1 /*-------------------------------------------------------------------------
2  *
3  * analyze.c
4  *	  the Postgres statistics generator
5  *
6  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/commands/analyze.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <math.h>
18 
19 #include "access/detoast.h"
20 #include "access/genam.h"
21 #include "access/multixact.h"
22 #include "access/relation.h"
23 #include "access/sysattr.h"
24 #include "access/table.h"
25 #include "access/tableam.h"
26 #include "access/transam.h"
27 #include "access/tupconvert.h"
28 #include "access/visibilitymap.h"
29 #include "access/xact.h"
30 #include "catalog/catalog.h"
31 #include "catalog/index.h"
32 #include "catalog/indexing.h"
33 #include "catalog/pg_collation.h"
34 #include "catalog/pg_inherits.h"
35 #include "catalog/pg_namespace.h"
36 #include "catalog/pg_statistic_ext.h"
37 #include "commands/dbcommands.h"
38 #include "commands/progress.h"
39 #include "commands/tablecmds.h"
40 #include "commands/vacuum.h"
41 #include "executor/executor.h"
42 #include "foreign/fdwapi.h"
43 #include "miscadmin.h"
44 #include "nodes/nodeFuncs.h"
45 #include "parser/parse_oper.h"
46 #include "parser/parse_relation.h"
47 #include "pgstat.h"
48 #include "postmaster/autovacuum.h"
49 #include "statistics/extended_stats_internal.h"
50 #include "statistics/statistics.h"
51 #include "storage/bufmgr.h"
52 #include "storage/lmgr.h"
53 #include "storage/proc.h"
54 #include "storage/procarray.h"
55 #include "utils/acl.h"
56 #include "utils/attoptcache.h"
57 #include "utils/builtins.h"
58 #include "utils/datum.h"
59 #include "utils/fmgroids.h"
60 #include "utils/guc.h"
61 #include "utils/lsyscache.h"
62 #include "utils/memutils.h"
63 #include "utils/pg_rusage.h"
64 #include "utils/sampling.h"
65 #include "utils/sortsupport.h"
66 #include "utils/spccache.h"
67 #include "utils/syscache.h"
68 #include "utils/timestamp.h"
69 
70 
71 /* Per-index data for ANALYZE */
72 typedef struct AnlIndexData
73 {
74 	IndexInfo  *indexInfo;		/* BuildIndexInfo result */
75 	double		tupleFract;		/* fraction of rows for partial index */
76 	VacAttrStats **vacattrstats;	/* index attrs to analyze */
77 	int			attr_cnt;
78 } AnlIndexData;
79 
80 
81 /* Default statistics target (GUC parameter) */
82 int			default_statistics_target = 100;
83 
84 /* A few variables that don't seem worth passing around as parameters */
85 static MemoryContext anl_context = NULL;
86 static BufferAccessStrategy vac_strategy;
87 
88 
89 static void do_analyze_rel(Relation onerel,
90 						   VacuumParams *params, List *va_cols,
91 						   AcquireSampleRowsFunc acquirefunc, BlockNumber relpages,
92 						   bool inh, bool in_outer_xact, int elevel);
93 static void compute_index_stats(Relation onerel, double totalrows,
94 								AnlIndexData *indexdata, int nindexes,
95 								HeapTuple *rows, int numrows,
96 								MemoryContext col_context);
97 static VacAttrStats *examine_attribute(Relation onerel, int attnum,
98 									   Node *index_expr);
99 static int	acquire_sample_rows(Relation onerel, int elevel,
100 								HeapTuple *rows, int targrows,
101 								double *totalrows, double *totaldeadrows);
102 static int	compare_rows(const void *a, const void *b);
103 static int	acquire_inherited_sample_rows(Relation onerel, int elevel,
104 										  HeapTuple *rows, int targrows,
105 										  double *totalrows, double *totaldeadrows);
106 static void update_attstats(Oid relid, bool inh,
107 							int natts, VacAttrStats **vacattrstats);
108 static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
109 static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
110 
111 
112 /*
113  *	analyze_rel() -- analyze one relation
114  *
115  * relid identifies the relation to analyze.  If relation is supplied, use
116  * the name therein for reporting any failure to open/lock the rel; do not
117  * use it once we've successfully opened the rel, since it might be stale.
118  */
119 void
analyze_rel(Oid relid,RangeVar * relation,VacuumParams * params,List * va_cols,bool in_outer_xact,BufferAccessStrategy bstrategy)120 analyze_rel(Oid relid, RangeVar *relation,
121 			VacuumParams *params, List *va_cols, bool in_outer_xact,
122 			BufferAccessStrategy bstrategy)
123 {
124 	Relation	onerel;
125 	int			elevel;
126 	AcquireSampleRowsFunc acquirefunc = NULL;
127 	BlockNumber relpages = 0;
128 
129 	/* Select logging level */
130 	if (params->options & VACOPT_VERBOSE)
131 		elevel = INFO;
132 	else
133 		elevel = DEBUG2;
134 
135 	/* Set up static variables */
136 	vac_strategy = bstrategy;
137 
138 	/*
139 	 * Check for user-requested abort.
140 	 */
141 	CHECK_FOR_INTERRUPTS();
142 
143 	/*
144 	 * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
145 	 * ANALYZEs don't run on it concurrently.  (This also locks out a
146 	 * concurrent VACUUM, which doesn't matter much at the moment but might
147 	 * matter if we ever try to accumulate stats on dead tuples.) If the rel
148 	 * has been dropped since we last saw it, we don't need to process it.
149 	 *
150 	 * Make sure to generate only logs for ANALYZE in this case.
151 	 */
152 	onerel = vacuum_open_relation(relid, relation, params->options & ~(VACOPT_VACUUM),
153 								  params->log_min_duration >= 0,
154 								  ShareUpdateExclusiveLock);
155 
156 	/* leave if relation could not be opened or locked */
157 	if (!onerel)
158 		return;
159 
160 	/*
161 	 * Check if relation needs to be skipped based on ownership.  This check
162 	 * happens also when building the relation list to analyze for a manual
163 	 * operation, and needs to be done additionally here as ANALYZE could
164 	 * happen across multiple transactions where relation ownership could have
165 	 * changed in-between.  Make sure to generate only logs for ANALYZE in
166 	 * this case.
167 	 */
168 	if (!vacuum_is_relation_owner(RelationGetRelid(onerel),
169 								  onerel->rd_rel,
170 								  params->options & VACOPT_ANALYZE))
171 	{
172 		relation_close(onerel, ShareUpdateExclusiveLock);
173 		return;
174 	}
175 
176 	/*
177 	 * Silently ignore tables that are temp tables of other backends ---
178 	 * trying to analyze these is rather pointless, since their contents are
179 	 * probably not up-to-date on disk.  (We don't throw a warning here; it
180 	 * would just lead to chatter during a database-wide ANALYZE.)
181 	 */
182 	if (RELATION_IS_OTHER_TEMP(onerel))
183 	{
184 		relation_close(onerel, ShareUpdateExclusiveLock);
185 		return;
186 	}
187 
188 	/*
189 	 * We can ANALYZE any table except pg_statistic. See update_attstats
190 	 */
191 	if (RelationGetRelid(onerel) == StatisticRelationId)
192 	{
193 		relation_close(onerel, ShareUpdateExclusiveLock);
194 		return;
195 	}
196 
197 	/*
198 	 * Check that it's of an analyzable relkind, and set up appropriately.
199 	 */
200 	if (onerel->rd_rel->relkind == RELKIND_RELATION ||
201 		onerel->rd_rel->relkind == RELKIND_MATVIEW)
202 	{
203 		/* Regular table, so we'll use the regular row acquisition function */
204 		acquirefunc = acquire_sample_rows;
205 		/* Also get regular table's size */
206 		relpages = RelationGetNumberOfBlocks(onerel);
207 	}
208 	else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
209 	{
210 		/*
211 		 * For a foreign table, call the FDW's hook function to see whether it
212 		 * supports analysis.
213 		 */
214 		FdwRoutine *fdwroutine;
215 		bool		ok = false;
216 
217 		fdwroutine = GetFdwRoutineForRelation(onerel, false);
218 
219 		if (fdwroutine->AnalyzeForeignTable != NULL)
220 			ok = fdwroutine->AnalyzeForeignTable(onerel,
221 												 &acquirefunc,
222 												 &relpages);
223 
224 		if (!ok)
225 		{
226 			ereport(WARNING,
227 					(errmsg("skipping \"%s\" --- cannot analyze this foreign table",
228 							RelationGetRelationName(onerel))));
229 			relation_close(onerel, ShareUpdateExclusiveLock);
230 			return;
231 		}
232 	}
233 	else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
234 	{
235 		/*
236 		 * For partitioned tables, we want to do the recursive ANALYZE below.
237 		 */
238 	}
239 	else
240 	{
241 		/* No need for a WARNING if we already complained during VACUUM */
242 		if (!(params->options & VACOPT_VACUUM))
243 			ereport(WARNING,
244 					(errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
245 							RelationGetRelationName(onerel))));
246 		relation_close(onerel, ShareUpdateExclusiveLock);
247 		return;
248 	}
249 
250 	/*
251 	 * OK, let's do it.  First, initialize progress reporting.
252 	 */
253 	pgstat_progress_start_command(PROGRESS_COMMAND_ANALYZE,
254 								  RelationGetRelid(onerel));
255 
256 	/*
257 	 * Do the normal non-recursive ANALYZE.  We can skip this for partitioned
258 	 * tables, which don't contain any rows.
259 	 */
260 	if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
261 		do_analyze_rel(onerel, params, va_cols, acquirefunc,
262 					   relpages, false, in_outer_xact, elevel);
263 
264 	/*
265 	 * If there are child tables, do recursive ANALYZE.
266 	 */
267 	if (onerel->rd_rel->relhassubclass)
268 		do_analyze_rel(onerel, params, va_cols, acquirefunc, relpages,
269 					   true, in_outer_xact, elevel);
270 
271 	/*
272 	 * Close source relation now, but keep lock so that no one deletes it
273 	 * before we commit.  (If someone did, they'd fail to clean up the entries
274 	 * we made in pg_statistic.  Also, releasing the lock before commit would
275 	 * expose us to concurrent-update failures in update_attstats.)
276 	 */
277 	relation_close(onerel, NoLock);
278 
279 	pgstat_progress_end_command();
280 }
281 
282 /*
283  *	do_analyze_rel() -- analyze one relation, recursively or not
284  *
285  * Note that "acquirefunc" is only relevant for the non-inherited case.
286  * For the inherited case, acquire_inherited_sample_rows() determines the
287  * appropriate acquirefunc for each child table.
288  */
289 static void
do_analyze_rel(Relation onerel,VacuumParams * params,List * va_cols,AcquireSampleRowsFunc acquirefunc,BlockNumber relpages,bool inh,bool in_outer_xact,int elevel)290 do_analyze_rel(Relation onerel, VacuumParams *params,
291 			   List *va_cols, AcquireSampleRowsFunc acquirefunc,
292 			   BlockNumber relpages, bool inh, bool in_outer_xact,
293 			   int elevel)
294 {
295 	int			attr_cnt,
296 				tcnt,
297 				i,
298 				ind;
299 	Relation   *Irel;
300 	int			nindexes;
301 	bool		hasindex;
302 	VacAttrStats **vacattrstats;
303 	AnlIndexData *indexdata;
304 	int			targrows,
305 				numrows,
306 				minrows;
307 	double		totalrows,
308 				totaldeadrows;
309 	HeapTuple  *rows;
310 	PGRUsage	ru0;
311 	TimestampTz starttime = 0;
312 	MemoryContext caller_context;
313 	Oid			save_userid;
314 	int			save_sec_context;
315 	int			save_nestlevel;
316 	int64		AnalyzePageHit = VacuumPageHit;
317 	int64		AnalyzePageMiss = VacuumPageMiss;
318 	int64		AnalyzePageDirty = VacuumPageDirty;
319 	PgStat_Counter startreadtime = 0;
320 	PgStat_Counter startwritetime = 0;
321 
322 	if (inh)
323 		ereport(elevel,
324 				(errmsg("analyzing \"%s.%s\" inheritance tree",
325 						get_namespace_name(RelationGetNamespace(onerel)),
326 						RelationGetRelationName(onerel))));
327 	else
328 		ereport(elevel,
329 				(errmsg("analyzing \"%s.%s\"",
330 						get_namespace_name(RelationGetNamespace(onerel)),
331 						RelationGetRelationName(onerel))));
332 
333 	/*
334 	 * Set up a working context so that we can easily free whatever junk gets
335 	 * created.
