  * table_tuple_complete_speculative(succeeded = ...).
1170  */
1171 static inline void
table_tuple_insert_speculative(Relation rel,TupleTableSlot * slot,CommandId cid,int options,struct BulkInsertStateData * bistate,uint32 specToken)1172 table_tuple_insert_speculative(Relation rel, TupleTableSlot *slot,
1173 							   CommandId cid, int options,
1174 							   struct BulkInsertStateData *bistate,
1175 							   uint32 specToken)
1176 {
1177 	rel->rd_tableam->tuple_insert_speculative(rel, slot, cid, options,
1178 											  bistate, specToken);
1179 }
1180 
1181 /*
1182  * Complete "speculative insertion" started in the same transaction. If
1183  * succeeded is true, the tuple is fully inserted, if false, it's removed.
1184  */
1185 static inline void
table_tuple_complete_speculative(Relation rel,TupleTableSlot * slot,uint32 specToken,bool succeeded)1186 table_tuple_complete_speculative(Relation rel, TupleTableSlot *slot,
1187 								 uint32 specToken, bool succeeded)
1188 {
1189 	rel->rd_tableam->tuple_complete_speculative(rel, slot, specToken,
1190 												succeeded);
1191 }
1192 
1193 /*
1194  * Insert multiple tuples into a table.
1195  *
1196  * This is like table_tuple_insert(), but inserts multiple tuples in one
1197  * operation. That's often faster than calling table_tuple_insert() in a loop,
1198  * because e.g. the AM can reduce WAL logging and page locking overhead.
1199  *
1200  * Except for taking `nslots` tuples as input, and an array of TupleTableSlots
1201  * in `slots`, the parameters for table_multi_insert() are the same as for
1202  * table_tuple_insert().
1203  *
1204  * Note: this leaks memory into the current memory context. You can create a
1205  * temporary context before calling this, if that's a problem.
1206  */
1207 static inline void
table_multi_insert(Relation rel,TupleTableSlot ** slots,int nslots,CommandId cid,int options,struct BulkInsertStateData * bistate)1208 table_multi_insert(Relation rel, TupleTableSlot **slots, int nslots,
1209 				   CommandId cid, int options, struct BulkInsertStateData *bistate)
1210 {
1211 	rel->rd_tableam->multi_insert(rel, slots, nslots,
1212 								  cid, options, bistate);
1213 }
1214 
1215 /*
1216  * Delete a tuple.
1217  *
1218  * NB: do not call this directly unless prepared to deal with
1219  * concurrent-update conditions.  Use simple_table_tuple_delete instead.
1220  *
1221  * Input parameters:
1222  *	relation - table to be modified (caller must hold suitable lock)
1223  *	tid - TID of tuple to be deleted
1224  *	cid - delete command ID (used for visibility test, and stored into
1225  *		cmax if successful)
1226  *	crosscheck - if not InvalidSnapshot, also check tuple against this
1227  *	wait - true if should wait for any conflicting update to commit/abort
1228  * Output parameters:
1229  *	tmfd - filled in failure cases (see below)
1230  *	changingPart - true iff the tuple is being moved to another partition
1231  *		table due to an update of the partition key. Otherwise, false.
1232  *
1233  * Normal, successful return value is TM_Ok, which means we did actually
1234  * delete it.  Failure return codes are TM_SelfModified, TM_Updated, and
1235  * TM_BeingModified (the last only possible if wait == false).
1236  *
1237  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1238  * t_xmax, and, if possible, and, if possible, t_cmax.  See comments for
1239  * struct TM_FailureData for additional info.
