1 /*-------------------------------------------------------------------------
2  *
3  * parse_clause.c
4  *	  handle clauses in parser
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/parser/parse_clause.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 
16 #include "postgres.h"
17 
18 #include "access/htup_details.h"
19 #include "access/nbtree.h"
20 #include "access/table.h"
21 #include "access/tsmapi.h"
22 #include "catalog/catalog.h"
23 #include "catalog/heap.h"
24 #include "catalog/pg_am.h"
25 #include "catalog/pg_amproc.h"
26 #include "catalog/pg_collation.h"
27 #include "catalog/pg_constraint.h"
28 #include "catalog/pg_type.h"
29 #include "commands/defrem.h"
30 #include "miscadmin.h"
31 #include "nodes/makefuncs.h"
32 #include "nodes/nodeFuncs.h"
33 #include "optimizer/optimizer.h"
34 #include "parser/analyze.h"
35 #include "parser/parse_clause.h"
36 #include "parser/parse_coerce.h"
37 #include "parser/parse_collate.h"
38 #include "parser/parse_expr.h"
39 #include "parser/parse_func.h"
40 #include "parser/parse_oper.h"
41 #include "parser/parse_relation.h"
42 #include "parser/parse_target.h"
43 #include "parser/parse_type.h"
44 #include "parser/parser.h"
45 #include "parser/parsetree.h"
46 #include "rewrite/rewriteManip.h"
47 #include "utils/builtins.h"
48 #include "utils/catcache.h"
49 #include "utils/guc.h"
50 #include "utils/lsyscache.h"
51 #include "utils/rel.h"
52 #include "utils/syscache.h"
53 
54 
55 static int	extractRemainingColumns(ParseNamespaceColumn *src_nscolumns,
56 									List *src_colnames,
57 									List **src_colnos,
58 									List **res_colnames, List **res_colvars,
59 									ParseNamespaceColumn *res_nscolumns);
60 static Node *transformJoinUsingClause(ParseState *pstate,
61 									  RangeTblEntry *leftRTE, RangeTblEntry *rightRTE,
62 									  List *leftVars, List *rightVars);
63 static Node *transformJoinOnClause(ParseState *pstate, JoinExpr *j,
64 								   List *namespace);
65 static ParseNamespaceItem *transformTableEntry(ParseState *pstate, RangeVar *r);
66 static ParseNamespaceItem *transformRangeSubselect(ParseState *pstate,
67 												   RangeSubselect *r);
68 static ParseNamespaceItem *transformRangeFunction(ParseState *pstate,
69 												  RangeFunction *r);
70 static ParseNamespaceItem *transformRangeTableFunc(ParseState *pstate,
71 												   RangeTableFunc *t);
72 static TableSampleClause *transformRangeTableSample(ParseState *pstate,
73 													RangeTableSample *rts);
74 static ParseNamespaceItem *getNSItemForSpecialRelationTypes(ParseState *pstate,
75 															RangeVar *rv);
76 static Node *transformFromClauseItem(ParseState *pstate, Node *n,
77 									 ParseNamespaceItem **top_nsitem,
78 									 List **namespace);
79 static Var *buildVarFromNSColumn(ParseNamespaceColumn *nscol);
80 static Node *buildMergedJoinVar(ParseState *pstate, JoinType jointype,
81 								Var *l_colvar, Var *r_colvar);
82 static void setNamespaceColumnVisibility(List *namespace, bool cols_visible);
83 static void setNamespaceLateralState(List *namespace,
84 									 bool lateral_only, bool lateral_ok);
85 static void checkExprIsVarFree(ParseState *pstate, Node *n,
86 							   const char *constructName);
87 static TargetEntry *findTargetlistEntrySQL92(ParseState *pstate, Node *node,
88 											 List **tlist, ParseExprKind exprKind);
89 static TargetEntry *findTargetlistEntrySQL99(ParseState *pstate, Node *node,
90 											 List **tlist, ParseExprKind exprKind);
91 static int	get_matching_location(int sortgroupref,
92 								  List *sortgrouprefs, List *exprs);
93 static List *resolve_unique_index_expr(ParseState *pstate, InferClause *infer,
94 									   Relation heapRel);
95 static List *addTargetToGroupList(ParseState *pstate, TargetEntry *tle,
96 								  List *grouplist, List *targetlist, int location);
97 static WindowClause *findWindowClause(List *wclist, const char *name);
98 static Node *transformFrameOffset(ParseState *pstate, int frameOptions,
99 								  Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc,
100 								  Node *clause);
101 
102 
103 /*
104  * transformFromClause -
105  *	  Process the FROM clause and add items to the query's range table,
106  *	  joinlist, and namespace.
107  *
108  * Note: we assume that the pstate's p_rtable, p_joinlist, and p_namespace
109  * lists were initialized to NIL when the pstate was created.
110  * We will add onto any entries already present --- this is needed for rule
111  * processing, as well as for UPDATE and DELETE.
112  */
113 void
transformFromClause(ParseState * pstate,List * frmList)114 transformFromClause(ParseState *pstate, List *frmList)
115 {
116 	ListCell   *fl;
117 
118 	/*
119 	 * The grammar will have produced a list of RangeVars, RangeSubselects,
120 	 * RangeFunctions, and/or JoinExprs. Transform each one (possibly adding
121 	 * entries to the rtable), check for duplicate refnames, and then add it
122 	 * to the joinlist and namespace.
123 	 *
124 	 * Note we must process the items left-to-right for proper handling of
125 	 * LATERAL references.
126 	 */
127 	foreach(fl, frmList)
128 	{
129 		Node	   *n = lfirst(fl);
130 		ParseNamespaceItem *nsitem;
131 		List	   *namespace;
132 
133 		n = transformFromClauseItem(pstate, n,
134 									&nsitem,
135 									&namespace);
136 
137 		checkNameSpaceConflicts(pstate, pstate->p_namespace, namespace);
138 
139 		/* Mark the new namespace items as visible only to LATERAL */
140 		setNamespaceLateralState(namespace, true, true);
141 
142 		pstate->p_joinlist = lappend(pstate->p_joinlist, n);
143 		pstate->p_namespace = list_concat(pstate->p_namespace, namespace);
144 	}
145 
146 	/*
147 	 * We're done parsing the FROM list, so make all namespace items
148 	 * unconditionally visible.  Note that this will also reset lateral_only
149 	 * for any namespace items that were already present when we were called;
150 	 * but those should have been that way already.
151 	 */
152 	setNamespaceLateralState(pstate->p_namespace, false, true);
153 }
154 
155 /*
156  * setTargetTable
157  *	  Add the target relation of INSERT/UPDATE/DELETE to the range table,
158  *	  and make the special links to it in the ParseState.
159  *
160  *	  We also open the target relation and acquire a write lock on it.
161  *	  This must be done before processing the FROM list, in case the target
162  *	  is also mentioned as a source relation --- we want to be sure to grab
163  *	  the write lock before any read lock.
164  *
165  *	  If alsoSource is true, add the target to the query's joinlist and
166  *	  namespace.  For INSERT, we don't want the target to be joined to;
167  *	  it's a destination of tuples, not a source.   For UPDATE/DELETE,
168  *	  we do need to scan or join the target.  (NOTE: we do not bother
169  *	  to check for namespace conflict; we assume that the namespace was
170  *	  initially empty in these cases.)
171  *
172  *	  Finally, we mark the relation as requiring the permissions specified
173  *	  by requiredPerms.
174  *
175  *	  Returns the rangetable index of the target relation.
176  */
177 int
setTargetTable(ParseState * pstate,RangeVar * relation,bool inh,bool alsoSource,AclMode requiredPerms)178 setTargetTable(ParseState *pstate, RangeVar *relation,
179 			   bool inh, bool alsoSource, AclMode requiredPerms)
180 {
181 	ParseNamespaceItem *nsitem;
182 
183 	/*
184 	 * ENRs hide tables of the same name, so we need to check for them first.
185 	 * In contrast, CTEs don't hide tables (for this purpose).
186 	 */
187 	if (relation->schemaname == NULL &&
188 		scanNameSpaceForENR(pstate, relation->relname))
189 		ereport(ERROR,
190 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
191 				 errmsg("relation \"%s\" cannot be the target of a modifying statement",
192 						relation->relname)));
193 
194 	/* Close old target; this could only happen for multi-action rules */
195 	if (pstate->p_target_relation != NULL)
196 		table_close(pstate->p_target_relation, NoLock);
197 
198 	/*
199 	 * Open target rel and grab suitable lock (which we will hold till end of
200 	 * transaction).
201 	 *
202 	 * free_parsestate() will eventually do the corresponding table_close(),
203 	 * but *not* release the lock.
204 	 */
205 	pstate->p_target_relation = parserOpenTable(pstate, relation,
206 												RowExclusiveLock);
207 
208 	/*
209 	 * Now build an RTE and a ParseNamespaceItem.
210 	 */
211 	nsitem = addRangeTableEntryForRelation(pstate, pstate->p_target_relation,
212 										   RowExclusiveLock,
213 										   relation->alias, inh, false);
214 
215 	/* remember the RTE/nsitem as being the query target */
216 	pstate->p_target_nsitem = nsitem;
217 
218 	/*
219 	 * Override addRangeTableEntry's default ACL_SELECT permissions check, and
220 	 * instead mark target table as requiring exactly the specified
221 	 * permissions.
222 	 *
223 	 * If we find an explicit reference to the rel later during parse
224 	 * analysis, we will add the ACL_SELECT bit back again; see
225 	 * markVarForSelectPriv and its callers.
226 	 */
227 	nsitem->p_rte->requiredPerms = requiredPerms;
228 
229 	/*
230 	 * If UPDATE/DELETE, add table to joinlist and namespace.
231 	 */
232 	if (alsoSource)
233 		addNSItemToQuery(pstate, nsitem, true, true, true);
234 
235 	return nsitem->p_rtindex;
236 }
237 
238 /*
239  * Extract all not-in-common columns from column lists of a source table
240  *
241  * src_nscolumns and src_colnames describe the source table.
242  *
243  * *src_colnos initially contains the column numbers of the already-merged
244  * columns.  We add to it the column number of each additional column.
245  * Also append to *res_colnames the name of each additional column,
246  * append to *res_colvars a Var for each additional column, and copy the
247  * columns' nscolumns data into res_nscolumns[] (which is caller-allocated
248  * space that had better be big enough).
249  *
250  * Returns the number of columns added.
251  */
252 static int
extractRemainingColumns(ParseNamespaceColumn * src_nscolumns,List * src_colnames,List ** src_colnos,List ** res_colnames,List ** res_colvars,ParseNamespaceColumn * res_nscolumns)253 extractRemainingColumns(ParseNamespaceColumn *src_nscolumns,
254 						List *src_colnames,
255 						List **src_colnos,
256 						List **res_colnames, List **res_colvars,
257 						ParseNamespaceColumn *res_nscolumns)
258 {
259 	int			colcount = 0;
260 	Bitmapset  *prevcols;
261 	int			attnum;
262 	ListCell   *lc;
263 
264 	/*
265 	 * While we could just test "list_member_int(*src_colnos, attnum)" to
266 	 * detect already-merged columns in the loop below, that would be O(N^2)
267 	 * for a wide input table.  Instead build a bitmapset of just the merged
268 	 * USING columns, which we won't add to within the main loop.
269 	 */
270 	prevcols = NULL;
271 	foreach(lc, *src_colnos)
272 	{
273 		prevcols = bms_add_member(prevcols, lfirst_int(lc));
274 	}
275 
276 	attnum = 0;
277 	foreach(lc, src_colnames)
278 	{
279 		char	   *colname = strVal(lfirst(lc));
280 
281 		attnum++;
282 		/* Non-dropped and not already merged? */
283 		if (colname[0] != '\0' && !bms_is_member(attnum, prevcols))
284 		{
285 			/* Yes, so emit it as next output column */
286 			*src_colnos = lappend_int(*src_colnos, attnum);
287 			*res_colnames = lappend(*res_colnames, lfirst(lc));
288 			*res_colvars = lappend(*res_colvars,
289 								   buildVarFromNSColumn(src_nscolumns + attnum - 1));
290 			/* Copy the input relation's nscolumn data for this column */
291 			res_nscolumns[colcount] = src_nscolumns[attnum - 1];
292 			colcount++;
293 		}
294 	}
295 	return colcount;
296 }
297 
298 /* transformJoinUsingClause()
299  *	  Build a complete ON clause from a partially-transformed USING list.
300  *	  We are given lists of nodes representing left and right match columns.
301  *	  Result is a transformed qualification expression.
302  */
303 static Node *
transformJoinUsingClause(ParseState * pstate,RangeTblEntry * leftRTE,RangeTblEntry * rightRTE,List * leftVars,List * rightVars)304 transformJoinUsingClause(ParseState *pstate,
305 						 RangeTblEntry *leftRTE, RangeTblEntry *rightRTE,
306 						 List *leftVars, List *rightVars)
307 {
308 	Node	   *result;
309 	List	   *andargs = NIL;
310 	ListCell   *lvars,
311 			   *rvars;
312 
313 	/*
314 	 * We cheat a little bit here by building an untransformed operator tree
315 	 * whose leaves are the already-transformed Vars.  This requires collusion
316 	 * from transformExpr(), which normally could be expected to complain
317 	 * about already-transformed subnodes.  However, this does mean that we
318 	 * have to mark the columns as requiring SELECT privilege for ourselves;
319 	 * transformExpr() won't do it.
320 	 */
321 	forboth(lvars, leftVars, rvars, rightVars)
322 	{
323 		Var		   *lvar = (Var *) lfirst(lvars);
324 		Var		   *rvar = (Var *) lfirst(rvars);
325 		A_Expr	   *e;
326 
327 		/* Require read access to the join variables */
328 		markVarForSelectPriv(pstate, lvar, leftRTE);
329 		markVarForSelectPriv(pstate, rvar, rightRTE);
330 
331 		/* Now create the lvar = rvar join condition */
332 		e = makeSimpleA_Expr(AEXPR_OP, "=",
333 							 (Node *) copyObject(lvar), (Node *) copyObject(rvar),
334 							 -1);
335 
336 		/* Prepare to combine into an AND clause, if multiple join columns */
337 		andargs = lappend(andargs, e);
338 	}
339 
340 	/* Only need an AND if there's more than one join column */
341 	if (list_length(andargs) == 1)
342 		result = (Node *) linitial(andargs);
343 	else
344 		result = (Node *) makeBoolExpr(AND_EXPR, andargs, -1);
345 
346 	/*
347 	 * Since the references are already Vars, and are certainly from the input
348 	 * relations, we don't have to go through the same pushups that
349 	 * transformJoinOnClause() does.  Just invoke transformExpr() to fix up
350 	 * the operators, and we're done.
351 	 */
352 	result = transformExpr(pstate, result, EXPR_KIND_JOIN_USING);
353 
354 	result = coerce_to_boolean(pstate, result, "JOIN/USING");
355 
356 	return result;
357 }
358 
359 /* transformJoinOnClause()
360  *	  Transform the qual conditions for JOIN/ON.
361  *	  Result is a transformed qualification expression.
362  */
363 static Node *
transformJoinOnClause(ParseState * pstate,JoinExpr * j,List * namespace)364 transformJoinOnClause(ParseState *pstate, JoinExpr *j, List *namespace)
365 {
366 	Node	   *result;
367 	List	   *save_namespace;
368 
369 	/*
370 	 * The namespace that the join expression should see is just the two
371 	 * subtrees of the JOIN plus any outer references from upper pstate
372 	 * levels.  Temporarily set this pstate's namespace accordingly.  (We need
373 	 * not check for refname conflicts, because transformFromClauseItem()
374 	 * already did.)  All namespace items are marked visible regardless of
375 	 * LATERAL state.
376 	 */
377 	setNamespaceLateralState(namespace, false, true);
378 
379 	save_namespace = pstate->p_namespace;
380 	pstate->p_namespace = namespace;
381 
382 	result = transformWhereClause(pstate, j->quals,
383 								  EXPR_KIND_JOIN_ON, "JOIN/ON");
384 
385 	pstate->p_namespace = save_namespace;
386 
387 	return result;
388 }
389 
390 /*
391  * transformTableEntry --- transform a RangeVar (simple relation reference)
392  */
393 static ParseNamespaceItem *
transformTableEntry(ParseState * pstate,RangeVar * r)394 transformTableEntry(ParseState *pstate, RangeVar *r)
395 {
396 	/* addRangeTableEntry does all the work */
397 	return addRangeTableEntry(pstate, r, r->alias, r->inh, true);
398 }
399 
400 /*
401  * transformRangeSubselect --- transform a sub-SELECT appearing in FROM
402  */
403 static ParseNamespaceItem *
transformRangeSubselect(ParseState * pstate,RangeSubselect * r)404 transformRangeSubselect(ParseState *pstate, RangeSubselect *r)
405 {
406 	Query	   *query;
407 
408 	/*
409 	 * We require user to supply an alias for a subselect, per SQL92. To relax
410 	 * this, we'd have to be prepared to gin up a unique alias for an
411 	 * unlabeled subselect.  (This is just elog, not ereport, because the
412 	 * grammar should have enforced it already.  It'd probably be better to
413 	 * report the error here, but we don't have a good error location here.)
414 	 */
415 	if (r->alias == NULL)
416 		elog(ERROR, "subquery in FROM must have an alias");
417 
418 	/*
419 	 * Set p_expr_kind to show this parse level is recursing to a subselect.
420 	 * We can't be nested within any expression, so don't need save-restore
421 	 * logic here.
422 	 */
423 	Assert(pstate->p_expr_kind == EXPR_KIND_NONE);
424 	pstate->p_expr_kind = EXPR_KIND_FROM_SUBSELECT;
425 
426 	/*
427 	 * If the subselect is LATERAL, make lateral_only names of this level
428 	 * visible to it.  (LATERAL can't nest within a single pstate level, so we
429 	 * don't need save/restore logic here.)
430 	 */
431 	Assert(!pstate->p_lateral_active);
432 	pstate->p_lateral_active = r->lateral;
433 
434 	/*
435 	 * Analyze and transform the subquery.
436 	 */
437 	query = parse_sub_analyze(r->subquery, pstate, NULL,
438 							  isLockedRefname(pstate, r->alias->aliasname),
439 							  true);
440 
441 	/* Restore state */
442 	pstate->p_lateral_active = false;
443 	pstate->p_expr_kind = EXPR_KIND_NONE;
444 
445 	/*
446 	 * Check that we got a SELECT.  Anything else should be impossible given
447 	 * restrictions of the grammar, but check anyway.
448 	 */
449 	if (!IsA(query, Query) ||
450 		query->commandType != CMD_SELECT)
451 		elog(ERROR, "unexpected non-SELECT command in subquery in FROM");
452 
453 	/*
454 	 * OK, build an RTE and nsitem for the subquery.