336 	 */
337 	anl_context = AllocSetContextCreate(CurrentMemoryContext,
338 										"Analyze",
339 										ALLOCSET_DEFAULT_SIZES);
340 	caller_context = MemoryContextSwitchTo(anl_context);
341 
342 	/*
343 	 * Switch to the table owner's userid, so that any index functions are run
344 	 * as that user.  Also lock down security-restricted operations and
345 	 * arrange to make GUC variable changes local to this command.
346 	 */
347 	GetUserIdAndSecContext(&save_userid, &save_sec_context);
348 	SetUserIdAndSecContext(onerel->rd_rel->relowner,
349 						   save_sec_context | SECURITY_RESTRICTED_OPERATION);
350 	save_nestlevel = NewGUCNestLevel();
351 
352 	/* measure elapsed time iff autovacuum logging requires it */
353 	if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
354 	{
355 		if (track_io_timing)
356 		{
357 			startreadtime = pgStatBlockReadTime;
358 			startwritetime = pgStatBlockWriteTime;
359 		}
360 
361 		pg_rusage_init(&ru0);
362 		if (params->log_min_duration >= 0)
363 			starttime = GetCurrentTimestamp();
364 	}
365 
366 	/*
367 	 * Determine which columns to analyze
368 	 *
369 	 * Note that system attributes are never analyzed, so we just reject them
370 	 * at the lookup stage.  We also reject duplicate column mentions.  (We
371 	 * could alternatively ignore duplicates, but analyzing a column twice
372 	 * won't work; we'd end up making a conflicting update in pg_statistic.)
373 	 */
374 	if (va_cols != NIL)
375 	{
376 		Bitmapset  *unique_cols = NULL;
377 		ListCell   *le;
378 
379 		vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
380 												sizeof(VacAttrStats *));
381 		tcnt = 0;
382 		foreach(le, va_cols)
383 		{
384 			char	   *col = strVal(lfirst(le));
385 
386 			i = attnameAttNum(onerel, col, false);
387 			if (i == InvalidAttrNumber)
388 				ereport(ERROR,
389 						(errcode(ERRCODE_UNDEFINED_COLUMN),
390 						 errmsg("column \"%s\" of relation \"%s\" does not exist",
391 								col, RelationGetRelationName(onerel))));
392 			if (bms_is_member(i, unique_cols))
393 				ereport(ERROR,
394 						(errcode(ERRCODE_DUPLICATE_COLUMN),
395 						 errmsg("column \"%s\" of relation \"%s\" appears more than once",
396 								col, RelationGetRelationName(onerel))));
397 			unique_cols = bms_add_member(unique_cols, i);
398 
399 			vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
400 			if (vacattrstats[tcnt] != NULL)
401 				tcnt++;
402 		}
403 		attr_cnt = tcnt;
404 	}
405 	else
406 	{
407 		attr_cnt = onerel->rd_att->natts;
408 		vacattrstats = (VacAttrStats **)
409 			palloc(attr_cnt * sizeof(VacAttrStats *));
410 		tcnt = 0;
411 		for (i = 1; i <= attr_cnt; i++)
412 		{
413 			vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
414 			if (vacattrstats[tcnt] != NULL)
415 				tcnt++;
416 		}
417 		attr_cnt = tcnt;
418 	}
419 
420 	/*
421 	 * Open all indexes of the relation, and see if there are any analyzable
422 	 * columns in the indexes.  We do not analyze index columns if there was
423 	 * an explicit column list in the ANALYZE command, however.
424 	 *
425 	 * If we are doing a recursive scan, we don't want to touch the parent's
426 	 * indexes at all.  If we're processing a partitioned table, we need to
427 	 * know if there are any indexes, but we don't want to process them.
428 	 */
429 	if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
430 	{
431 		List *idxs = RelationGetIndexList(onerel);
432 
433 		Irel = NULL;
434 		nindexes = 0;
435 		hasindex = idxs != NIL;
436 		list_free(idxs);
437 	}
438 	else if (!inh)
439 	{
440 		vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
441 		hasindex = nindexes > 0;
442 	}
443 	else
444 	{
445 		Irel = NULL;
446 		nindexes = 0;
447 		hasindex = false;
448 	}
449 	indexdata = NULL;
450 	if (nindexes > 0)
451 	{
452 		indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
453 		for (ind = 0; ind < nindexes; ind++)
454 		{
455 			AnlIndexData *thisdata = &indexdata[ind];
456 			IndexInfo  *indexInfo;
457 
458 			thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
459 			thisdata->tupleFract = 1.0; /* fix later if partial */
460 			if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
461 			{
462 				ListCell   *indexpr_item = list_head(indexInfo->ii_Expressions);
463 
464 				thisdata->vacattrstats = (VacAttrStats **)
465 					palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
466 				tcnt = 0;
467 				for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
468 				{
469 					int			keycol = indexInfo->ii_IndexAttrNumbers[i];
470 
471 					if (keycol == 0)
472 					{
473 						/* Found an index expression */
474 						Node	   *indexkey;
475 
476 						if (indexpr_item == NULL)	/* shouldn't happen */
477 							elog(ERROR, "too few entries in indexprs list");
478 						indexkey = (Node *) lfirst(indexpr_item);
479 						indexpr_item = lnext(indexInfo->ii_Expressions,
480 											 indexpr_item);
481 						thisdata->vacattrstats[tcnt] =
482 							examine_attribute(Irel[ind], i + 1, indexkey);
483 						if (thisdata->vacattrstats[tcnt] != NULL)
484 							tcnt++;
485 					}
486 				}
487 				thisdata->attr_cnt = tcnt;
488 			}
489 		}
490 	}
491 
492 	/*
493 	 * Determine how many rows we need to sample, using the worst case from
494 	 * all analyzable columns.  We use a lower bound of 100 rows to avoid
495 	 * possible overflow in Vitter's algorithm.  (Note: that will also be the
496 	 * target in the corner case where there are no analyzable columns.)
497 	 */
498 	targrows = 100;
499 	for (i = 0; i < attr_cnt; i++)
500 	{
501 		if (targrows < vacattrstats[i]->minrows)
502 			targrows = vacattrstats[i]->minrows;
503 	}
504 	for (ind = 0; ind < nindexes; ind++)
505 	{
506 		AnlIndexData *thisdata = &indexdata[ind];
507 
508 		for (i = 0; i < thisdata->attr_cnt; i++)
509 		{
510 			if (targrows < thisdata->vacattrstats[i]->minrows)
511 				targrows = thisdata->vacattrstats[i]->minrows;
512 		}
513 	}
514 
515 	/*
516 	 * Look at extended statistics objects too, as those may define custom
517 	 * statistics target. So we may need to sample more rows and then build
518 	 * the statistics with enough detail.
519 	 */
520 	minrows = ComputeExtStatisticsRows(onerel, attr_cnt, vacattrstats);
521 
522 	if (targrows < minrows)
523 		targrows = minrows;
524 
525 	/*
526 	 * Acquire the sample rows
527 	 */
528 	rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
529 	pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
530 								 inh ? PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH :
531 								 PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS);
532 	if (inh)
533 		numrows = acquire_inherited_sample_rows(onerel, elevel,
534 												rows, targrows,
535 												&totalrows, &totaldeadrows);
536 	else
537 		numrows = (*acquirefunc) (onerel, elevel,
538 								  rows, targrows,
539 								  &totalrows, &totaldeadrows);
540 
541 	/*
542 	 * Compute the statistics.  Temporary results during the calculations for
543 	 * each column are stored in a child context.  The calc routines are
544 	 * responsible to make sure that whatever they store into the VacAttrStats
545 	 * structure is allocated in anl_context.
546 	 */
547 	if (numrows > 0)
548 	{
549 		MemoryContext col_context,
550 					old_context;
551 
552 		pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
553 									 PROGRESS_ANALYZE_PHASE_COMPUTE_STATS);
554 
555 		col_context = AllocSetContextCreate(anl_context,
556 											"Analyze Column",
557 											ALLOCSET_DEFAULT_SIZES);
558 		old_context = MemoryContextSwitchTo(col_context);
559 
560 		for (i = 0; i < attr_cnt; i++)
561 		{
562 			VacAttrStats *stats = vacattrstats[i];
563 			AttributeOpts *aopt;
564 
565 			stats->rows = rows;
566 			stats->tupDesc = onerel->rd_att;
567 			stats->compute_stats(stats,
568 								 std_fetch_func,
569 								 numrows,
570 								 totalrows);
571 
572 			/*
573 			 * If the appropriate flavor of the n_distinct option is
574 			 * specified, override with the corresponding value.
575 			 */
576 			aopt = get_attribute_options(onerel->rd_id, stats->attr->attnum);
577 			if (aopt != NULL)
578 			{
579 				float8		n_distinct;
580 
581 				n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
582 				if (n_distinct != 0.0)
583 					stats->stadistinct = n_distinct;
584 			}
585 
586 			MemoryContextResetAndDeleteChildren(col_context);
587 		}
588 
589 		if (nindexes > 0)
590 			compute_index_stats(onerel, totalrows,
591 								indexdata, nindexes,
592 								rows, numrows,
593 								col_context);
594 
595 		MemoryContextSwitchTo(old_context);
596 		MemoryContextDelete(col_context);
597 
598 		/*
599 		 * Emit the completed stats rows into pg_statistic, replacing any
600 		 * previous statistics for the target columns.  (If there are stats in
601 		 * pg_statistic for columns we didn't process, we leave them alone.)
602 		 */
603 		update_attstats(RelationGetRelid(onerel), inh,
604 						attr_cnt, vacattrstats);
605 
606 		for (ind = 0; ind < nindexes; ind++)
607 		{
608 			AnlIndexData *thisdata = &indexdata[ind];
609 
610 			update_attstats(RelationGetRelid(Irel[ind]), false,
611 							thisdata->attr_cnt, thisdata->vacattrstats);
612 		}
613 
614 		/*
615 		 * Build extended statistics (if there are any).
616 		 *
617 		 * For now we only build extended statistics on individual relations,
618 		 * not for relations representing inheritance trees.
619 		 */
620 		if (!inh)
621 			BuildRelationExtStatistics(onerel, totalrows, numrows, rows,
622 									   attr_cnt, vacattrstats);
623 	}
624 
625 	pgstat_progress_update_param(PROGRESS_ANALYZE_PHASE,
626 								 PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE);
627 
628 	/*
629 	 * Update pages/tuples stats in pg_class ... but not if we're doing
630 	 * inherited stats.
631 	 *
632 	 * We assume that VACUUM hasn't set pg_class.reltuples already, even
633 	 * during a VACUUM ANALYZE.  Although VACUUM often updates pg_class,
634 	 * exceptions exist.  A "VACUUM (ANALYZE, INDEX_CLEANUP OFF)" command will
635 	 * never update pg_class entries for index relations.  It's also possible
636 	 * that an individual index's pg_class entry won't be updated during
637 	 * VACUUM if the index AM returns NULL from its amvacuumcleanup() routine.