1240  */
1241 static inline TM_Result
table_tuple_delete(Relation rel,ItemPointer tid,CommandId cid,Snapshot snapshot,Snapshot crosscheck,bool wait,TM_FailureData * tmfd,bool changingPart)1242 table_tuple_delete(Relation rel, ItemPointer tid, CommandId cid,
1243 				   Snapshot snapshot, Snapshot crosscheck, bool wait,
1244 				   TM_FailureData *tmfd, bool changingPart)
1245 {
1246 	return rel->rd_tableam->tuple_delete(rel, tid, cid,
1247 										 snapshot, crosscheck,
1248 										 wait, tmfd, changingPart);
1249 }
1250 
1251 /*
1252  * Update a tuple.
1253  *
1254  * NB: do not call this directly unless you are prepared to deal with
1255  * concurrent-update conditions.  Use simple_table_tuple_update instead.
1256  *
1257  * Input parameters:
1258  *	relation - table to be modified (caller must hold suitable lock)
1259  *	otid - TID of old tuple to be replaced
1260  *	slot - newly constructed tuple data to store
1261  *	cid - update command ID (used for visibility test, and stored into
1262  *		cmax/cmin if successful)
1263  *	crosscheck - if not InvalidSnapshot, also check old tuple against this
1264  *	wait - true if should wait for any conflicting update to commit/abort
1265  * Output parameters:
1266  *	tmfd - filled in failure cases (see below)
1267  *	lockmode - filled with lock mode acquired on tuple
1268  *  update_indexes - in success cases this is set to true if new index entries
1269  *		are required for this tuple
1270  *
1271  * Normal, successful return value is TM_Ok, which means we did actually
1272  * update it.  Failure return codes are TM_SelfModified, TM_Updated, and
1273  * TM_BeingModified (the last only possible if wait == false).
1274  *
1275  * On success, the slot's tts_tid and tts_tableOid are updated to match the new
1276  * stored tuple; in particular, slot->tts_tid is set to the TID where the
1277  * new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT
1278  * update was done.  However, any TOAST changes in the new tuple's
1279  * data are not reflected into *newtup.
1280  *
1281  * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
1282  * t_xmax, and, if possible, t_cmax.  See comments for struct TM_FailureData
1283  * for additional info.
1284  */
1285 static inline TM_Result
table_tuple_update(Relation rel,ItemPointer otid,TupleTableSlot * slot,CommandId cid,Snapshot snapshot,Snapshot crosscheck,bool wait,TM_FailureData * tmfd,LockTupleMode * lockmode,bool * update_indexes)1286 table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot,
1287 				   CommandId cid, Snapshot snapshot, Snapshot crosscheck,
1288 				   bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode,
1289 				   bool *update_indexes)
1290 {
1291 	return rel->rd_tableam->tuple_update(rel, otid, slot,
1292 										 cid, snapshot, crosscheck,
1293 										 wait, tmfd,
1294 										 lockmode, update_indexes);
1295 }
1296 
1297 /*
1298  * Lock a tuple in the specified mode.
1299  *
1300  * Input parameters:
1301  *	relation: relation containing tuple (caller must hold suitable lock)
1302  *	tid: TID of tuple to lock
1303  *	snapshot: snapshot to use for visibility determinations
1304  *	cid: current command ID (used for visibility test, and stored into
1305  *		tuple's cmax if lock is successful)
1306  *	mode: lock mode desired
1307  *	wait_policy: what to do if tuple lock is not available
1308  *	flags:
1309  *		If TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS, follow the update chain to
1310  *		also lock descendant tuples if lock modes don't conflict.
1311  *		If TUPLE_LOCK_FLAG_FIND_LAST_VERSION, follow the update chain and lock
1312  *		latest version.
1313  *
1314  * Output parameters:
1315  *	*slot: contains the target tuple
1316  *	*tmfd: filled in failure cases (see below)
1317  *
1318  * Function result may be:
1319  *	TM_Ok: lock was successfully acquired
1320  *	TM_Invisible: lock failed because tuple was never visible to us
1321  *	TM_SelfModified: lock failed because tuple updated by self
1322  *	TM_Updated: lock failed because tuple updated by other xact
1323  *	TM_Deleted: lock failed because tuple deleted by other xact
1324  *	TM_WouldBlock: lock couldn't be acquired and wait_policy is skip
1325  *
1326  * In the failure cases other than TM_Invisible and TM_Deleted, the routine
1327  * fills *tmfd with the tuple's t_ctid, t_xmax, and, if possible, t_cmax.  See
1328  * comments for struct TM_FailureData for additional info.