455 	 */
456 	return addRangeTableEntryForSubquery(pstate,
457 										 query,
458 										 r->alias,
459 										 r->lateral,
460 										 true);
461 }
462 
463 
464 /*
465  * transformRangeFunction --- transform a function call appearing in FROM
466  */
467 static ParseNamespaceItem *
transformRangeFunction(ParseState * pstate,RangeFunction * r)468 transformRangeFunction(ParseState *pstate, RangeFunction *r)
469 {
470 	List	   *funcexprs = NIL;
471 	List	   *funcnames = NIL;
472 	List	   *coldeflists = NIL;
473 	bool		is_lateral;
474 	ListCell   *lc;
475 
476 	/*
477 	 * We make lateral_only names of this level visible, whether or not the
478 	 * RangeFunction is explicitly marked LATERAL.  This is needed for SQL
479 	 * spec compliance in the case of UNNEST(), and seems useful on
480 	 * convenience grounds for all functions in FROM.
481 	 *
482 	 * (LATERAL can't nest within a single pstate level, so we don't need
483 	 * save/restore logic here.)
484 	 */
485 	Assert(!pstate->p_lateral_active);
486 	pstate->p_lateral_active = true;
487 
488 	/*
489 	 * Transform the raw expressions.
490 	 *
491 	 * While transforming, also save function names for possible use as alias
492 	 * and column names.  We use the same transformation rules as for a SELECT
493 	 * output expression.  For a FuncCall node, the result will be the
494 	 * function name, but it is possible for the grammar to hand back other
495 	 * node types.
496 	 *
497 	 * We have to get this info now, because FigureColname only works on raw
498 	 * parsetrees.  Actually deciding what to do with the names is left up to
499 	 * addRangeTableEntryForFunction.
500 	 *
501 	 * Likewise, collect column definition lists if there were any.  But
502 	 * complain if we find one here and the RangeFunction has one too.
503 	 */
504 	foreach(lc, r->functions)
505 	{
506 		List	   *pair = (List *) lfirst(lc);
507 		Node	   *fexpr;
508 		List	   *coldeflist;
509 		Node	   *newfexpr;
510 		Node	   *last_srf;
511 
512 		/* Disassemble the function-call/column-def-list pairs */
513 		Assert(list_length(pair) == 2);
514 		fexpr = (Node *) linitial(pair);
515 		coldeflist = (List *) lsecond(pair);
516 
517 		/*
518 		 * If we find a function call unnest() with more than one argument and
519 		 * no special decoration, transform it into separate unnest() calls on
520 		 * each argument.  This is a kluge, for sure, but it's less nasty than
521 		 * other ways of implementing the SQL-standard UNNEST() syntax.
522 		 *
523 		 * If there is any decoration (including a coldeflist), we don't
524 		 * transform, which probably means a no-such-function error later.  We
525 		 * could alternatively throw an error right now, but that doesn't seem
526 		 * tremendously helpful.  If someone is using any such decoration,
527 		 * then they're not using the SQL-standard syntax, and they're more
528 		 * likely expecting an un-tweaked function call.
529 		 *
530 		 * Note: the transformation changes a non-schema-qualified unnest()
531 		 * function name into schema-qualified pg_catalog.unnest().  This
532 		 * choice is also a bit debatable, but it seems reasonable to force
533 		 * use of built-in unnest() when we make this transformation.
534 		 */
535 		if (IsA(fexpr, FuncCall))
536 		{
537 			FuncCall   *fc = (FuncCall *) fexpr;
538 
539 			if (list_length(fc->funcname) == 1 &&
540 				strcmp(strVal(linitial(fc->funcname)), "unnest") == 0 &&
541 				list_length(fc->args) > 1 &&
542 				fc->agg_order == NIL &&
543 				fc->agg_filter == NULL &&
544 				!fc->agg_star &&
545 				!fc->agg_distinct &&
546 				!fc->func_variadic &&
547 				fc->over == NULL &&
548 				coldeflist == NIL)
549 			{
550 				ListCell   *lc;
551 
552 				foreach(lc, fc->args)
553 				{
554 					Node	   *arg = (Node *) lfirst(lc);
555 					FuncCall   *newfc;
556 
557 					last_srf = pstate->p_last_srf;
558 
559 					newfc = makeFuncCall(SystemFuncName("unnest"),
560 										 list_make1(arg),
561 										 fc->location);
562 
563 					newfexpr = transformExpr(pstate, (Node *) newfc,
564 											 EXPR_KIND_FROM_FUNCTION);
565 
566 					/* nodeFunctionscan.c requires SRFs to be at top level */
567 					if (pstate->p_last_srf != last_srf &&
568 						pstate->p_last_srf != newfexpr)
569 						ereport(ERROR,
570 								(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
571 								 errmsg("set-returning functions must appear at top level of FROM"),
572 								 parser_errposition(pstate,
573 													exprLocation(pstate->p_last_srf))));
574 
575 					funcexprs = lappend(funcexprs, newfexpr);
576 
577 					funcnames = lappend(funcnames,
578 										FigureColname((Node *) newfc));
579 
580 					/* coldeflist is empty, so no error is possible */
581 
582 					coldeflists = lappend(coldeflists, coldeflist);
583 				}
584 				continue;		/* done with this function item */
585 			}
586 		}
587 
588 		/* normal case ... */
589 		last_srf = pstate->p_last_srf;
590 
591 		newfexpr = transformExpr(pstate, fexpr,
592 								 EXPR_KIND_FROM_FUNCTION);
593 
594 		/* nodeFunctionscan.c requires SRFs to be at top level */
595 		if (pstate->p_last_srf != last_srf &&
596 			pstate->p_last_srf != newfexpr)
597 			ereport(ERROR,
598 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
599 					 errmsg("set-returning functions must appear at top level of FROM"),
600 					 parser_errposition(pstate,
601 										exprLocation(pstate->p_last_srf))));
602 
603 		funcexprs = lappend(funcexprs, newfexpr);
604 
605 		funcnames = lappend(funcnames,
606 							FigureColname(fexpr));
607 
608 		if (coldeflist && r->coldeflist)
609 			ereport(ERROR,
610 					(errcode(ERRCODE_SYNTAX_ERROR),
611 					 errmsg("multiple column definition lists are not allowed for the same function"),
612 					 parser_errposition(pstate,
613 										exprLocation((Node *) r->coldeflist))));
614 
615 		coldeflists = lappend(coldeflists, coldeflist);
616 	}
617 
618 	pstate->p_lateral_active = false;
619 
620 	/*
621 	 * We must assign collations now so that the RTE exposes correct collation
622 	 * info for Vars created from it.
623 	 */
624 	assign_list_collations(pstate, funcexprs);
625 
626 	/*
627 	 * Install the top-level coldeflist if there was one (we already checked
628 	 * that there was no conflicting per-function coldeflist).
629 	 *
630 	 * We only allow this when there's a single function (even after UNNEST
631 	 * expansion) and no WITH ORDINALITY.  The reason for the latter
632 	 * restriction is that it's not real clear whether the ordinality column
633 	 * should be in the coldeflist, and users are too likely to make mistakes
634 	 * in one direction or the other.  Putting the coldeflist inside ROWS
635 	 * FROM() is much clearer in this case.
636 	 */
637 	if (r->coldeflist)
638 	{
639 		if (list_length(funcexprs) != 1)
640 		{
641 			if (r->is_rowsfrom)
642 				ereport(ERROR,
643 						(errcode(ERRCODE_SYNTAX_ERROR),
644 						 errmsg("ROWS FROM() with multiple functions cannot have a column definition list"),
645 						 errhint("Put a separate column definition list for each function inside ROWS FROM()."),
646 						 parser_errposition(pstate,
647 											exprLocation((Node *) r->coldeflist))));
648 			else
649 				ereport(ERROR,
650 						(errcode(ERRCODE_SYNTAX_ERROR),
651 						 errmsg("UNNEST() with multiple arguments cannot have a column definition list"),
652 						 errhint("Use separate UNNEST() calls inside ROWS FROM(), and attach a column definition list to each one."),
653 						 parser_errposition(pstate,
654 											exprLocation((Node *) r->coldeflist))));
655 		}
656 		if (r->ordinality)
657 			ereport(ERROR,
658 					(errcode(ERRCODE_SYNTAX_ERROR),
659 					 errmsg("WITH ORDINALITY cannot be used with a column definition list"),
660 					 errhint("Put the column definition list inside ROWS FROM()."),
661 					 parser_errposition(pstate,
662 										exprLocation((Node *) r->coldeflist))));
663 
664 		coldeflists = list_make1(r->coldeflist);
665 	}
666 
667 	/*
668 	 * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
669 	 * there are any lateral cross-references in it.
670 	 */
671 	is_lateral = r->lateral || contain_vars_of_level((Node *) funcexprs, 0);
672 
673 	/*
674 	 * OK, build an RTE and nsitem for the function.
675 	 */
676 	return addRangeTableEntryForFunction(pstate,
677 										 funcnames, funcexprs, coldeflists,
678 										 r, is_lateral, true);
679 }
680 
681 /*
682  * transformRangeTableFunc -
683  *			Transform a raw RangeTableFunc into TableFunc.
684  *
685  * Transform the namespace clauses, the document-generating expression, the
686  * row-generating expression, the column-generating expressions, and the
687  * default value expressions.
688  */
689 static ParseNamespaceItem *
transformRangeTableFunc(ParseState * pstate,RangeTableFunc * rtf)690 transformRangeTableFunc(ParseState *pstate, RangeTableFunc *rtf)
691 {
692 	TableFunc  *tf = makeNode(TableFunc);
693 	const char *constructName;
694 	Oid			docType;
695 	bool		is_lateral;
696 	ListCell   *col;
697 	char	  **names;
698 	int			colno;
699 
700 	/* Currently only XMLTABLE is supported */
701 	constructName = "XMLTABLE";
702 	docType = XMLOID;
703 
704 	/*
705 	 * We make lateral_only names of this level visible, whether or not the
706 	 * RangeTableFunc is explicitly marked LATERAL.  This is needed for SQL
707 	 * spec compliance and seems useful on convenience grounds for all
708 	 * functions in FROM.
709 	 *
710 	 * (LATERAL can't nest within a single pstate level, so we don't need
711 	 * save/restore logic here.)
712 	 */
713 	Assert(!pstate->p_lateral_active);
714 	pstate->p_lateral_active = true;
715 
716 	/* Transform and apply typecast to the row-generating expression ... */
717 	Assert(rtf->rowexpr != NULL);
718 	tf->rowexpr = coerce_to_specific_type(pstate,
719 										  transformExpr(pstate, rtf->rowexpr, EXPR_KIND_FROM_FUNCTION),
720 										  TEXTOID,
721 										  constructName);
722 	assign_expr_collations(pstate, tf->rowexpr);
723 
724 	/* ... and to the document itself */
725 	Assert(rtf->docexpr != NULL);
726 	tf->docexpr = coerce_to_specific_type(pstate,
727 										  transformExpr(pstate, rtf->docexpr, EXPR_KIND_FROM_FUNCTION),
728 										  docType,
729 										  constructName);
730 	assign_expr_collations(pstate, tf->docexpr);
731 
732 	/* undef ordinality column number */
733 	tf->ordinalitycol = -1;
734 
735 	/* Process column specs */
736 	names = palloc(sizeof(char *) * list_length(rtf->columns));
737 
738 	colno = 0;
739 	foreach(col, rtf->columns)
740 	{
741 		RangeTableFuncCol *rawc = (RangeTableFuncCol *) lfirst(col);
742 		Oid			typid;
743 		int32		typmod;
744 		Node	   *colexpr;
745 		Node	   *coldefexpr;
746 		int			j;
747 
748 		tf->colnames = lappend(tf->colnames,
749 							   makeString(pstrdup(rawc->colname)));
750 
751 		/*
752 		 * Determine the type and typmod for the new column. FOR ORDINALITY
753 		 * columns are INTEGER per spec; the others are user-specified.
754 		 */
755 		if (rawc->for_ordinality)
756 		{
757 			if (tf->ordinalitycol != -1)
758 				ereport(ERROR,
759 						(errcode(ERRCODE_SYNTAX_ERROR),
760 						 errmsg("only one FOR ORDINALITY column is allowed"),
761 						 parser_errposition(pstate, rawc->location)));
762 
763 			typid = INT4OID;
764 			typmod = -1;
765 			tf->ordinalitycol = colno;
766 		}
767 		else
768 		{
769 			if (rawc->typeName->setof)
770 				ereport(ERROR,
771 						(errcode(ERRCODE_INVALID_TABLE_DEFINITION),
772 						 errmsg("column \"%s\" cannot be declared SETOF",
773 								rawc->colname),
774 						 parser_errposition(pstate, rawc->location)));
775 
776 			typenameTypeIdAndMod(pstate, rawc->typeName,
777 								 &typid, &typmod);
778 		}
779 
780 		tf->coltypes = lappend_oid(tf->coltypes, typid);
781 		tf->coltypmods = lappend_int(tf->coltypmods, typmod);
782 		tf->colcollations = lappend_oid(tf->colcollations,
783 										get_typcollation(typid));
784 
785 		/* Transform the PATH and DEFAULT expressions */
786 		if (rawc->colexpr)
787 		{
788 			colexpr = coerce_to_specific_type(pstate,
789 											  transformExpr(pstate, rawc->colexpr,
790 															EXPR_KIND_FROM_FUNCTION),
791 											  TEXTOID,
792 											  constructName);
793 			assign_expr_collations(pstate, colexpr);
794 		}
795 		else
796 			colexpr = NULL;
797 
798 		if (rawc->coldefexpr)
799 		{
800 			coldefexpr = coerce_to_specific_type_typmod(pstate,
801 														transformExpr(pstate, rawc->coldefexpr,
802 																	  EXPR_KIND_FROM_FUNCTION),
803 														typid, typmod,
804 														constructName);
805 			assign_expr_collations(pstate, coldefexpr);
806 		}
807 		else
808 			coldefexpr = NULL;
809 
810 		tf->colexprs = lappend(tf->colexprs, colexpr);
811 		tf->coldefexprs = lappend(tf->coldefexprs, coldefexpr);
812 
813 		if (rawc->is_not_null)
814 			tf->notnulls = bms_add_member(tf->notnulls, colno);
815 
816 		/* make sure column names are unique */
817 		for (j = 0; j < colno; j++)
818 			if (strcmp(names[j], rawc->colname) == 0)
819 				ereport(ERROR,
820 						(errcode(ERRCODE_SYNTAX_ERROR),
821 						 errmsg("column name \"%s\" is not unique",
822 								rawc->colname),
823 						 parser_errposition(pstate, rawc->location)));
824 		names[colno] = rawc->colname;
825 
826 		colno++;
827 	}
828 	pfree(names);
829 
830 	/* Namespaces, if any, also need to be transformed */
831 	if (rtf->namespaces != NIL)
832 	{
833 		ListCell   *ns;
834 		ListCell   *lc2;
835 		List	   *ns_uris = NIL;
836 		List	   *ns_names = NIL;
837 		bool		default_ns_seen = false;
838 
839 		foreach(ns, rtf->namespaces)
840 		{
841 			ResTarget  *r = (ResTarget *) lfirst(ns);
842 			Node	   *ns_uri;
843 
844 			Assert(IsA(r, ResTarget));
845 			ns_uri = transformExpr(pstate, r->val, EXPR_KIND_FROM_FUNCTION);
846 			ns_uri = coerce_to_specific_type(pstate, ns_uri,
847 											 TEXTOID, constructName);
848 			assign_expr_collations(pstate, ns_uri);
849 			ns_uris = lappend(ns_uris, ns_uri);
850 
851 			/* Verify consistency of name list: no dupes, only one DEFAULT */
852 			if (r->name != NULL)
853 			{
854 				foreach(lc2, ns_names)
855 				{
856 					Value	   *ns_node = (Value *) lfirst(lc2);
857 
858 					if (ns_node == NULL)
859 						continue;
860 					if (strcmp(strVal(ns_node), r->name) == 0)
861 						ereport(ERROR,
862 								(errcode(ERRCODE_SYNTAX_ERROR),
863 								 errmsg("namespace name \"%s\" is not unique",
864 										r->name),
865 								 parser_errposition(pstate, r->location)));
866 				}
867 			}
868 			else
869 			{
870 				if (default_ns_seen)
871 					ereport(ERROR,
872 							(errcode(ERRCODE_SYNTAX_ERROR),
873 							 errmsg("only one default namespace is allowed"),
874 							 parser_errposition(pstate, r->location)));
875 				default_ns_seen = true;
876 			}
877 
878 			/* We represent DEFAULT by a null pointer */
879 			ns_names = lappend(ns_names,
880 							   r->name ? makeString(r->name) : NULL);
881 		}
882 
883 		tf->ns_uris = ns_uris;
884 		tf->ns_names = ns_names;
885 	}
886 
887 	tf->location = rtf->location;
888 
889 	pstate->p_lateral_active = false;
890 
891 	/*
892 	 * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
893 	 * there are any lateral cross-references in it.
894 	 */
895 	is_lateral = rtf->lateral || contain_vars_of_level((Node *) tf, 0);
896 
897 	return addRangeTableEntryForTableFunc(pstate,
898 										  tf, rtf->alias, is_lateral, true);
899 }
900 
901 /*
902  * transformRangeTableSample --- transform a TABLESAMPLE clause
903  *
904  * Caller has already transformed rts->relation, we just have to validate
905  * the remaining fields and create a TableSampleClause node.
906  */
907 static TableSampleClause *
transformRangeTableSample(ParseState * pstate,RangeTableSample * rts)908 transformRangeTableSample(ParseState *pstate, RangeTableSample *rts)
909 {
910 	TableSampleClause *tablesample;
911 	Oid			handlerOid;
912 	Oid			funcargtypes[1];
913 	TsmRoutine *tsm;
914 	List	   *fargs;
915 	ListCell   *larg,
916 			   *ltyp;
917 
918 	/*
919 	 * To validate the sample method name, look up the handler function, which
920 	 * has the same name, one dummy INTERNAL argument, and a result type of
921 	 * tsm_handler.  (Note: tablesample method names are not schema-qualified
922 	 * in the SQL standard; but since they are just functions to us, we allow
923 	 * schema qualification to resolve any potential ambiguity.)
