1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  *	  Definitions for "primitive" node types, those that are used in more
5  *	  than one of the parse/plan/execute stages of the query pipeline.
6  *	  Currently, these are mostly nodes for executable expressions
7  *	  and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  *						node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  *	  specifies an alias for a range variable; the alias might also
33  *	  specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings).  In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings ("").  See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
41 	NodeTag		type;
42 	char	   *aliasname;		/* aliased rel name (never qualified) */
43 	List	   *colnames;		/* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49 	ONCOMMIT_NOOP,				/* No ON COMMIT clause (do nothing) */
50 	ONCOMMIT_PRESERVE_ROWS,		/* ON COMMIT PRESERVE ROWS (do nothing) */
51 	ONCOMMIT_DELETE_ROWS,		/* ON COMMIT DELETE ROWS */
52 	ONCOMMIT_DROP				/* ON COMMIT DROP */
53 } OnCommitAction;
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables.  In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
65 	NodeTag		type;
66 	char	   *catalogname;	/* the catalog (database) name, or NULL */
67 	char	   *schemaname;		/* the schema name, or NULL */
68 	char	   *relname;		/* the relation/sequence name */
69 	bool		inh;			/* expand rel by inheritance? recursively act
70 								 * on children? */
71 	char		relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72 	Alias	   *alias;			/* table alias & optional column aliases */
73 	int			location;		/* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
84 	NodeTag		type;
85 	List	   *ns_uris;		/* list of namespace URI expressions */
86 	List	   *ns_names;		/* list of namespace names or NULL */
87 	Node	   *docexpr;		/* input document expression */
88 	Node	   *rowexpr;		/* row filter expression */
89 	List	   *colnames;		/* column names (list of String) */
90 	List	   *coltypes;		/* OID list of column type OIDs */
91 	List	   *coltypmods;		/* integer list of column typmods */
92 	List	   *colcollations;	/* OID list of column collation OIDs */
93 	List	   *colexprs;		/* list of column filter expressions */
94 	List	   *coldefexprs;	/* list of column default expressions */
95 	Bitmapset  *notnulls;		/* nullability flag for each output column */
96 	int			ordinalitycol;	/* counts from 0; -1 if none specified */
97 	int			location;		/* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL.  (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
110 	NodeTag		type;
111 
112 	RangeVar   *rel;			/* target relation name */
113 	List	   *colNames;		/* column names to assign, or NIL */
114 	char	   *accessMethod;	/* table access method */
115 	List	   *options;		/* options from WITH clause */
116 	OnCommitAction onCommit;	/* what do we do at COMMIT? */
117 	char	   *tableSpaceName; /* table space to use, or NULL */
118 	Node	   *viewQuery;		/* materialized view's SELECT query */
119 	bool		skipData;		/* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  *					node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field).  Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation.  See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
138 	NodeTag		type;
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * In the parser and planner, varno and varattno identify the semantic
145  * referent, which is a base-relation column unless the reference is to a join
146  * USING column that isn't semantically equivalent to either join input column
147  * (because it is a FULL join or the input column requires a type coercion).
148  * In those cases varno and varattno refer to the JOIN RTE.  (Early in the
149  * planner, we replace such join references by the implied expression; but up
150  * till then we want join reference Vars to keep their original identity for
151  * query-printing purposes.)
152  *
153  * At the end of planning, Var nodes appearing in upper-level plan nodes are
154  * reassigned to point to the outputs of their subplans; for example, in a
155  * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
156  * index of the proper element of that subplan's target list.  Similarly,
157  * INDEX_VAR is used to identify Vars that reference an index column rather
158  * than a heap column.  (In ForeignScan and CustomScan plan nodes, INDEX_VAR
159  * is abused to signify references to columns of a custom scan tuple type.)
160  *
161  * In the parser, varnosyn and varattnosyn are either identical to
162  * varno/varattno, or they specify the column's position in an aliased JOIN
163  * RTE that hides the semantic referent RTE's refname.  This is a syntactic
164  * identifier as opposed to the semantic identifier; it tells ruleutils.c
165  * how to print the Var properly.  varnosyn/varattnosyn retain their values
166  * throughout planning and execution, so they are particularly helpful to
167  * identify Vars when debugging.  Note, however, that a Var that is generated
168  * in the planner and doesn't correspond to any simple relation column may
169  * have varnosyn = varattnosyn = 0.
170  */
171 #define    INNER_VAR		65000	/* reference to inner subplan */
172 #define    OUTER_VAR		65001	/* reference to outer subplan */
173 #define    INDEX_VAR		65002	/* reference to index column */
174 
175 #define IS_SPECIAL_VARNO(varno)		((varno) >= INNER_VAR)
176 
177 /* Symbols for the indexes of the special RTE entries in rules */
178 #define    PRS2_OLD_VARNO			1
179 #define    PRS2_NEW_VARNO			2
180 
181 typedef struct Var
182 {
183 	Expr		xpr;
184 	Index		varno;			/* index of this var's relation in the range
185 								 * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
186 	AttrNumber	varattno;		/* attribute number of this var, or zero for
187 								 * all attrs ("whole-row Var") */
188 	Oid			vartype;		/* pg_type OID for the type of this var */
189 	int32		vartypmod;		/* pg_attribute typmod value */
190 	Oid			varcollid;		/* OID of collation, or InvalidOid if none */
191 	Index		varlevelsup;	/* for subquery variables referencing outer
192 								 * relations; 0 in a normal var, >0 means N
193 								 * levels up */
194 	Index		varnosyn;		/* syntactic relation index (0 if unknown) */
195 	AttrNumber	varattnosyn;	/* syntactic attribute number */
196 	int			location;		/* token location, or -1 if unknown */
197 } Var;
198 
199 /*
200  * Const
201  *
202  * Note: for varlena data types, we make a rule that a Const node's value
203  * must be in non-extended form (4-byte header, no compression or external
204  * references).  This ensures that the Const node is self-contained and makes
205  * it more likely that equal() will see logically identical values as equal.
206  */
207 typedef struct Const
208 {
209 	Expr		xpr;
210 	Oid			consttype;		/* pg_type OID of the constant's datatype */
211 	int32		consttypmod;	/* typmod value, if any */
212 	Oid			constcollid;	/* OID of collation, or InvalidOid if none */
213 	int			constlen;		/* typlen of the constant's datatype */
214 	Datum		constvalue;		/* the constant's value */
215 	bool		constisnull;	/* whether the constant is null (if true,
216 								 * constvalue is undefined) */
217 	bool		constbyval;		/* whether this datatype is passed by value.
218 								 * If true, then all the information is stored
219 								 * in the Datum. If false, then the Datum
220 								 * contains a pointer to the information. */
221 	int			location;		/* token location, or -1 if unknown */
222 } Const;
223 
224 /*
225  * Param
226  *
227  *		paramkind specifies the kind of parameter. The possible values
228  *		for this field are:
229  *
230  *		PARAM_EXTERN:  The parameter value is supplied from outside the plan.
231  *				Such parameters are numbered from 1 to n.
232  *
233  *		PARAM_EXEC:  The parameter is an internal executor parameter, used
234  *				for passing values into and out of sub-queries or from
235  *				nestloop joins to their inner scans.
236  *				For historical reasons, such parameters are numbered from 0.
237  *				These numbers are independent of PARAM_EXTERN numbers.
238  *
239  *		PARAM_SUBLINK:	The parameter represents an output column of a SubLink
240  *				node's sub-select.  The column number is contained in the
241  *				`paramid' field.  (This type of Param is converted to
242  *				PARAM_EXEC during planning.)
243  *
244  *		PARAM_MULTIEXPR:  Like PARAM_SUBLINK, the parameter represents an
245  *				output column of a SubLink node's sub-select, but here, the
246  *				SubLink is always a MULTIEXPR SubLink.  The high-order 16 bits
247  *				of the `paramid' field contain the SubLink's subLinkId, and
248  *				the low-order 16 bits contain the column number.  (This type
249  *				of Param is also converted to PARAM_EXEC during planning.)