1329  */
1330 static inline TM_Result
table_tuple_lock(Relation rel,ItemPointer tid,Snapshot snapshot,TupleTableSlot * slot,CommandId cid,LockTupleMode mode,LockWaitPolicy wait_policy,uint8 flags,TM_FailureData * tmfd)1331 table_tuple_lock(Relation rel, ItemPointer tid, Snapshot snapshot,
1332 				 TupleTableSlot *slot, CommandId cid, LockTupleMode mode,
1333 				 LockWaitPolicy wait_policy, uint8 flags,
1334 				 TM_FailureData *tmfd)
1335 {
1336 	return rel->rd_tableam->tuple_lock(rel, tid, snapshot, slot,
1337 									   cid, mode, wait_policy,
1338 									   flags, tmfd);
1339 }
1340 
1341 /*
1342  * Perform operations necessary to complete insertions made via
1343  * tuple_insert and multi_insert with a BulkInsertState specified.
1344  */
1345 static inline void
table_finish_bulk_insert(Relation rel,int options)1346 table_finish_bulk_insert(Relation rel, int options)
1347 {
1348 	/* optional callback */
1349 	if (rel->rd_tableam && rel->rd_tableam->finish_bulk_insert)
1350 		rel->rd_tableam->finish_bulk_insert(rel, options);
1351 }
1352 
1353 
1354 /* ------------------------------------------------------------------------
1355  * DDL related functionality.
1356  * ------------------------------------------------------------------------
1357  */
1358 
1359 /*
1360  * Create storage for `rel` in `newrnode`, with persistence set to
1361  * `persistence`.
1362  *
1363  * This is used both during relation creation and various DDL operations to
1364  * create a new relfilenode that can be filled from scratch.  When creating
1365  * new storage for an existing relfilenode, this should be called before the
1366  * relcache entry has been updated.
1367  *
1368  * *freezeXid, *minmulti are set to the xid / multixact horizon for the table
1369  * that pg_class.{relfrozenxid, relminmxid} have to be set to.
1370  */
1371 static inline void
table_relation_set_new_filenode(Relation rel,const RelFileNode * newrnode,char persistence,TransactionId * freezeXid,MultiXactId * minmulti)1372 table_relation_set_new_filenode(Relation rel,
1373 								const RelFileNode *newrnode,
1374 								char persistence,
1375 								TransactionId *freezeXid,
1376 								MultiXactId *minmulti)
1377 {
1378 	rel->rd_tableam->relation_set_new_filenode(rel, newrnode, persistence,
1379 											   freezeXid, minmulti);
1380 }
1381 
1382 /*
1383  * Remove all table contents from `rel`, in a non-transactional manner.
1384  * Non-transactional meaning that there's no need to support rollbacks. This
1385  * commonly only is used to perform truncations for relfilenodes created in the
1386  * current transaction.
1387  */
1388 static inline void
table_relation_nontransactional_truncate(Relation rel)1389 table_relation_nontransactional_truncate(Relation rel)
1390 {
1391 	rel->rd_tableam->relation_nontransactional_truncate(rel);
1392 }
1393 
1394 /*
1395  * Copy data from `rel` into the new relfilenode `newrnode`. The new
1396  * relfilenode may not have storage associated before this function is
1397  * called. This is only supposed to be used for low level operations like
1398  * changing a relation's tablespace.
1399  */
1400 static inline void
table_relation_copy_data(Relation rel,const RelFileNode * newrnode)1401 table_relation_copy_data(Relation rel, const RelFileNode *newrnode)
1402 {
1403 	rel->rd_tableam->relation_copy_data(rel, newrnode);
1404 }
1405 
1406 /*
1407  * Copy data from `OldTable` into `NewTable`, as part of a CLUSTER or VACUUM
1408  * FULL.