924 	 */
925 	funcargtypes[0] = INTERNALOID;
926 
927 	handlerOid = LookupFuncName(rts->method, 1, funcargtypes, true);
928 
929 	/* we want error to complain about no-such-method, not no-such-function */
930 	if (!OidIsValid(handlerOid))
931 		ereport(ERROR,
932 				(errcode(ERRCODE_UNDEFINED_OBJECT),
933 				 errmsg("tablesample method %s does not exist",
934 						NameListToString(rts->method)),
935 				 parser_errposition(pstate, rts->location)));
936 
937 	/* check that handler has correct return type */
938 	if (get_func_rettype(handlerOid) != TSM_HANDLEROID)
939 		ereport(ERROR,
940 				(errcode(ERRCODE_WRONG_OBJECT_TYPE),
941 				 errmsg("function %s must return type %s",
942 						NameListToString(rts->method), "tsm_handler"),
943 				 parser_errposition(pstate, rts->location)));
944 
945 	/* OK, run the handler to get TsmRoutine, for argument type info */
946 	tsm = GetTsmRoutine(handlerOid);
947 
948 	tablesample = makeNode(TableSampleClause);
949 	tablesample->tsmhandler = handlerOid;
950 
951 	/* check user provided the expected number of arguments */
952 	if (list_length(rts->args) != list_length(tsm->parameterTypes))
953 		ereport(ERROR,
954 				(errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
955 				 errmsg_plural("tablesample method %s requires %d argument, not %d",
956 							   "tablesample method %s requires %d arguments, not %d",
957 							   list_length(tsm->parameterTypes),
958 							   NameListToString(rts->method),
959 							   list_length(tsm->parameterTypes),
960 							   list_length(rts->args)),
961 				 parser_errposition(pstate, rts->location)));
962 
963 	/*
964 	 * Transform the arguments, typecasting them as needed.  Note we must also
965 	 * assign collations now, because assign_query_collations() doesn't
966 	 * examine any substructure of RTEs.
967 	 */
968 	fargs = NIL;
969 	forboth(larg, rts->args, ltyp, tsm->parameterTypes)
970 	{
971 		Node	   *arg = (Node *) lfirst(larg);
972 		Oid			argtype = lfirst_oid(ltyp);
973 
974 		arg = transformExpr(pstate, arg, EXPR_KIND_FROM_FUNCTION);
975 		arg = coerce_to_specific_type(pstate, arg, argtype, "TABLESAMPLE");
976 		assign_expr_collations(pstate, arg);
977 		fargs = lappend(fargs, arg);
978 	}
979 	tablesample->args = fargs;
980 
981 	/* Process REPEATABLE (seed) */
982 	if (rts->repeatable != NULL)
983 	{
984 		Node	   *arg;
985 
986 		if (!tsm->repeatable_across_queries)
987 			ereport(ERROR,
988 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
989 					 errmsg("tablesample method %s does not support REPEATABLE",
990 							NameListToString(rts->method)),
991 					 parser_errposition(pstate, rts->location)));
992 
993 		arg = transformExpr(pstate, rts->repeatable, EXPR_KIND_FROM_FUNCTION);
994 		arg = coerce_to_specific_type(pstate, arg, FLOAT8OID, "REPEATABLE");
995 		assign_expr_collations(pstate, arg);
996 		tablesample->repeatable = (Expr *) arg;
997 	}
998 	else
999 		tablesample->repeatable = NULL;
1000 
1001 	return tablesample;
1002 }
1003 
1004 /*
1005  * getNSItemForSpecialRelationTypes
1006  *
1007  * If given RangeVar refers to a CTE or an EphemeralNamedRelation,
1008  * build and return an appropriate ParseNamespaceItem, otherwise return NULL
1009  */
1010 static ParseNamespaceItem *
getNSItemForSpecialRelationTypes(ParseState * pstate,RangeVar * rv)1011 getNSItemForSpecialRelationTypes(ParseState *pstate, RangeVar *rv)
1012 {
1013 	ParseNamespaceItem *nsitem;
1014 	CommonTableExpr *cte;
1015 	Index		levelsup;
1016 
1017 	/*
1018 	 * if it is a qualified name, it can't be a CTE or tuplestore reference
1019 	 */
1020 	if (rv->schemaname)
1021 		return NULL;
1022 
1023 	cte = scanNameSpaceForCTE(pstate, rv->relname, &levelsup);
1024 	if (cte)
1025 		nsitem = addRangeTableEntryForCTE(pstate, cte, levelsup, rv, true);
1026 	else if (scanNameSpaceForENR(pstate, rv->relname))
1027 		nsitem = addRangeTableEntryForENR(pstate, rv, true);
1028 	else
1029 		nsitem = NULL;
1030 
1031 	return nsitem;
1032 }
1033 
1034 /*
1035  * transformFromClauseItem -
1036  *	  Transform a FROM-clause item, adding any required entries to the
1037  *	  range table list being built in the ParseState, and return the
1038  *	  transformed item ready to include in the joinlist.  Also build a
1039  *	  ParseNamespaceItem list describing the names exposed by this item.
1040  *	  This routine can recurse to handle SQL92 JOIN expressions.
1041  *
1042  * The function return value is the node to add to the jointree (a
1043  * RangeTblRef or JoinExpr).  Additional output parameters are:
1044  *
1045  * *top_nsitem: receives the ParseNamespaceItem directly corresponding to the
1046  * jointree item.  (This is only used during internal recursion, not by
1047  * outside callers.)
1048  *
1049  * *namespace: receives a List of ParseNamespaceItems for the RTEs exposed
1050  * as table/column names by this item.  (The lateral_only flags in these items
1051  * are indeterminate and should be explicitly set by the caller before use.)
1052  */
1053 static Node *
transformFromClauseItem(ParseState * pstate,Node * n,ParseNamespaceItem ** top_nsitem,List ** namespace)1054 transformFromClauseItem(ParseState *pstate, Node *n,
1055 						ParseNamespaceItem **top_nsitem,
1056 						List **namespace)
1057 {
1058 	if (IsA(n, RangeVar))
1059 	{
1060 		/* Plain relation reference, or perhaps a CTE reference */
1061 		RangeVar   *rv = (RangeVar *) n;
1062 		RangeTblRef *rtr;
1063 		ParseNamespaceItem *nsitem;
1064 
1065 		/* Check if it's a CTE or tuplestore reference */
1066 		nsitem = getNSItemForSpecialRelationTypes(pstate, rv);
1067 
1068 		/* if not found above, must be a table reference */
1069 		if (!nsitem)
1070 			nsitem = transformTableEntry(pstate, rv);
1071 
1072 		*top_nsitem = nsitem;
1073 		*namespace = list_make1(nsitem);
1074 		rtr = makeNode(RangeTblRef);
1075 		rtr->rtindex = nsitem->p_rtindex;
1076 		return (Node *) rtr;
1077 	}
1078 	else if (IsA(n, RangeSubselect))
1079 	{
1080 		/* sub-SELECT is like a plain relation */
1081 		RangeTblRef *rtr;
1082 		ParseNamespaceItem *nsitem;
1083 
1084 		nsitem = transformRangeSubselect(pstate, (RangeSubselect *) n);
1085 		*top_nsitem = nsitem;
1086 		*namespace = list_make1(nsitem);
1087 		rtr = makeNode(RangeTblRef);
1088 		rtr->rtindex = nsitem->p_rtindex;
1089 		return (Node *) rtr;
1090 	}
1091 	else if (IsA(n, RangeFunction))
1092 	{
1093 		/* function is like a plain relation */
1094 		RangeTblRef *rtr;
1095 		ParseNamespaceItem *nsitem;
1096 
1097 		nsitem = transformRangeFunction(pstate, (RangeFunction *) n);
1098 		*top_nsitem = nsitem;
1099 		*namespace = list_make1(nsitem);
1100 		rtr = makeNode(RangeTblRef);
1101 		rtr->rtindex = nsitem->p_rtindex;
1102 		return (Node *) rtr;
1103 	}
1104 	else if (IsA(n, RangeTableFunc))
1105 	{
1106 		/* table function is like a plain relation */
1107 		RangeTblRef *rtr;
1108 		ParseNamespaceItem *nsitem;
1109 
1110 		nsitem = transformRangeTableFunc(pstate, (RangeTableFunc *) n);
1111 		*top_nsitem = nsitem;
1112 		*namespace = list_make1(nsitem);
1113 		rtr = makeNode(RangeTblRef);
1114 		rtr->rtindex = nsitem->p_rtindex;
1115 		return (Node *) rtr;
1116 	}
1117 	else if (IsA(n, RangeTableSample))
1118 	{
1119 		/* TABLESAMPLE clause (wrapping some other valid FROM node) */
1120 		RangeTableSample *rts = (RangeTableSample *) n;
1121 		Node	   *rel;
1122 		RangeTblEntry *rte;
1123 
1124 		/* Recursively transform the contained relation */
1125 		rel = transformFromClauseItem(pstate, rts->relation,
1126 									  top_nsitem, namespace);
1127 		rte = (*top_nsitem)->p_rte;
1128 		/* We only support this on plain relations and matviews */
1129 		if (rte->rtekind != RTE_RELATION ||
1130 			(rte->relkind != RELKIND_RELATION &&
1131 			 rte->relkind != RELKIND_MATVIEW &&
1132 			 rte->relkind != RELKIND_PARTITIONED_TABLE))
1133 			ereport(ERROR,
1134 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1135 					 errmsg("TABLESAMPLE clause can only be applied to tables and materialized views"),
1136 					 parser_errposition(pstate, exprLocation(rts->relation))));
1137 
1138 		/* Transform TABLESAMPLE details and attach to the RTE */
1139 		rte->tablesample = transformRangeTableSample(pstate, rts);
1140 		return rel;
1141 	}
1142 	else if (IsA(n, JoinExpr))
1143 	{
1144 		/* A newfangled join expression */
1145 		JoinExpr   *j = (JoinExpr *) n;
1146 		ParseNamespaceItem *nsitem;
1147 		ParseNamespaceItem *l_nsitem;
1148 		ParseNamespaceItem *r_nsitem;
1149 		List	   *l_namespace,
1150 				   *r_namespace,
1151 				   *my_namespace,
1152 				   *l_colnames,
1153 				   *r_colnames,
1154 				   *res_colnames,
1155 				   *l_colnos,
1156 				   *r_colnos,
1157 				   *res_colvars;
1158 		ParseNamespaceColumn *l_nscolumns,
1159 				   *r_nscolumns,
1160 				   *res_nscolumns;
1161 		int			res_colindex;
1162 		bool		lateral_ok;
1163 		int			sv_namespace_length;
1164 		int			k;
1165 
1166 		/*
1167 		 * Recursively process the left subtree, then the right.  We must do
1168 		 * it in this order for correct visibility of LATERAL references.
1169 		 */
1170 		j->larg = transformFromClauseItem(pstate, j->larg,
1171 										  &l_nsitem,
1172 										  &l_namespace);
1173 
1174 		/*
1175 		 * Make the left-side RTEs available for LATERAL access within the
1176 		 * right side, by temporarily adding them to the pstate's namespace
1177 		 * list.  Per SQL:2008, if the join type is not INNER or LEFT then the
1178 		 * left-side names must still be exposed, but it's an error to
1179 		 * reference them.  (Stupid design, but that's what it says.)  Hence,
1180 		 * we always push them into the namespace, but mark them as not
1181 		 * lateral_ok if the jointype is wrong.
1182 		 *
1183 		 * Notice that we don't require the merged namespace list to be
1184 		 * conflict-free.  See the comments for scanNameSpaceForRefname().
1185 		 */
1186 		lateral_ok = (j->jointype == JOIN_INNER || j->jointype == JOIN_LEFT);
1187 		setNamespaceLateralState(l_namespace, true, lateral_ok);
1188 
1189 		sv_namespace_length = list_length(pstate->p_namespace);
1190 		pstate->p_namespace = list_concat(pstate->p_namespace, l_namespace);
1191 
1192 		/* And now we can process the RHS */
1193 		j->rarg = transformFromClauseItem(pstate, j->rarg,
1194 										  &r_nsitem,
1195 										  &r_namespace);
1196 
1197 		/* Remove the left-side RTEs from the namespace list again */
1198 		pstate->p_namespace = list_truncate(pstate->p_namespace,
1199 											sv_namespace_length);
1200 
1201 		/*
1202 		 * Check for conflicting refnames in left and right subtrees. Must do
1203 		 * this because higher levels will assume I hand back a self-
1204 		 * consistent namespace list.
1205 		 */
1206 		checkNameSpaceConflicts(pstate, l_namespace, r_namespace);
1207 
1208 		/*
1209 		 * Generate combined namespace info for possible use below.
1210 		 */
1211 		my_namespace = list_concat(l_namespace, r_namespace);
1212 
1213 		/*
1214 		 * We'll work from the nscolumns data and eref alias column names for
1215 		 * each of the input nsitems.  Note that these include dropped
1216 		 * columns, which is helpful because we can keep track of physical
1217 		 * input column numbers more easily.
1218 		 */
1219 		l_nscolumns = l_nsitem->p_nscolumns;
1220 		l_colnames = l_nsitem->p_rte->eref->colnames;
1221 		r_nscolumns = r_nsitem->p_nscolumns;
1222 		r_colnames = r_nsitem->p_rte->eref->colnames;
1223 
1224 		/*
1225 		 * Natural join does not explicitly specify columns; must generate
1226 		 * columns to join. Need to run through the list of columns from each
1227 		 * table or join result and match up the column names. Use the first
1228 		 * table, and check every column in the second table for a match.
1229 		 * (We'll check that the matches were unique later on.) The result of
1230 		 * this step is a list of column names just like an explicitly-written
1231 		 * USING list.
1232 		 */
1233 		if (j->isNatural)
1234 		{
1235 			List	   *rlist = NIL;
1236 			ListCell   *lx,
1237 					   *rx;
1238 
1239 			Assert(j->usingClause == NIL);	/* shouldn't have USING() too */
1240 
1241 			foreach(lx, l_colnames)
1242 			{
1243 				char	   *l_colname = strVal(lfirst(lx));
1244 				Value	   *m_name = NULL;
1245 
1246 				if (l_colname[0] == '\0')
1247 					continue;	/* ignore dropped columns */
1248 
1249 				foreach(rx, r_colnames)
1250 				{
1251 					char	   *r_colname = strVal(lfirst(rx));
1252 
1253 					if (strcmp(l_colname, r_colname) == 0)
1254 					{
1255 						m_name = makeString(l_colname);
1256 						break;
1257 					}
1258 				}
1259 
1260 				/* matched a right column? then keep as join column... */
1261 				if (m_name != NULL)
1262 					rlist = lappend(rlist, m_name);
1263 			}
1264 
1265 			j->usingClause = rlist;
1266 		}
1267 
1268 		/*
1269 		 * Now transform the join qualifications, if any.
1270 		 */
1271 		l_colnos = NIL;
1272 		r_colnos = NIL;
1273 		res_colnames = NIL;
1274 		res_colvars = NIL;
1275 
1276 		/* this may be larger than needed, but it's not worth being exact */
1277 		res_nscolumns = (ParseNamespaceColumn *)
1278 			palloc0((list_length(l_colnames) + list_length(r_colnames)) *
1279 					sizeof(ParseNamespaceColumn));
1280 		res_colindex = 0;
1281 
1282 		if (j->usingClause)
1283 		{
1284 			/*
1285 			 * JOIN/USING (or NATURAL JOIN, as transformed above). Transform
1286 			 * the list into an explicit ON-condition, and generate a list of
1287 			 * merged result columns.
1288 			 */
1289 			List	   *ucols = j->usingClause;
1290 			List	   *l_usingvars = NIL;
1291 			List	   *r_usingvars = NIL;
1292 			ListCell   *ucol;
1293 
1294 			Assert(j->quals == NULL);	/* shouldn't have ON() too */
1295 
1296 			foreach(ucol, ucols)
1297 			{
1298 				char	   *u_colname = strVal(lfirst(ucol));
1299 				ListCell   *col;
1300 				int			ndx;
1301 				int			l_index = -1;
1302 				int			r_index = -1;
1303 				Var		   *l_colvar,
1304 						   *r_colvar;
1305 				Node	   *u_colvar;
1306 				ParseNamespaceColumn *res_nscolumn;
1307 
1308 				Assert(u_colname[0] != '\0');
1309 
1310 				/* Check for USING(foo,foo) */
1311 				foreach(col, res_colnames)
1312 				{
1313 					char	   *res_colname = strVal(lfirst(col));
1314 
1315 					if (strcmp(res_colname, u_colname) == 0)
1316 						ereport(ERROR,
1317 								(errcode(ERRCODE_DUPLICATE_COLUMN),
1318 								 errmsg("column name \"%s\" appears more than once in USING clause",
1319 										u_colname)));
1320 				}
1321 
1322 				/* Find it in left input */
1323 				ndx = 0;
1324 				foreach(col, l_colnames)
1325 				{
1326 					char	   *l_colname = strVal(lfirst(col));
1327 
1328 					if (strcmp(l_colname, u_colname) == 0)
1329 					{
1330 						if (l_index >= 0)
1331 							ereport(ERROR,
1332 									(errcode(ERRCODE_AMBIGUOUS_COLUMN),
1333 									 errmsg("common column name \"%s\" appears more than once in left table",
1334 											u_colname)));
1335 						l_index = ndx;
1336 					}
1337 					ndx++;
1338 				}
1339 				if (l_index < 0)
1340 					ereport(ERROR,
1341 							(errcode(ERRCODE_UNDEFINED_COLUMN),
1342 							 errmsg("column \"%s\" specified in USING clause does not exist in left table",
1343 									u_colname)));
1344 				l_colnos = lappend_int(l_colnos, l_index + 1);
1345 
1346 				/* Find it in right input */
1347 				ndx = 0;
1348 				foreach(col, r_colnames)
1349 				{
1350 					char	   *r_colname = strVal(lfirst(col));
1351 
1352 					if (strcmp(r_colname, u_colname) == 0)
1353 					{
1354 						if (r_index >= 0)
1355 							ereport(ERROR,
1356 									(errcode(ERRCODE_AMBIGUOUS_COLUMN),
1357 									 errmsg("common column name \"%s\" appears more than once in right table",
1358 											u_colname)));
1359 						r_index = ndx;
1360 					}
1361 					ndx++;
1362 				}
1363 				if (r_index < 0)
1364 					ereport(ERROR,
1365 							(errcode(ERRCODE_UNDEFINED_COLUMN),
1366 							 errmsg("column \"%s\" specified in USING clause does not exist in right table",
1367 									u_colname)));
1368 				r_colnos = lappend_int(r_colnos, r_index + 1);
1369 
1370 				l_colvar = buildVarFromNSColumn(l_nscolumns + l_index);
1371 				l_usingvars = lappend(l_usingvars, l_colvar);
1372 				r_colvar = buildVarFromNSColumn(r_nscolumns + r_index);
1373 				r_usingvars = lappend(r_usingvars, r_colvar);
1374 
1375 				res_colnames = lappend(res_colnames, lfirst(ucol));
1376 				u_colvar = buildMergedJoinVar(pstate,
1377 											  j->jointype,
1378 											  l_colvar,
1379 											  r_colvar);
1380 				res_colvars = lappend(res_colvars, u_colvar);
1381 				res_nscolumn = res_nscolumns + res_colindex;
1382 				res_colindex++;
1383 				if (u_colvar == (Node *) l_colvar)
1384 				{
1385 					/* Merged column is equivalent to left input */
1386 					*res_nscolumn = l_nscolumns[l_index];
1387 				}
1388 				else if (u_colvar == (Node *) r_colvar)
1389 				{
1390 					/* Merged column is equivalent to right input */
1391 					*res_nscolumn = r_nscolumns[r_index];
1392 				}
1393 				else
1394 				{
1395 					/*
1396 					 * Merged column is not semantically equivalent to either
1397 					 * input, so it needs to be referenced as the join output
1398 					 * column.  We don't know the join's varno yet, so we'll
1399 					 * replace these zeroes below.