638 	 */
639 	if (!inh)
640 	{
641 		BlockNumber relallvisible;
642 
643 		visibilitymap_count(onerel, &relallvisible, NULL);
644 
645 		/* Update pg_class for table relation */
646 		vac_update_relstats(onerel,
647 							relpages,
648 							totalrows,
649 							relallvisible,
650 							hasindex,
651 							InvalidTransactionId,
652 							InvalidMultiXactId,
653 							in_outer_xact);
654 
655 		/* Same for indexes */
656 		for (ind = 0; ind < nindexes; ind++)
657 		{
658 			AnlIndexData *thisdata = &indexdata[ind];
659 			double		totalindexrows;
660 
661 			totalindexrows = ceil(thisdata->tupleFract * totalrows);
662 			vac_update_relstats(Irel[ind],
663 								RelationGetNumberOfBlocks(Irel[ind]),
664 								totalindexrows,
665 								0,
666 								false,
667 								InvalidTransactionId,
668 								InvalidMultiXactId,
669 								in_outer_xact);
670 		}
671 	}
672 	else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
673 	{
674 		/*
675 		 * Partitioned tables don't have storage, so we don't set any fields
676 		 * in their pg_class entries except for reltuples and relhasindex.
677 		 */
678 		vac_update_relstats(onerel, -1, totalrows,
679 							0, hasindex, InvalidTransactionId,
680 							InvalidMultiXactId,
681 							in_outer_xact);
682 	}
683 
684 	/*
685 	 * Now report ANALYZE to the stats collector.  For regular tables, we do
686 	 * it only if not doing inherited stats.  For partitioned tables, we only
687 	 * do it for inherited stats. (We're never called for not-inherited stats
688 	 * on partitioned tables anyway.)
689 	 *
690 	 * Reset the changes_since_analyze counter only if we analyzed all
691 	 * columns; otherwise, there is still work for auto-analyze to do.
692 	 */
693 	if (!inh)
694 		pgstat_report_analyze(onerel, totalrows, totaldeadrows,
695 							  (va_cols == NIL));
696 	else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
697 		pgstat_report_analyze(onerel, 0, 0, (va_cols == NIL));
698 
699 	/*
700 	 * If this isn't part of VACUUM ANALYZE, let index AMs do cleanup.
701 	 *
702 	 * Note that most index AMs perform a no-op as a matter of policy for
703 	 * amvacuumcleanup() when called in ANALYZE-only mode.  The only exception
704 	 * among core index AMs is GIN/ginvacuumcleanup().
705 	 */
706 	if (!(params->options & VACOPT_VACUUM))
707 	{
708 		for (ind = 0; ind < nindexes; ind++)
709 		{
710 			IndexBulkDeleteResult *stats;
711 			IndexVacuumInfo ivinfo;
712 
713 			ivinfo.index = Irel[ind];
714 			ivinfo.analyze_only = true;
715 			ivinfo.estimated_count = true;
716 			ivinfo.message_level = elevel;
717 			ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
718 			ivinfo.strategy = vac_strategy;
719 
720 			stats = index_vacuum_cleanup(&ivinfo, NULL);
721 
722 			if (stats)
723 				pfree(stats);
724 		}
725 	}
726 
727 	/* Done with indexes */
728 	vac_close_indexes(nindexes, Irel, NoLock);
729 
730 	/* Log the action if appropriate */
731 	if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
732 	{
733 		TimestampTz endtime = GetCurrentTimestamp();
734 
735 		if (params->log_min_duration == 0 ||
736 			TimestampDifferenceExceeds(starttime, endtime,
737 									   params->log_min_duration))
738 		{
739 			long		delay_in_ms;
740 			double		read_rate = 0;
741 			double		write_rate = 0;
742 			StringInfoData buf;
743 
744 			/*
745 			 * Calculate the difference in the Page Hit/Miss/Dirty that
746 			 * happened as part of the analyze by subtracting out the
747 			 * pre-analyze values which we saved above.
748 			 */
749 			AnalyzePageHit = VacuumPageHit - AnalyzePageHit;
750 			AnalyzePageMiss = VacuumPageMiss - AnalyzePageMiss;
751 			AnalyzePageDirty = VacuumPageDirty - AnalyzePageDirty;
752 
753 			/*
754 			 * We do not expect an analyze to take > 25 days and it simplifies
755 			 * things a bit to use TimestampDifferenceMilliseconds.
756 			 */
757 			delay_in_ms = TimestampDifferenceMilliseconds(starttime, endtime);
758 
759 			/*
760 			 * Note that we are reporting these read/write rates in the same
761 			 * manner as VACUUM does, which means that while the 'average read
762 			 * rate' here actually corresponds to page misses and resulting
763 			 * reads which are also picked up by track_io_timing, if enabled,
764 			 * the 'average write rate' is actually talking about the rate of
765 			 * pages being dirtied, not being written out, so it's typical to
766 			 * have a non-zero 'avg write rate' while I/O timings only reports
767 			 * reads.
768 			 *
769 			 * It's not clear that an ANALYZE will ever result in
770 			 * FlushBuffer() being called, but we track and support reporting
771 			 * on I/O write time in case that changes as it's practically free
772 			 * to do so anyway.
773 			 */
774 
775 			if (delay_in_ms > 0)
776 			{
777 				read_rate = (double) BLCKSZ * AnalyzePageMiss / (1024 * 1024) /
778 					(delay_in_ms / 1000.0);
779 				write_rate = (double) BLCKSZ * AnalyzePageDirty / (1024 * 1024) /
780 					(delay_in_ms / 1000.0);
781 			}
782 
783 			/*
784 			 * We split this up so we don't emit empty I/O timing values when
785 			 * track_io_timing isn't enabled.
786 			 */
787 
788 			initStringInfo(&buf);
789 			appendStringInfo(&buf, _("automatic analyze of table \"%s.%s.%s\"\n"),
790 							 get_database_name(MyDatabaseId),
791 							 get_namespace_name(RelationGetNamespace(onerel)),
792 							 RelationGetRelationName(onerel));
793 			if (track_io_timing)
794 			{
795 				double		read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
796 				double		write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
797 
798 				appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
799 								 read_ms, write_ms);
800 			}
801 			appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
802 							 read_rate, write_rate);
803 			appendStringInfo(&buf, _("buffer usage: %lld hits, %lld misses, %lld dirtied\n"),
804 							 (long long) AnalyzePageHit,
805 							 (long long) AnalyzePageMiss,
806 							 (long long) AnalyzePageDirty);
807 			appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
808 
809 			ereport(LOG,
810 					(errmsg_internal("%s", buf.data)));
811 
812 			pfree(buf.data);
813 		}
814 	}
815 
816 	/* Roll back any GUC changes executed by index functions */
817 	AtEOXact_GUC(false, save_nestlevel);
818 
819 	/* Restore userid and security context */
820 	SetUserIdAndSecContext(save_userid, save_sec_context);
821 
822 	/* Restore current context and release memory */
823 	MemoryContextSwitchTo(caller_context);
824 	MemoryContextDelete(anl_context);
825 	anl_context = NULL;
826 }
827 
828 /*
829  * Compute statistics about indexes of a relation
830  */
831 static void
compute_index_stats(Relation onerel,double totalrows,AnlIndexData * indexdata,int nindexes,HeapTuple * rows,int numrows,MemoryContext col_context)832 compute_index_stats(Relation onerel, double totalrows,
833 					AnlIndexData *indexdata, int nindexes,
834 					HeapTuple *rows, int numrows,
835 					MemoryContext col_context)
836 {
837 	MemoryContext ind_context,
838 				old_context;
839 	Datum		values[INDEX_MAX_KEYS];
840 	bool		isnull[INDEX_MAX_KEYS];
841 	int			ind,
842 				i;
843 
844 	ind_context = AllocSetContextCreate(anl_context,
845 										"Analyze Index",
846 										ALLOCSET_DEFAULT_SIZES);
847 	old_context = MemoryContextSwitchTo(ind_context);
848 
849 	for (ind = 0; ind < nindexes; ind++)
850 	{
851 		AnlIndexData *thisdata = &indexdata[ind];
852 		IndexInfo  *indexInfo = thisdata->indexInfo;
853 		int			attr_cnt = thisdata->attr_cnt;
854 		TupleTableSlot *slot;
855 		EState	   *estate;
856 		ExprContext *econtext;
857 		ExprState  *predicate;
858 		Datum	   *exprvals;
859 		bool	   *exprnulls;
860 		int			numindexrows,
861 					tcnt,
862 					rowno;
863 		double		totalindexrows;
864 
865 		/* Ignore index if no columns to analyze and not partial */
866 		if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
867 			continue;
868 
869 		/*
870 		 * Need an EState for evaluation of index expressions and
871 		 * partial-index predicates.  Create it in the per-index context to be
872 		 * sure it gets cleaned up at the bottom of the loop.
873 		 */
874 		estate = CreateExecutorState();
875 		econtext = GetPerTupleExprContext(estate);
876 		/* Need a slot to hold the current heap tuple, too */
877 		slot = MakeSingleTupleTableSlot(RelationGetDescr(onerel),
878 										&TTSOpsHeapTuple);
879 
880 		/* Arrange for econtext's scan tuple to be the tuple under test */
881 		econtext->ecxt_scantuple = slot;
882 
883 		/* Set up execution state for predicate. */
884 		predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
885 
886 		/* Compute and save index expression values */
887 		exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
888 		exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
889 		numindexrows = 0;
890 		tcnt = 0;
891 		for (rowno = 0; rowno < numrows; rowno++)
892 		{
893 			HeapTuple	heapTuple = rows[rowno];
894 
895 			vacuum_delay_point();
896 
897 			/*
898 			 * Reset the per-tuple context each time, to reclaim any cruft
899 			 * left behind by evaluating the predicate or index expressions.
900 			 */
901 			ResetExprContext(econtext);
902 
903 			/* Set up for predicate or expression evaluation */
904 			ExecStoreHeapTuple(heapTuple, slot, false);
905 
906 			/* If index is partial, check predicate */
907 			if (predicate != NULL)
908 			{
909 				if (!ExecQual(predicate, econtext))
910 					continue;
911 			}
912 			numindexrows++;
913 
914 			if (attr_cnt > 0)
915 			{
916 				/*
917 				 * Evaluate the index row to compute expression values. We
918 				 * could do this by hand, but FormIndexDatum is convenient.
919 				 */
920 				FormIndexDatum(indexInfo,
921 							   slot,
922 							   estate,
923 							   values,
924 							   isnull);
925 
926 				/*
927 				 * Save just the columns we care about.  We copy the values
928 				 * into ind_context from the estate's per-tuple context.
929 				 */
930 				for (i = 0; i < attr_cnt; i++)
931 				{
932 					VacAttrStats *stats = thisdata->vacattrstats[i];
933 					int			attnum = stats->attr->attnum;
934 
935 					if (isnull[attnum - 1])
936 					{
937 						exprvals[tcnt] = (Datum) 0;
938 						exprnulls[tcnt] = true;
939 					}
940 					else
941 					{
942 						exprvals[tcnt] = datumCopy(values[attnum - 1],
943 												   stats->attrtype->typbyval,
944 												   stats->attrtype->typlen);
945 						exprnulls[tcnt] = false;
946 					}
947 					tcnt++;
948 				}
949 			}
950 		}
951 
952 		/*
953 		 * Having counted the number of rows that pass the predicate in the
954 		 * sample, we can estimate the total number of rows in the index.
955 		 */
956 		thisdata->tupleFract = (double) numindexrows / (double) numrows;
957 		totalindexrows = ceil(thisdata->tupleFract * totalrows);
958 
959 		/*
960 		 * Now we can compute the statistics for the expression columns.
961 		 */
962 		if (numindexrows > 0)
963 		{
964 			MemoryContextSwitchTo(col_context);
965 			for (i = 0; i < attr_cnt; i++)
966 			{
967 				VacAttrStats *stats = thisdata->vacattrstats[i];
968 
969 				stats->exprvals = exprvals + i;
970 				stats->exprnulls = exprnulls + i;
971 				stats->rowstride = attr_cnt;
972 				stats->compute_stats(stats,
973 									 ind_fetch_func,
974 									 numindexrows,
975 									 totalindexrows);
976 
977 				MemoryContextResetAndDeleteChildren(col_context);
978 			}
979 		}
980 
981 		/* And clean up */
982 		MemoryContextSwitchTo(ind_context);
983 
984 		ExecDropSingleTupleTableSlot(slot);
985 		FreeExecutorState(estate);
986 		MemoryContextResetAndDeleteChildren(ind_context);
987 	}
988 
989 	MemoryContextSwitchTo(old_context);
990 	MemoryContextDelete(ind_context);
991 }
992 
993 /*
994  * examine_attribute -- pre-analysis of a single column
995  *
996  * Determine whether the column is analyzable; if so, create and initialize
997  * a VacAttrStats struct for it.  If not, return NULL.