1409  *
1410  * Additional Input parameters:
1411  * - use_sort - if true, the table contents are sorted appropriate for
1412  *   `OldIndex`; if false and OldIndex is not InvalidOid, the data is copied
1413  *   in that index's order; if false and OldIndex is InvalidOid, no sorting is
1414  *   performed
1415  * - OldIndex - see use_sort
1416  * - OldestXmin - computed by vacuum_set_xid_limits(), even when
1417  *   not needed for the relation's AM
1418  * - *xid_cutoff - ditto
1419  * - *multi_cutoff - ditto
1420  *
1421  * Output parameters:
1422  * - *xid_cutoff - rel's new relfrozenxid value, may be invalid
1423  * - *multi_cutoff - rel's new relminmxid value, may be invalid
1424  * - *tups_vacuumed - stats, for logging, if appropriate for AM
1425  * - *tups_recently_dead - stats, for logging, if appropriate for AM
1426  */
1427 static inline void
table_relation_copy_for_cluster(Relation OldTable,Relation NewTable,Relation OldIndex,bool use_sort,TransactionId OldestXmin,TransactionId * xid_cutoff,MultiXactId * multi_cutoff,double * num_tuples,double * tups_vacuumed,double * tups_recently_dead)1428 table_relation_copy_for_cluster(Relation OldTable, Relation NewTable,
1429 								Relation OldIndex,
1430 								bool use_sort,
1431 								TransactionId OldestXmin,
1432 								TransactionId *xid_cutoff,
1433 								MultiXactId *multi_cutoff,
1434 								double *num_tuples,
1435 								double *tups_vacuumed,
1436 								double *tups_recently_dead)
1437 {
1438 	OldTable->rd_tableam->relation_copy_for_cluster(OldTable, NewTable, OldIndex,
1439 													use_sort, OldestXmin,
1440 													xid_cutoff, multi_cutoff,
1441 													num_tuples, tups_vacuumed,
1442 													tups_recently_dead);
1443 }
1444 
1445 /*
1446  * Perform VACUUM on the relation. The VACUUM can be triggered by a user or by
1447  * autovacuum. The specific actions performed by the AM will depend heavily on
1448  * the individual AM.
1449  *
1450  * On entry a transaction needs to already been established, and the
1451  * table is locked with a ShareUpdateExclusive lock.
1452  *
1453  * Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through this
1454  * routine, even if (for ANALYZE) it is part of the same VACUUM command.
1455  */
1456 static inline void
table_relation_vacuum(Relation rel,struct VacuumParams * params,BufferAccessStrategy bstrategy)1457 table_relation_vacuum(Relation rel, struct VacuumParams *params,
1458 					  BufferAccessStrategy bstrategy)
1459 {
1460 	rel->rd_tableam->relation_vacuum(rel, params, bstrategy);
1461 }
1462 
1463 /*
1464  * Prepare to analyze block `blockno` of `scan`. The scan needs to have been
1465  * started with table_beginscan_analyze().  Note that this routine might
1466  * acquire resources like locks that are held until
1467  * table_scan_analyze_next_tuple() returns false.
1468  *
1469  * Returns false if block is unsuitable for sampling, true otherwise.
1470  */
1471 static inline bool
table_scan_analyze_next_block(TableScanDesc scan,BlockNumber blockno,BufferAccessStrategy bstrategy)1472 table_scan_analyze_next_block(TableScanDesc scan, BlockNumber blockno,
1473 							  BufferAccessStrategy bstrategy)
1474 {
1475 	return scan->rs_rd->rd_tableam->scan_analyze_next_block(scan, blockno,
1476 															bstrategy);
1477 }
1478 
1479 /*
1480  * Iterate over tuples in the block selected with
1481  * table_scan_analyze_next_block() (which needs to have returned true, and
1482  * this routine may not have returned false for the same block before). If a
1483  * tuple that's suitable for sampling is found, true is returned and a tuple
1484  * is stored in `slot`.