1400 					 */
1401 					res_nscolumn->p_varno = 0;
1402 					res_nscolumn->p_varattno = res_colindex;
1403 					res_nscolumn->p_vartype = exprType(u_colvar);
1404 					res_nscolumn->p_vartypmod = exprTypmod(u_colvar);
1405 					res_nscolumn->p_varcollid = exprCollation(u_colvar);
1406 					res_nscolumn->p_varnosyn = 0;
1407 					res_nscolumn->p_varattnosyn = res_colindex;
1408 				}
1409 			}
1410 
1411 			j->quals = transformJoinUsingClause(pstate,
1412 												l_nsitem->p_rte,
1413 												r_nsitem->p_rte,
1414 												l_usingvars,
1415 												r_usingvars);
1416 		}
1417 		else if (j->quals)
1418 		{
1419 			/* User-written ON-condition; transform it */
1420 			j->quals = transformJoinOnClause(pstate, j, my_namespace);
1421 		}
1422 		else
1423 		{
1424 			/* CROSS JOIN: no quals */
1425 		}
1426 
1427 		/* Add remaining columns from each side to the output columns */
1428 		res_colindex +=
1429 			extractRemainingColumns(l_nscolumns, l_colnames, &l_colnos,
1430 									&res_colnames, &res_colvars,
1431 									res_nscolumns + res_colindex);
1432 		res_colindex +=
1433 			extractRemainingColumns(r_nscolumns, r_colnames, &r_colnos,
1434 									&res_colnames, &res_colvars,
1435 									res_nscolumns + res_colindex);
1436 
1437 		/*
1438 		 * Check alias (AS clause), if any.
1439 		 */
1440 		if (j->alias)
1441 		{
1442 			if (j->alias->colnames != NIL)
1443 			{
1444 				if (list_length(j->alias->colnames) > list_length(res_colnames))
1445 					ereport(ERROR,
1446 							(errcode(ERRCODE_SYNTAX_ERROR),
1447 							 errmsg("column alias list for \"%s\" has too many entries",
1448 									j->alias->aliasname)));
1449 			}
1450 		}
1451 
1452 		/*
1453 		 * Now build an RTE and nsitem for the result of the join.
1454 		 * res_nscolumns isn't totally done yet, but that's OK because
1455 		 * addRangeTableEntryForJoin doesn't examine it, only store a pointer.
1456 		 */
1457 		nsitem = addRangeTableEntryForJoin(pstate,
1458 										   res_colnames,
1459 										   res_nscolumns,
1460 										   j->jointype,
1461 										   list_length(j->usingClause),
1462 										   res_colvars,
1463 										   l_colnos,
1464 										   r_colnos,
1465 										   j->alias,
1466 										   true);
1467 
1468 		j->rtindex = nsitem->p_rtindex;
1469 
1470 		/*
1471 		 * Now that we know the join RTE's rangetable index, we can fix up the
1472 		 * res_nscolumns data in places where it should contain that.
1473 		 */
1474 		Assert(res_colindex == list_length(nsitem->p_rte->eref->colnames));
1475 		for (k = 0; k < res_colindex; k++)
1476 		{
1477 			ParseNamespaceColumn *nscol = res_nscolumns + k;
1478 
1479 			/* fill in join RTI for merged columns */
1480 			if (nscol->p_varno == 0)
1481 				nscol->p_varno = j->rtindex;
1482 			if (nscol->p_varnosyn == 0)
1483 				nscol->p_varnosyn = j->rtindex;
1484 			/* if join has an alias, it syntactically hides all inputs */
1485 			if (j->alias)
1486 			{
1487 				nscol->p_varnosyn = j->rtindex;
1488 				nscol->p_varattnosyn = k + 1;
1489 			}
1490 		}
1491 
1492 		/* make a matching link to the JoinExpr for later use */
1493 		for (k = list_length(pstate->p_joinexprs) + 1; k < j->rtindex; k++)
1494 			pstate->p_joinexprs = lappend(pstate->p_joinexprs, NULL);
1495 		pstate->p_joinexprs = lappend(pstate->p_joinexprs, j);
1496 		Assert(list_length(pstate->p_joinexprs) == j->rtindex);
1497 
1498 		/*
1499 		 * Prepare returned namespace list.  If the JOIN has an alias then it
1500 		 * hides the contained RTEs completely; otherwise, the contained RTEs
1501 		 * are still visible as table names, but are not visible for
1502 		 * unqualified column-name access.
1503 		 *
1504 		 * Note: if there are nested alias-less JOINs, the lower-level ones
1505 		 * will remain in the list although they have neither p_rel_visible
1506 		 * nor p_cols_visible set.  We could delete such list items, but it's
1507 		 * unclear that it's worth expending cycles to do so.
1508 		 */
1509 		if (j->alias != NULL)
1510 			my_namespace = NIL;
1511 		else
1512 			setNamespaceColumnVisibility(my_namespace, false);
1513 
1514 		/*
1515 		 * The join RTE itself is always made visible for unqualified column
1516 		 * names.  It's visible as a relation name only if it has an alias.
1517 		 */
1518 		nsitem->p_rel_visible = (j->alias != NULL);
1519 		nsitem->p_cols_visible = true;
1520 		nsitem->p_lateral_only = false;
1521 		nsitem->p_lateral_ok = true;
1522 
1523 		*top_nsitem = nsitem;
1524 		*namespace = lappend(my_namespace, nsitem);
1525 
1526 		return (Node *) j;
1527 	}
1528 	else
1529 		elog(ERROR, "unrecognized node type: %d", (int) nodeTag(n));
1530 	return NULL;				/* can't get here, keep compiler quiet */
1531 }
1532 
1533 /*
1534  * buildVarFromNSColumn -
1535  *	  build a Var node using ParseNamespaceColumn data
1536  *
1537  * We assume varlevelsup should be 0, and no location is specified
1538  */
1539 static Var *
buildVarFromNSColumn(ParseNamespaceColumn * nscol)1540 buildVarFromNSColumn(ParseNamespaceColumn *nscol)
1541 {
1542 	Var		   *var;
1543 
1544 	Assert(nscol->p_varno > 0); /* i.e., not deleted column */
1545 	var = makeVar(nscol->p_varno,
1546 				  nscol->p_varattno,
1547 				  nscol->p_vartype,
1548 				  nscol->p_vartypmod,
1549 				  nscol->p_varcollid,
1550 				  0);
1551 	/* makeVar doesn't offer parameters for these, so set by hand: */
1552 	var->varnosyn = nscol->p_varnosyn;
1553 	var->varattnosyn = nscol->p_varattnosyn;
1554 	return var;
1555 }
1556 
1557 /*
1558  * buildMergedJoinVar -
1559  *	  generate a suitable replacement expression for a merged join column
1560  */
1561 static Node *
buildMergedJoinVar(ParseState * pstate,JoinType jointype,Var * l_colvar,Var * r_colvar)1562 buildMergedJoinVar(ParseState *pstate, JoinType jointype,
1563 				   Var *l_colvar, Var *r_colvar)
1564 {
1565 	Oid			outcoltype;
1566 	int32		outcoltypmod;
1567 	Node	   *l_node,
1568 			   *r_node,
1569 			   *res_node;
1570 
1571 	/*
1572 	 * Choose output type if input types are dissimilar.
1573 	 */
1574 	outcoltype = l_colvar->vartype;
1575 	outcoltypmod = l_colvar->vartypmod;
1576 	if (outcoltype != r_colvar->vartype)
1577 	{
1578 		outcoltype = select_common_type(pstate,
1579 										list_make2(l_colvar, r_colvar),
1580 										"JOIN/USING",
1581 										NULL);
1582 		outcoltypmod = -1;		/* ie, unknown */
1583 	}
1584 	else if (outcoltypmod != r_colvar->vartypmod)
1585 	{
1586 		/* same type, but not same typmod */
1587 		outcoltypmod = -1;		/* ie, unknown */
1588 	}
1589 
1590 	/*
1591 	 * Insert coercion functions if needed.  Note that a difference in typmod
1592 	 * can only happen if input has typmod but outcoltypmod is -1. In that
1593 	 * case we insert a RelabelType to clearly mark that result's typmod is
1594 	 * not same as input.  We never need coerce_type_typmod.
1595 	 */
1596 	if (l_colvar->vartype != outcoltype)
1597 		l_node = coerce_type(pstate, (Node *) l_colvar, l_colvar->vartype,
1598 							 outcoltype, outcoltypmod,
1599 							 COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
1600 	else if (l_colvar->vartypmod != outcoltypmod)
1601 		l_node = (Node *) makeRelabelType((Expr *) l_colvar,
1602 										  outcoltype, outcoltypmod,
1603 										  InvalidOid,	/* fixed below */
1604 										  COERCE_IMPLICIT_CAST);
1605 	else
1606 		l_node = (Node *) l_colvar;
1607 
1608 	if (r_colvar->vartype != outcoltype)
1609 		r_node = coerce_type(pstate, (Node *) r_colvar, r_colvar->vartype,
1610 							 outcoltype, outcoltypmod,
1611 							 COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
1612 	else if (r_colvar->vartypmod != outcoltypmod)
1613 		r_node = (Node *) makeRelabelType((Expr *) r_colvar,
1614 										  outcoltype, outcoltypmod,
1615 										  InvalidOid,	/* fixed below */
1616 										  COERCE_IMPLICIT_CAST);
1617 	else
1618 		r_node = (Node *) r_colvar;
1619 
1620 	/*
1621 	 * Choose what to emit
1622 	 */
1623 	switch (jointype)
1624 	{
1625 		case JOIN_INNER:
1626 
1627 			/*
1628 			 * We can use either var; prefer non-coerced one if available.
1629 			 */
1630 			if (IsA(l_node, Var))
1631 				res_node = l_node;
1632 			else if (IsA(r_node, Var))
1633 				res_node = r_node;
1634 			else
1635 				res_node = l_node;
1636 			break;
1637 		case JOIN_LEFT:
1638 			/* Always use left var */
1639 			res_node = l_node;
1640 			break;
1641 		case JOIN_RIGHT:
1642 			/* Always use right var */
1643 			res_node = r_node;
1644 			break;
1645 		case JOIN_FULL:
1646 			{
1647 				/*
1648 				 * Here we must build a COALESCE expression to ensure that the
1649 				 * join output is non-null if either input is.
1650 				 */
1651 				CoalesceExpr *c = makeNode(CoalesceExpr);
1652 
1653 				c->coalescetype = outcoltype;
1654 				/* coalescecollid will get set below */
1655 				c->args = list_make2(l_node, r_node);
1656 				c->location = -1;
1657 				res_node = (Node *) c;
1658 				break;
1659 			}
1660 		default:
1661 			elog(ERROR, "unrecognized join type: %d", (int) jointype);
1662 			res_node = NULL;	/* keep compiler quiet */
1663 			break;
1664 	}
1665 
1666 	/*
1667 	 * Apply assign_expr_collations to fix up the collation info in the
1668 	 * coercion and CoalesceExpr nodes, if we made any.  This must be done now
1669 	 * so that the join node's alias vars show correct collation info.
1670 	 */
1671 	assign_expr_collations(pstate, res_node);
1672 
1673 	return res_node;
1674 }
1675 
1676 /*
1677  * setNamespaceColumnVisibility -
1678  *	  Convenience subroutine to update cols_visible flags in a namespace list.
1679  */
1680 static void
setNamespaceColumnVisibility(List * namespace,bool cols_visible)1681 setNamespaceColumnVisibility(List *namespace, bool cols_visible)
1682 {
1683 	ListCell   *lc;
1684 
1685 	foreach(lc, namespace)
1686 	{
1687 		ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1688 
1689 		nsitem->p_cols_visible = cols_visible;
1690 	}
1691 }
1692 
1693 /*
1694  * setNamespaceLateralState -
1695  *	  Convenience subroutine to update LATERAL flags in a namespace list.
1696  */
1697 static void
setNamespaceLateralState(List * namespace,bool lateral_only,bool lateral_ok)1698 setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok)
1699 {
1700 	ListCell   *lc;
1701 
1702 	foreach(lc, namespace)
1703 	{
1704 		ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1705 
1706 		nsitem->p_lateral_only = lateral_only;
1707 		nsitem->p_lateral_ok = lateral_ok;
1708 	}
1709 }
1710 
1711 
1712 /*
1713  * transformWhereClause -
1714  *	  Transform the qualification and make sure it is of type boolean.
1715  *	  Used for WHERE and allied clauses.
1716  *
1717  * constructName does not affect the semantics, but is used in error messages
1718  */
1719 Node *
transformWhereClause(ParseState * pstate,Node * clause,ParseExprKind exprKind,const char * constructName)1720 transformWhereClause(ParseState *pstate, Node *clause,
1721 					 ParseExprKind exprKind, const char *constructName)
1722 {
1723 	Node	   *qual;
1724 
1725 	if (clause == NULL)
1726 		return NULL;
1727 
1728 	qual = transformExpr(pstate, clause, exprKind);
1729 
1730 	qual = coerce_to_boolean(pstate, qual, constructName);
1731 
1732 	return qual;
1733 }
1734 
1735 
1736 /*
1737  * transformLimitClause -
1738  *	  Transform the expression and make sure it is of type bigint.
1739  *	  Used for LIMIT and allied clauses.
1740  *
1741  * Note: as of Postgres 8.2, LIMIT expressions are expected to yield int8,
1742  * rather than int4 as before.
1743  *
1744  * constructName does not affect the semantics, but is used in error messages
1745  */
1746 Node *
transformLimitClause(ParseState * pstate,Node * clause,ParseExprKind exprKind,const char * constructName,LimitOption limitOption)1747 transformLimitClause(ParseState *pstate, Node *clause,
1748 					 ParseExprKind exprKind, const char *constructName,
1749 					 LimitOption limitOption)
1750 {
1751 	Node	   *qual;
1752 
1753 	if (clause == NULL)
1754 		return NULL;
1755 
1756 	qual = transformExpr(pstate, clause, exprKind);
1757 
1758 	qual = coerce_to_specific_type(pstate, qual, INT8OID, constructName);
1759 
1760 	/* LIMIT can't refer to any variables of the current query */
1761 	checkExprIsVarFree(pstate, qual, constructName);
1762 
1763 	/*
1764 	 * Don't allow NULLs in FETCH FIRST .. WITH TIES.  This test is ugly and
1765 	 * extremely simplistic, in that you can pass a NULL anyway by hiding it
1766 	 * inside an expression -- but this protects ruleutils against emitting an
1767 	 * unadorned NULL that's not accepted back by the grammar.
1768 	 */
1769 	if (exprKind == EXPR_KIND_LIMIT && limitOption == LIMIT_OPTION_WITH_TIES &&
1770 		IsA(clause, A_Const) && ((A_Const *) clause)->val.type == T_Null)
1771 		ereport(ERROR,
1772 				(errcode(ERRCODE_INVALID_ROW_COUNT_IN_LIMIT_CLAUSE),
1773 				 errmsg("row count cannot be null in FETCH FIRST ... WITH TIES clause")));
1774 
1775 	return qual;
1776 }
1777 
1778 /*
1779  * checkExprIsVarFree
1780  *		Check that given expr has no Vars of the current query level
1781  *		(aggregates and window functions should have been rejected already).
1782  *
1783  * This is used to check expressions that have to have a consistent value
1784  * across all rows of the query, such as a LIMIT.  Arguably it should reject
1785  * volatile functions, too, but we don't do that --- whatever value the
1786  * function gives on first execution is what you get.
1787  *
1788  * constructName does not affect the semantics, but is used in error messages
1789  */
1790 static void
checkExprIsVarFree(ParseState * pstate,Node * n,const char * constructName)1791 checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName)
1792 {
1793 	if (contain_vars_of_level(n, 0))
1794 	{
1795 		ereport(ERROR,
1796 				(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1797 		/* translator: %s is name of a SQL construct, eg LIMIT */
1798 				 errmsg("argument of %s must not contain variables",
1799 						constructName),
1800 				 parser_errposition(pstate,
1801 									locate_var_of_level(n, 0))));
1802 	}
1803 }
1804 
1805 
1806 /*
1807  * checkTargetlistEntrySQL92 -
1808  *	  Validate a targetlist entry found by findTargetlistEntrySQL92
1809  *
1810  * When we select a pre-existing tlist entry as a result of syntax such
1811  * as "GROUP BY 1", we have to make sure it is acceptable for use in the
1812  * indicated clause type; transformExpr() will have treated it as a regular
1813  * targetlist item.
1814  */
1815 static void
checkTargetlistEntrySQL92(ParseState * pstate,TargetEntry * tle,ParseExprKind exprKind)1816 checkTargetlistEntrySQL92(ParseState *pstate, TargetEntry *tle,
1817 						  ParseExprKind exprKind)
1818 {
1819 	switch (exprKind)
1820 	{
1821 		case EXPR_KIND_GROUP_BY:
1822 			/* reject aggregates and window functions */
1823 			if (pstate->p_hasAggs &&
1824 				contain_aggs_of_level((Node *) tle->expr, 0))
1825 				ereport(ERROR,
1826 						(errcode(ERRCODE_GROUPING_ERROR),
1827 				/* translator: %s is name of a SQL construct, eg GROUP BY */
1828 						 errmsg("aggregate functions are not allowed in %s",
1829 								ParseExprKindName(exprKind)),
1830 						 parser_errposition(pstate,
1831 											locate_agg_of_level((Node *) tle->expr, 0))));
1832 			if (pstate->p_hasWindowFuncs &&
1833 				contain_windowfuncs((Node *) tle->expr))
1834 				ereport(ERROR,
1835 						(errcode(ERRCODE_WINDOWING_ERROR),
1836 				/* translator: %s is name of a SQL construct, eg GROUP BY */
1837 						 errmsg("window functions are not allowed in %s",
1838 								ParseExprKindName(exprKind)),
1839 						 parser_errposition(pstate,
1840 											locate_windowfunc((Node *) tle->expr))));
1841 			break;
1842 		case EXPR_KIND_ORDER_BY:
1843 			/* no extra checks needed */
1844 			break;
1845 		case EXPR_KIND_DISTINCT_ON:
1846 			/* no extra checks needed */
1847 			break;
1848 		default:
1849 			elog(ERROR, "unexpected exprKind in checkTargetlistEntrySQL92");
1850 			break;
1851 	}
1852 }
1853 
1854 /*
1855  *	findTargetlistEntrySQL92 -
1856  *	  Returns the targetlist entry matching the given (untransformed) node.