250  */
251 typedef enum ParamKind
252 {
253 	PARAM_EXTERN,
254 	PARAM_EXEC,
255 	PARAM_SUBLINK,
256 	PARAM_MULTIEXPR
257 } ParamKind;
258 
259 typedef struct Param
260 {
261 	Expr		xpr;
262 	ParamKind	paramkind;		/* kind of parameter. See above */
263 	int			paramid;		/* numeric ID for parameter */
264 	Oid			paramtype;		/* pg_type OID of parameter's datatype */
265 	int32		paramtypmod;	/* typmod value, if known */
266 	Oid			paramcollid;	/* OID of collation, or InvalidOid if none */
267 	int			location;		/* token location, or -1 if unknown */
268 } Param;
269 
270 /*
271  * Aggref
272  *
273  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
274  *
275  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
276  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
277  * be added at the end to represent ORDER BY expressions that are not also
278  * arguments.  As in a top-level Query, the TLEs can be marked with
279  * ressortgroupref indexes to let them be referenced by SortGroupClause
280  * entries in the aggorder and/or aggdistinct lists.  This represents ORDER BY
281  * and DISTINCT operations to be applied to the aggregate input rows before
282  * they are passed to the transition function.  The grammar only allows a
283  * simple "DISTINCT" specifier for the arguments, but we use the full
284  * query-level representation to allow more code sharing.
285  *
286  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
287  * (aggregated) arguments, all of which will be listed in the aggorder list.
288  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
289  * The direct arguments appear in aggdirectargs (as a list of plain
290  * expressions, not TargetEntry nodes).
291  *
292  * aggtranstype is the data type of the state transition values for this
293  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
294  * This is determined during planning and is InvalidOid before that.
295  *
296  * aggargtypes is an OID list of the data types of the direct and regular
297  * arguments.  Normally it's redundant with the aggdirectargs and args lists,
298  * but in a combining aggregate, it's not because the args list has been
299  * replaced with a single argument representing the partial-aggregate
300  * transition values.
301  *
302  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
303  * parent plan node.  It's always set to AGGSPLIT_SIMPLE in the parser, but
304  * the planner might change it to something else.  We use this mainly as
305  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
306  * indicates a non-final mode, aggtype reflects the transition data type
307  * not the SQL-level output type of the aggregate.
308  */
309 typedef struct Aggref
310 {
311 	Expr		xpr;
312 	Oid			aggfnoid;		/* pg_proc Oid of the aggregate */
313 	Oid			aggtype;		/* type Oid of result of the aggregate */
314 	Oid			aggcollid;		/* OID of collation of result */
315 	Oid			inputcollid;	/* OID of collation that function should use */
316 	Oid			aggtranstype;	/* type Oid of aggregate's transition value */
317 	List	   *aggargtypes;	/* type Oids of direct and aggregated args */
318 	List	   *aggdirectargs;	/* direct arguments, if an ordered-set agg */
319 	List	   *args;			/* aggregated arguments and sort expressions */
320 	List	   *aggorder;		/* ORDER BY (list of SortGroupClause) */
321 	List	   *aggdistinct;	/* DISTINCT (list of SortGroupClause) */
322 	Expr	   *aggfilter;		/* FILTER expression, if any */
323 	bool		aggstar;		/* true if argument list was really '*' */
324 	bool		aggvariadic;	/* true if variadic arguments have been
325 								 * combined into an array last argument */
326 	char		aggkind;		/* aggregate kind (see pg_aggregate.h) */
327 	Index		agglevelsup;	/* > 0 if agg belongs to outer query */
328 	AggSplit	aggsplit;		/* expected agg-splitting mode of parent Agg */
329 	int			location;		/* token location, or -1 if unknown */
330 } Aggref;
331 
332 /*
333  * GroupingFunc
334  *
335  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
336  * like an aggregate function (e.g. it "belongs" to a specific query level,
337  * which might not be the one immediately containing it), but also differs in
338  * an important respect: it never evaluates its arguments, they merely
339  * designate expressions from the GROUP BY clause of the query level to which
340  * it belongs.
341  *
342  * The spec defines the evaluation of GROUPING() purely by syntactic
343  * replacement, but we make it a real expression for optimization purposes so
344  * that one Agg node can handle multiple grouping sets at once.  Evaluating the
345  * result only needs the column positions to check against the grouping set
346  * being projected.  However, for EXPLAIN to produce meaningful output, we have
347  * to keep the original expressions around, since expression deparse does not
348  * give us any feasible way to get at the GROUP BY clause.
349  *
350  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
351  * lists and agglevelsup, without comparing the refs and cols annotations.
352  *
353  * In raw parse output we have only the args list; parse analysis fills in the
354  * refs list, and the planner fills in the cols list.
355  */
356 typedef struct GroupingFunc
357 {
358 	Expr		xpr;
359 	List	   *args;			/* arguments, not evaluated but kept for
360 								 * benefit of EXPLAIN etc. */
361 	List	   *refs;			/* ressortgrouprefs of arguments */
362 	List	   *cols;			/* actual column positions set by planner */
363 	Index		agglevelsup;	/* same as Aggref.agglevelsup */
364 	int			location;		/* token location */
365 } GroupingFunc;
366 
367 /*
368  * WindowFunc
369  */
370 typedef struct WindowFunc
371 {
372 	Expr		xpr;
373 	Oid			winfnoid;		/* pg_proc Oid of the function */
374 	Oid			wintype;		/* type Oid of result of the window function */
375 	Oid			wincollid;		/* OID of collation of result */
376 	Oid			inputcollid;	/* OID of collation that function should use */
377 	List	   *args;			/* arguments to the window function */
378 	Expr	   *aggfilter;		/* FILTER expression, if any */
379 	Index		winref;			/* index of associated WindowClause */
380 	bool		winstar;		/* true if argument list was really '*' */
381 	bool		winagg;			/* is function a simple aggregate? */
382 	int			location;		/* token location, or -1 if unknown */
383 } WindowFunc;
384 
385 /* ----------------
386  *	SubscriptingRef: describes a subscripting operation over a container
387  *			(array, etc).
388  *
389  * A SubscriptingRef can describe fetching a single element from a container,
390  * fetching a part of container (e.g. array slice), storing a single element into
391  * a container, or storing a slice.  The "store" cases work with an
392  * initial container value and a source value that is inserted into the
393  * appropriate part of the container; the result of the operation is an
394  * entire new modified container value.
395  *
396  * If reflowerindexpr = NIL, then we are fetching or storing a single container
397  * element at the subscripts given by refupperindexpr. Otherwise we are
398  * fetching or storing a container slice, that is a rectangular subcontainer
399  * with lower and upper bounds given by the index expressions.
400  * reflowerindexpr must be the same length as refupperindexpr when it
401  * is not NIL.
402  *
403  * In the slice case, individual expressions in the subscript lists can be
404  * NULL, meaning "substitute the array's current lower or upper bound".
405  *
406  * Note: the result datatype is the element type when fetching a single
407  * element; but it is the array type when doing subarray fetch or either
408  * type of store.
409  *
410  * Note: for the cases where a container is returned, if refexpr yields a R/W
411  * expanded container, then the implementation is allowed to modify that object
412  * in-place and return the same object.)
413  * ----------------
414  */
415 typedef struct SubscriptingRef
416 {
417 	Expr		xpr;
418 	Oid			refcontainertype;	/* type of the container proper */
419 	Oid			refelemtype;	/* type of the container elements */
420 	int32		reftypmod;		/* typmod of the container (and elements too) */
421 	Oid			refcollid;		/* OID of collation, or InvalidOid if none */
422 	List	   *refupperindexpr;	/* expressions that evaluate to upper
423 									 * container indexes */
424 	List	   *reflowerindexpr;	/* expressions that evaluate to lower
425 									 * container indexes, or NIL for single
426 									 * container element */
427 	Expr	   *refexpr;		/* the expression that evaluates to a
428 								 * container value */
429 
430 	Expr	   *refassgnexpr;	/* expression for the source value, or NULL if
431 								 * fetch */
432 } SubscriptingRef;
433 
434 /*
435  * CoercionContext - distinguishes the allowed set of type casts
436  *
437  * NB: ordering of the alternatives is significant; later (larger) values
438  * allow more casts than earlier ones.