1485  *
1486  * *liverows and *deadrows are incremented according to the encountered
1487  * tuples.
1488  */
1489 static inline bool
table_scan_analyze_next_tuple(TableScanDesc scan,TransactionId OldestXmin,double * liverows,double * deadrows,TupleTableSlot * slot)1490 table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin,
1491 							  double *liverows, double *deadrows,
1492 							  TupleTableSlot *slot)
1493 {
1494 	return scan->rs_rd->rd_tableam->scan_analyze_next_tuple(scan, OldestXmin,
1495 															liverows, deadrows,
1496 															slot);
1497 }
1498 
1499 /*
1500  * table_index_build_scan - scan the table to find tuples to be indexed
1501  *
1502  * This is called back from an access-method-specific index build procedure
1503  * after the AM has done whatever setup it needs.  The parent table relation
1504  * is scanned to find tuples that should be entered into the index.  Each
1505  * such tuple is passed to the AM's callback routine, which does the right
1506  * things to add it to the new index.  After we return, the AM's index
1507  * build procedure does whatever cleanup it needs.
1508  *
1509  * The total count of live tuples is returned.  This is for updating pg_class
1510  * statistics.  (It's annoying not to be able to do that here, but we want to
1511  * merge that update with others; see index_update_stats.)  Note that the
1512  * index AM itself must keep track of the number of index tuples; we don't do
1513  * so here because the AM might reject some of the tuples for its own reasons,
1514  * such as being unable to store NULLs.
1515  *
1516  * If 'progress', the PROGRESS_SCAN_BLOCKS_TOTAL counter is updated when
1517  * starting the scan, and PROGRESS_SCAN_BLOCKS_DONE is updated as we go along.
1518  *
1519  * A side effect is to set indexInfo->ii_BrokenHotChain to true if we detect
1520  * any potentially broken HOT chains.  Currently, we set this if there are any
1521  * RECENTLY_DEAD or DELETE_IN_PROGRESS entries in a HOT chain, without trying
1522  * very hard to detect whether they're really incompatible with the chain tip.
1523  * This only really makes sense for heap AM, it might need to be generalized
1524  * for other AMs later.
1525  */
1526 static inline double
table_index_build_scan(Relation table_rel,Relation index_rel,struct IndexInfo * index_info,bool allow_sync,bool progress,IndexBuildCallback callback,void * callback_state,TableScanDesc scan)1527 table_index_build_scan(Relation table_rel,
1528 					   Relation index_rel,
1529 					   struct IndexInfo *index_info,
1530 					   bool allow_sync,
1531 					   bool progress,
1532 					   IndexBuildCallback callback,
1533 					   void *callback_state,
1534 					   TableScanDesc scan)
1535 {
1536 	return table_rel->rd_tableam->index_build_range_scan(table_rel,
1537 														 index_rel,
1538 														 index_info,
1539 														 allow_sync,
1540 														 false,
1541 														 progress,
1542 														 0,
1543 														 InvalidBlockNumber,
1544 														 callback,
1545 														 callback_state,
1546 														 scan);
1547 }
1548 
1549 /*
1550  * As table_index_build_scan(), except that instead of scanning the complete
1551  * table, only the given number of blocks are scanned.  Scan to end-of-rel can
1552  * be signaled by passing InvalidBlockNumber as numblocks.  Note that
1553  * restricting the range to scan cannot be done when requesting syncscan.
1554  *
1555  * When "anyvisible" mode is requested, all tuples visible to any transaction
1556  * are indexed and counted as live, including those inserted or deleted by
1557  * transactions that are still in progress.