1857  *	  If no matching entry exists, one is created and appended to the target
1858  *	  list as a "resjunk" node.
1859  *
1860  * This function supports the old SQL92 ORDER BY interpretation, where the
1861  * expression is an output column name or number.  If we fail to find a
1862  * match of that sort, we fall through to the SQL99 rules.  For historical
1863  * reasons, Postgres also allows this interpretation for GROUP BY, though
1864  * the standard never did.  However, for GROUP BY we prefer a SQL99 match.
1865  * This function is *not* used for WINDOW definitions.
1866  *
1867  * node		the ORDER BY, GROUP BY, or DISTINCT ON expression to be matched
1868  * tlist	the target list (passed by reference so we can append to it)
1869  * exprKind identifies clause type being processed
1870  */
1871 static TargetEntry *
findTargetlistEntrySQL92(ParseState * pstate,Node * node,List ** tlist,ParseExprKind exprKind)1872 findTargetlistEntrySQL92(ParseState *pstate, Node *node, List **tlist,
1873 						 ParseExprKind exprKind)
1874 {
1875 	ListCell   *tl;
1876 
1877 	/*----------
1878 	 * Handle two special cases as mandated by the SQL92 spec:
1879 	 *
1880 	 * 1. Bare ColumnName (no qualifier or subscripts)
1881 	 *	  For a bare identifier, we search for a matching column name
1882 	 *	  in the existing target list.  Multiple matches are an error
1883 	 *	  unless they refer to identical values; for example,
1884 	 *	  we allow	SELECT a, a FROM table ORDER BY a
1885 	 *	  but not	SELECT a AS b, b FROM table ORDER BY b
1886 	 *	  If no match is found, we fall through and treat the identifier
1887 	 *	  as an expression.
1888 	 *	  For GROUP BY, it is incorrect to match the grouping item against
1889 	 *	  targetlist entries: according to SQL92, an identifier in GROUP BY
1890 	 *	  is a reference to a column name exposed by FROM, not to a target
1891 	 *	  list column.  However, many implementations (including pre-7.0
1892 	 *	  PostgreSQL) accept this anyway.  So for GROUP BY, we look first
1893 	 *	  to see if the identifier matches any FROM column name, and only
1894 	 *	  try for a targetlist name if it doesn't.  This ensures that we
1895 	 *	  adhere to the spec in the case where the name could be both.
1896 	 *	  DISTINCT ON isn't in the standard, so we can do what we like there;
1897 	 *	  we choose to make it work like ORDER BY, on the rather flimsy
1898 	 *	  grounds that ordinary DISTINCT works on targetlist entries.
1899 	 *
1900 	 * 2. IntegerConstant
1901 	 *	  This means to use the n'th item in the existing target list.
1902 	 *	  Note that it would make no sense to order/group/distinct by an
1903 	 *	  actual constant, so this does not create a conflict with SQL99.
1904 	 *	  GROUP BY column-number is not allowed by SQL92, but since
1905 	 *	  the standard has no other behavior defined for this syntax,
1906 	 *	  we may as well accept this common extension.
1907 	 *
1908 	 * Note that pre-existing resjunk targets must not be used in either case,
1909 	 * since the user didn't write them in his SELECT list.
1910 	 *
1911 	 * If neither special case applies, fall through to treat the item as
1912 	 * an expression per SQL99.
1913 	 *----------
1914 	 */
1915 	if (IsA(node, ColumnRef) &&
1916 		list_length(((ColumnRef *) node)->fields) == 1 &&
1917 		IsA(linitial(((ColumnRef *) node)->fields), String))
1918 	{
1919 		char	   *name = strVal(linitial(((ColumnRef *) node)->fields));
1920 		int			location = ((ColumnRef *) node)->location;
1921 
1922 		if (exprKind == EXPR_KIND_GROUP_BY)
1923 		{
1924 			/*
1925 			 * In GROUP BY, we must prefer a match against a FROM-clause
1926 			 * column to one against the targetlist.  Look to see if there is
1927 			 * a matching column.  If so, fall through to use SQL99 rules.
1928 			 * NOTE: if name could refer ambiguously to more than one column
1929 			 * name exposed by FROM, colNameToVar will ereport(ERROR). That's
1930 			 * just what we want here.
1931 			 *
1932 			 * Small tweak for 7.4.3: ignore matches in upper query levels.
1933 			 * This effectively changes the search order for bare names to (1)
1934 			 * local FROM variables, (2) local targetlist aliases, (3) outer
1935 			 * FROM variables, whereas before it was (1) (3) (2). SQL92 and
1936 			 * SQL99 do not allow GROUPing BY an outer reference, so this
1937 			 * breaks no cases that are legal per spec, and it seems a more
1938 			 * self-consistent behavior.
1939 			 */
1940 			if (colNameToVar(pstate, name, true, location) != NULL)
1941 				name = NULL;
1942 		}
1943 
1944 		if (name != NULL)
1945 		{
1946 			TargetEntry *target_result = NULL;
1947 
1948 			foreach(tl, *tlist)
1949 			{
1950 				TargetEntry *tle = (TargetEntry *) lfirst(tl);
1951 
1952 				if (!tle->resjunk &&
1953 					strcmp(tle->resname, name) == 0)
1954 				{
1955 					if (target_result != NULL)
1956 					{
1957 						if (!equal(target_result->expr, tle->expr))
1958 							ereport(ERROR,
1959 									(errcode(ERRCODE_AMBIGUOUS_COLUMN),
1960 
1961 							/*------
1962 							  translator: first %s is name of a SQL construct, eg ORDER BY */
1963 									 errmsg("%s \"%s\" is ambiguous",
1964 											ParseExprKindName(exprKind),
1965 											name),
1966 									 parser_errposition(pstate, location)));
1967 					}
1968 					else
1969 						target_result = tle;
1970 					/* Stay in loop to check for ambiguity */
1971 				}
1972 			}
1973 			if (target_result != NULL)
1974 			{
1975 				/* return the first match, after suitable validation */
1976 				checkTargetlistEntrySQL92(pstate, target_result, exprKind);
1977 				return target_result;
1978 			}
1979 		}
1980 	}
1981 	if (IsA(node, A_Const))
1982 	{
1983 		Value	   *val = &((A_Const *) node)->val;
1984 		int			location = ((A_Const *) node)->location;
1985 		int			targetlist_pos = 0;
1986 		int			target_pos;
1987 
1988 		if (!IsA(val, Integer))
1989 			ereport(ERROR,
1990 					(errcode(ERRCODE_SYNTAX_ERROR),
1991 			/* translator: %s is name of a SQL construct, eg ORDER BY */
1992 					 errmsg("non-integer constant in %s",
1993 							ParseExprKindName(exprKind)),
1994 					 parser_errposition(pstate, location)));
1995 
1996 		target_pos = intVal(val);
1997 		foreach(tl, *tlist)
1998 		{
1999 			TargetEntry *tle = (TargetEntry *) lfirst(tl);
2000 
2001 			if (!tle->resjunk)
2002 			{
2003 				if (++targetlist_pos == target_pos)
2004 				{
2005 					/* return the unique match, after suitable validation */
2006 					checkTargetlistEntrySQL92(pstate, tle, exprKind);
2007 					return tle;
2008 				}
2009 			}
2010 		}
2011 		ereport(ERROR,
2012 				(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2013 		/* translator: %s is name of a SQL construct, eg ORDER BY */
2014 				 errmsg("%s position %d is not in select list",
2015 						ParseExprKindName(exprKind), target_pos),
2016 				 parser_errposition(pstate, location)));
2017 	}
2018 
2019 	/*
2020 	 * Otherwise, we have an expression, so process it per SQL99 rules.
2021 	 */
2022 	return findTargetlistEntrySQL99(pstate, node, tlist, exprKind);
2023 }
2024 
2025 /*
2026  *	findTargetlistEntrySQL99 -
2027  *	  Returns the targetlist entry matching the given (untransformed) node.
2028  *	  If no matching entry exists, one is created and appended to the target
2029  *	  list as a "resjunk" node.
2030  *
2031  * This function supports the SQL99 interpretation, wherein the expression
2032  * is just an ordinary expression referencing input column names.
2033  *
2034  * node		the ORDER BY, GROUP BY, etc expression to be matched
2035  * tlist	the target list (passed by reference so we can append to it)
2036  * exprKind identifies clause type being processed
2037  */
2038 static TargetEntry *
findTargetlistEntrySQL99(ParseState * pstate,Node * node,List ** tlist,ParseExprKind exprKind)2039 findTargetlistEntrySQL99(ParseState *pstate, Node *node, List **tlist,
2040 						 ParseExprKind exprKind)
2041 {
2042 	TargetEntry *target_result;
2043 	ListCell   *tl;
2044 	Node	   *expr;
2045 
2046 	/*
2047 	 * Convert the untransformed node to a transformed expression, and search
2048 	 * for a match in the tlist.  NOTE: it doesn't really matter whether there
2049 	 * is more than one match.  Also, we are willing to match an existing
2050 	 * resjunk target here, though the SQL92 cases above must ignore resjunk
2051 	 * targets.
2052 	 */
2053 	expr = transformExpr(pstate, node, exprKind);
2054 
2055 	foreach(tl, *tlist)
2056 	{
2057 		TargetEntry *tle = (TargetEntry *) lfirst(tl);
2058 		Node	   *texpr;
2059 
2060 		/*
2061 		 * Ignore any implicit cast on the existing tlist expression.
2062 		 *
2063 		 * This essentially allows the ORDER/GROUP/etc item to adopt the same
2064 		 * datatype previously selected for a textually-equivalent tlist item.
2065 		 * There can't be any implicit cast at top level in an ordinary SELECT
2066 		 * tlist at this stage, but the case does arise with ORDER BY in an
2067 		 * aggregate function.
2068 		 */
2069 		texpr = strip_implicit_coercions((Node *) tle->expr);
2070 
2071 		if (equal(expr, texpr))
2072 			return tle;
2073 	}
2074 
2075 	/*
2076 	 * If no matches, construct a new target entry which is appended to the
2077 	 * end of the target list.  This target is given resjunk = true so that it
2078 	 * will not be projected into the final tuple.
2079 	 */
2080 	target_result = transformTargetEntry(pstate, node, expr, exprKind,
2081 										 NULL, true);
2082 
2083 	*tlist = lappend(*tlist, target_result);
2084 
2085 	return target_result;
2086 }
2087 
2088 /*-------------------------------------------------------------------------
2089  * Flatten out parenthesized sublists in grouping lists, and some cases
2090  * of nested grouping sets.
2091  *
2092  * Inside a grouping set (ROLLUP, CUBE, or GROUPING SETS), we expect the
2093  * content to be nested no more than 2 deep: i.e. ROLLUP((a,b),(c,d)) is
2094  * ok, but ROLLUP((a,(b,c)),d) is flattened to ((a,b,c),d), which we then
2095  * (later) normalize to ((a,b,c),(d)).
2096  *
2097  * CUBE or ROLLUP can be nested inside GROUPING SETS (but not the reverse),
2098  * and we leave that alone if we find it. But if we see GROUPING SETS inside
2099  * GROUPING SETS, we can flatten and normalize as follows:
2100  *	 GROUPING SETS (a, (b,c), GROUPING SETS ((c,d),(e)), (f,g))
2101  * becomes
2102  *	 GROUPING SETS ((a), (b,c), (c,d), (e), (f,g))
2103  *
2104  * This is per the spec's syntax transformations, but these are the only such
2105  * transformations we do in parse analysis, so that queries retain the
2106  * originally specified grouping set syntax for CUBE and ROLLUP as much as
2107  * possible when deparsed. (Full expansion of the result into a list of
2108  * grouping sets is left to the planner.)
2109  *
2110  * When we're done, the resulting list should contain only these possible
2111  * elements:
2112  *	 - an expression
2113  *	 - a CUBE or ROLLUP with a list of expressions nested 2 deep
2114  *	 - a GROUPING SET containing any of:
2115  *		- expression lists
2116  *		- empty grouping sets
2117  *		- CUBE or ROLLUP nodes with lists nested 2 deep
2118  * The return is a new list, but doesn't deep-copy the old nodes except for
2119  * GroupingSet nodes.
2120  *
2121  * As a side effect, flag whether the list has any GroupingSet nodes.
2122  *-------------------------------------------------------------------------
2123  */
2124 static Node *
flatten_grouping_sets(Node * expr,bool toplevel,bool * hasGroupingSets)2125 flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets)
2126 {
2127 	/* just in case of pathological input */
2128 	check_stack_depth();
2129 
2130 	if (expr == (Node *) NIL)
2131 		return (Node *) NIL;
2132 
2133 	switch (expr->type)
2134 	{
2135 		case T_RowExpr:
2136 			{
2137 				RowExpr    *r = (RowExpr *) expr;
2138 
2139 				if (r->row_format == COERCE_IMPLICIT_CAST)
2140 					return flatten_grouping_sets((Node *) r->args,
2141 												 false, NULL);
2142 			}
2143 			break;
2144 		case T_GroupingSet:
2145 			{
2146 				GroupingSet *gset = (GroupingSet *) expr;
2147 				ListCell   *l2;
2148 				List	   *result_set = NIL;
2149 
2150 				if (hasGroupingSets)
2151 					*hasGroupingSets = true;
2152 
2153 				/*
2154 				 * at the top level, we skip over all empty grouping sets; the
2155 				 * caller can supply the canonical GROUP BY () if nothing is
2156 				 * left.
2157 				 */
2158 
2159 				if (toplevel && gset->kind == GROUPING_SET_EMPTY)
2160 					return (Node *) NIL;
2161 
2162 				foreach(l2, gset->content)
2163 				{
2164 					Node	   *n1 = lfirst(l2);
2165 					Node	   *n2 = flatten_grouping_sets(n1, false, NULL);
2166 
2167 					if (IsA(n1, GroupingSet) &&
2168 						((GroupingSet *) n1)->kind == GROUPING_SET_SETS)
2169 						result_set = list_concat(result_set, (List *) n2);
2170 					else
2171 						result_set = lappend(result_set, n2);
2172 				}
2173 
2174 				/*
2175 				 * At top level, keep the grouping set node; but if we're in a
2176 				 * nested grouping set, then we need to concat the flattened
2177 				 * result into the outer list if it's simply nested.
2178 				 */
2179 
2180 				if (toplevel || (gset->kind != GROUPING_SET_SETS))
2181 				{
2182 					return (Node *) makeGroupingSet(gset->kind, result_set, gset->location);
2183 				}
2184 				else
2185 					return (Node *) result_set;
2186 			}
2187 		case T_List:
2188 			{
2189 				List	   *result = NIL;
2190 				ListCell   *l;
2191 
2192 				foreach(l, (List *) expr)
2193 				{
2194 					Node	   *n = flatten_grouping_sets(lfirst(l), toplevel, hasGroupingSets);
2195 
2196 					if (n != (Node *) NIL)
2197 					{
2198 						if (IsA(n, List))
2199 							result = list_concat(result, (List *) n);
2200 						else
2201 							result = lappend(result, n);
2202 					}
2203 				}
2204 
2205 				return (Node *) result;
2206 			}
2207 		default:
2208 			break;
2209 	}
2210 
2211 	return expr;
2212 }
2213 
2214 /*
2215  * Transform a single expression within a GROUP BY clause or grouping set.
2216  *
2217  * The expression is added to the targetlist if not already present, and to the
2218  * flatresult list (which will become the groupClause) if not already present
2219  * there.  The sortClause is consulted for operator and sort order hints.
2220  *
2221  * Returns the ressortgroupref of the expression.
2222  *
2223  * flatresult	reference to flat list of SortGroupClause nodes
2224  * seen_local	bitmapset of sortgrouprefs already seen at the local level
2225  * pstate		ParseState
2226  * gexpr		node to transform
2227  * targetlist	reference to TargetEntry list
2228  * sortClause	ORDER BY clause (SortGroupClause nodes)
2229  * exprKind		expression kind
2230  * useSQL99		SQL99 rather than SQL92 syntax
2231  * toplevel		false if within any grouping set
2232  */
2233 static Index
transformGroupClauseExpr(List ** flatresult,Bitmapset * seen_local,ParseState * pstate,Node * gexpr,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99,bool toplevel)2234 transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local,
2235 						 ParseState *pstate, Node *gexpr,
2236 						 List **targetlist, List *sortClause,
2237 						 ParseExprKind exprKind, bool useSQL99, bool toplevel)
2238 {
2239 	TargetEntry *tle;
2240 	bool		found = false;
2241 
2242 	if (useSQL99)
2243 		tle = findTargetlistEntrySQL99(pstate, gexpr,
2244 									   targetlist, exprKind);
2245 	else
2246 		tle = findTargetlistEntrySQL92(pstate, gexpr,
2247 									   targetlist, exprKind);
2248 
2249 	if (tle->ressortgroupref > 0)
2250 	{
2251 		ListCell   *sl;
2252 
2253 		/*
2254 		 * Eliminate duplicates (GROUP BY x, x) but only at local level.
2255 		 * (Duplicates in grouping sets can affect the number of returned
2256 		 * rows, so can't be dropped indiscriminately.)
2257 		 *
2258 		 * Since we don't care about anything except the sortgroupref, we can
2259 		 * use a bitmapset rather than scanning lists.
2260 		 */
2261 		if (bms_is_member(tle->ressortgroupref, seen_local))
2262 			return 0;
2263 
2264 		/*
2265 		 * If we're already in the flat clause list, we don't need to consider
2266 		 * adding ourselves again.
2267 		 */
2268 		found = targetIsInSortList(tle, InvalidOid, *flatresult);
2269 		if (found)
2270 			return tle->ressortgroupref;
2271 
2272 		/*
2273 		 * If the GROUP BY tlist entry also appears in ORDER BY, copy operator
2274 		 * info from the (first) matching ORDER BY item.  This means that if
2275 		 * you write something like "GROUP BY foo ORDER BY foo USING <<<", the
2276 		 * GROUP BY operation silently takes on the equality semantics implied
2277 		 * by the ORDER BY.  There are two reasons to do this: it improves the
2278 		 * odds that we can implement both GROUP BY and ORDER BY with a single
2279 		 * sort step, and it allows the user to choose the equality semantics
2280 		 * used by GROUP BY, should she be working with a datatype that has
2281 		 * more than one equality operator.
2282 		 *
2283 		 * If we're in a grouping set, though, we force our requested ordering
2284 		 * to be NULLS LAST, because if we have any hope of using a sorted agg
2285 		 * for the job, we're going to be tacking on generated NULL values
2286 		 * after the corresponding groups. If the user demands nulls first,
2287 		 * another sort step is going to be inevitable, but that's the
2288 		 * planner's problem.