998  *
999  * If index_expr isn't NULL, then we're trying to analyze an expression index,
1000  * and index_expr is the expression tree representing the column's data.
1001  */
1002 static VacAttrStats *
examine_attribute(Relation onerel,int attnum,Node * index_expr)1003 examine_attribute(Relation onerel, int attnum, Node *index_expr)
1004 {
1005 	Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
1006 	HeapTuple	typtuple;
1007 	VacAttrStats *stats;
1008 	int			i;
1009 	bool		ok;
1010 
1011 	/* Never analyze dropped columns */
1012 	if (attr->attisdropped)
1013 		return NULL;
1014 
1015 	/* Don't analyze column if user has specified not to */
1016 	if (attr->attstattarget == 0)
1017 		return NULL;
1018 
1019 	/*
1020 	 * Create the VacAttrStats struct.  Note that we only have a copy of the
1021 	 * fixed fields of the pg_attribute tuple.
1022 	 */
1023 	stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
1024 	stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_FIXED_PART_SIZE);
1025 	memcpy(stats->attr, attr, ATTRIBUTE_FIXED_PART_SIZE);
1026 
1027 	/*
1028 	 * When analyzing an expression index, believe the expression tree's type
1029 	 * not the column datatype --- the latter might be the opckeytype storage
1030 	 * type of the opclass, which is not interesting for our purposes.  (Note:
1031 	 * if we did anything with non-expression index columns, we'd need to
1032 	 * figure out where to get the correct type info from, but for now that's
1033 	 * not a problem.)	It's not clear whether anyone will care about the
1034 	 * typmod, but we store that too just in case.
1035 	 */
1036 	if (index_expr)
1037 	{
1038 		stats->attrtypid = exprType(index_expr);
1039 		stats->attrtypmod = exprTypmod(index_expr);
1040 
1041 		/*
1042 		 * If a collation has been specified for the index column, use that in
1043 		 * preference to anything else; but if not, fall back to whatever we
1044 		 * can get from the expression.
1045 		 */
1046 		if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
1047 			stats->attrcollid = onerel->rd_indcollation[attnum - 1];
1048 		else
1049 			stats->attrcollid = exprCollation(index_expr);
1050 	}
1051 	else
1052 	{
1053 		stats->attrtypid = attr->atttypid;
1054 		stats->attrtypmod = attr->atttypmod;
1055 		stats->attrcollid = attr->attcollation;
1056 	}
1057 
1058 	typtuple = SearchSysCacheCopy1(TYPEOID,
1059 								   ObjectIdGetDatum(stats->attrtypid));
1060 	if (!HeapTupleIsValid(typtuple))
1061 		elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
1062 	stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
1063 	stats->anl_context = anl_context;
1064 	stats->tupattnum = attnum;
1065 
1066 	/*
1067 	 * The fields describing the stats->stavalues[n] element types default to
1068 	 * the type of the data being analyzed, but the type-specific typanalyze
1069 	 * function can change them if it wants to store something else.
1070 	 */
1071 	for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
1072 	{
1073 		stats->statypid[i] = stats->attrtypid;
1074 		stats->statyplen[i] = stats->attrtype->typlen;
1075 		stats->statypbyval[i] = stats->attrtype->typbyval;
1076 		stats->statypalign[i] = stats->attrtype->typalign;
1077 	}
1078 
1079 	/*
1080 	 * Call the type-specific typanalyze function.  If none is specified, use
1081 	 * std_typanalyze().
1082 	 */
1083 	if (OidIsValid(stats->attrtype->typanalyze))
1084 		ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
1085 										   PointerGetDatum(stats)));
1086 	else
1087 		ok = std_typanalyze(stats);
1088 
1089 	if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
1090 	{
1091 		heap_freetuple(typtuple);
1092 		pfree(stats->attr);
1093 		pfree(stats);
1094 		return NULL;
1095 	}
1096 
1097 	return stats;
1098 }
1099 
1100 /*
1101  * acquire_sample_rows -- acquire a random sample of rows from the table
1102  *
1103  * Selected rows are returned in the caller-allocated array rows[], which
1104  * must have at least targrows entries.
1105  * The actual number of rows selected is returned as the function result.
1106  * We also estimate the total numbers of live and dead rows in the table,
1107  * and return them into *totalrows and *totaldeadrows, respectively.
1108  *
1109  * The returned list of tuples is in order by physical position in the table.
1110  * (We will rely on this later to derive correlation estimates.)
1111  *
1112  * As of May 2004 we use a new two-stage method:  Stage one selects up
1113  * to targrows random blocks (or all blocks, if there aren't so many).
1114  * Stage two scans these blocks and uses the Vitter algorithm to create
1115  * a random sample of targrows rows (or less, if there are less in the
1116  * sample of blocks).  The two stages are executed simultaneously: each
1117  * block is processed as soon as stage one returns its number and while
1118  * the rows are read stage two controls which ones are to be inserted
1119  * into the sample.
1120  *
1121  * Although every row has an equal chance of ending up in the final
1122  * sample, this sampling method is not perfect: not every possible
1123  * sample has an equal chance of being selected.  For large relations
1124  * the number of different blocks represented by the sample tends to be
1125  * too small.  We can live with that for now.  Improvements are welcome.
1126  *
1127  * An important property of this sampling method is that because we do
1128  * look at a statistically unbiased set of blocks, we should get
1129  * unbiased estimates of the average numbers of live and dead rows per
1130  * block.  The previous sampling method put too much credence in the row
1131  * density near the start of the table.
1132  */
1133 static int
acquire_sample_rows(Relation onerel,int elevel,HeapTuple * rows,int targrows,double * totalrows,double * totaldeadrows)1134 acquire_sample_rows(Relation onerel, int elevel,
1135 					HeapTuple *rows, int targrows,
1136 					double *totalrows, double *totaldeadrows)
1137 {
1138 	int			numrows = 0;	/* # rows now in reservoir */
1139 	double		samplerows = 0; /* total # rows collected */
1140 	double		liverows = 0;	/* # live rows seen */
1141 	double		deadrows = 0;	/* # dead rows seen */
1142 	double		rowstoskip = -1;	/* -1 means not set yet */
1143 	long		randseed;		/* Seed for block sampler(s) */
1144 	BlockNumber totalblocks;
1145 	TransactionId OldestXmin;
1146 	BlockSamplerData bs;
1147 	ReservoirStateData rstate;
1148 	TupleTableSlot *slot;
1149 	TableScanDesc scan;
1150 	BlockNumber nblocks;
1151 	BlockNumber blksdone = 0;
1152 #ifdef USE_PREFETCH
1153 	int			prefetch_maximum = 0;	/* blocks to prefetch if enabled */
1154 	BlockSamplerData prefetch_bs;
1155 #endif
1156 
1157 	Assert(targrows > 0);
1158 
1159 	totalblocks = RelationGetNumberOfBlocks(onerel);
1160 
1161 	/* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
1162 	OldestXmin = GetOldestNonRemovableTransactionId(onerel);
1163 
1164 	/* Prepare for sampling block numbers */
1165 	randseed = random();
1166 	nblocks = BlockSampler_Init(&bs, totalblocks, targrows, randseed);
1167 
1168 #ifdef USE_PREFETCH
1169 	prefetch_maximum = get_tablespace_maintenance_io_concurrency(onerel->rd_rel->reltablespace);
1170 	/* Create another BlockSampler, using the same seed, for prefetching */
1171 	if (prefetch_maximum)
1172 		(void) BlockSampler_Init(&prefetch_bs, totalblocks, targrows, randseed);
1173 #endif
1174 
1175 	/* Report sampling block numbers */
1176 	pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_TOTAL,
1177 								 nblocks);
1178 
1179 	/* Prepare for sampling rows */
1180 	reservoir_init_selection_state(&rstate, targrows);
1181 
1182 	scan = table_beginscan_analyze(onerel);
1183 	slot = table_slot_create(onerel, NULL);
1184 
1185 #ifdef USE_PREFETCH
1186 
1187 	/*
1188 	 * If we are doing prefetching, then go ahead and tell the kernel about
1189 	 * the first set of pages we are going to want.  This also moves our
1190 	 * iterator out ahead of the main one being used, where we will keep it so
1191 	 * that we're always pre-fetching out prefetch_maximum number of blocks
1192 	 * ahead.
1193 	 */
1194 	if (prefetch_maximum)
1195 	{
1196 		for (int i = 0; i < prefetch_maximum; i++)
1197 		{
1198 			BlockNumber prefetch_block;
1199 
1200 			if (!BlockSampler_HasMore(&prefetch_bs))
1201 				break;
1202 
1203 			prefetch_block = BlockSampler_Next(&prefetch_bs);
1204 			PrefetchBuffer(scan->rs_rd, MAIN_FORKNUM, prefetch_block);
1205 		}
1206 	}
1207 #endif
1208 
1209 	/* Outer loop over blocks to sample */
1210 	while (BlockSampler_HasMore(&bs))
1211 	{
1212 		bool		block_accepted;
1213 		BlockNumber targblock = BlockSampler_Next(&bs);
1214 #ifdef USE_PREFETCH
1215 		BlockNumber prefetch_targblock = InvalidBlockNumber;
1216 
1217 		/*
1218 		 * Make sure that every time the main BlockSampler is moved forward
1219 		 * that our prefetch BlockSampler also gets moved forward, so that we
1220 		 * always stay out ahead.
1221 		 */
1222 		if (prefetch_maximum && BlockSampler_HasMore(&prefetch_bs))
1223 			prefetch_targblock = BlockSampler_Next(&prefetch_bs);
1224 #endif
1225 
1226 		vacuum_delay_point();
1227 
1228 		block_accepted = table_scan_analyze_next_block(scan, targblock, vac_strategy);
1229 
1230 #ifdef USE_PREFETCH
1231 
1232 		/*
1233 		 * When pre-fetching, after we get a block, tell the kernel about the
1234 		 * next one we will want, if there's any left.
1235 		 *
1236 		 * We want to do this even if the table_scan_analyze_next_block() call
1237 		 * above decides against analyzing the block it picked.
1238 		 */
1239 		if (prefetch_maximum && prefetch_targblock != InvalidBlockNumber)
1240 			PrefetchBuffer(scan->rs_rd, MAIN_FORKNUM, prefetch_targblock);
1241 #endif
1242 
1243 		/*
1244 		 * Don't analyze if table_scan_analyze_next_block() indicated this
1245 		 * block is unsuitable for analyzing.
1246 		 */
1247 		if (!block_accepted)
1248 			continue;
1249 
1250 		while (table_scan_analyze_next_tuple(scan, OldestXmin, &liverows, &deadrows, slot))
1251 		{
1252 			/*
1253 			 * The first targrows sample rows are simply copied into the
1254 			 * reservoir. Then we start replacing tuples in the sample until
1255 			 * we reach the end of the relation.  This algorithm is from Jeff
1256 			 * Vitter's paper (see full citation in utils/misc/sampling.c). It
1257 			 * works by repeatedly computing the number of tuples to skip
1258 			 * before selecting a tuple, which replaces a randomly chosen
1259 			 * element of the reservoir (current set of tuples).  At all times
1260 			 * the reservoir is a true random sample of the tuples we've
1261 			 * passed over so far, so when we fall off the end of the relation
1262 			 * we're done.
1263 			 */
1264 			if (numrows < targrows)
1265 				rows[numrows++] = ExecCopySlotHeapTuple(slot);
1266 			else
1267 			{
1268 				/*
1269 				 * t in Vitter's paper is the number of records already
1270 				 * processed.  If we need to compute a new S value, we must
1271 				 * use the not-yet-incremented value of samplerows as t.