1558  */
1559 static inline double
table_index_build_range_scan(Relation table_rel,Relation index_rel,struct IndexInfo * index_info,bool allow_sync,bool anyvisible,bool progress,BlockNumber start_blockno,BlockNumber numblocks,IndexBuildCallback callback,void * callback_state,TableScanDesc scan)1560 table_index_build_range_scan(Relation table_rel,
1561 							 Relation index_rel,
1562 							 struct IndexInfo *index_info,
1563 							 bool allow_sync,
1564 							 bool anyvisible,
1565 							 bool progress,
1566 							 BlockNumber start_blockno,
1567 							 BlockNumber numblocks,
1568 							 IndexBuildCallback callback,
1569 							 void *callback_state,
1570 							 TableScanDesc scan)
1571 {
1572 	return table_rel->rd_tableam->index_build_range_scan(table_rel,
1573 														 index_rel,
1574 														 index_info,
1575 														 allow_sync,
1576 														 anyvisible,
1577 														 progress,
1578 														 start_blockno,
1579 														 numblocks,
1580 														 callback,
1581 														 callback_state,
1582 														 scan);
1583 }
1584 
1585 /*
1586  * table_index_validate_scan - second table scan for concurrent index build
1587  *
1588  * See validate_index() for an explanation.
1589  */
1590 static inline void
table_index_validate_scan(Relation table_rel,Relation index_rel,struct IndexInfo * index_info,Snapshot snapshot,struct ValidateIndexState * state)1591 table_index_validate_scan(Relation table_rel,
1592 						  Relation index_rel,
1593 						  struct IndexInfo *index_info,
1594 						  Snapshot snapshot,
1595 						  struct ValidateIndexState *state)
1596 {
1597 	table_rel->rd_tableam->index_validate_scan(table_rel,
1598 											   index_rel,
1599 											   index_info,
1600 											   snapshot,
1601 											   state);
1602 }
1603 
1604 
1605 /* ----------------------------------------------------------------------------
1606  * Miscellaneous functionality
1607  * ----------------------------------------------------------------------------
1608  */
1609 
1610 /*
1611  * Return the current size of `rel` in bytes. If `forkNumber` is
1612  * InvalidForkNumber, return the relation's overall size, otherwise the size
1613  * for the indicated fork.
1614  *
1615  * Note that the overall size might not be the equivalent of the sum of sizes
1616  * for the individual forks for some AMs, e.g. because the AMs storage does
1617  * not neatly map onto the builtin types of forks.
1618  */
1619 static inline uint64
table_relation_size(Relation rel,ForkNumber forkNumber)1620 table_relation_size(Relation rel, ForkNumber forkNumber)
1621 {
1622 	return rel->rd_tableam->relation_size(rel, forkNumber);
1623 }
1624 
1625 /*
1626  * table_relation_needs_toast_table - does this relation need a toast table?
1627  */
1628 static inline bool
table_relation_needs_toast_table(Relation rel)1629 table_relation_needs_toast_table(Relation rel)
1630 {
1631 	return rel->rd_tableam->relation_needs_toast_table(rel);
1632 }
1633 
1634 /*
1635  * Return the OID of the AM that should be used to implement the TOAST table
1636  * for this relation.
1637  */
1638 static inline Oid
table_relation_toast_am(Relation rel)1639 table_relation_toast_am(Relation rel)
1640 {
1641 	return rel->rd_tableam->relation_toast_am(rel);
1642 }
1643 
1644 /*
1645  * Fetch all or part of a TOAST value from a TOAST table.
1646  *
1647  * If this AM is never used to implement a TOAST table, then this callback
1648  * is not needed. But, if toasted values are ever stored in a table of this
1649  * type, then you will need this callback.
1650  *
1651  * toastrel is the relation in which the toasted value is stored.
1652  *
1653  * valueid identifes which toast value is to be fetched. For the heap,
1654  * this corresponds to the values stored in the chunk_id column.
1655  *
1656  * attrsize is the total size of the toast value to be fetched.