439  */
440 typedef enum CoercionContext
441 {
442 	COERCION_IMPLICIT,			/* coercion in context of expression */
443 	COERCION_ASSIGNMENT,		/* coercion in context of assignment */
444 	COERCION_EXPLICIT			/* explicit cast operation */
445 } CoercionContext;
446 
447 /*
448  * CoercionForm - how to display a node that could have come from a cast
449  *
450  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
451  * any semantically significant information.  We need that behavior so that
452  * the planner will consider equivalent implicit and explicit casts to be
453  * equivalent.  In cases where those actually behave differently, the coercion
454  * function's arguments will be different.
455  */
456 typedef enum CoercionForm
457 {
458 	COERCE_EXPLICIT_CALL,		/* display as a function call */
459 	COERCE_EXPLICIT_CAST,		/* display as an explicit cast */
460 	COERCE_IMPLICIT_CAST		/* implicit cast, so hide it */
461 } CoercionForm;
462 
463 /*
464  * FuncExpr - expression node for a function call
465  */
466 typedef struct FuncExpr
467 {
468 	Expr		xpr;
469 	Oid			funcid;			/* PG_PROC OID of the function */
470 	Oid			funcresulttype; /* PG_TYPE OID of result value */
471 	bool		funcretset;		/* true if function returns set */
472 	bool		funcvariadic;	/* true if variadic arguments have been
473 								 * combined into an array last argument */
474 	CoercionForm funcformat;	/* how to display this function call */
475 	Oid			funccollid;		/* OID of collation of result */
476 	Oid			inputcollid;	/* OID of collation that function should use */
477 	List	   *args;			/* arguments to the function */
478 	int			location;		/* token location, or -1 if unknown */
479 } FuncExpr;
480 
481 /*
482  * NamedArgExpr - a named argument of a function
483  *
484  * This node type can only appear in the args list of a FuncCall or FuncExpr
485  * node.  We support pure positional call notation (no named arguments),
486  * named notation (all arguments are named), and mixed notation (unnamed
487  * arguments followed by named ones).
488  *
489  * Parse analysis sets argnumber to the positional index of the argument,
490  * but doesn't rearrange the argument list.
491  *
492  * The planner will convert argument lists to pure positional notation
493  * during expression preprocessing, so execution never sees a NamedArgExpr.
494  */
495 typedef struct NamedArgExpr
496 {
497 	Expr		xpr;
498 	Expr	   *arg;			/* the argument expression */
499 	char	   *name;			/* the name */
500 	int			argnumber;		/* argument's number in positional notation */
501 	int			location;		/* argument name location, or -1 if unknown */
502 } NamedArgExpr;
503 
504 /*
505  * OpExpr - expression node for an operator invocation
506  *
507  * Semantically, this is essentially the same as a function call.
508  *
509  * Note that opfuncid is not necessarily filled in immediately on creation
510  * of the node.  The planner makes sure it is valid before passing the node
511  * tree to the executor, but during parsing/planning opfuncid can be 0.
512  */
513 typedef struct OpExpr
514 {
515 	Expr		xpr;
516 	Oid			opno;			/* PG_OPERATOR OID of the operator */
517 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
518 	Oid			opresulttype;	/* PG_TYPE OID of result value */
519 	bool		opretset;		/* true if operator returns set */
520 	Oid			opcollid;		/* OID of collation of result */
521 	Oid			inputcollid;	/* OID of collation that operator should use */
522 	List	   *args;			/* arguments to the operator (1 or 2) */
523 	int			location;		/* token location, or -1 if unknown */
524 } OpExpr;
525 
526 /*
527  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
528  *
529  * Except for the nodetag, this is represented identically to an OpExpr
530  * referencing the "=" operator for x and y.
531  * We use "=", not the more obvious "<>", because more datatypes have "="
532  * than "<>".  This means the executor must invert the operator result.
533  * Note that the operator function won't be called at all if either input
534  * is NULL, since then the result can be determined directly.
535  */
536 typedef OpExpr DistinctExpr;
537 
538 /*
539  * NullIfExpr - a NULLIF expression
540  *
541  * Like DistinctExpr, this is represented the same as an OpExpr referencing
542  * the "=" operator for x and y.
543  */
544 typedef OpExpr NullIfExpr;
545 
546 /*
547  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
548  *
549  * The operator must yield boolean.  It is applied to the left operand
550  * and each element of the righthand array, and the results are combined
551  * with OR or AND (for ANY or ALL respectively).  The node representation
552  * is almost the same as for the underlying operator, but we need a useOr
553  * flag to remember whether it's ANY or ALL, and we don't have to store
554  * the result type (or the collation) because it must be boolean.
555  */
556 typedef struct ScalarArrayOpExpr
557 {
558 	Expr		xpr;
559 	Oid			opno;			/* PG_OPERATOR OID of the operator */
560 	Oid			opfuncid;		/* PG_PROC OID of underlying function */
561 	bool		useOr;			/* true for ANY, false for ALL */
562 	Oid			inputcollid;	/* OID of collation that operator should use */
563 	List	   *args;			/* the scalar and array operands */
564 	int			location;		/* token location, or -1 if unknown */
565 } ScalarArrayOpExpr;
566 
567 /*
568  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
569  *
570  * Notice the arguments are given as a List.  For NOT, of course the list
571  * must always have exactly one element.  For AND and OR, there can be two
572  * or more arguments.
573  */
574 typedef enum BoolExprType
575 {
576 	AND_EXPR, OR_EXPR, NOT_EXPR
577 } BoolExprType;
578 
579 typedef struct BoolExpr
580 {
581 	Expr		xpr;
582 	BoolExprType boolop;
583 	List	   *args;			/* arguments to this expression */
584 	int			location;		/* token location, or -1 if unknown */
585 } BoolExpr;
586 
587 /*
588  * SubLink
589  *
590  * A SubLink represents a subselect appearing in an expression, and in some
591  * cases also the combining operator(s) just above it.  The subLinkType
592  * indicates the form of the expression represented:
593  *	EXISTS_SUBLINK		EXISTS(SELECT ...)
594  *	ALL_SUBLINK			(lefthand) op ALL (SELECT ...)
595  *	ANY_SUBLINK			(lefthand) op ANY (SELECT ...)
596  *	ROWCOMPARE_SUBLINK	(lefthand) op (SELECT ...)
597  *	EXPR_SUBLINK		(SELECT with single targetlist item ...)
598  *	MULTIEXPR_SUBLINK	(SELECT with multiple targetlist items ...)
599  *	ARRAY_SUBLINK		ARRAY(SELECT with single targetlist item ...)
600  *	CTE_SUBLINK			WITH query (never actually part of an expression)
601  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
602  * same length as the subselect's targetlist.  ROWCOMPARE will *always* have
603  * a list with more than one entry; if the subselect has just one target
604  * then the parser will create an EXPR_SUBLINK instead (and any operator
605  * above the subselect will be represented separately).
606  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
607  * one row (if it returns no rows, the result is NULL).
608  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
609  * results.  ALL and ANY combine the per-row results using AND and OR
610  * semantics respectively.
611  * ARRAY requires just one target column, and creates an array of the target
612  * column's type using any number of rows resulting from the subselect.
613  *
614  * SubLink is classed as an Expr node, but it is not actually executable;
615  * it must be replaced in the expression tree by a SubPlan node during
616  * planning.
617  *
618  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
619  * of the lefthand expression (if any), and operName is the String name of
620  * the combining operator.  Also, subselect is a raw parsetree.  During parse
621  * analysis, the parser transforms testexpr into a complete boolean expression
622  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
623  * output columns of the subselect.  And subselect is transformed to a Query.