1272 				 */
1273 				if (rowstoskip < 0)
1274 					rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
1275 
1276 				if (rowstoskip <= 0)
1277 				{
1278 					/*
1279 					 * Found a suitable tuple, so save it, replacing one old
1280 					 * tuple at random
1281 					 */
1282 					int			k = (int) (targrows * sampler_random_fract(rstate.randstate));
1283 
1284 					Assert(k >= 0 && k < targrows);
1285 					heap_freetuple(rows[k]);
1286 					rows[k] = ExecCopySlotHeapTuple(slot);
1287 				}
1288 
1289 				rowstoskip -= 1;
1290 			}
1291 
1292 			samplerows += 1;
1293 		}
1294 
1295 		pgstat_progress_update_param(PROGRESS_ANALYZE_BLOCKS_DONE,
1296 									 ++blksdone);
1297 	}
1298 
1299 	ExecDropSingleTupleTableSlot(slot);
1300 	table_endscan(scan);
1301 
1302 	/*
1303 	 * If we didn't find as many tuples as we wanted then we're done. No sort
1304 	 * is needed, since they're already in order.
1305 	 *
1306 	 * Otherwise we need to sort the collected tuples by position
1307 	 * (itempointer). It's not worth worrying about corner cases where the
1308 	 * tuples are already sorted.
1309 	 */
1310 	if (numrows == targrows)
1311 		qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
1312 
1313 	/*
1314 	 * Estimate total numbers of live and dead rows in relation, extrapolating
1315 	 * on the assumption that the average tuple density in pages we didn't
1316 	 * scan is the same as in the pages we did scan.  Since what we scanned is
1317 	 * a random sample of the pages in the relation, this should be a good
1318 	 * assumption.
1319 	 */
1320 	if (bs.m > 0)
1321 	{
1322 		*totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
1323 		*totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
1324 	}
1325 	else
1326 	{
1327 		*totalrows = 0.0;
1328 		*totaldeadrows = 0.0;
1329 	}
1330 
1331 	/*
1332 	 * Emit some interesting relation info
1333 	 */
1334 	ereport(elevel,
1335 			(errmsg("\"%s\": scanned %d of %u pages, "
1336 					"containing %.0f live rows and %.0f dead rows; "
1337 					"%d rows in sample, %.0f estimated total rows",
1338 					RelationGetRelationName(onerel),
1339 					bs.m, totalblocks,
1340 					liverows, deadrows,
1341 					numrows, *totalrows)));
1342 
1343 	return numrows;
1344 }
1345 
1346 /*
1347  * qsort comparator for sorting rows[] array
1348  */
1349 static int
compare_rows(const void * a,const void * b)1350 compare_rows(const void *a, const void *b)
1351 {
1352 	HeapTuple	ha = *(const HeapTuple *) a;
1353 	HeapTuple	hb = *(const HeapTuple *) b;
1354 	BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
1355 	OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
1356 	BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
1357 	OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
1358 
1359 	if (ba < bb)
1360 		return -1;
1361 	if (ba > bb)
1362 		return 1;
1363 	if (oa < ob)
1364 		return -1;
1365 	if (oa > ob)
1366 		return 1;
1367 	return 0;
1368 }
1369 
1370 
1371 /*
1372  * acquire_inherited_sample_rows -- acquire sample rows from inheritance tree
1373  *
1374  * This has the same API as acquire_sample_rows, except that rows are
1375  * collected from all inheritance children as well as the specified table.
1376  * We fail and return zero if there are no inheritance children, or if all
1377  * children are foreign tables that don't support ANALYZE.
1378  */
1379 static int
acquire_inherited_sample_rows(Relation onerel,int elevel,HeapTuple * rows,int targrows,double * totalrows,double * totaldeadrows)1380 acquire_inherited_sample_rows(Relation onerel, int elevel,
1381 							  HeapTuple *rows, int targrows,
1382 							  double *totalrows, double *totaldeadrows)
1383 {
1384 	List	   *tableOIDs;
1385 	Relation   *rels;
1386 	AcquireSampleRowsFunc *acquirefuncs;
1387 	double	   *relblocks;
1388 	double		totalblocks;
1389 	int			numrows,
1390 				nrels,
1391 				i;
1392 	ListCell   *lc;
1393 	bool		has_child;
1394 
1395 	/*
1396 	 * Find all members of inheritance set.  We only need AccessShareLock on
1397 	 * the children.
1398 	 */
1399 	tableOIDs =
1400 		find_all_inheritors(RelationGetRelid(onerel), AccessShareLock, NULL);
1401 
1402 	/*
1403 	 * Check that there's at least one descendant, else fail.  This could
1404 	 * happen despite analyze_rel's relhassubclass check, if table once had a
1405 	 * child but no longer does.  In that case, we can clear the
1406 	 * relhassubclass field so as not to make the same mistake again later.
1407 	 * (This is safe because we hold ShareUpdateExclusiveLock.)
1408 	 */
1409 	if (list_length(tableOIDs) < 2)
1410 	{
1411 		/* CCI because we already updated the pg_class row in this command */
1412 		CommandCounterIncrement();
1413 		SetRelationHasSubclass(RelationGetRelid(onerel), false);
1414 		ereport(elevel,
1415 				(errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
1416 						get_namespace_name(RelationGetNamespace(onerel)),
1417 						RelationGetRelationName(onerel))));
1418 		return 0;
1419 	}
1420 
1421 	/*
1422 	 * Identify acquirefuncs to use, and count blocks in all the relations.
1423 	 * The result could overflow BlockNumber, so we use double arithmetic.
1424 	 */
1425 	rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
1426 	acquirefuncs = (AcquireSampleRowsFunc *)
1427 		palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
1428 	relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
1429 	totalblocks = 0;
1430 	nrels = 0;
1431 	has_child = false;
1432 	foreach(lc, tableOIDs)
1433 	{
1434 		Oid			childOID = lfirst_oid(lc);
1435 		Relation	childrel;
1436 		AcquireSampleRowsFunc acquirefunc = NULL;
1437 		BlockNumber relpages = 0;
1438 
1439 		/* We already got the needed lock */
1440 		childrel = table_open(childOID, NoLock);
1441 
1442 		/* Ignore if temp table of another backend */
1443 		if (RELATION_IS_OTHER_TEMP(childrel))
1444 		{
1445 			/* ... but release the lock on it */
1446 			Assert(childrel != onerel);
1447 			table_close(childrel, AccessShareLock);
1448 			continue;
1449 		}
1450 
1451 		/* Check table type (MATVIEW can't happen, but might as well allow) */
1452 		if (childrel->rd_rel->relkind == RELKIND_RELATION ||
1453 			childrel->rd_rel->relkind == RELKIND_MATVIEW)
1454 		{
1455 			/* Regular table, so use the regular row acquisition function */
1456 			acquirefunc = acquire_sample_rows;
1457 			relpages = RelationGetNumberOfBlocks(childrel);
1458 		}
1459 		else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
1460 		{
1461 			/*
1462 			 * For a foreign table, call the FDW's hook function to see
1463 			 * whether it supports analysis.
1464 			 */
1465 			FdwRoutine *fdwroutine;
1466 			bool		ok = false;
1467 
1468 			fdwroutine = GetFdwRoutineForRelation(childrel, false);
1469 
1470 			if (fdwroutine->AnalyzeForeignTable != NULL)
1471 				ok = fdwroutine->AnalyzeForeignTable(childrel,
1472 													 &acquirefunc,
1473 													 &relpages);
1474 
1475 			if (!ok)
1476 			{
1477 				/* ignore, but release the lock on it */
1478 				Assert(childrel != onerel);
1479 				table_close(childrel, AccessShareLock);
1480 				continue;
1481 			}
1482 		}
1483 		else
1484 		{
1485 			/*
1486 			 * ignore, but release the lock on it.  don't try to unlock the
1487 			 * passed-in relation
1488 			 */
1489 			Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
1490 			if (childrel != onerel)
1491 				table_close(childrel, AccessShareLock);
1492 			else
1493 				table_close(childrel, NoLock);
1494 			continue;
1495 		}
1496 
1497 		/* OK, we'll process this child */
1498 		has_child = true;
1499 		rels[nrels] = childrel;
1500 		acquirefuncs[nrels] = acquirefunc;
1501 		relblocks[nrels] = (double) relpages;
1502 		totalblocks += (double) relpages;
1503 		nrels++;
1504 	}
1505 
1506 	/*
1507 	 * If we don't have at least one child table to consider, fail.  If the
1508 	 * relation is a partitioned table, it's not counted as a child table.
1509 	 */
1510 	if (!has_child)
1511 	{
1512 		ereport(elevel,
1513 				(errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
1514 						get_namespace_name(RelationGetNamespace(onerel)),
1515 						RelationGetRelationName(onerel))));
1516 		return 0;
1517 	}
1518 
1519 	/*
1520 	 * Now sample rows from each relation, proportionally to its fraction of
1521 	 * the total block count.  (This might be less than desirable if the child
1522 	 * rels have radically different free-space percentages, but it's not
1523 	 * clear that it's worth working harder.)
1524 	 */
1525 	pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_TOTAL,
1526 								 nrels);
1527 	numrows = 0;
1528 	*totalrows = 0;
1529 	*totaldeadrows = 0;
1530 	for (i = 0; i < nrels; i++)
1531 	{
1532 		Relation	childrel = rels[i];
1533 		AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
1534 		double		childblocks = relblocks[i];
1535 
1536 		pgstat_progress_update_param(PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID,
1537 									 RelationGetRelid(childrel));
1538 
1539 		if (childblocks > 0)
1540 		{
1541 			int			childtargrows;
1542 
1543 			childtargrows = (int) rint(targrows * childblocks / totalblocks);
1544 			/* Make sure we don't overrun due to roundoff error */
1545 			childtargrows = Min(childtargrows, targrows - numrows);
1546 			if (childtargrows > 0)
1547 			{
1548 				int			childrows;
1549 				double		trows,
1550 							tdrows;
1551 
1552 				/* Fetch a random sample of the child's rows */
1553 				childrows = (*acquirefunc) (childrel, elevel,
1554 											rows + numrows, childtargrows,
1555 											&trows, &tdrows);
1556 
1557 				/* We may need to convert from child's rowtype to parent's */
1558 				if (childrows > 0 &&
1559 					!equalTupleDescs(RelationGetDescr(childrel),
1560 									 RelationGetDescr(onerel)))
1561 				{
1562 					TupleConversionMap *map;
1563 
1564 					map = convert_tuples_by_name(RelationGetDescr(childrel),
1565 												 RelationGetDescr(onerel));
1566 					if (map != NULL)
1567 					{
1568 						int			j;
1569 
1570 						for (j = 0; j < childrows; j++)
1571 						{
1572 							HeapTuple	newtup;
1573 
1574 							newtup = execute_attr_map_tuple(rows[numrows + j], map);
1575 							heap_freetuple(rows[numrows + j]);
1576 							rows[numrows + j] = newtup;
1577 						}
1578 						free_conversion_map(map);
1579 					}
1580 				}
1581 
1582 				/* And add to counts */
1583 				numrows += childrows;
1584 				*totalrows += trows;
1585 				*totaldeadrows += tdrows;
1586 			}
1587 		}
1588 
1589 		/*
1590 		 * Note: we cannot release the child-table locks, since we may have
1591 		 * pointers to their TOAST tables in the sampled rows.
1592 		 */
1593 		table_close(childrel, NoLock);
1594 		pgstat_progress_update_param(PROGRESS_ANALYZE_CHILD_TABLES_DONE,
1595 									 i + 1);
1596 	}
1597 
1598 	return numrows;
1599 }
1600 
1601 
1602 /*
1603  *	update_attstats() -- update attribute statistics for one relation
1604  *
1605  *		Statistics are stored in several places: the pg_class row for the
1606  *		relation has stats about the whole relation, and there is a
1607  *		pg_statistic row for each (non-system) attribute that has ever
1608  *		been analyzed.  The pg_class values are updated by VACUUM, not here.