2289 		 */
2290 
2291 		foreach(sl, sortClause)
2292 		{
2293 			SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
2294 
2295 			if (sc->tleSortGroupRef == tle->ressortgroupref)
2296 			{
2297 				SortGroupClause *grpc = copyObject(sc);
2298 
2299 				if (!toplevel)
2300 					grpc->nulls_first = false;
2301 				*flatresult = lappend(*flatresult, grpc);
2302 				found = true;
2303 				break;
2304 			}
2305 		}
2306 	}
2307 
2308 	/*
2309 	 * If no match in ORDER BY, just add it to the result using default
2310 	 * sort/group semantics.
2311 	 */
2312 	if (!found)
2313 		*flatresult = addTargetToGroupList(pstate, tle,
2314 										   *flatresult, *targetlist,
2315 										   exprLocation(gexpr));
2316 
2317 	/*
2318 	 * _something_ must have assigned us a sortgroupref by now...
2319 	 */
2320 
2321 	return tle->ressortgroupref;
2322 }
2323 
2324 /*
2325  * Transform a list of expressions within a GROUP BY clause or grouping set.
2326  *
2327  * The list of expressions belongs to a single clause within which duplicates
2328  * can be safely eliminated.
2329  *
2330  * Returns an integer list of ressortgroupref values.
2331  *
2332  * flatresult	reference to flat list of SortGroupClause nodes
2333  * pstate		ParseState
2334  * list			nodes to transform
2335  * targetlist	reference to TargetEntry list
2336  * sortClause	ORDER BY clause (SortGroupClause nodes)
2337  * exprKind		expression kind
2338  * useSQL99		SQL99 rather than SQL92 syntax
2339  * toplevel		false if within any grouping set
2340  */
2341 static List *
transformGroupClauseList(List ** flatresult,ParseState * pstate,List * list,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99,bool toplevel)2342 transformGroupClauseList(List **flatresult,
2343 						 ParseState *pstate, List *list,
2344 						 List **targetlist, List *sortClause,
2345 						 ParseExprKind exprKind, bool useSQL99, bool toplevel)
2346 {
2347 	Bitmapset  *seen_local = NULL;
2348 	List	   *result = NIL;
2349 	ListCell   *gl;
2350 
2351 	foreach(gl, list)
2352 	{
2353 		Node	   *gexpr = (Node *) lfirst(gl);
2354 
2355 		Index		ref = transformGroupClauseExpr(flatresult,
2356 												   seen_local,
2357 												   pstate,
2358 												   gexpr,
2359 												   targetlist,
2360 												   sortClause,
2361 												   exprKind,
2362 												   useSQL99,
2363 												   toplevel);
2364 
2365 		if (ref > 0)
2366 		{
2367 			seen_local = bms_add_member(seen_local, ref);
2368 			result = lappend_int(result, ref);
2369 		}
2370 	}
2371 
2372 	return result;
2373 }
2374 
2375 /*
2376  * Transform a grouping set and (recursively) its content.
2377  *
2378  * The grouping set might be a GROUPING SETS node with other grouping sets
2379  * inside it, but SETS within SETS have already been flattened out before
2380  * reaching here.
2381  *
2382  * Returns the transformed node, which now contains SIMPLE nodes with lists
2383  * of ressortgrouprefs rather than expressions.
2384  *
2385  * flatresult	reference to flat list of SortGroupClause nodes
2386  * pstate		ParseState
2387  * gset			grouping set to transform
2388  * targetlist	reference to TargetEntry list
2389  * sortClause	ORDER BY clause (SortGroupClause nodes)
2390  * exprKind		expression kind
2391  * useSQL99		SQL99 rather than SQL92 syntax
2392  * toplevel		false if within any grouping set
2393  */
2394 static Node *
transformGroupingSet(List ** flatresult,ParseState * pstate,GroupingSet * gset,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99,bool toplevel)2395 transformGroupingSet(List **flatresult,
2396 					 ParseState *pstate, GroupingSet *gset,
2397 					 List **targetlist, List *sortClause,
2398 					 ParseExprKind exprKind, bool useSQL99, bool toplevel)
2399 {
2400 	ListCell   *gl;
2401 	List	   *content = NIL;
2402 
2403 	Assert(toplevel || gset->kind != GROUPING_SET_SETS);
2404 
2405 	foreach(gl, gset->content)
2406 	{
2407 		Node	   *n = lfirst(gl);
2408 
2409 		if (IsA(n, List))
2410 		{
2411 			List	   *l = transformGroupClauseList(flatresult,
2412 													 pstate, (List *) n,
2413 													 targetlist, sortClause,
2414 													 exprKind, useSQL99, false);
2415 
2416 			content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2417 													   l,
2418 													   exprLocation(n)));
2419 		}
2420 		else if (IsA(n, GroupingSet))
2421 		{
2422 			GroupingSet *gset2 = (GroupingSet *) lfirst(gl);
2423 
2424 			content = lappend(content, transformGroupingSet(flatresult,
2425 															pstate, gset2,
2426 															targetlist, sortClause,
2427 															exprKind, useSQL99, false));
2428 		}
2429 		else
2430 		{
2431 			Index		ref = transformGroupClauseExpr(flatresult,
2432 													   NULL,
2433 													   pstate,
2434 													   n,
2435 													   targetlist,
2436 													   sortClause,
2437 													   exprKind,
2438 													   useSQL99,
2439 													   false);
2440 
2441 			content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2442 													   list_make1_int(ref),
2443 													   exprLocation(n)));
2444 		}
2445 	}
2446 
2447 	/* Arbitrarily cap the size of CUBE, which has exponential growth */
2448 	if (gset->kind == GROUPING_SET_CUBE)
2449 	{
2450 		if (list_length(content) > 12)
2451 			ereport(ERROR,
2452 					(errcode(ERRCODE_TOO_MANY_COLUMNS),
2453 					 errmsg("CUBE is limited to 12 elements"),
2454 					 parser_errposition(pstate, gset->location)));
2455 	}
2456 
2457 	return (Node *) makeGroupingSet(gset->kind, content, gset->location);
2458 }
2459 
2460 
2461 /*
2462  * transformGroupClause -
2463  *	  transform a GROUP BY clause
2464  *
2465  * GROUP BY items will be added to the targetlist (as resjunk columns)
2466  * if not already present, so the targetlist must be passed by reference.
2467  *
2468  * This is also used for window PARTITION BY clauses (which act almost the
2469  * same, but are always interpreted per SQL99 rules).
2470  *
2471  * Grouping sets make this a lot more complex than it was. Our goal here is
2472  * twofold: we make a flat list of SortGroupClause nodes referencing each
2473  * distinct expression used for grouping, with those expressions added to the
2474  * targetlist if needed. At the same time, we build the groupingSets tree,
2475  * which stores only ressortgrouprefs as integer lists inside GroupingSet nodes
2476  * (possibly nested, but limited in depth: a GROUPING_SET_SETS node can contain
2477  * nested SIMPLE, CUBE or ROLLUP nodes, but not more sets - we flatten that
2478  * out; while CUBE and ROLLUP can contain only SIMPLE nodes).
2479  *
2480  * We skip much of the hard work if there are no grouping sets.
2481  *
2482  * One subtlety is that the groupClause list can end up empty while the
2483  * groupingSets list is not; this happens if there are only empty grouping
2484  * sets, or an explicit GROUP BY (). This has the same effect as specifying
2485  * aggregates or a HAVING clause with no GROUP BY; the output is one row per
2486  * grouping set even if the input is empty.
2487  *
2488  * Returns the transformed (flat) groupClause.
2489  *
2490  * pstate		ParseState
2491  * grouplist	clause to transform
2492  * groupingSets reference to list to contain the grouping set tree
2493  * targetlist	reference to TargetEntry list
2494  * sortClause	ORDER BY clause (SortGroupClause nodes)
2495  * exprKind		expression kind
2496  * useSQL99		SQL99 rather than SQL92 syntax
2497  */
2498 List *
transformGroupClause(ParseState * pstate,List * grouplist,List ** groupingSets,List ** targetlist,List * sortClause,ParseExprKind exprKind,bool useSQL99)2499 transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets,
2500 					 List **targetlist, List *sortClause,
2501 					 ParseExprKind exprKind, bool useSQL99)
2502 {
2503 	List	   *result = NIL;
2504 	List	   *flat_grouplist;
2505 	List	   *gsets = NIL;
2506 	ListCell   *gl;
2507 	bool		hasGroupingSets = false;
2508 	Bitmapset  *seen_local = NULL;
2509 
2510 	/*
2511 	 * Recursively flatten implicit RowExprs. (Technically this is only needed
2512 	 * for GROUP BY, per the syntax rules for grouping sets, but we do it
2513 	 * anyway.)
2514 	 */
2515 	flat_grouplist = (List *) flatten_grouping_sets((Node *) grouplist,
2516 													true,
2517 													&hasGroupingSets);
2518 
2519 	/*
2520 	 * If the list is now empty, but hasGroupingSets is true, it's because we
2521 	 * elided redundant empty grouping sets. Restore a single empty grouping
2522 	 * set to leave a canonical form: GROUP BY ()
2523 	 */
2524 
2525 	if (flat_grouplist == NIL && hasGroupingSets)
2526 	{
2527 		flat_grouplist = list_make1(makeGroupingSet(GROUPING_SET_EMPTY,
2528 													NIL,
2529 													exprLocation((Node *) grouplist)));
2530 	}
2531 
2532 	foreach(gl, flat_grouplist)
2533 	{
2534 		Node	   *gexpr = (Node *) lfirst(gl);
2535 
2536 		if (IsA(gexpr, GroupingSet))
2537 		{
2538 			GroupingSet *gset = (GroupingSet *) gexpr;
2539 
2540 			switch (gset->kind)
2541 			{
2542 				case GROUPING_SET_EMPTY:
2543 					gsets = lappend(gsets, gset);
2544 					break;
2545 				case GROUPING_SET_SIMPLE:
2546 					/* can't happen */
2547 					Assert(false);
2548 					break;
2549 				case GROUPING_SET_SETS:
2550 				case GROUPING_SET_CUBE:
2551 				case GROUPING_SET_ROLLUP:
2552 					gsets = lappend(gsets,
2553 									transformGroupingSet(&result,
2554 														 pstate, gset,
2555 														 targetlist, sortClause,
2556 														 exprKind, useSQL99, true));
2557 					break;
2558 			}
2559 		}
2560 		else
2561 		{
2562 			Index		ref = transformGroupClauseExpr(&result, seen_local,
2563 													   pstate, gexpr,
2564 													   targetlist, sortClause,
2565 													   exprKind, useSQL99, true);
2566 
2567 			if (ref > 0)
2568 			{
2569 				seen_local = bms_add_member(seen_local, ref);
2570 				if (hasGroupingSets)
2571 					gsets = lappend(gsets,
2572 									makeGroupingSet(GROUPING_SET_SIMPLE,
2573 													list_make1_int(ref),
2574 													exprLocation(gexpr)));
2575 			}
2576 		}
2577 	}
2578 
2579 	/* parser should prevent this */
2580 	Assert(gsets == NIL || groupingSets != NULL);
2581 
2582 	if (groupingSets)
2583 		*groupingSets = gsets;
2584 
2585 	return result;
2586 }
2587 
2588 /*
2589  * transformSortClause -
2590  *	  transform an ORDER BY clause
2591  *
2592  * ORDER BY items will be added to the targetlist (as resjunk columns)
2593  * if not already present, so the targetlist must be passed by reference.
2594  *
2595  * This is also used for window and aggregate ORDER BY clauses (which act
2596  * almost the same, but are always interpreted per SQL99 rules).
2597  */
2598 List *
transformSortClause(ParseState * pstate,List * orderlist,List ** targetlist,ParseExprKind exprKind,bool useSQL99)2599 transformSortClause(ParseState *pstate,
2600 					List *orderlist,
2601 					List **targetlist,
2602 					ParseExprKind exprKind,
2603 					bool useSQL99)
2604 {
2605 	List	   *sortlist = NIL;
2606 	ListCell   *olitem;
2607 
2608 	foreach(olitem, orderlist)
2609 	{
2610 		SortBy	   *sortby = (SortBy *) lfirst(olitem);
2611 		TargetEntry *tle;
2612 
2613 		if (useSQL99)
2614 			tle = findTargetlistEntrySQL99(pstate, sortby->node,
2615 										   targetlist, exprKind);
2616 		else
2617 			tle = findTargetlistEntrySQL92(pstate, sortby->node,
2618 										   targetlist, exprKind);
2619 
2620 		sortlist = addTargetToSortList(pstate, tle,
2621 									   sortlist, *targetlist, sortby);
2622 	}
2623 
2624 	return sortlist;
2625 }
2626 
2627 /*
2628  * transformWindowDefinitions -
2629  *		transform window definitions (WindowDef to WindowClause)
2630  */
2631 List *
transformWindowDefinitions(ParseState * pstate,List * windowdefs,List ** targetlist)2632 transformWindowDefinitions(ParseState *pstate,
2633 						   List *windowdefs,
2634 						   List **targetlist)
2635 {
2636 	List	   *result = NIL;
2637 	Index		winref = 0;
2638 	ListCell   *lc;
2639 
2640 	foreach(lc, windowdefs)
2641 	{
2642 		WindowDef  *windef = (WindowDef *) lfirst(lc);
2643 		WindowClause *refwc = NULL;
2644 		List	   *partitionClause;
2645 		List	   *orderClause;
2646 		Oid			rangeopfamily = InvalidOid;
2647 		Oid			rangeopcintype = InvalidOid;
2648 		WindowClause *wc;
2649 
2650 		winref++;
2651 
2652 		/*
2653 		 * Check for duplicate window names.
2654 		 */
2655 		if (windef->name &&
2656 			findWindowClause(result, windef->name) != NULL)
2657 			ereport(ERROR,
2658 					(errcode(ERRCODE_WINDOWING_ERROR),
2659 					 errmsg("window \"%s\" is already defined", windef->name),
2660 					 parser_errposition(pstate, windef->location)));
2661 
2662 		/*
2663 		 * If it references a previous window, look that up.
2664 		 */
2665 		if (windef->refname)
2666 		{
2667 			refwc = findWindowClause(result, windef->refname);
2668 			if (refwc == NULL)
2669 				ereport(ERROR,
2670 						(errcode(ERRCODE_UNDEFINED_OBJECT),
2671 						 errmsg("window \"%s\" does not exist",
2672 								windef->refname),
2673 						 parser_errposition(pstate, windef->location)));
2674 		}
2675 
2676 		/*
2677 		 * Transform PARTITION and ORDER specs, if any.  These are treated
2678 		 * almost exactly like top-level GROUP BY and ORDER BY clauses,
2679 		 * including the special handling of nondefault operator semantics.
2680 		 */
2681 		orderClause = transformSortClause(pstate,
2682 										  windef->orderClause,
2683 										  targetlist,
2684 										  EXPR_KIND_WINDOW_ORDER,
2685 										  true /* force SQL99 rules */ );
2686 		partitionClause = transformGroupClause(pstate,
2687 											   windef->partitionClause,
2688 											   NULL,
2689 											   targetlist,
2690 											   orderClause,
2691 											   EXPR_KIND_WINDOW_PARTITION,
2692 											   true /* force SQL99 rules */ );
2693 
2694 		/*
2695 		 * And prepare the new WindowClause.
2696 		 */
2697 		wc = makeNode(WindowClause);
2698 		wc->name = windef->name;
2699 		wc->refname = windef->refname;
2700 
2701 		/*
2702 		 * Per spec, a windowdef that references a previous one copies the
2703 		 * previous partition clause (and mustn't specify its own).  It can
2704 		 * specify its own ordering clause, but only if the previous one had
2705 		 * none.  It always specifies its own frame clause, and the previous
2706 		 * one must not have a frame clause.  Yeah, it's bizarre that each of
2707 		 * these cases works differently, but SQL:2008 says so; see 7.11
2708 		 * <window clause> syntax rule 10 and general rule 1.  The frame
2709 		 * clause rule is especially bizarre because it makes "OVER foo"
2710 		 * different from "OVER (foo)", and requires the latter to throw an
2711 		 * error if foo has a nondefault frame clause.  Well, ours not to
2712 		 * reason why, but we do go out of our way to throw a useful error
2713 		 * message for such cases.
2714 		 */
2715 		if (refwc)
2716 		{
2717 			if (partitionClause)
2718 				ereport(ERROR,
2719 						(errcode(ERRCODE_WINDOWING_ERROR),
2720 						 errmsg("cannot override PARTITION BY clause of window \"%s\"",
2721 								windef->refname),
2722 						 parser_errposition(pstate, windef->location)));
2723 			wc->partitionClause = copyObject(refwc->partitionClause);
2724 		}
2725 		else
2726 			wc->partitionClause = partitionClause;
2727 		if (refwc)
2728 		{
2729 			if (orderClause && refwc->orderClause)
2730 				ereport(ERROR,
2731 						(errcode(ERRCODE_WINDOWING_ERROR),
2732 						 errmsg("cannot override ORDER BY clause of window \"%s\"",
2733 								windef->refname),
2734 						 parser_errposition(pstate, windef->location)));
2735 			if (orderClause)
2736 			{
2737 				wc->orderClause = orderClause;
2738 				wc->copiedOrder = false;
2739 			}
2740 			else
2741 			{
2742 				wc->orderClause = copyObject(refwc->orderClause);
2743 				wc->copiedOrder = true;
2744 			}
2745 		}
2746 		else
2747 		{
2748 			wc->orderClause = orderClause;
2749 			wc->copiedOrder = false;
2750 		}
2751 		if (refwc && refwc->frameOptions != FRAMEOPTION_DEFAULTS)
2752 		{
2753 			/*
2754 			 * Use this message if this is a WINDOW clause, or if it's an OVER
2755 			 * clause that includes ORDER BY or framing clauses.  (We already
2756 			 * rejected PARTITION BY above, so no need to check that.)
2757 			 */
2758 			if (windef->name ||
2759 				orderClause || windef->frameOptions != FRAMEOPTION_DEFAULTS)
2760 				ereport(ERROR,
2761 						(errcode(ERRCODE_WINDOWING_ERROR),
2762 						 errmsg("cannot copy window \"%s\" because it has a frame clause",
2763 								windef->refname),
2764 						 parser_errposition(pstate, windef->location)));
2765 			/* Else this clause is just OVER (foo), so say this: */
2766 			ereport(ERROR,
2767 					(errcode(ERRCODE_WINDOWING_ERROR),
2768 					 errmsg("cannot copy window \"%s\" because it has a frame clause",
2769 							windef->refname),
2770 					 errhint("Omit the parentheses in this OVER clause."),
2771 					 parser_errposition(pstate, windef->location)));
2772 		}
2773 		wc->frameOptions = windef->frameOptions;
2774 
2775 		/*
2776 		 * RANGE offset PRECEDING/FOLLOWING requires exactly one ORDER BY
2777 		 * column; check that and get its sort opfamily info.