624  * This is the representation seen in saved rules and in the rewriter.
625  *
626  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
627  * are unused and are always null.
628  *
629  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
630  * other SubLinks.  This number identifies different multiple-assignment
631  * subqueries within an UPDATE statement's SET list.  It is unique only
632  * within a particular targetlist.  The output column(s) of the MULTIEXPR
633  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
634  *
635  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
636  * in SubPlans generated for WITH subqueries.
637  */
638 typedef enum SubLinkType
639 {
640 	EXISTS_SUBLINK,
641 	ALL_SUBLINK,
642 	ANY_SUBLINK,
643 	ROWCOMPARE_SUBLINK,
644 	EXPR_SUBLINK,
645 	MULTIEXPR_SUBLINK,
646 	ARRAY_SUBLINK,
647 	CTE_SUBLINK					/* for SubPlans only */
648 } SubLinkType;
649 
650 
651 typedef struct SubLink
652 {
653 	Expr		xpr;
654 	SubLinkType subLinkType;	/* see above */
655 	int			subLinkId;		/* ID (1..n); 0 if not MULTIEXPR */
656 	Node	   *testexpr;		/* outer-query test for ALL/ANY/ROWCOMPARE */
657 	List	   *operName;		/* originally specified operator name */
658 	Node	   *subselect;		/* subselect as Query* or raw parsetree */
659 	int			location;		/* token location, or -1 if unknown */
660 } SubLink;
661 
662 /*
663  * SubPlan - executable expression node for a subplan (sub-SELECT)
664  *
665  * The planner replaces SubLink nodes in expression trees with SubPlan
666  * nodes after it has finished planning the subquery.  SubPlan references
667  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
668  * (We avoid a direct link to make it easier to copy expression trees
669  * without causing multiple processing of the subplan.)
670  *
671  * In an ordinary subplan, testexpr points to an executable expression
672  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
673  * operator(s); the left-hand arguments are the original lefthand expressions,
674  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
675  * outputs of the sub-select.  (NOTE: runtime coercion functions may be
676  * inserted as well.)  This is just the same expression tree as testexpr in
677  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
678  * suitably numbered PARAM_EXEC nodes.
679  *
680  * If the sub-select becomes an initplan rather than a subplan, the executable
681  * expression is part of the outer plan's expression tree (and the SubPlan
682  * node itself is not, but rather is found in the outer plan's initPlan
683  * list).  In this case testexpr is NULL to avoid duplication.
684  *
685  * The planner also derives lists of the values that need to be passed into
686  * and out of the subplan.  Input values are represented as a list "args" of
687  * expressions to be evaluated in the outer-query context (currently these
688  * args are always just Vars, but in principle they could be any expression).
689  * The values are assigned to the global PARAM_EXEC params indexed by parParam
690  * (the parParam and args lists must have the same ordering).  setParam is a
691  * list of the PARAM_EXEC params that are computed by the sub-select, if it
692  * is an initplan; they are listed in order by sub-select output column
693  * position.  (parParam and setParam are integer Lists, not Bitmapsets,
694  * because their ordering is significant.)
695  *
696  * Also, the planner computes startup and per-call costs for use of the
697  * SubPlan.  Note that these include the cost of the subquery proper,
698  * evaluation of the testexpr if any, and any hashtable management overhead.
699  */
700 typedef struct SubPlan
701 {
702 	Expr		xpr;
703 	/* Fields copied from original SubLink: */
704 	SubLinkType subLinkType;	/* see above */
705 	/* The combining operators, transformed to an executable expression: */
706 	Node	   *testexpr;		/* OpExpr or RowCompareExpr expression tree */
707 	List	   *paramIds;		/* IDs of Params embedded in the above */
708 	/* Identification of the Plan tree to use: */
709 	int			plan_id;		/* Index (from 1) in PlannedStmt.subplans */
710 	/* Identification of the SubPlan for EXPLAIN and debugging purposes: */
711 	char	   *plan_name;		/* A name assigned during planning */
712 	/* Extra data useful for determining subplan's output type: */
713 	Oid			firstColType;	/* Type of first column of subplan result */
714 	int32		firstColTypmod; /* Typmod of first column of subplan result */
715 	Oid			firstColCollation;	/* Collation of first column of subplan
716 									 * result */
717 	/* Information about execution strategy: */
718 	bool		useHashTable;	/* true to store subselect output in a hash
719 								 * table (implies we are doing "IN") */
720 	bool		unknownEqFalse; /* true if it's okay to return FALSE when the
721 								 * spec result is UNKNOWN; this allows much
722 								 * simpler handling of null values */
723 	bool		parallel_safe;	/* is the subplan parallel-safe? */
724 	/* Note: parallel_safe does not consider contents of testexpr or args */
725 	/* Information for passing params into and out of the subselect: */
726 	/* setParam and parParam are lists of integers (param IDs) */
727 	List	   *setParam;		/* initplan subqueries have to set these
728 								 * Params for parent plan */
729 	List	   *parParam;		/* indices of input Params from parent plan */
730 	List	   *args;			/* exprs to pass as parParam values */
731 	/* Estimated execution costs: */
732 	Cost		startup_cost;	/* one-time setup cost */
733 	Cost		per_call_cost;	/* cost for each subplan evaluation */
734 } SubPlan;
735 
736 /*
737  * AlternativeSubPlan - expression node for a choice among SubPlans
738  *
739  * The subplans are given as a List so that the node definition need not
740  * change if there's ever more than two alternatives.  For the moment,
741  * though, there are always exactly two; and the first one is the fast-start
742  * plan.
743  */
744 typedef struct AlternativeSubPlan
745 {
746 	Expr		xpr;
747 	List	   *subplans;		/* SubPlan(s) with equivalent results */
748 } AlternativeSubPlan;
749 
750 /* ----------------
751  * FieldSelect
752  *
753  * FieldSelect represents the operation of extracting one field from a tuple
754  * value.  At runtime, the input expression is expected to yield a rowtype
755  * Datum.  The specified field number is extracted and returned as a Datum.
756  * ----------------
757  */
758 
759 typedef struct FieldSelect
760 {
761 	Expr		xpr;
762 	Expr	   *arg;			/* input expression */
763 	AttrNumber	fieldnum;		/* attribute number of field to extract */
764 	Oid			resulttype;		/* type of the field (result type of this
765 								 * node) */
766 	int32		resulttypmod;	/* output typmod (usually -1) */
767 	Oid			resultcollid;	/* OID of collation of the field */
768 } FieldSelect;
769 
770 /* ----------------
771  * FieldStore
772  *
773  * FieldStore represents the operation of modifying one field in a tuple
774  * value, yielding a new tuple value (the input is not touched!).  Like
775  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
776  * portion of a column.
777  *
778  * resulttype is always a named composite type (not a domain).  To update
779  * a composite domain value, apply CoerceToDomain to the FieldStore.
780  *
781  * A single FieldStore can actually represent updates of several different
782  * fields.  The parser only generates FieldStores with single-element lists,
783  * but the planner will collapse multiple updates of the same base column
784  * into one FieldStore.
785  * ----------------
786  */
787 
788 typedef struct FieldStore
789 {
790 	Expr		xpr;
791 	Expr	   *arg;			/* input tuple value */
792 	List	   *newvals;		/* new value(s) for field(s) */
793 	List	   *fieldnums;		/* integer list of field attnums */
794 	Oid			resulttype;		/* type of result (same as type of arg) */
795 	/* Like RowExpr, we deliberately omit a typmod and collation here */
796 } FieldStore;
797 
798 /* ----------------
799  * RelabelType
800  *
801  * RelabelType represents a "dummy" type coercion between two binary-
802  * compatible datatypes, such as reinterpreting the result of an OID
803  * expression as an int4.  It is a no-op at runtime; we only need it
804  * to provide a place to store the correct type to be attributed to
805  * the expression result during type resolution.  (We can't get away
806  * with just overwriting the type field of the input expression node,
807  * so we need a separate node to show the coercion's result type.)