1657  *
1658  * sliceoffset is the offset within the toast value of the first byte that
1659  * should be fetched.
1660  *
1661  * slicelength is the number of bytes from the toast value that should be
1662  * fetched.
1663  *
1664  * result is caller-allocated space into which the fetched bytes should be
1665  * stored.
1666  */
1667 static inline void
table_relation_fetch_toast_slice(Relation toastrel,Oid valueid,int32 attrsize,int32 sliceoffset,int32 slicelength,struct varlena * result)1668 table_relation_fetch_toast_slice(Relation toastrel, Oid valueid,
1669 								 int32 attrsize, int32 sliceoffset,
1670 								 int32 slicelength, struct varlena *result)
1671 {
1672 	toastrel->rd_tableam->relation_fetch_toast_slice(toastrel, valueid,
1673 													 attrsize,
1674 													 sliceoffset, slicelength,
1675 													 result);
1676 }
1677 
1678 
1679 /* ----------------------------------------------------------------------------
1680  * Planner related functionality
1681  * ----------------------------------------------------------------------------
1682  */
1683 
1684 /*
1685  * Estimate the current size of the relation, as an AM specific workhorse for
1686  * estimate_rel_size(). Look there for an explanation of the parameters.
1687  */
1688 static inline void
table_relation_estimate_size(Relation rel,int32 * attr_widths,BlockNumber * pages,double * tuples,double * allvisfrac)1689 table_relation_estimate_size(Relation rel, int32 *attr_widths,
1690 							 BlockNumber *pages, double *tuples,
1691 							 double *allvisfrac)
1692 {
1693 	rel->rd_tableam->relation_estimate_size(rel, attr_widths, pages, tuples,
1694 											allvisfrac);
1695 }
1696 
1697 
1698 /* ----------------------------------------------------------------------------
1699  * Executor related functionality
1700  * ----------------------------------------------------------------------------
1701  */
1702 
1703 /*
1704  * Prepare to fetch / check / return tuples from `tbmres->blockno` as part of
1705  * a bitmap table scan. `scan` needs to have been started via
1706  * table_beginscan_bm(). Returns false if there are no tuples to be found on
1707  * the page, true otherwise.
1708  *
1709  * Note, this is an optionally implemented function, therefore should only be
1710  * used after verifying the presence (at plan time or such).
1711  */
1712 static inline bool
table_scan_bitmap_next_block(TableScanDesc scan,struct TBMIterateResult * tbmres)1713 table_scan_bitmap_next_block(TableScanDesc scan,
1714 							 struct TBMIterateResult *tbmres)
1715 {
1716 	return scan->rs_rd->rd_tableam->scan_bitmap_next_block(scan,
1717 														   tbmres);
1718 }
1719 
1720 /*
1721  * Fetch the next tuple of a bitmap table scan into `slot` and return true if
1722  * a visible tuple was found, false otherwise.
1723  * table_scan_bitmap_next_block() needs to previously have selected a
1724  * block (i.e. returned true), and no previous
1725  * table_scan_bitmap_next_tuple() for the same block may have
1726  * returned false.
1727  */
1728 static inline bool
table_scan_bitmap_next_tuple(TableScanDesc scan,struct TBMIterateResult * tbmres,TupleTableSlot * slot)1729 table_scan_bitmap_next_tuple(TableScanDesc scan,
1730 							 struct TBMIterateResult *tbmres,
1731 							 TupleTableSlot *slot)
1732 {
1733 	return scan->rs_rd->rd_tableam->scan_bitmap_next_tuple(scan,
1734 														   tbmres,
1735 														   slot);
1736 }
1737 
1738 /*
1739  * Prepare to fetch tuples from the next block in a sample scan. Returns false
1740  * if the sample scan is finished, true otherwise. `scan` needs to have been
1741  * started via table_beginscan_sampling().