1609  *
1610  *		pg_statistic rows are just added or updated normally.  This means
1611  *		that pg_statistic will probably contain some deleted rows at the
1612  *		completion of a vacuum cycle, unless it happens to get vacuumed last.
1613  *
1614  *		To keep things simple, we punt for pg_statistic, and don't try
1615  *		to compute or store rows for pg_statistic itself in pg_statistic.
1616  *		This could possibly be made to work, but it's not worth the trouble.
1617  *		Note analyze_rel() has seen to it that we won't come here when
1618  *		vacuuming pg_statistic itself.
1619  *
1620  *		Note: there would be a race condition here if two backends could
1621  *		ANALYZE the same table concurrently.  Presently, we lock that out
1622  *		by taking a self-exclusive lock on the relation in analyze_rel().
1623  */
1624 static void
update_attstats(Oid relid,bool inh,int natts,VacAttrStats ** vacattrstats)1625 update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
1626 {
1627 	Relation	sd;
1628 	int			attno;
1629 
1630 	if (natts <= 0)
1631 		return;					/* nothing to do */
1632 
1633 	sd = table_open(StatisticRelationId, RowExclusiveLock);
1634 
1635 	for (attno = 0; attno < natts; attno++)
1636 	{
1637 		VacAttrStats *stats = vacattrstats[attno];
1638 		HeapTuple	stup,
1639 					oldtup;
1640 		int			i,
1641 					k,
1642 					n;
1643 		Datum		values[Natts_pg_statistic];
1644 		bool		nulls[Natts_pg_statistic];
1645 		bool		replaces[Natts_pg_statistic];
1646 
1647 		/* Ignore attr if we weren't able to collect stats */
1648 		if (!stats->stats_valid)
1649 			continue;
1650 
1651 		/*
1652 		 * Construct a new pg_statistic tuple
1653 		 */
1654 		for (i = 0; i < Natts_pg_statistic; ++i)
1655 		{
1656 			nulls[i] = false;
1657 			replaces[i] = true;
1658 		}
1659 
1660 		values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
1661 		values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->attr->attnum);
1662 		values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
1663 		values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
1664 		values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
1665 		values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
1666 		i = Anum_pg_statistic_stakind1 - 1;
1667 		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1668 		{
1669 			values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
1670 		}
1671 		i = Anum_pg_statistic_staop1 - 1;
1672 		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1673 		{
1674 			values[i++] = ObjectIdGetDatum(stats->staop[k]);	/* staopN */
1675 		}
1676 		i = Anum_pg_statistic_stacoll1 - 1;
1677 		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1678 		{
1679 			values[i++] = ObjectIdGetDatum(stats->stacoll[k]);	/* stacollN */
1680 		}
1681 		i = Anum_pg_statistic_stanumbers1 - 1;
1682 		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1683 		{
1684 			int			nnum = stats->numnumbers[k];
1685 
1686 			if (nnum > 0)
1687 			{
1688 				Datum	   *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
1689 				ArrayType  *arry;
1690 
1691 				for (n = 0; n < nnum; n++)
1692 					numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
1693 				/* XXX knows more than it should about type float4: */
1694 				arry = construct_array(numdatums, nnum,
1695 									   FLOAT4OID,
1696 									   sizeof(float4), true, TYPALIGN_INT);
1697 				values[i++] = PointerGetDatum(arry);	/* stanumbersN */
1698 			}
1699 			else
1700 			{
1701 				nulls[i] = true;
1702 				values[i++] = (Datum) 0;
1703 			}
1704 		}
1705 		i = Anum_pg_statistic_stavalues1 - 1;
1706 		for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1707 		{
1708 			if (stats->numvalues[k] > 0)
1709 			{
1710 				ArrayType  *arry;
1711 
1712 				arry = construct_array(stats->stavalues[k],
1713 									   stats->numvalues[k],
1714 									   stats->statypid[k],
1715 									   stats->statyplen[k],
1716 									   stats->statypbyval[k],
1717 									   stats->statypalign[k]);
1718 				values[i++] = PointerGetDatum(arry);	/* stavaluesN */
1719 			}
1720 			else
1721 			{
1722 				nulls[i] = true;
1723 				values[i++] = (Datum) 0;
1724 			}
1725 		}
1726 
1727 		/* Is there already a pg_statistic tuple for this attribute? */
1728 		oldtup = SearchSysCache3(STATRELATTINH,
1729 								 ObjectIdGetDatum(relid),
1730 								 Int16GetDatum(stats->attr->attnum),
1731 								 BoolGetDatum(inh));
1732 
1733 		if (HeapTupleIsValid(oldtup))
1734 		{
1735 			/* Yes, replace it */
1736 			stup = heap_modify_tuple(oldtup,
1737 									 RelationGetDescr(sd),
1738 									 values,
1739 									 nulls,
1740 									 replaces);
1741 			ReleaseSysCache(oldtup);
1742 			CatalogTupleUpdate(sd, &stup->t_self, stup);
1743 		}
1744 		else
1745 		{
1746 			/* No, insert new tuple */
1747 			stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
1748 			CatalogTupleInsert(sd, stup);
1749 		}
1750 
1751 		heap_freetuple(stup);
1752 	}
1753 
1754 	table_close(sd, RowExclusiveLock);
1755 }
1756 
1757 /*
1758  * Standard fetch function for use by compute_stats subroutines.
1759  *
1760  * This exists to provide some insulation between compute_stats routines
1761  * and the actual storage of the sample data.
1762  */
1763 static Datum
std_fetch_func(VacAttrStatsP stats,int rownum,bool * isNull)1764 std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
1765 {
1766 	int			attnum = stats->tupattnum;
1767 	HeapTuple	tuple = stats->rows[rownum];
1768 	TupleDesc	tupDesc = stats->tupDesc;
1769 
1770 	return heap_getattr(tuple, attnum, tupDesc, isNull);
1771 }
1772 
1773 /*
1774  * Fetch function for analyzing index expressions.
1775  *
1776  * We have not bothered to construct index tuples, instead the data is
1777  * just in Datum arrays.
1778  */
1779 static Datum
ind_fetch_func(VacAttrStatsP stats,int rownum,bool * isNull)1780 ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
1781 {
1782 	int			i;
1783 
1784 	/* exprvals and exprnulls are already offset for proper column */
1785 	i = rownum * stats->rowstride;
1786 	*isNull = stats->exprnulls[i];
1787 	return stats->exprvals[i];
1788 }
1789 
1790 
1791 /*==========================================================================
1792  *
1793  * Code below this point represents the "standard" type-specific statistics
1794  * analysis algorithms.  This code can be replaced on a per-data-type basis
1795  * by setting a nonzero value in pg_type.typanalyze.
1796  *
1797  *==========================================================================
1798  */
1799 
1800 
1801 /*
1802  * To avoid consuming too much memory during analysis and/or too much space
1803  * in the resulting pg_statistic rows, we ignore varlena datums that are wider
1804  * than WIDTH_THRESHOLD (after detoasting!).  This is legitimate for MCV
1805  * and distinct-value calculations since a wide value is unlikely to be
1806  * duplicated at all, much less be a most-common value.  For the same reason,
1807  * ignoring wide values will not affect our estimates of histogram bin
1808  * boundaries very much.
1809  */
1810 #define WIDTH_THRESHOLD  1024
1811 
1812 #define swapInt(a,b)	do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
1813 #define swapDatum(a,b)	do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
1814 
1815 /*
1816  * Extra information used by the default analysis routines
1817  */
1818 typedef struct
1819 {
1820 	int			count;			/* # of duplicates */
1821 	int			first;			/* values[] index of first occurrence */
1822 } ScalarMCVItem;
1823 
1824 typedef struct
1825 {
1826 	SortSupport ssup;
1827 	int		   *tupnoLink;
1828 } CompareScalarsContext;
1829 
1830 
1831 static void compute_trivial_stats(VacAttrStatsP stats,
1832 								  AnalyzeAttrFetchFunc fetchfunc,
1833 								  int samplerows,
1834 								  double totalrows);
1835 static void compute_distinct_stats(VacAttrStatsP stats,
1836 								   AnalyzeAttrFetchFunc fetchfunc,
1837 								   int samplerows,
1838 								   double totalrows);
1839 static void compute_scalar_stats(VacAttrStatsP stats,
1840 								 AnalyzeAttrFetchFunc fetchfunc,
1841 								 int samplerows,
1842 								 double totalrows);
1843 static int	compare_scalars(const void *a, const void *b, void *arg);
1844 static int	compare_mcvs(const void *a, const void *b);
1845 static int	analyze_mcv_list(int *mcv_counts,
1846 							 int num_mcv,
1847 							 double stadistinct,
1848 							 double stanullfrac,
1849 							 int samplerows,
1850 							 double totalrows);
1851 
1852 
1853 /*
1854  * std_typanalyze -- the default type-specific typanalyze function
1855  */
1856 bool
std_typanalyze(VacAttrStats * stats)1857 std_typanalyze(VacAttrStats *stats)
1858 {
1859 	Form_pg_attribute attr = stats->attr;
1860 	Oid			ltopr;
1861 	Oid			eqopr;
1862 	StdAnalyzeData *mystats;
1863 
1864 	/* If the attstattarget column is negative, use the default value */
1865 	/* NB: it is okay to scribble on stats->attr since it's a copy */
1866 	if (attr->attstattarget < 0)
1867 		attr->attstattarget = default_statistics_target;
1868 
1869 	/* Look for default "<" and "=" operators for column's type */
1870 	get_sort_group_operators(stats->attrtypid,
1871 							 false, false, false,
1872 							 &ltopr, &eqopr, NULL,
1873 							 NULL);
1874 
1875 	/* Save the operator info for compute_stats routines */
1876 	mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
1877 	mystats->eqopr = eqopr;
1878 	mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
1879 	mystats->ltopr = ltopr;
1880 	stats->extra_data = mystats;
1881 
1882 	/*
1883 	 * Determine which standard statistics algorithm to use
1884 	 */
1885 	if (OidIsValid(eqopr) && OidIsValid(ltopr))
1886 	{
1887 		/* Seems to be a scalar datatype */
1888 		stats->compute_stats = compute_scalar_stats;
1889 		/*--------------------
1890 		 * The following choice of minrows is based on the paper
1891 		 * "Random sampling for histogram construction: how much is enough?"
1892 		 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
1893 		 * Proceedings of ACM SIGMOD International Conference on Management
1894 		 * of Data, 1998, Pages 436-447.  Their Corollary 1 to Theorem 5
1895 		 * says that for table size n, histogram size k, maximum relative
1896 		 * error in bin size f, and error probability gamma, the minimum
1897 		 * random sample size is
1898 		 *		r = 4 * k * ln(2*n/gamma) / f^2
1899 		 * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
1900 		 *		r = 305.82 * k
1901 		 * Note that because of the log function, the dependence on n is
1902 		 * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
1903 		 * bin size error with probability 0.99.  So there's no real need to
1904 		 * scale for n, which is a good thing because we don't necessarily
1905 		 * know it at this point.
1906 		 *--------------------
1907 		 */
1908 		stats->minrows = 300 * attr->attstattarget;
1909 	}
1910 	else if (OidIsValid(eqopr))
1911 	{
1912 		/* We can still recognize distinct values */
1913 		stats->compute_stats = compute_distinct_stats;
1914 		/* Might as well use the same minrows as above */
1915 		stats->minrows = 300 * attr->attstattarget;
1916 	}
1917 	else
1918 	{
1919 		/* Can't do much but the trivial stuff */
1920 		stats->compute_stats = compute_trivial_stats;
1921 		/* Might as well use the same minrows as above */
1922 		stats->minrows = 300 * attr->attstattarget;
1923 	}
1924 
1925 	return true;
1926 }
1927 
1928 
1929 /*
1930  *	compute_trivial_stats() -- compute very basic column statistics
1931  *
1932  *	We use this when we cannot find a hash "=" operator for the datatype.