808  * ----------------
809  */
810 
811 typedef struct RelabelType
812 {
813 	Expr		xpr;
814 	Expr	   *arg;			/* input expression */
815 	Oid			resulttype;		/* output type of coercion expression */
816 	int32		resulttypmod;	/* output typmod (usually -1) */
817 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
818 	CoercionForm relabelformat; /* how to display this node */
819 	int			location;		/* token location, or -1 if unknown */
820 } RelabelType;
821 
822 /* ----------------
823  * CoerceViaIO
824  *
825  * CoerceViaIO represents a type coercion between two types whose textual
826  * representations are compatible, implemented by invoking the source type's
827  * typoutput function then the destination type's typinput function.
828  * ----------------
829  */
830 
831 typedef struct CoerceViaIO
832 {
833 	Expr		xpr;
834 	Expr	   *arg;			/* input expression */
835 	Oid			resulttype;		/* output type of coercion */
836 	/* output typmod is not stored, but is presumed -1 */
837 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
838 	CoercionForm coerceformat;	/* how to display this node */
839 	int			location;		/* token location, or -1 if unknown */
840 } CoerceViaIO;
841 
842 /* ----------------
843  * ArrayCoerceExpr
844  *
845  * ArrayCoerceExpr represents a type coercion from one array type to another,
846  * which is implemented by applying the per-element coercion expression
847  * "elemexpr" to each element of the source array.  Within elemexpr, the
848  * source element is represented by a CaseTestExpr node.  Note that even if
849  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
850  * coercion still requires some effort: we have to fix the element type OID
851  * stored in the array header.
852  * ----------------
853  */
854 
855 typedef struct ArrayCoerceExpr
856 {
857 	Expr		xpr;
858 	Expr	   *arg;			/* input expression (yields an array) */
859 	Expr	   *elemexpr;		/* expression representing per-element work */
860 	Oid			resulttype;		/* output type of coercion (an array type) */
861 	int32		resulttypmod;	/* output typmod (also element typmod) */
862 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
863 	CoercionForm coerceformat;	/* how to display this node */
864 	int			location;		/* token location, or -1 if unknown */
865 } ArrayCoerceExpr;
866 
867 /* ----------------
868  * ConvertRowtypeExpr
869  *
870  * ConvertRowtypeExpr represents a type coercion from one composite type
871  * to another, where the source type is guaranteed to contain all the columns
872  * needed for the destination type plus possibly others; the columns need not
873  * be in the same positions, but are matched up by name.  This is primarily
874  * used to convert a whole-row value of an inheritance child table into a
875  * valid whole-row value of its parent table's rowtype.  Both resulttype
876  * and the exposed type of "arg" must be named composite types (not domains).
877  * ----------------
878  */
879 
880 typedef struct ConvertRowtypeExpr
881 {
882 	Expr		xpr;
883 	Expr	   *arg;			/* input expression */
884 	Oid			resulttype;		/* output type (always a composite type) */
885 	/* Like RowExpr, we deliberately omit a typmod and collation here */
886 	CoercionForm convertformat; /* how to display this node */
887 	int			location;		/* token location, or -1 if unknown */
888 } ConvertRowtypeExpr;
889 
890 /*----------
891  * CollateExpr - COLLATE
892  *
893  * The planner replaces CollateExpr with RelabelType during expression
894  * preprocessing, so execution never sees a CollateExpr.
895  *----------
896  */
897 typedef struct CollateExpr
898 {
899 	Expr		xpr;
900 	Expr	   *arg;			/* input expression */
901 	Oid			collOid;		/* collation's OID */
902 	int			location;		/* token location, or -1 if unknown */
903 } CollateExpr;
904 
905 /*----------
906  * CaseExpr - a CASE expression
907  *
908  * We support two distinct forms of CASE expression:
909  *		CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
910  *		CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
911  * These are distinguishable by the "arg" field being NULL in the first case
912  * and the testexpr in the second case.
913  *
914  * In the raw grammar output for the second form, the condition expressions
915  * of the WHEN clauses are just the comparison values.  Parse analysis
916  * converts these to valid boolean expressions of the form
917  *		CaseTestExpr '=' compexpr
918  * where the CaseTestExpr node is a placeholder that emits the correct
919  * value at runtime.  This structure is used so that the testexpr need be
920  * evaluated only once.  Note that after parse analysis, the condition
921  * expressions always yield boolean.
922  *
923  * Note: we can test whether a CaseExpr has been through parse analysis
924  * yet by checking whether casetype is InvalidOid or not.
925  *----------
926  */
927 typedef struct CaseExpr
928 {
929 	Expr		xpr;
930 	Oid			casetype;		/* type of expression result */
931 	Oid			casecollid;		/* OID of collation, or InvalidOid if none */
932 	Expr	   *arg;			/* implicit equality comparison argument */
933 	List	   *args;			/* the arguments (list of WHEN clauses) */
934 	Expr	   *defresult;		/* the default result (ELSE clause) */
935 	int			location;		/* token location, or -1 if unknown */
936 } CaseExpr;
937 
938 /*
939  * CaseWhen - one arm of a CASE expression
940  */
941 typedef struct CaseWhen
942 {
943 	Expr		xpr;
944 	Expr	   *expr;			/* condition expression */
945 	Expr	   *result;			/* substitution result */
946 	int			location;		/* token location, or -1 if unknown */
947 } CaseWhen;
948 
949 /*
950  * Placeholder node for the test value to be processed by a CASE expression.
951  * This is effectively like a Param, but can be implemented more simply
952  * since we need only one replacement value at a time.
953  *
954  * We also abuse this node type for some other purposes, including:
955  *	* Placeholder for the current array element value in ArrayCoerceExpr;
956  *	  see build_coercion_expression().
957  *	* Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
958  *	  see transformAssignmentIndirection().
959  *
960  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
961  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
962  * node and its child CaseTestExpr(s).  This is true in the parse analysis
963  * output, but the planner's function-inlining logic has to be careful not to
964  * break it.
965  *
966  * The nested-assignment-expression case is safe because the only node types
967  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
968  */
969 typedef struct CaseTestExpr
970 {
971 	Expr		xpr;
972 	Oid			typeId;			/* type for substituted value */
973 	int32		typeMod;		/* typemod for substituted value */
974 	Oid			collation;		/* collation for the substituted value */
975 } CaseTestExpr;
976 
977 /*
978  * ArrayExpr - an ARRAY[] expression
979  *
980  * Note: if multidims is false, the constituent expressions all yield the
981  * scalar type identified by element_typeid.  If multidims is true, the
982  * constituent expressions all yield arrays of element_typeid (ie, the same
983  * type as array_typeid); at runtime we must check for compatible subscripts.
984  */
985 typedef struct ArrayExpr
986 {
987 	Expr		xpr;
988 	Oid			array_typeid;	/* type of expression result */
989 	Oid			array_collid;	/* OID of collation, or InvalidOid if none */
990 	Oid			element_typeid; /* common type of array elements */
991 	List	   *elements;		/* the array elements or sub-arrays */
992 	bool		multidims;		/* true if elements are sub-arrays */
993 	int			location;		/* token location, or -1 if unknown */
994 } ArrayExpr;
995 
996 /*
997  * RowExpr - a ROW() expression
998  *
999  * Note: the list of fields must have a one-for-one correspondence with
1000  * physical fields of the associated rowtype, although it is okay for it
1001  * to be shorter than the rowtype.  That is, the N'th list element must
1002  * match up with the N'th physical field.  When the N'th physical field
1003  * is a dropped column (attisdropped) then the N'th list element can just
1004  * be a NULL constant.  (This case can only occur for named composite types,
1005  * not RECORD types, since those are built from the RowExpr itself rather
1006  * than vice versa.)  It is important not to assume that length(args) is
1007  * the same as the number of columns logically present in the rowtype.