2778 		 */
2779 		if ((wc->frameOptions & FRAMEOPTION_RANGE) &&
2780 			(wc->frameOptions & (FRAMEOPTION_START_OFFSET |
2781 								 FRAMEOPTION_END_OFFSET)))
2782 		{
2783 			SortGroupClause *sortcl;
2784 			Node	   *sortkey;
2785 			int16		rangestrategy;
2786 
2787 			if (list_length(wc->orderClause) != 1)
2788 				ereport(ERROR,
2789 						(errcode(ERRCODE_WINDOWING_ERROR),
2790 						 errmsg("RANGE with offset PRECEDING/FOLLOWING requires exactly one ORDER BY column"),
2791 						 parser_errposition(pstate, windef->location)));
2792 			sortcl = castNode(SortGroupClause, linitial(wc->orderClause));
2793 			sortkey = get_sortgroupclause_expr(sortcl, *targetlist);
2794 			/* Find the sort operator in pg_amop */
2795 			if (!get_ordering_op_properties(sortcl->sortop,
2796 											&rangeopfamily,
2797 											&rangeopcintype,
2798 											&rangestrategy))
2799 				elog(ERROR, "operator %u is not a valid ordering operator",
2800 					 sortcl->sortop);
2801 			/* Record properties of sort ordering */
2802 			wc->inRangeColl = exprCollation(sortkey);
2803 			wc->inRangeAsc = (rangestrategy == BTLessStrategyNumber);
2804 			wc->inRangeNullsFirst = sortcl->nulls_first;
2805 		}
2806 
2807 		/* Per spec, GROUPS mode requires an ORDER BY clause */
2808 		if (wc->frameOptions & FRAMEOPTION_GROUPS)
2809 		{
2810 			if (wc->orderClause == NIL)
2811 				ereport(ERROR,
2812 						(errcode(ERRCODE_WINDOWING_ERROR),
2813 						 errmsg("GROUPS mode requires an ORDER BY clause"),
2814 						 parser_errposition(pstate, windef->location)));
2815 		}
2816 
2817 		/* Process frame offset expressions */
2818 		wc->startOffset = transformFrameOffset(pstate, wc->frameOptions,
2819 											   rangeopfamily, rangeopcintype,
2820 											   &wc->startInRangeFunc,
2821 											   windef->startOffset);
2822 		wc->endOffset = transformFrameOffset(pstate, wc->frameOptions,
2823 											 rangeopfamily, rangeopcintype,
2824 											 &wc->endInRangeFunc,
2825 											 windef->endOffset);
2826 		wc->winref = winref;
2827 
2828 		result = lappend(result, wc);
2829 	}
2830 
2831 	return result;
2832 }
2833 
2834 /*
2835  * transformDistinctClause -
2836  *	  transform a DISTINCT clause
2837  *
2838  * Since we may need to add items to the query's targetlist, that list
2839  * is passed by reference.
2840  *
2841  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2842  * possible into the distinctClause.  This avoids a possible need to re-sort,
2843  * and allows the user to choose the equality semantics used by DISTINCT,
2844  * should she be working with a datatype that has more than one equality
2845  * operator.
2846  *
2847  * is_agg is true if we are transforming an aggregate(DISTINCT ...)
2848  * function call.  This does not affect any behavior, only the phrasing
2849  * of error messages.
2850  */
2851 List *
transformDistinctClause(ParseState * pstate,List ** targetlist,List * sortClause,bool is_agg)2852 transformDistinctClause(ParseState *pstate,
2853 						List **targetlist, List *sortClause, bool is_agg)
2854 {
2855 	List	   *result = NIL;
2856 	ListCell   *slitem;
2857 	ListCell   *tlitem;
2858 
2859 	/*
2860 	 * The distinctClause should consist of all ORDER BY items followed by all
2861 	 * other non-resjunk targetlist items.  There must not be any resjunk
2862 	 * ORDER BY items --- that would imply that we are sorting by a value that
2863 	 * isn't necessarily unique within a DISTINCT group, so the results
2864 	 * wouldn't be well-defined.  This construction ensures we follow the rule
2865 	 * that sortClause and distinctClause match; in fact the sortClause will
2866 	 * always be a prefix of distinctClause.
2867 	 *
2868 	 * Note a corner case: the same TLE could be in the ORDER BY list multiple
2869 	 * times with different sortops.  We have to include it in the
2870 	 * distinctClause the same way to preserve the prefix property. The net
2871 	 * effect will be that the TLE value will be made unique according to both
2872 	 * sortops.
2873 	 */
2874 	foreach(slitem, sortClause)
2875 	{
2876 		SortGroupClause *scl = (SortGroupClause *) lfirst(slitem);
2877 		TargetEntry *tle = get_sortgroupclause_tle(scl, *targetlist);
2878 
2879 		if (tle->resjunk)
2880 			ereport(ERROR,
2881 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2882 					 is_agg ?
2883 					 errmsg("in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list") :
2884 					 errmsg("for SELECT DISTINCT, ORDER BY expressions must appear in select list"),
2885 					 parser_errposition(pstate,
2886 										exprLocation((Node *) tle->expr))));
2887 		result = lappend(result, copyObject(scl));
2888 	}
2889 
2890 	/*
2891 	 * Now add any remaining non-resjunk tlist items, using default sort/group
2892 	 * semantics for their data types.
2893 	 */
2894 	foreach(tlitem, *targetlist)
2895 	{
2896 		TargetEntry *tle = (TargetEntry *) lfirst(tlitem);
2897 
2898 		if (tle->resjunk)
2899 			continue;			/* ignore junk */
2900 		result = addTargetToGroupList(pstate, tle,
2901 									  result, *targetlist,
2902 									  exprLocation((Node *) tle->expr));
2903 	}
2904 
2905 	/*
2906 	 * Complain if we found nothing to make DISTINCT.  Returning an empty list
2907 	 * would cause the parsed Query to look like it didn't have DISTINCT, with
2908 	 * results that would probably surprise the user.  Note: this case is
2909 	 * presently impossible for aggregates because of grammar restrictions,
2910 	 * but we check anyway.
2911 	 */
2912 	if (result == NIL)
2913 		ereport(ERROR,
2914 				(errcode(ERRCODE_SYNTAX_ERROR),
2915 				 is_agg ?
2916 				 errmsg("an aggregate with DISTINCT must have at least one argument") :
2917 				 errmsg("SELECT DISTINCT must have at least one column")));
2918 
2919 	return result;
2920 }
2921 
2922 /*
2923  * transformDistinctOnClause -
2924  *	  transform a DISTINCT ON clause
2925  *
2926  * Since we may need to add items to the query's targetlist, that list
2927  * is passed by reference.
2928  *
2929  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2930  * possible into the distinctClause.  This avoids a possible need to re-sort,
2931  * and allows the user to choose the equality semantics used by DISTINCT,
2932  * should she be working with a datatype that has more than one equality
2933  * operator.
2934  */
2935 List *
transformDistinctOnClause(ParseState * pstate,List * distinctlist,List ** targetlist,List * sortClause)2936 transformDistinctOnClause(ParseState *pstate, List *distinctlist,
2937 						  List **targetlist, List *sortClause)
2938 {
2939 	List	   *result = NIL;
2940 	List	   *sortgrouprefs = NIL;
2941 	bool		skipped_sortitem;
2942 	ListCell   *lc;
2943 	ListCell   *lc2;
2944 
2945 	/*
2946 	 * Add all the DISTINCT ON expressions to the tlist (if not already
2947 	 * present, they are added as resjunk items).  Assign sortgroupref numbers
2948 	 * to them, and make a list of these numbers.  (NB: we rely below on the
2949 	 * sortgrouprefs list being one-for-one with the original distinctlist.
2950 	 * Also notice that we could have duplicate DISTINCT ON expressions and
2951 	 * hence duplicate entries in sortgrouprefs.)
2952 	 */
2953 	foreach(lc, distinctlist)
2954 	{
2955 		Node	   *dexpr = (Node *) lfirst(lc);
2956 		int			sortgroupref;
2957 		TargetEntry *tle;
2958 
2959 		tle = findTargetlistEntrySQL92(pstate, dexpr, targetlist,
2960 									   EXPR_KIND_DISTINCT_ON);
2961 		sortgroupref = assignSortGroupRef(tle, *targetlist);
2962 		sortgrouprefs = lappend_int(sortgrouprefs, sortgroupref);
2963 	}
2964 
2965 	/*
2966 	 * If the user writes both DISTINCT ON and ORDER BY, adopt the sorting
2967 	 * semantics from ORDER BY items that match DISTINCT ON items, and also
2968 	 * adopt their column sort order.  We insist that the distinctClause and
2969 	 * sortClause match, so throw error if we find the need to add any more
2970 	 * distinctClause items after we've skipped an ORDER BY item that wasn't
2971 	 * in DISTINCT ON.
2972 	 */
2973 	skipped_sortitem = false;
2974 	foreach(lc, sortClause)
2975 	{
2976 		SortGroupClause *scl = (SortGroupClause *) lfirst(lc);
2977 
2978 		if (list_member_int(sortgrouprefs, scl->tleSortGroupRef))
2979 		{
2980 			if (skipped_sortitem)
2981 				ereport(ERROR,
2982 						(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2983 						 errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
2984 						 parser_errposition(pstate,
2985 											get_matching_location(scl->tleSortGroupRef,
2986 																  sortgrouprefs,
2987 																  distinctlist))));
2988 			else
2989 				result = lappend(result, copyObject(scl));
2990 		}
2991 		else
2992 			skipped_sortitem = true;
2993 	}
2994 
2995 	/*
2996 	 * Now add any remaining DISTINCT ON items, using default sort/group
2997 	 * semantics for their data types.  (Note: this is pretty questionable; if
2998 	 * the ORDER BY list doesn't include all the DISTINCT ON items and more
2999 	 * besides, you certainly aren't using DISTINCT ON in the intended way,
3000 	 * and you probably aren't going to get consistent results.  It might be
3001 	 * better to throw an error or warning here.  But historically we've
3002 	 * allowed it, so keep doing so.)
3003 	 */
3004 	forboth(lc, distinctlist, lc2, sortgrouprefs)
3005 	{
3006 		Node	   *dexpr = (Node *) lfirst(lc);
3007 		int			sortgroupref = lfirst_int(lc2);
3008 		TargetEntry *tle = get_sortgroupref_tle(sortgroupref, *targetlist);
3009 
3010 		if (targetIsInSortList(tle, InvalidOid, result))
3011 			continue;			/* already in list (with some semantics) */
3012 		if (skipped_sortitem)
3013 			ereport(ERROR,
3014 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3015 					 errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
3016 					 parser_errposition(pstate, exprLocation(dexpr))));
3017 		result = addTargetToGroupList(pstate, tle,
3018 									  result, *targetlist,
3019 									  exprLocation(dexpr));
3020 	}
3021 
3022 	/*
3023 	 * An empty result list is impossible here because of grammar
3024 	 * restrictions.
3025 	 */
3026 	Assert(result != NIL);
3027 
3028 	return result;
3029 }
3030 
3031 /*
3032  * get_matching_location
3033  *		Get the exprLocation of the exprs member corresponding to the
3034  *		(first) member of sortgrouprefs that equals sortgroupref.
3035  *
3036  * This is used so that we can point at a troublesome DISTINCT ON entry.
3037  * (Note that we need to use the original untransformed DISTINCT ON list
3038  * item, as whatever TLE it corresponds to will very possibly have a
3039  * parse location pointing to some matching entry in the SELECT list
3040  * or ORDER BY list.)
3041  */
3042 static int
get_matching_location(int sortgroupref,List * sortgrouprefs,List * exprs)3043 get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs)
3044 {
3045 	ListCell   *lcs;
3046 	ListCell   *lce;
3047 
3048 	forboth(lcs, sortgrouprefs, lce, exprs)
3049 	{
3050 		if (lfirst_int(lcs) == sortgroupref)
3051 			return exprLocation((Node *) lfirst(lce));
3052 	}
3053 	/* if no match, caller blew it */
3054 	elog(ERROR, "get_matching_location: no matching sortgroupref");
3055 	return -1;					/* keep compiler quiet */
3056 }
3057 
3058 /*
3059  * resolve_unique_index_expr
3060  *		Infer a unique index from a list of indexElems, for ON
3061  *		CONFLICT clause
3062  *
3063  * Perform parse analysis of expressions and columns appearing within ON
3064  * CONFLICT clause.  During planning, the returned list of expressions is used
3065  * to infer which unique index to use.
3066  */
3067 static List *
resolve_unique_index_expr(ParseState * pstate,InferClause * infer,Relation heapRel)3068 resolve_unique_index_expr(ParseState *pstate, InferClause *infer,
3069 						  Relation heapRel)
3070 {
3071 	List	   *result = NIL;
3072 	ListCell   *l;
3073 
3074 	foreach(l, infer->indexElems)
3075 	{
3076 		IndexElem  *ielem = (IndexElem *) lfirst(l);
3077 		InferenceElem *pInfer = makeNode(InferenceElem);
3078 		Node	   *parse;
3079 
3080 		/*
3081 		 * Raw grammar re-uses CREATE INDEX infrastructure for unique index
3082 		 * inference clause, and so will accept opclasses by name and so on.
3083 		 *
3084 		 * Make no attempt to match ASC or DESC ordering or NULLS FIRST/NULLS
3085 		 * LAST ordering, since those are not significant for inference
3086 		 * purposes (any unique index matching the inference specification in
3087 		 * other regards is accepted indifferently).  Actively reject this as
3088 		 * wrong-headed.
3089 		 */
3090 		if (ielem->ordering != SORTBY_DEFAULT)
3091 			ereport(ERROR,
3092 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3093 					 errmsg("ASC/DESC is not allowed in ON CONFLICT clause"),
3094 					 parser_errposition(pstate,
3095 										exprLocation((Node *) infer))));
3096 		if (ielem->nulls_ordering != SORTBY_NULLS_DEFAULT)
3097 			ereport(ERROR,
3098 					(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3099 					 errmsg("NULLS FIRST/LAST is not allowed in ON CONFLICT clause"),
3100 					 parser_errposition(pstate,
3101 										exprLocation((Node *) infer))));
3102 
3103 		if (!ielem->expr)
3104 		{
3105 			/* Simple index attribute */
3106 			ColumnRef  *n;
3107 
3108 			/*
3109 			 * Grammar won't have built raw expression for us in event of
3110 			 * plain column reference.  Create one directly, and perform
3111 			 * expression transformation.  Planner expects this, and performs
3112 			 * its own normalization for the purposes of matching against
3113 			 * pg_index.
3114 			 */
3115 			n = makeNode(ColumnRef);
3116 			n->fields = list_make1(makeString(ielem->name));
3117 			/* Location is approximately that of inference specification */
3118 			n->location = infer->location;
3119 			parse = (Node *) n;
3120 		}
3121 		else
3122 		{
3123 			/* Do parse transformation of the raw expression */
3124 			parse = (Node *) ielem->expr;
3125 		}
3126 
3127 		/*
3128 		 * transformExpr() will reject subqueries, aggregates, window
3129 		 * functions, and SRFs, based on being passed
3130 		 * EXPR_KIND_INDEX_EXPRESSION.  So we needn't worry about those
3131 		 * further ... not that they would match any available index
3132 		 * expression anyway.
3133 		 */
3134 		pInfer->expr = transformExpr(pstate, parse, EXPR_KIND_INDEX_EXPRESSION);
3135 
3136 		/* Perform lookup of collation and operator class as required */
3137 		if (!ielem->collation)
3138 			pInfer->infercollid = InvalidOid;
3139 		else
3140 			pInfer->infercollid = LookupCollation(pstate, ielem->collation,
3141 												  exprLocation(pInfer->expr));
3142 
3143 		if (!ielem->opclass)
3144 			pInfer->inferopclass = InvalidOid;
3145 		else
3146 			pInfer->inferopclass = get_opclass_oid(BTREE_AM_OID,
3147 												   ielem->opclass, false);
3148 
3149 		result = lappend(result, pInfer);
3150 	}
3151 
3152 	return result;
3153 }
3154 
3155 /*
3156  * transformOnConflictArbiter -
3157  *		transform arbiter expressions in an ON CONFLICT clause.
3158  *
3159  * Transformed expressions used to infer one unique index relation to serve as
3160  * an ON CONFLICT arbiter.  Partial unique indexes may be inferred using WHERE
3161  * clause from inference specification clause.
3162  */
3163 void
transformOnConflictArbiter(ParseState * pstate,OnConflictClause * onConflictClause,List ** arbiterExpr,Node ** arbiterWhere,Oid * constraint)3164 transformOnConflictArbiter(ParseState *pstate,
3165 						   OnConflictClause *onConflictClause,
3166 						   List **arbiterExpr, Node **arbiterWhere,
3167 						   Oid *constraint)
3168 {
3169 	InferClause *infer = onConflictClause->infer;
3170 
3171 	*arbiterExpr = NIL;
3172 	*arbiterWhere = NULL;
3173 	*constraint = InvalidOid;
3174 
3175 	if (onConflictClause->action == ONCONFLICT_UPDATE && !infer)
3176 		ereport(ERROR,
3177 				(errcode(ERRCODE_SYNTAX_ERROR),
3178 				 errmsg("ON CONFLICT DO UPDATE requires inference specification or constraint name"),
3179 				 errhint("For example, ON CONFLICT (column_name)."),
3180 				 parser_errposition(pstate,
3181 									exprLocation((Node *) onConflictClause))));
3182 
3183 	/*
3184 	 * To simplify certain aspects of its design, speculative insertion into
3185 	 * system catalogs is disallowed
3186 	 */
3187 	if (IsCatalogRelation(pstate->p_target_relation))
3188 		ereport(ERROR,
3189 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3190 				 errmsg("ON CONFLICT is not supported with system catalog tables"),
3191 				 parser_errposition(pstate,
3192 									exprLocation((Node *) onConflictClause))));
3193 
3194 	/* Same applies to table used by logical decoding as catalog table */
3195 	if (RelationIsUsedAsCatalogTable(pstate->p_target_relation))
3196 		ereport(ERROR,
3197 				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3198 				 errmsg("ON CONFLICT is not supported on table \"%s\" used as a catalog table",
3199 						RelationGetRelationName(pstate->p_target_relation)),
3200 				 parser_errposition(pstate,
3201 									exprLocation((Node *) onConflictClause))));
3202 
3203 	/* ON CONFLICT DO NOTHING does not require an inference clause */
3204 	if (infer)
3205 	{
3206 		List	   *save_namespace;
3207 
3208 		/*
3209 		 * While we process the arbiter expressions, accept only non-qualified
3210 		 * references to the target table. Hide any other relations.