1933  *
1934  *	We determine the fraction of non-null rows and the average datum width.
1935  */
1936 static void
compute_trivial_stats(VacAttrStatsP stats,AnalyzeAttrFetchFunc fetchfunc,int samplerows,double totalrows)1937 compute_trivial_stats(VacAttrStatsP stats,
1938 					  AnalyzeAttrFetchFunc fetchfunc,
1939 					  int samplerows,
1940 					  double totalrows)
1941 {
1942 	int			i;
1943 	int			null_cnt = 0;
1944 	int			nonnull_cnt = 0;
1945 	double		total_width = 0;
1946 	bool		is_varlena = (!stats->attrtype->typbyval &&
1947 							  stats->attrtype->typlen == -1);
1948 	bool		is_varwidth = (!stats->attrtype->typbyval &&
1949 							   stats->attrtype->typlen < 0);
1950 
1951 	for (i = 0; i < samplerows; i++)
1952 	{
1953 		Datum		value;
1954 		bool		isnull;
1955 
1956 		vacuum_delay_point();
1957 
1958 		value = fetchfunc(stats, i, &isnull);
1959 
1960 		/* Check for null/nonnull */
1961 		if (isnull)
1962 		{
1963 			null_cnt++;
1964 			continue;
1965 		}
1966 		nonnull_cnt++;
1967 
1968 		/*
1969 		 * If it's a variable-width field, add up widths for average width
1970 		 * calculation.  Note that if the value is toasted, we use the toasted
1971 		 * width.  We don't bother with this calculation if it's a fixed-width
1972 		 * type.
1973 		 */
1974 		if (is_varlena)
1975 		{
1976 			total_width += VARSIZE_ANY(DatumGetPointer(value));
1977 		}
1978 		else if (is_varwidth)
1979 		{
1980 			/* must be cstring */
1981 			total_width += strlen(DatumGetCString(value)) + 1;
1982 		}
1983 	}
1984 
1985 	/* We can only compute average width if we found some non-null values. */
1986 	if (nonnull_cnt > 0)
1987 	{
1988 		stats->stats_valid = true;
1989 		/* Do the simple null-frac and width stats */
1990 		stats->stanullfrac = (double) null_cnt / (double) samplerows;
1991 		if (is_varwidth)
1992 			stats->stawidth = total_width / (double) nonnull_cnt;
1993 		else
1994 			stats->stawidth = stats->attrtype->typlen;
1995 		stats->stadistinct = 0.0;	/* "unknown" */
1996 	}
1997 	else if (null_cnt > 0)
1998 	{
1999 		/* We found only nulls; assume the column is entirely null */
2000 		stats->stats_valid = true;
2001 		stats->stanullfrac = 1.0;
2002 		if (is_varwidth)
2003 			stats->stawidth = 0;	/* "unknown" */
2004 		else
2005 			stats->stawidth = stats->attrtype->typlen;
2006 		stats->stadistinct = 0.0;	/* "unknown" */
2007 	}
2008 }
2009 
2010 
2011 /*
2012  *	compute_distinct_stats() -- compute column statistics including ndistinct
2013  *
2014  *	We use this when we can find only an "=" operator for the datatype.
2015  *
2016  *	We determine the fraction of non-null rows, the average width, the
2017  *	most common values, and the (estimated) number of distinct values.
2018  *
2019  *	The most common values are determined by brute force: we keep a list
2020  *	of previously seen values, ordered by number of times seen, as we scan
2021  *	the samples.  A newly seen value is inserted just after the last
2022  *	multiply-seen value, causing the bottommost (oldest) singly-seen value
2023  *	to drop off the list.  The accuracy of this method, and also its cost,
2024  *	depend mainly on the length of the list we are willing to keep.
2025  */
2026 static void
compute_distinct_stats(VacAttrStatsP stats,AnalyzeAttrFetchFunc fetchfunc,int samplerows,double totalrows)2027 compute_distinct_stats(VacAttrStatsP stats,
2028 					   AnalyzeAttrFetchFunc fetchfunc,
2029 					   int samplerows,
2030 					   double totalrows)
2031 {
2032 	int			i;
2033 	int			null_cnt = 0;
2034 	int			nonnull_cnt = 0;
2035 	int			toowide_cnt = 0;
2036 	double		total_width = 0;
2037 	bool		is_varlena = (!stats->attrtype->typbyval &&
2038 							  stats->attrtype->typlen == -1);
2039 	bool		is_varwidth = (!stats->attrtype->typbyval &&
2040 							   stats->attrtype->typlen < 0);
2041 	FmgrInfo	f_cmpeq;
2042 	typedef struct
2043 	{
2044 		Datum		value;
2045 		int			count;
2046 	} TrackItem;
2047 	TrackItem  *track;
2048 	int			track_cnt,
2049 				track_max;
2050 	int			num_mcv = stats->attr->attstattarget;
2051 	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2052 
2053 	/*
2054 	 * We track up to 2*n values for an n-element MCV list; but at least 10
2055 	 */
2056 	track_max = 2 * num_mcv;
2057 	if (track_max < 10)
2058 		track_max = 10;
2059 	track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
2060 	track_cnt = 0;
2061 
2062 	fmgr_info(mystats->eqfunc, &f_cmpeq);
2063 
2064 	for (i = 0; i < samplerows; i++)
2065 	{
2066 		Datum		value;
2067 		bool		isnull;
2068 		bool		match;
2069 		int			firstcount1,
2070 					j;
2071 
2072 		vacuum_delay_point();
2073 
2074 		value = fetchfunc(stats, i, &isnull);
2075 
2076 		/* Check for null/nonnull */
2077 		if (isnull)
2078 		{
2079 			null_cnt++;
2080 			continue;
2081 		}
2082 		nonnull_cnt++;
2083 
2084 		/*
2085 		 * If it's a variable-width field, add up widths for average width
2086 		 * calculation.  Note that if the value is toasted, we use the toasted
2087 		 * width.  We don't bother with this calculation if it's a fixed-width
2088 		 * type.
2089 		 */
2090 		if (is_varlena)
2091 		{
2092 			total_width += VARSIZE_ANY(DatumGetPointer(value));
2093 
2094 			/*
2095 			 * If the value is toasted, we want to detoast it just once to
2096 			 * avoid repeated detoastings and resultant excess memory usage
2097 			 * during the comparisons.  Also, check to see if the value is
2098 			 * excessively wide, and if so don't detoast at all --- just
2099 			 * ignore the value.
2100 			 */
2101 			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
2102 			{
2103 				toowide_cnt++;
2104 				continue;
2105 			}
2106 			value = PointerGetDatum(PG_DETOAST_DATUM(value));
2107 		}
2108 		else if (is_varwidth)
2109 		{
2110 			/* must be cstring */
2111 			total_width += strlen(DatumGetCString(value)) + 1;
2112 		}
2113 
2114 		/*
2115 		 * See if the value matches anything we're already tracking.
2116 		 */
2117 		match = false;
2118 		firstcount1 = track_cnt;
2119 		for (j = 0; j < track_cnt; j++)
2120 		{
2121 			if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
2122 											   stats->attrcollid,
2123 											   value, track[j].value)))
2124 			{
2125 				match = true;
2126 				break;
2127 			}
2128 			if (j < firstcount1 && track[j].count == 1)
2129 				firstcount1 = j;
2130 		}
2131 
2132 		if (match)
2133 		{
2134 			/* Found a match */
2135 			track[j].count++;
2136 			/* This value may now need to "bubble up" in the track list */
2137 			while (j > 0 && track[j].count > track[j - 1].count)
2138 			{
2139 				swapDatum(track[j].value, track[j - 1].value);
2140 				swapInt(track[j].count, track[j - 1].count);
2141 				j--;
2142 			}
2143 		}
2144 		else
2145 		{
2146 			/* No match.  Insert at head of count-1 list */
2147 			if (track_cnt < track_max)
2148 				track_cnt++;
2149 			for (j = track_cnt - 1; j > firstcount1; j--)
2150 			{
2151 				track[j].value = track[j - 1].value;
2152 				track[j].count = track[j - 1].count;
2153 			}
2154 			if (firstcount1 < track_cnt)
2155 			{
2156 				track[firstcount1].value = value;
2157 				track[firstcount1].count = 1;
2158 			}
2159 		}
2160 	}
2161 
2162 	/* We can only compute real stats if we found some non-null values. */
2163 	if (nonnull_cnt > 0)
2164 	{
2165 		int			nmultiple,
2166 					summultiple;
2167 
2168 		stats->stats_valid = true;
2169 		/* Do the simple null-frac and width stats */
2170 		stats->stanullfrac = (double) null_cnt / (double) samplerows;
2171 		if (is_varwidth)
2172 			stats->stawidth = total_width / (double) nonnull_cnt;
2173 		else
2174 			stats->stawidth = stats->attrtype->typlen;
2175 
2176 		/* Count the number of values we found multiple times */
2177 		summultiple = 0;
2178 		for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
2179 		{
2180 			if (track[nmultiple].count == 1)
2181 				break;
2182 			summultiple += track[nmultiple].count;
2183 		}
2184 
2185 		if (nmultiple == 0)
2186 		{
2187 			/*
2188 			 * If we found no repeated non-null values, assume it's a unique
2189 			 * column; but be sure to discount for any nulls we found.
2190 			 */
2191 			stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2192 		}
2193 		else if (track_cnt < track_max && toowide_cnt == 0 &&
2194 				 nmultiple == track_cnt)
2195 		{
2196 			/*
2197 			 * Our track list includes every value in the sample, and every
2198 			 * value appeared more than once.  Assume the column has just
2199 			 * these values.  (This case is meant to address columns with
2200 			 * small, fixed sets of possible values, such as boolean or enum
2201 			 * columns.  If there are any values that appear just once in the
2202 			 * sample, including too-wide values, we should assume that that's
2203 			 * not what we're dealing with.)
2204 			 */
2205 			stats->stadistinct = track_cnt;
2206 		}
2207 		else
2208 		{
2209 			/*----------
2210 			 * Estimate the number of distinct values using the estimator
2211 			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2212 			 *		n*d / (n - f1 + f1*n/N)
2213 			 * where f1 is the number of distinct values that occurred
2214 			 * exactly once in our sample of n rows (from a total of N),
2215 			 * and d is the total number of distinct values in the sample.
2216 			 * This is their Duj1 estimator; the other estimators they
2217 			 * recommend are considerably more complex, and are numerically
2218 			 * very unstable when n is much smaller than N.
2219 			 *
2220 			 * In this calculation, we consider only non-nulls.  We used to
2221 			 * include rows with null values in the n and N counts, but that
2222 			 * leads to inaccurate answers in columns with many nulls, and
2223 			 * it's intuitively bogus anyway considering the desired result is
2224 			 * the number of distinct non-null values.
2225 			 *
2226 			 * We assume (not very reliably!) that all the multiply-occurring
2227 			 * values are reflected in the final track[] list, and the other
2228 			 * nonnull values all appeared but once.  (XXX this usually
2229 			 * results in a drastic overestimate of ndistinct.  Can we do
2230 			 * any better?)
2231 			 *----------
2232 			 */
2233 			int			f1 = nonnull_cnt - summultiple;
2234 			int			d = f1 + nmultiple;
2235 			double		n = samplerows - null_cnt;
2236 			double		N = totalrows * (1.0 - stats->stanullfrac);
2237 			double		stadistinct;
2238 
2239 			/* N == 0 shouldn't happen, but just in case ... */
2240 			if (N > 0)
2241 				stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2242 			else
2243 				stadistinct = 0;
2244 
2245 			/* Clamp to sane range in case of roundoff error */
2246 			if (stadistinct < d)
2247 				stadistinct = d;
2248 			if (stadistinct > N)
2249 				stadistinct = N;
2250 			/* And round to integer */
2251 			stats->stadistinct = floor(stadistinct + 0.5);
2252 		}
2253 
2254 		/*
2255 		 * If we estimated the number of distinct values at more than 10% of
2256 		 * the total row count (a very arbitrary limit), then assume that
2257 		 * stadistinct should scale with the row count rather than be a fixed
2258 		 * value.