1008  *
1009  * colnames provides field names in cases where the names can't easily be
1010  * obtained otherwise.  Names *must* be provided if row_typeid is RECORDOID.
1011  * If row_typeid identifies a known composite type, colnames can be NIL to
1012  * indicate the type's cataloged field names apply.  Note that colnames can
1013  * be non-NIL even for a composite type, and typically is when the RowExpr
1014  * was created by expanding a whole-row Var.  This is so that we can retain
1015  * the column alias names of the RTE that the Var referenced (which would
1016  * otherwise be very difficult to extract from the parsetree).  Like the
1017  * args list, colnames is one-for-one with physical fields of the rowtype.
1018  */
1019 typedef struct RowExpr
1020 {
1021 	Expr		xpr;
1022 	List	   *args;			/* the fields */
1023 	Oid			row_typeid;		/* RECORDOID or a composite type's ID */
1024 
1025 	/*
1026 	 * row_typeid cannot be a domain over composite, only plain composite.  To
1027 	 * create a composite domain value, apply CoerceToDomain to the RowExpr.
1028 	 *
1029 	 * Note: we deliberately do NOT store a typmod.  Although a typmod will be
1030 	 * associated with specific RECORD types at runtime, it will differ for
1031 	 * different backends, and so cannot safely be stored in stored
1032 	 * parsetrees.  We must assume typmod -1 for a RowExpr node.
1033 	 *
1034 	 * We don't need to store a collation either.  The result type is
1035 	 * necessarily composite, and composite types never have a collation.
1036 	 */
1037 	CoercionForm row_format;	/* how to display this node */
1038 	List	   *colnames;		/* list of String, or NIL */
1039 	int			location;		/* token location, or -1 if unknown */
1040 } RowExpr;
1041 
1042 /*
1043  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1044  *
1045  * We support row comparison for any operator that can be determined to
1046  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1047  * operator in btree opfamilies).  Note that the same operator name might
1048  * map to a different operator for each pair of row elements, since the
1049  * element datatypes can vary.
1050  *
1051  * A RowCompareExpr node is only generated for the < <= > >= cases;
1052  * the = and <> cases are translated to simple AND or OR combinations
1053  * of the pairwise comparisons.  However, we include = and <> in the
1054  * RowCompareType enum for the convenience of parser logic.
1055  */
1056 typedef enum RowCompareType
1057 {
1058 	/* Values of this enum are chosen to match btree strategy numbers */
1059 	ROWCOMPARE_LT = 1,			/* BTLessStrategyNumber */
1060 	ROWCOMPARE_LE = 2,			/* BTLessEqualStrategyNumber */
1061 	ROWCOMPARE_EQ = 3,			/* BTEqualStrategyNumber */
1062 	ROWCOMPARE_GE = 4,			/* BTGreaterEqualStrategyNumber */
1063 	ROWCOMPARE_GT = 5,			/* BTGreaterStrategyNumber */
1064 	ROWCOMPARE_NE = 6			/* no such btree strategy */
1065 } RowCompareType;
1066 
1067 typedef struct RowCompareExpr
1068 {
1069 	Expr		xpr;
1070 	RowCompareType rctype;		/* LT LE GE or GT, never EQ or NE */
1071 	List	   *opnos;			/* OID list of pairwise comparison ops */
1072 	List	   *opfamilies;		/* OID list of containing operator families */
1073 	List	   *inputcollids;	/* OID list of collations for comparisons */
1074 	List	   *largs;			/* the left-hand input arguments */
1075 	List	   *rargs;			/* the right-hand input arguments */
1076 } RowCompareExpr;
1077 
1078 /*
1079  * CoalesceExpr - a COALESCE expression
1080  */
1081 typedef struct CoalesceExpr
1082 {
1083 	Expr		xpr;
1084 	Oid			coalescetype;	/* type of expression result */
1085 	Oid			coalescecollid; /* OID of collation, or InvalidOid if none */
1086 	List	   *args;			/* the arguments */
1087 	int			location;		/* token location, or -1 if unknown */
1088 } CoalesceExpr;
1089 
1090 /*
1091  * MinMaxExpr - a GREATEST or LEAST function
1092  */
1093 typedef enum MinMaxOp
1094 {
1095 	IS_GREATEST,
1096 	IS_LEAST
1097 } MinMaxOp;
1098 
1099 typedef struct MinMaxExpr
1100 {
1101 	Expr		xpr;
1102 	Oid			minmaxtype;		/* common type of arguments and result */
1103 	Oid			minmaxcollid;	/* OID of collation of result */
1104 	Oid			inputcollid;	/* OID of collation that function should use */
1105 	MinMaxOp	op;				/* function to execute */
1106 	List	   *args;			/* the arguments */
1107 	int			location;		/* token location, or -1 if unknown */
1108 } MinMaxExpr;
1109 
1110 /*
1111  * SQLValueFunction - parameterless functions with special grammar productions
1112  *
1113  * The SQL standard categorizes some of these as <datetime value function>
1114  * and others as <general value specification>.  We call 'em SQLValueFunctions
1115  * for lack of a better term.  We store type and typmod of the result so that
1116  * some code doesn't need to know each function individually, and because
1117  * we would need to store typmod anyway for some of the datetime functions.
1118  * Note that currently, all variants return non-collating datatypes, so we do
1119  * not need a collation field; also, all these functions are stable.
1120  */
1121 typedef enum SQLValueFunctionOp
1122 {
1123 	SVFOP_CURRENT_DATE,
1124 	SVFOP_CURRENT_TIME,
1125 	SVFOP_CURRENT_TIME_N,
1126 	SVFOP_CURRENT_TIMESTAMP,
1127 	SVFOP_CURRENT_TIMESTAMP_N,
1128 	SVFOP_LOCALTIME,
1129 	SVFOP_LOCALTIME_N,
1130 	SVFOP_LOCALTIMESTAMP,
1131 	SVFOP_LOCALTIMESTAMP_N,
1132 	SVFOP_CURRENT_ROLE,
1133 	SVFOP_CURRENT_USER,
1134 	SVFOP_USER,
1135 	SVFOP_SESSION_USER,
1136 	SVFOP_CURRENT_CATALOG,
1137 	SVFOP_CURRENT_SCHEMA
1138 } SQLValueFunctionOp;
1139 
1140 typedef struct SQLValueFunction
1141 {
1142 	Expr		xpr;
1143 	SQLValueFunctionOp op;		/* which function this is */
1144 	Oid			type;			/* result type/typmod */
1145 	int32		typmod;
1146 	int			location;		/* token location, or -1 if unknown */
1147 } SQLValueFunction;
1148 
1149 /*
1150  * XmlExpr - various SQL/XML functions requiring special grammar productions
1151  *
1152  * 'name' carries the "NAME foo" argument (already XML-escaped).
1153  * 'named_args' and 'arg_names' represent an xml_attribute list.
1154  * 'args' carries all other arguments.
1155  *
1156  * Note: result type/typmod/collation are not stored, but can be deduced
1157  * from the XmlExprOp.  The type/typmod fields are just used for display
1158  * purposes, and are NOT necessarily the true result type of the node.