3211 		 */
3212 		save_namespace = pstate->p_namespace;
3213 		pstate->p_namespace = NIL;
3214 		addNSItemToQuery(pstate, pstate->p_target_nsitem,
3215 						 false, false, true);
3216 
3217 		if (infer->indexElems)
3218 			*arbiterExpr = resolve_unique_index_expr(pstate, infer,
3219 													 pstate->p_target_relation);
3220 
3221 		/*
3222 		 * Handling inference WHERE clause (for partial unique index
3223 		 * inference)
3224 		 */
3225 		if (infer->whereClause)
3226 			*arbiterWhere = transformExpr(pstate, infer->whereClause,
3227 										  EXPR_KIND_INDEX_PREDICATE);
3228 
3229 		pstate->p_namespace = save_namespace;
3230 
3231 		/*
3232 		 * If the arbiter is specified by constraint name, get the constraint
3233 		 * OID and mark the constrained columns as requiring SELECT privilege,
3234 		 * in the same way as would have happened if the arbiter had been
3235 		 * specified by explicit reference to the constraint's index columns.
3236 		 */
3237 		if (infer->conname)
3238 		{
3239 			Oid			relid = RelationGetRelid(pstate->p_target_relation);
3240 			RangeTblEntry *rte = pstate->p_target_nsitem->p_rte;
3241 			Bitmapset  *conattnos;
3242 
3243 			conattnos = get_relation_constraint_attnos(relid, infer->conname,
3244 													   false, constraint);
3245 
3246 			/* Make sure the rel as a whole is marked for SELECT access */
3247 			rte->requiredPerms |= ACL_SELECT;
3248 			/* Mark the constrained columns as requiring SELECT access */
3249 			rte->selectedCols = bms_add_members(rte->selectedCols, conattnos);
3250 		}
3251 	}
3252 
3253 	/*
3254 	 * It's convenient to form a list of expressions based on the
3255 	 * representation used by CREATE INDEX, since the same restrictions are
3256 	 * appropriate (e.g. on subqueries).  However, from here on, a dedicated
3257 	 * primnode representation is used for inference elements, and so
3258 	 * assign_query_collations() can be trusted to do the right thing with the
3259 	 * post parse analysis query tree inference clause representation.
3260 	 */
3261 }
3262 
3263 /*
3264  * addTargetToSortList
3265  *		If the given targetlist entry isn't already in the SortGroupClause
3266  *		list, add it to the end of the list, using the given sort ordering
3267  *		info.
3268  *
3269  * Returns the updated SortGroupClause list.
3270  */
3271 List *
addTargetToSortList(ParseState * pstate,TargetEntry * tle,List * sortlist,List * targetlist,SortBy * sortby)3272 addTargetToSortList(ParseState *pstate, TargetEntry *tle,
3273 					List *sortlist, List *targetlist, SortBy *sortby)
3274 {
3275 	Oid			restype = exprType((Node *) tle->expr);
3276 	Oid			sortop;
3277 	Oid			eqop;
3278 	bool		hashable;
3279 	bool		reverse;
3280 	int			location;
3281 	ParseCallbackState pcbstate;
3282 
3283 	/* if tlist item is an UNKNOWN literal, change it to TEXT */
3284 	if (restype == UNKNOWNOID)
3285 	{
3286 		tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
3287 										 restype, TEXTOID, -1,
3288 										 COERCION_IMPLICIT,
3289 										 COERCE_IMPLICIT_CAST,
3290 										 -1);
3291 		restype = TEXTOID;
3292 	}
3293 
3294 	/*
3295 	 * Rather than clutter the API of get_sort_group_operators and the other
3296 	 * functions we're about to use, make use of error context callback to
3297 	 * mark any error reports with a parse position.  We point to the operator
3298 	 * location if present, else to the expression being sorted.  (NB: use the
3299 	 * original untransformed expression here; the TLE entry might well point
3300 	 * at a duplicate expression in the regular SELECT list.)
3301 	 */
3302 	location = sortby->location;
3303 	if (location < 0)
3304 		location = exprLocation(sortby->node);
3305 	setup_parser_errposition_callback(&pcbstate, pstate, location);
3306 
3307 	/* determine the sortop, eqop, and directionality */
3308 	switch (sortby->sortby_dir)
3309 	{
3310 		case SORTBY_DEFAULT:
3311 		case SORTBY_ASC:
3312 			get_sort_group_operators(restype,
3313 									 true, true, false,
3314 									 &sortop, &eqop, NULL,
3315 									 &hashable);
3316 			reverse = false;
3317 			break;
3318 		case SORTBY_DESC:
3319 			get_sort_group_operators(restype,
3320 									 false, true, true,
3321 									 NULL, &eqop, &sortop,
3322 									 &hashable);
3323 			reverse = true;
3324 			break;
3325 		case SORTBY_USING:
3326 			Assert(sortby->useOp != NIL);
3327 			sortop = compatible_oper_opid(sortby->useOp,
3328 										  restype,
3329 										  restype,
3330 										  false);
3331 
3332 			/*
3333 			 * Verify it's a valid ordering operator, fetch the corresponding
3334 			 * equality operator, and determine whether to consider it like
3335 			 * ASC or DESC.
3336 			 */
3337 			eqop = get_equality_op_for_ordering_op(sortop, &reverse);
3338 			if (!OidIsValid(eqop))
3339 				ereport(ERROR,
3340 						(errcode(ERRCODE_WRONG_OBJECT_TYPE),
3341 						 errmsg("operator %s is not a valid ordering operator",
3342 								strVal(llast(sortby->useOp))),
3343 						 errhint("Ordering operators must be \"<\" or \">\" members of btree operator families.")));
3344 
3345 			/*
3346 			 * Also see if the equality operator is hashable.
3347 			 */
3348 			hashable = op_hashjoinable(eqop, restype);
3349 			break;
3350 		default:
3351 			elog(ERROR, "unrecognized sortby_dir: %d", sortby->sortby_dir);
3352 			sortop = InvalidOid;	/* keep compiler quiet */
3353 			eqop = InvalidOid;
3354 			hashable = false;
3355 			reverse = false;
3356 			break;
3357 	}
3358 
3359 	cancel_parser_errposition_callback(&pcbstate);
3360 
3361 	/* avoid making duplicate sortlist entries */
3362 	if (!targetIsInSortList(tle, sortop, sortlist))
3363 	{
3364 		SortGroupClause *sortcl = makeNode(SortGroupClause);
3365 
3366 		sortcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3367 
3368 		sortcl->eqop = eqop;
3369 		sortcl->sortop = sortop;
3370 		sortcl->hashable = hashable;
3371 
3372 		switch (sortby->sortby_nulls)
3373 		{
3374 			case SORTBY_NULLS_DEFAULT:
3375 				/* NULLS FIRST is default for DESC; other way for ASC */
3376 				sortcl->nulls_first = reverse;
3377 				break;
3378 			case SORTBY_NULLS_FIRST:
3379 				sortcl->nulls_first = true;
3380 				break;
3381 			case SORTBY_NULLS_LAST:
3382 				sortcl->nulls_first = false;
3383 				break;
3384 			default:
3385 				elog(ERROR, "unrecognized sortby_nulls: %d",
3386 					 sortby->sortby_nulls);
3387 				break;
3388 		}
3389 
3390 		sortlist = lappend(sortlist, sortcl);
3391 	}
3392 
3393 	return sortlist;
3394 }
3395 
3396 /*
3397  * addTargetToGroupList
3398  *		If the given targetlist entry isn't already in the SortGroupClause
3399  *		list, add it to the end of the list, using default sort/group
3400  *		semantics.
3401  *
3402  * This is very similar to addTargetToSortList, except that we allow the
3403  * case where only a grouping (equality) operator can be found, and that
3404  * the TLE is considered "already in the list" if it appears there with any
3405  * sorting semantics.
3406  *
3407  * location is the parse location to be fingered in event of trouble.  Note
3408  * that we can't rely on exprLocation(tle->expr), because that might point
3409  * to a SELECT item that matches the GROUP BY item; it'd be pretty confusing
3410  * to report such a location.
3411  *
3412  * Returns the updated SortGroupClause list.
3413  */
3414 static List *
addTargetToGroupList(ParseState * pstate,TargetEntry * tle,List * grouplist,List * targetlist,int location)3415 addTargetToGroupList(ParseState *pstate, TargetEntry *tle,
3416 					 List *grouplist, List *targetlist, int location)
3417 {
3418 	Oid			restype = exprType((Node *) tle->expr);
3419 
3420 	/* if tlist item is an UNKNOWN literal, change it to TEXT */
3421 	if (restype == UNKNOWNOID)
3422 	{
3423 		tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
3424 										 restype, TEXTOID, -1,
3425 										 COERCION_IMPLICIT,
3426 										 COERCE_IMPLICIT_CAST,
3427 										 -1);
3428 		restype = TEXTOID;
3429 	}
3430 
3431 	/* avoid making duplicate grouplist entries */
3432 	if (!targetIsInSortList(tle, InvalidOid, grouplist))
3433 	{
3434 		SortGroupClause *grpcl = makeNode(SortGroupClause);
3435 		Oid			sortop;
3436 		Oid			eqop;
3437 		bool		hashable;
3438 		ParseCallbackState pcbstate;
3439 
3440 		setup_parser_errposition_callback(&pcbstate, pstate, location);
3441 
3442 		/* determine the eqop and optional sortop */
3443 		get_sort_group_operators(restype,
3444 								 false, true, false,
3445 								 &sortop, &eqop, NULL,
3446 								 &hashable);
3447 
3448 		cancel_parser_errposition_callback(&pcbstate);
3449 
3450 		grpcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3451 		grpcl->eqop = eqop;
3452 		grpcl->sortop = sortop;
3453 		grpcl->nulls_first = false; /* OK with or without sortop */
3454 		grpcl->hashable = hashable;
3455 
3456 		grouplist = lappend(grouplist, grpcl);
3457 	}
3458 
3459 	return grouplist;
3460 }
3461 
3462 /*
3463  * assignSortGroupRef
3464  *	  Assign the targetentry an unused ressortgroupref, if it doesn't
3465  *	  already have one.  Return the assigned or pre-existing refnumber.
3466  *
3467  * 'tlist' is the targetlist containing (or to contain) the given targetentry.
3468  */
3469 Index
assignSortGroupRef(TargetEntry * tle,List * tlist)3470 assignSortGroupRef(TargetEntry *tle, List *tlist)
3471 {
3472 	Index		maxRef;
3473 	ListCell   *l;
3474 
3475 	if (tle->ressortgroupref)	/* already has one? */
3476 		return tle->ressortgroupref;
3477 
3478 	/* easiest way to pick an unused refnumber: max used + 1 */
3479 	maxRef = 0;
3480 	foreach(l, tlist)
3481 	{
3482 		Index		ref = ((TargetEntry *) lfirst(l))->ressortgroupref;
3483 
3484 		if (ref > maxRef)
3485 			maxRef = ref;
3486 	}
3487 	tle->ressortgroupref = maxRef + 1;
3488 	return tle->ressortgroupref;
3489 }
3490 
3491 /*
3492  * targetIsInSortList
3493  *		Is the given target item already in the sortlist?
3494  *		If sortop is not InvalidOid, also test for a match to the sortop.
3495  *
3496  * It is not an oversight that this function ignores the nulls_first flag.
3497  * We check sortop when determining if an ORDER BY item is redundant with
3498  * earlier ORDER BY items, because it's conceivable that "ORDER BY
3499  * foo USING <, foo USING <<<" is not redundant, if <<< distinguishes
3500  * values that < considers equal.  We need not check nulls_first
3501  * however, because a lower-order column with the same sortop but
3502  * opposite nulls direction is redundant.  Also, we can consider
3503  * ORDER BY foo ASC, foo DESC redundant, so check for a commutator match.
3504  *
3505  * Works for both ordering and grouping lists (sortop would normally be
3506  * InvalidOid when considering grouping).  Note that the main reason we need
3507  * this routine (and not just a quick test for nonzeroness of ressortgroupref)
3508  * is that a TLE might be in only one of the lists.
3509  */
3510 bool
targetIsInSortList(TargetEntry * tle,Oid sortop,List * sortList)3511 targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList)
3512 {
3513 	Index		ref = tle->ressortgroupref;
3514 	ListCell   *l;
3515 
3516 	/* no need to scan list if tle has no marker */
3517 	if (ref == 0)
3518 		return false;
3519 
3520 	foreach(l, sortList)
3521 	{
3522 		SortGroupClause *scl = (SortGroupClause *) lfirst(l);
3523 
3524 		if (scl->tleSortGroupRef == ref &&
3525 			(sortop == InvalidOid ||
3526 			 sortop == scl->sortop ||
3527 			 sortop == get_commutator(scl->sortop)))
3528 			return true;
3529 	}
3530 	return false;
3531 }
3532 
3533 /*
3534  * findWindowClause
3535  *		Find the named WindowClause in the list, or return NULL if not there
3536  */
3537 static WindowClause *
findWindowClause(List * wclist,const char * name)3538 findWindowClause(List *wclist, const char *name)
3539 {
3540 	ListCell   *l;
3541 
3542 	foreach(l, wclist)
3543 	{
3544 		WindowClause *wc = (WindowClause *) lfirst(l);
3545 
3546 		if (wc->name && strcmp(wc->name, name) == 0)
3547 			return wc;
3548 	}
3549 
3550 	return NULL;
3551 }
3552 
3553 /*
3554  * transformFrameOffset
3555  *		Process a window frame offset expression
3556  *
3557  * In RANGE mode, rangeopfamily is the sort opfamily for the input ORDER BY
3558  * column, and rangeopcintype is the input data type the sort operator is
3559  * registered with.  We expect the in_range function to be registered with
3560  * that same type.  (In binary-compatible cases, it might be different from
3561  * the input column's actual type, so we can't use that for the lookups.)
3562  * We'll return the OID of the in_range function to *inRangeFunc.
3563  */
3564 static Node *
transformFrameOffset(ParseState * pstate,int frameOptions,Oid rangeopfamily,Oid rangeopcintype,Oid * inRangeFunc,Node * clause)3565 transformFrameOffset(ParseState *pstate, int frameOptions,
3566 					 Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc,
3567 					 Node *clause)
3568 {
3569 	const char *constructName = NULL;
3570 	Node	   *node;
3571 
3572 	*inRangeFunc = InvalidOid;	/* default result */
3573 
3574 	/* Quick exit if no offset expression */
3575 	if (clause == NULL)
3576 		return NULL;
3577 
3578 	if (frameOptions & FRAMEOPTION_ROWS)
3579 	{
3580 		/* Transform the raw expression tree */
3581 		node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_ROWS);
3582 
3583 		/*
3584 		 * Like LIMIT clause, simply coerce to int8
3585 		 */
3586 		constructName = "ROWS";
3587 		node = coerce_to_specific_type(pstate, node, INT8OID, constructName);
3588 	}
3589 	else if (frameOptions & FRAMEOPTION_RANGE)
3590 	{
3591 		/*
3592 		 * We must look up the in_range support function that's to be used,
3593 		 * possibly choosing one of several, and coerce the "offset" value to
3594 		 * the appropriate input type.
3595 		 */
3596 		Oid			nodeType;
3597 		Oid			preferredType;
3598 		int			nfuncs = 0;
3599 		int			nmatches = 0;
3600 		Oid			selectedType = InvalidOid;
3601 		Oid			selectedFunc = InvalidOid;
3602 		CatCList   *proclist;
3603 		int			i;
3604 
3605 		/* Transform the raw expression tree */
3606 		node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_RANGE);
3607 		nodeType = exprType(node);
3608 
3609 		/*
3610 		 * If there are multiple candidates, we'll prefer the one that exactly
3611 		 * matches nodeType; or if nodeType is as yet unknown, prefer the one
3612 		 * that exactly matches the sort column type.  (The second rule is
3613 		 * like what we do for "known_type operator unknown".)
3614 		 */
3615 		preferredType = (nodeType != UNKNOWNOID) ? nodeType : rangeopcintype;
3616 
3617 		/* Find the in_range support functions applicable to this case */
3618 		proclist = SearchSysCacheList2(AMPROCNUM,
3619 									   ObjectIdGetDatum(rangeopfamily),
3620 									   ObjectIdGetDatum(rangeopcintype));
3621 		for (i = 0; i < proclist->n_members; i++)
3622 		{
3623 			HeapTuple	proctup = &proclist->members[i]->tuple;
3624 			Form_pg_amproc procform = (Form_pg_amproc) GETSTRUCT(proctup);
3625 
3626 			/* The search will find all support proc types; ignore others */
3627 			if (procform->amprocnum != BTINRANGE_PROC)
3628 				continue;
3629 			nfuncs++;
3630 
3631 			/* Ignore function if given value can't be coerced to that type */
3632 			if (!can_coerce_type(1, &nodeType, &procform->amprocrighttype,
3633 								 COERCION_IMPLICIT))
3634 				continue;
3635 			nmatches++;
3636 
3637 			/* Remember preferred match, or any match if didn't find that */
3638 			if (selectedType != preferredType)
3639 			{
3640 				selectedType = procform->amprocrighttype;
3641 				selectedFunc = procform->amproc;
3642 			}
3643 		}
3644 		ReleaseCatCacheList(proclist);
3645 
3646 		/*
3647 		 * Throw error if needed.  It seems worth taking the trouble to
3648 		 * distinguish "no support at all" from "you didn't match any
3649 		 * available offset type".
3650 		 */
3651 		if (nfuncs == 0)
3652 			ereport(ERROR,
3653 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3654 					 errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s",
3655 							format_type_be(rangeopcintype)),
3656 					 parser_errposition(pstate, exprLocation(node))));
3657 		if (nmatches == 0)
3658 			ereport(ERROR,
3659 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3660 					 errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s and offset type %s",
3661 							format_type_be(rangeopcintype),
3662 							format_type_be(nodeType)),
3663 					 errhint("Cast the offset value to an appropriate type."),
3664 					 parser_errposition(pstate, exprLocation(node))));
3665 		if (nmatches != 1 && selectedType != preferredType)
3666 			ereport(ERROR,
3667 					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3668 					 errmsg("RANGE with offset PRECEDING/FOLLOWING has multiple interpretations for column type %s and offset type %s",
3669 							format_type_be(rangeopcintype),
3670 							format_type_be(nodeType)),
3671 					 errhint("Cast the offset value to the exact intended type."),
3672 					 parser_errposition(pstate, exprLocation(node))));
3673 
3674 		/* OK, coerce the offset to the right type */
3675 		constructName = "RANGE";
3676 		node = coerce_to_specific_type(pstate, node,
3677 									   selectedType, constructName);
3678 		*inRangeFunc = selectedFunc;
3679 	}
3680 	else if (frameOptions & FRAMEOPTION_GROUPS)
3681 	{
3682 		/* Transform the raw expression tree */
3683 		node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_GROUPS);
3684 
3685 		/*
3686 		 * Like LIMIT clause, simply coerce to int8
3687 		 */
3688 		constructName = "GROUPS";
3689 		node = coerce_to_specific_type(pstate, node, INT8OID, constructName);
3690 	}
3691 	else
3692 	{
3693 		Assert(false);
3694 		node = NULL;
3695 	}
3696 
3697 	/* Disallow variables in frame offsets */
3698 	checkExprIsVarFree(pstate, node, constructName);
3699 
3700 	return node;
3701 }
3702