1742  *
1743  * This will call the TsmRoutine's NextSampleBlock() callback if necessary
1744  * (i.e. NextSampleBlock is not NULL), or perform a sequential scan over the
1745  * underlying relation.
1746  */
1747 static inline bool
table_scan_sample_next_block(TableScanDesc scan,struct SampleScanState * scanstate)1748 table_scan_sample_next_block(TableScanDesc scan,
1749 							 struct SampleScanState *scanstate)
1750 {
1751 	return scan->rs_rd->rd_tableam->scan_sample_next_block(scan, scanstate);
1752 }
1753 
1754 /*
1755  * Fetch the next sample tuple into `slot` and return true if a visible tuple
1756  * was found, false otherwise. table_scan_sample_next_block() needs to
1757  * previously have selected a block (i.e. returned true), and no previous
1758  * table_scan_sample_next_tuple() for the same block may have returned false.
1759  *
1760  * This will call the TsmRoutine's NextSampleTuple() callback.
1761  */
1762 static inline bool
table_scan_sample_next_tuple(TableScanDesc scan,struct SampleScanState * scanstate,TupleTableSlot * slot)1763 table_scan_sample_next_tuple(TableScanDesc scan,
1764 							 struct SampleScanState *scanstate,
1765 							 TupleTableSlot *slot)
1766 {
1767 	return scan->rs_rd->rd_tableam->scan_sample_next_tuple(scan, scanstate,
1768 														   slot);
1769 }
1770 
1771 
1772 /* ----------------------------------------------------------------------------
1773  * Functions to make modifications a bit simpler.
1774  * ----------------------------------------------------------------------------
1775  */
1776 
1777 extern void simple_table_tuple_insert(Relation rel, TupleTableSlot *slot);
1778 extern void simple_table_tuple_delete(Relation rel, ItemPointer tid,
1779 									  Snapshot snapshot);
1780 extern void simple_table_tuple_update(Relation rel, ItemPointer otid,
1781 									  TupleTableSlot *slot, Snapshot snapshot,
1782 									  bool *update_indexes);
1783 
1784 
1785 /* ----------------------------------------------------------------------------
1786  * Helper functions to implement parallel scans for block oriented AMs.
1787  * ----------------------------------------------------------------------------
1788  */
1789 
1790 extern Size table_block_parallelscan_estimate(Relation rel);
1791 extern Size table_block_parallelscan_initialize(Relation rel,
1792 												ParallelTableScanDesc pscan);
1793 extern void table_block_parallelscan_reinitialize(Relation rel,
1794 												  ParallelTableScanDesc pscan);
1795 extern BlockNumber table_block_parallelscan_nextpage(Relation rel,
1796 													 ParallelBlockTableScanDesc pbscan);
1797 extern void table_block_parallelscan_startblock_init(Relation rel,
1798 													 ParallelBlockTableScanDesc pbscan);
1799 
1800 
1801 /* ----------------------------------------------------------------------------
1802  * Helper functions to implement relation sizing for block oriented AMs.
1803  * ----------------------------------------------------------------------------
1804  */
1805 
1806 extern uint64 table_block_relation_size(Relation rel, ForkNumber forkNumber);
1807 extern void table_block_relation_estimate_size(Relation rel,
1808 											   int32 *attr_widths,
1809 											   BlockNumber *pages,
1810 											   double *tuples,
1811 											   double *allvisfrac,
1812 											   Size overhead_bytes_per_tuple,
1813 											   Size usable_bytes_per_page);
1814 
1815 /* ----------------------------------------------------------------------------
1816  * Functions in tableamapi.c
1817  * ----------------------------------------------------------------------------
1818  */
1819 
1820 extern const TableAmRoutine *GetTableAmRoutine(Oid amhandler);
1821 extern const TableAmRoutine *GetHeapamTableAmRoutine(void);
1822 extern bool check_default_table_access_method(char **newval, void **extra,
1823 											  GucSource source);
1824 
1825 #endif							/* TABLEAM_H */
1826