1159  */
1160 typedef enum XmlExprOp
1161 {
1162 	IS_XMLCONCAT,				/* XMLCONCAT(args) */
1163 	IS_XMLELEMENT,				/* XMLELEMENT(name, xml_attributes, args) */
1164 	IS_XMLFOREST,				/* XMLFOREST(xml_attributes) */
1165 	IS_XMLPARSE,				/* XMLPARSE(text, is_doc, preserve_ws) */
1166 	IS_XMLPI,					/* XMLPI(name [, args]) */
1167 	IS_XMLROOT,					/* XMLROOT(xml, version, standalone) */
1168 	IS_XMLSERIALIZE,			/* XMLSERIALIZE(is_document, xmlval) */
1169 	IS_DOCUMENT					/* xmlval IS DOCUMENT */
1170 } XmlExprOp;
1171 
1172 typedef enum
1173 {
1174 	XMLOPTION_DOCUMENT,
1175 	XMLOPTION_CONTENT
1176 } XmlOptionType;
1177 
1178 typedef struct XmlExpr
1179 {
1180 	Expr		xpr;
1181 	XmlExprOp	op;				/* xml function ID */
1182 	char	   *name;			/* name in xml(NAME foo ...) syntaxes */
1183 	List	   *named_args;		/* non-XML expressions for xml_attributes */
1184 	List	   *arg_names;		/* parallel list of Value strings */
1185 	List	   *args;			/* list of expressions */
1186 	XmlOptionType xmloption;	/* DOCUMENT or CONTENT */
1187 	Oid			type;			/* target type/typmod for XMLSERIALIZE */
1188 	int32		typmod;
1189 	int			location;		/* token location, or -1 if unknown */
1190 } XmlExpr;
1191 
1192 /* ----------------
1193  * NullTest
1194  *
1195  * NullTest represents the operation of testing a value for NULLness.
1196  * The appropriate test is performed and returned as a boolean Datum.
1197  *
1198  * When argisrow is false, this simply represents a test for the null value.
1199  *
1200  * When argisrow is true, the input expression must yield a rowtype, and
1201  * the node implements "row IS [NOT] NULL" per the SQL standard.  This
1202  * includes checking individual fields for NULLness when the row datum
1203  * itself isn't NULL.
1204  *
1205  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1206  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1207  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1208  * ----------------
1209  */
1210 
1211 typedef enum NullTestType
1212 {
1213 	IS_NULL, IS_NOT_NULL
1214 } NullTestType;
1215 
1216 typedef struct NullTest
1217 {
1218 	Expr		xpr;
1219 	Expr	   *arg;			/* input expression */
1220 	NullTestType nulltesttype;	/* IS NULL, IS NOT NULL */
1221 	bool		argisrow;		/* T to perform field-by-field null checks */
1222 	int			location;		/* token location, or -1 if unknown */
1223 } NullTest;
1224 
1225 /*
1226  * BooleanTest
1227  *
1228  * BooleanTest represents the operation of determining whether a boolean
1229  * is TRUE, FALSE, or UNKNOWN (ie, NULL).  All six meaningful combinations
1230  * are supported.  Note that a NULL input does *not* cause a NULL result.
1231  * The appropriate test is performed and returned as a boolean Datum.
1232  */
1233 
1234 typedef enum BoolTestType
1235 {
1236 	IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN
1237 } BoolTestType;
1238 
1239 typedef struct BooleanTest
1240 {
1241 	Expr		xpr;
1242 	Expr	   *arg;			/* input expression */
1243 	BoolTestType booltesttype;	/* test type */
1244 	int			location;		/* token location, or -1 if unknown */
1245 } BooleanTest;
1246 
1247 /*
1248  * CoerceToDomain
1249  *
1250  * CoerceToDomain represents the operation of coercing a value to a domain
1251  * type.  At runtime (and not before) the precise set of constraints to be
1252  * checked will be determined.  If the value passes, it is returned as the
1253  * result; if not, an error is raised.  Note that this is equivalent to
1254  * RelabelType in the scenario where no constraints are applied.
1255  */
1256 typedef struct CoerceToDomain
1257 {
1258 	Expr		xpr;
1259 	Expr	   *arg;			/* input expression */
1260 	Oid			resulttype;		/* domain type ID (result type) */
1261 	int32		resulttypmod;	/* output typmod (currently always -1) */
1262 	Oid			resultcollid;	/* OID of collation, or InvalidOid if none */
1263 	CoercionForm coercionformat;	/* how to display this node */
1264 	int			location;		/* token location, or -1 if unknown */
1265 } CoerceToDomain;
1266 
1267 /*
1268  * Placeholder node for the value to be processed by a domain's check
1269  * constraint.  This is effectively like a Param, but can be implemented more
1270  * simply since we need only one replacement value at a time.
1271  *
1272  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1273  * not the domain itself.  This is because we shouldn't consider the value
1274  * to be a member of the domain if we haven't yet checked its constraints.
1275  */
1276 typedef struct CoerceToDomainValue
1277 {
1278 	Expr		xpr;
1279 	Oid			typeId;			/* type for substituted value */
1280 	int32		typeMod;		/* typemod for substituted value */
1281 	Oid			collation;		/* collation for the substituted value */
1282 	int			location;		/* token location, or -1 if unknown */
1283 } CoerceToDomainValue;
1284 
1285 /*
1286  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1287  *
1288  * This is not an executable expression: it must be replaced by the actual
1289  * column default expression during rewriting.  But it is convenient to
1290  * treat it as an expression node during parsing and rewriting.
1291  */
1292 typedef struct SetToDefault
1293 {
1294 	Expr		xpr;
1295 	Oid			typeId;			/* type for substituted value */
1296 	int32		typeMod;		/* typemod for substituted value */
1297 	Oid			collation;		/* collation for the substituted value */
1298 	int			location;		/* token location, or -1 if unknown */
1299 } SetToDefault;
1300 
1301 /*
1302  * Node representing [WHERE] CURRENT OF cursor_name
1303  *
1304  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1305  * of the target relation being constrained; this aids placing the expression
1306  * correctly during planning.  We can assume however that its "levelsup" is
1307  * always zero, due to the syntactic constraints on where it can appear.
1308  *
1309  * The referenced cursor can be represented either as a hardwired string
1310  * or as a reference to a run-time parameter of type REFCURSOR.  The latter
1311  * case is for the convenience of plpgsql.
1312  */
1313 typedef struct CurrentOfExpr
1314 {
1315 	Expr		xpr;
1316 	Index		cvarno;			/* RT index of target relation */
1317 	char	   *cursor_name;	/* name of referenced cursor, or NULL */
1318 	int			cursor_param;	/* refcursor parameter number, or 0 */
1319 } CurrentOfExpr;
1320 
1321 /*
1322  * NextValueExpr - get next value from sequence
1323  *
1324  * This has the same effect as calling the nextval() function, but it does not
1325  * check permissions on the sequence.  This is used for identity columns,
1326  * where the sequence is an implicit dependency without its own permissions.
1327  */
1328 typedef struct NextValueExpr
1329 {
1330 	Expr		xpr;
1331 	Oid			seqid;
1332 	Oid			typeId;
1333 } NextValueExpr;
1334 
1335 /*
1336  * InferenceElem - an element of a unique index inference specification
1337  *
1338  * This mostly matches the structure of IndexElems, but having a dedicated
1339  * primnode allows for a clean separation between the use of index parameters
1340  * by utility commands, and this node.
1341  */
1342 typedef struct InferenceElem
1343 {
1344 	Expr		xpr;
1345 	Node	   *expr;			/* expression to infer from, or NULL */
1346 	Oid			infercollid;	/* OID of collation, or InvalidOid */
1347 	Oid			inferopclass;	/* OID of att opclass, or InvalidOid */
1348 } InferenceElem;
1349 
1350 /*--------------------
1351  * TargetEntry -
1352  *	   a target entry (used in query target lists)
1353  *
1354  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1355  * be evaluated by ExecEvalExpr).  But we treat it as one anyway, since in
1356  * very many places it's convenient to process a whole query targetlist as a
1357  * single expression tree.
1358  *
1359  * In a SELECT's targetlist, resno should always be equal to the item's
1360  * ordinal position (counting from 1).  However, in an INSERT or UPDATE
1361  * targetlist, resno represents the attribute number of the destination
1362  * column for the item; so there may be missing or out-of-order resnos.
1363  * It is even legal to have duplicated resnos; consider
1364  *		UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1365  * The two meanings come together in the executor, because the planner
1366  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1367  * one entry for each column of the destination table.  Before that's
1368  * happened, however, it is risky to assume that resno == position.
1369  * Generally get_tle_by_resno() should be used rather than list_nth()
1370  * to fetch tlist entries by resno, and only in SELECT should you assume
1371  * that resno is a unique identifier.
1372  *
1373  * resname is required to represent the correct column name in non-resjunk
1374  * entries of top-level SELECT targetlists, since it will be used as the
1375  * column title sent to the frontend.  In most other contexts it is only
1376  * a debugging aid, and may be wrong or even NULL.  (In particular, it may
1377  * be wrong in a tlist from a stored rule, if the referenced column has been
1378  * renamed by ALTER TABLE since the rule was made.  Also, the planner tends
1379  * to store NULL rather than look up a valid name for tlist entries in
1380  * non-toplevel plan nodes.)  In resjunk entries, resname should be either
1381  * a specific system-generated name (such as "ctid") or NULL; anything else
1382  * risks confusing ExecGetJunkAttribute!
1383  *
1384  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1385  * DISTINCT items.  Targetlist entries with ressortgroupref=0 are not
1386  * sort/group items.  If ressortgroupref>0, then this item is an ORDER BY,
1387  * GROUP BY, and/or DISTINCT target value.  No two entries in a targetlist
1388  * may have the same nonzero ressortgroupref --- but there is no particular
1389  * meaning to the nonzero values, except as tags.  (For example, one must
1390  * not assume that lower ressortgroupref means a more significant sort key.)
1391  * The order of the associated SortGroupClause lists determine the semantics.
1392  *
1393  * resorigtbl/resorigcol identify the source of the column, if it is a
1394  * simple reference to a column of a base table (or view).  If it is not
1395  * a simple reference, these fields are zeroes.
1396  *
1397  * If resjunk is true then the column is a working column (such as a sort key)
1398  * that should be removed from the final output of the query.  Resjunk columns
1399  * must have resnos that cannot duplicate any regular column's resno.  Also
1400  * note that there are places that assume resjunk columns come after non-junk
1401  * columns.
1402  *--------------------
1403  */
1404 typedef struct TargetEntry
1405 {
1406 	Expr		xpr;
1407 	Expr	   *expr;			/* expression to evaluate */
1408 	AttrNumber	resno;			/* attribute number (see notes above) */
1409 	char	   *resname;		/* name of the column (could be NULL) */
1410 	Index		ressortgroupref;	/* nonzero if referenced by a sort/group
1411 									 * clause */
1412 	Oid			resorigtbl;		/* OID of column's source table */
1413 	AttrNumber	resorigcol;		/* column's number in source table */
1414 	bool		resjunk;		/* set to true to eliminate the attribute from
1415 								 * final target list */
1416 } TargetEntry;
1417 
1418 
1419 /* ----------------------------------------------------------------
1420  *					node types for join trees
1421  *
1422  * The leaves of a join tree structure are RangeTblRef nodes.  Above
1423  * these, JoinExpr nodes can appear to denote a specific kind of join
1424  * or qualified join.  Also, FromExpr nodes can appear to denote an
1425  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1426  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1427  * may have any number of child nodes, not just two.
1428  *
1429  * NOTE: the top level of a Query's jointree is always a FromExpr.
1430  * Even if the jointree contains no rels, there will be a FromExpr.
1431  *
1432  * NOTE: the qualification expressions present in JoinExpr nodes are
1433  * *in addition to* the query's main WHERE clause, which appears as the
1434  * qual of the top-level FromExpr.  The reason for associating quals with
1435  * specific nodes in the jointree is that the position of a qual is critical
1436  * when outer joins are present.  (If we enforce a qual too soon or too late,
1437  * that may cause the outer join to produce the wrong set of NULL-extended
1438  * rows.)  If all joins are inner joins then all the qual positions are
1439  * semantically interchangeable.
1440  *
1441  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1442  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1443  * RangeTblRef nodes during the parse analysis phase.  Also, the top-level
1444  * FromExpr is added during parse analysis; the grammar regards FROM and
1445  * WHERE as separate.
1446  * ----------------------------------------------------------------
1447  */
1448 
1449 /*
1450  * RangeTblRef - reference to an entry in the query's rangetable
1451  *
1452  * We could use direct pointers to the RT entries and skip having these
1453  * nodes, but multiple pointers to the same node in a querytree cause
1454  * lots of headaches, so it seems better to store an index into the RT.
1455  */
1456 typedef struct RangeTblRef
1457 {
1458 	NodeTag		type;
1459 	int			rtindex;
1460 } RangeTblRef;
1461 
1462 /*----------
1463  * JoinExpr - for SQL JOIN expressions
1464  *
1465  * isNatural, usingClause, and quals are interdependent.  The user can write
1466  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1467  * If he writes NATURAL then parse analysis generates the equivalent USING()
1468  * list, and from that fills in "quals" with the right equality comparisons.
1469  * If he writes USING() then "quals" is filled with equality comparisons.
1470  * If he writes ON() then only "quals" is set.  Note that NATURAL/USING
1471  * are not equivalent to ON() since they also affect the output column list.
1472  *
1473  * alias is an Alias node representing the AS alias-clause attached to the
1474  * join expression, or NULL if no clause.  NB: presence or absence of the
1475  * alias has a critical impact on semantics, because a join with an alias
1476  * restricts visibility of the tables/columns inside it.
1477  *
1478  * During parse analysis, an RTE is created for the Join, and its index
1479  * is filled into rtindex.  This RTE is present mainly so that Vars can
1480  * be created that refer to the outputs of the join.  The planner sometimes
1481  * generates JoinExprs internally; these can have rtindex = 0 if there are
1482  * no join alias variables referencing such joins.
1483  *----------
1484  */
1485 typedef struct JoinExpr
1486 {
1487 	NodeTag		type;
1488 	JoinType	jointype;		/* type of join */
1489 	bool		isNatural;		/* Natural join? Will need to shape table */
1490 	Node	   *larg;			/* left subtree */
1491 	Node	   *rarg;			/* right subtree */
1492 	List	   *usingClause;	/* USING clause, if any (list of String) */
1493 	Node	   *quals;			/* qualifiers on join, if any */
1494 	Alias	   *alias;			/* user-written alias clause, if any */
1495 	int			rtindex;		/* RT index assigned for join, or 0 */
1496 } JoinExpr;
1497 
1498 /*----------
1499  * FromExpr - represents a FROM ... WHERE ... construct
1500  *
1501  * This is both more flexible than a JoinExpr (it can have any number of
1502  * children, including zero) and less so --- we don't need to deal with
1503  * aliases and so on.  The output column set is implicitly just the union
1504  * of the outputs of the children.
1505  *----------
1506  */
1507 typedef struct FromExpr
1508 {
1509 	NodeTag		type;
1510 	List	   *fromlist;		/* List of join subtrees */
1511 	Node	   *quals;			/* qualifiers on join, if any */
1512 } FromExpr;
1513 
1514 /*----------
1515  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1516  *
1517  * The optimizer requires a list of inference elements, and optionally a WHERE
1518  * clause to infer a unique index.  The unique index (or, occasionally,
1519  * indexes) inferred are used to arbitrate whether or not the alternative ON
1520  * CONFLICT path is taken.
1521  *----------
1522  */
1523 typedef struct OnConflictExpr
1524 {
1525 	NodeTag		type;
1526 	OnConflictAction action;	/* DO NOTHING or UPDATE? */
1527 
1528 	/* Arbiter */
1529 	List	   *arbiterElems;	/* unique index arbiter list (of
1530 								 * InferenceElem's) */
1531 	Node	   *arbiterWhere;	/* unique index arbiter WHERE clause */
1532 	Oid			constraint;		/* pg_constraint OID for arbiter */
1533 
1534 	/* ON CONFLICT UPDATE */
1535 	List	   *onConflictSet;	/* List of ON CONFLICT SET TargetEntrys */
1536 	Node	   *onConflictWhere;	/* qualifiers to restrict UPDATE to */
1537 	int			exclRelIndex;	/* RT index of 'excluded' relation */
1538 	List	   *exclRelTlist;	/* tlist of the EXCLUDED pseudo relation */
1539 } OnConflictExpr;
1540 
1541 #endif							/* PRIMNODES_H */
1542