2259 		 */
2260 		if (stats->stadistinct > 0.1 * totalrows)
2261 			stats->stadistinct = -(stats->stadistinct / totalrows);
2262 
2263 		/*
2264 		 * Decide how many values are worth storing as most-common values. If
2265 		 * we are able to generate a complete MCV list (all the values in the
2266 		 * sample will fit, and we think these are all the ones in the table),
2267 		 * then do so.  Otherwise, store only those values that are
2268 		 * significantly more common than the values not in the list.
2269 		 *
2270 		 * Note: the first of these cases is meant to address columns with
2271 		 * small, fixed sets of possible values, such as boolean or enum
2272 		 * columns.  If we can *completely* represent the column population by
2273 		 * an MCV list that will fit into the stats target, then we should do
2274 		 * so and thus provide the planner with complete information.  But if
2275 		 * the MCV list is not complete, it's generally worth being more
2276 		 * selective, and not just filling it all the way up to the stats
2277 		 * target.
2278 		 */
2279 		if (track_cnt < track_max && toowide_cnt == 0 &&
2280 			stats->stadistinct > 0 &&
2281 			track_cnt <= num_mcv)
2282 		{
2283 			/* Track list includes all values seen, and all will fit */
2284 			num_mcv = track_cnt;
2285 		}
2286 		else
2287 		{
2288 			int		   *mcv_counts;
2289 
2290 			/* Incomplete list; decide how many values are worth keeping */
2291 			if (num_mcv > track_cnt)
2292 				num_mcv = track_cnt;
2293 
2294 			if (num_mcv > 0)
2295 			{
2296 				mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2297 				for (i = 0; i < num_mcv; i++)
2298 					mcv_counts[i] = track[i].count;
2299 
2300 				num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2301 										   stats->stadistinct,
2302 										   stats->stanullfrac,
2303 										   samplerows, totalrows);
2304 			}
2305 		}
2306 
2307 		/* Generate MCV slot entry */
2308 		if (num_mcv > 0)
2309 		{
2310 			MemoryContext old_context;
2311 			Datum	   *mcv_values;
2312 			float4	   *mcv_freqs;
2313 
2314 			/* Must copy the target values into anl_context */
2315 			old_context = MemoryContextSwitchTo(stats->anl_context);
2316 			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2317 			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2318 			for (i = 0; i < num_mcv; i++)
2319 			{
2320 				mcv_values[i] = datumCopy(track[i].value,
2321 										  stats->attrtype->typbyval,
2322 										  stats->attrtype->typlen);
2323 				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2324 			}
2325 			MemoryContextSwitchTo(old_context);
2326 
2327 			stats->stakind[0] = STATISTIC_KIND_MCV;
2328 			stats->staop[0] = mystats->eqopr;
2329 			stats->stacoll[0] = stats->attrcollid;
2330 			stats->stanumbers[0] = mcv_freqs;
2331 			stats->numnumbers[0] = num_mcv;
2332 			stats->stavalues[0] = mcv_values;
2333 			stats->numvalues[0] = num_mcv;
2334 
2335 			/*
2336 			 * Accept the defaults for stats->statypid and others. They have
2337 			 * been set before we were called (see vacuum.h)
2338 			 */
2339 		}
2340 	}
2341 	else if (null_cnt > 0)
2342 	{
2343 		/* We found only nulls; assume the column is entirely null */
2344 		stats->stats_valid = true;
2345 		stats->stanullfrac = 1.0;
2346 		if (is_varwidth)
2347 			stats->stawidth = 0;	/* "unknown" */
2348 		else
2349 			stats->stawidth = stats->attrtype->typlen;
2350 		stats->stadistinct = 0.0;	/* "unknown" */
2351 	}
2352 
2353 	/* We don't need to bother cleaning up any of our temporary palloc's */
2354 }
2355 
2356 
2357 /*
2358  *	compute_scalar_stats() -- compute column statistics
2359  *
2360  *	We use this when we can find "=" and "<" operators for the datatype.
2361  *
2362  *	We determine the fraction of non-null rows, the average width, the
2363  *	most common values, the (estimated) number of distinct values, the
2364  *	distribution histogram, and the correlation of physical to logical order.
2365  *
2366  *	The desired stats can be determined fairly easily after sorting the
2367  *	data values into order.
2368  */
2369 static void
compute_scalar_stats(VacAttrStatsP stats,AnalyzeAttrFetchFunc fetchfunc,int samplerows,double totalrows)2370 compute_scalar_stats(VacAttrStatsP stats,
2371 					 AnalyzeAttrFetchFunc fetchfunc,
2372 					 int samplerows,
2373 					 double totalrows)
2374 {
2375 	int			i;
2376 	int			null_cnt = 0;
2377 	int			nonnull_cnt = 0;
2378 	int			toowide_cnt = 0;
2379 	double		total_width = 0;
2380 	bool		is_varlena = (!stats->attrtype->typbyval &&
2381 							  stats->attrtype->typlen == -1);
2382 	bool		is_varwidth = (!stats->attrtype->typbyval &&
2383 							   stats->attrtype->typlen < 0);
2384 	double		corr_xysum;
2385 	SortSupportData ssup;
2386 	ScalarItem *values;
2387 	int			values_cnt = 0;
2388 	int		   *tupnoLink;
2389 	ScalarMCVItem *track;
2390 	int			track_cnt = 0;
2391 	int			num_mcv = stats->attr->attstattarget;
2392 	int			num_bins = stats->attr->attstattarget;
2393 	StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2394 
2395 	values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
2396 	tupnoLink = (int *) palloc(samplerows * sizeof(int));
2397 	track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
2398 
2399 	memset(&ssup, 0, sizeof(ssup));
2400 	ssup.ssup_cxt = CurrentMemoryContext;
2401 	ssup.ssup_collation = stats->attrcollid;
2402 	ssup.ssup_nulls_first = false;
2403 
2404 	/*
2405 	 * For now, don't perform abbreviated key conversion, because full values
2406 	 * are required for MCV slot generation.  Supporting that optimization
2407 	 * would necessitate teaching compare_scalars() to call a tie-breaker.
2408 	 */
2409 	ssup.abbreviate = false;
2410 
2411 	PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
2412 
2413 	/* Initial scan to find sortable values */
2414 	for (i = 0; i < samplerows; i++)
2415 	{
2416 		Datum		value;
2417 		bool		isnull;
2418 
2419 		vacuum_delay_point();
2420 
2421 		value = fetchfunc(stats, i, &isnull);
2422 
2423 		/* Check for null/nonnull */
2424 		if (isnull)
2425 		{
2426 			null_cnt++;
2427 			continue;
2428 		}
2429 		nonnull_cnt++;
2430 
2431 		/*
2432 		 * If it's a variable-width field, add up widths for average width
2433 		 * calculation.  Note that if the value is toasted, we use the toasted
2434 		 * width.  We don't bother with this calculation if it's a fixed-width
2435 		 * type.
2436 		 */
2437 		if (is_varlena)
2438 		{
2439 			total_width += VARSIZE_ANY(DatumGetPointer(value));
2440 
2441 			/*
2442 			 * If the value is toasted, we want to detoast it just once to
2443 			 * avoid repeated detoastings and resultant excess memory usage
2444 			 * during the comparisons.  Also, check to see if the value is
2445 			 * excessively wide, and if so don't detoast at all --- just
2446 			 * ignore the value.
2447 			 */
2448 			if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
2449 			{
2450 				toowide_cnt++;
2451 				continue;
2452 			}
2453 			value = PointerGetDatum(PG_DETOAST_DATUM(value));
2454 		}
2455 		else if (is_varwidth)
2456 		{
2457 			/* must be cstring */
2458 			total_width += strlen(DatumGetCString(value)) + 1;
2459 		}
2460 
2461 		/* Add it to the list to be sorted */
2462 		values[values_cnt].value = value;
2463 		values[values_cnt].tupno = values_cnt;
2464 		tupnoLink[values_cnt] = values_cnt;
2465 		values_cnt++;
2466 	}
2467 
2468 	/* We can only compute real stats if we found some sortable values. */
2469 	if (values_cnt > 0)
2470 	{
2471 		int			ndistinct,	/* # distinct values in sample */
2472 					nmultiple,	/* # that appear multiple times */
2473 					num_hist,
2474 					dups_cnt;
2475 		int			slot_idx = 0;
2476 		CompareScalarsContext cxt;
2477 
2478 		/* Sort the collected values */
2479 		cxt.ssup = &ssup;
2480 		cxt.tupnoLink = tupnoLink;
2481 		qsort_arg((void *) values, values_cnt, sizeof(ScalarItem),
2482 				  compare_scalars, (void *) &cxt);
2483 
2484 		/*
2485 		 * Now scan the values in order, find the most common ones, and also
2486 		 * accumulate ordering-correlation statistics.
2487 		 *
2488 		 * To determine which are most common, we first have to count the
2489 		 * number of duplicates of each value.  The duplicates are adjacent in
2490 		 * the sorted list, so a brute-force approach is to compare successive
2491 		 * datum values until we find two that are not equal. However, that
2492 		 * requires N-1 invocations of the datum comparison routine, which are
2493 		 * completely redundant with work that was done during the sort.  (The
2494 		 * sort algorithm must at some point have compared each pair of items
2495 		 * that are adjacent in the sorted order; otherwise it could not know
2496 		 * that it's ordered the pair correctly.) We exploit this by having
2497 		 * compare_scalars remember the highest tupno index that each
2498 		 * ScalarItem has been found equal to.  At the end of the sort, a
2499 		 * ScalarItem's tupnoLink will still point to itself if and only if it
2500 		 * is the last item of its group of duplicates (since the group will
2501 		 * be ordered by tupno).
2502 		 */
2503 		corr_xysum = 0;
2504 		ndistinct = 0;
2505 		nmultiple = 0;
2506 		dups_cnt = 0;
2507 		for (i = 0; i < values_cnt; i++)
2508 		{
2509 			int			tupno = values[i].tupno;
2510 
2511 			corr_xysum += ((double) i) * ((double) tupno);
2512 			dups_cnt++;
2513 			if (tupnoLink[tupno] == tupno)
2514 			{
2515 				/* Reached end of duplicates of this value */
2516 				ndistinct++;
2517 				if (dups_cnt > 1)
2518 				{
2519 					nmultiple++;
2520 					if (track_cnt < num_mcv ||
2521 						dups_cnt > track[track_cnt - 1].count)
2522 					{
2523 						/*
2524 						 * Found a new item for the mcv list; find its
2525 						 * position, bubbling down old items if needed. Loop
2526 						 * invariant is that j points at an empty/ replaceable
2527 						 * slot.
2528 						 */
2529 						int			j;
2530 
2531 						if (track_cnt < num_mcv)
2532 							track_cnt++;
2533 						for (j = track_cnt - 1; j > 0; j--)
2534 						{
2535 							if (dups_cnt <= track[j - 1].count)
2536 								break;
2537 							track[j].count = track[j - 1].count;
2538 							track[j].first = track[j - 1].first;
2539 						}
2540 						track[j].count = dups_cnt;
2541 						track[j].first = i + 1 - dups_cnt;
2542 					}
2543 				}
2544 				dups_cnt = 0;
2545 			}
2546 		}
2547 
2548 		stats->stats_valid = true;
2549 		/* Do the simple null-frac and width stats */
2550 		stats->stanullfrac = (double) null_cnt / (double) samplerows;
2551 		if (is_varwidth)
2552 			stats->stawidth = total_width / (double) nonnull_cnt;
2553 		else
2554 			stats->stawidth = stats->attrtype->typlen;
2555 
2556 		if (nmultiple == 0)
2557 		{
2558 			/*
2559 			 * If we found no repeated non-null values, assume it's a unique
2560 			 * column; but be sure to discount for any nulls we found.
2561 			 */
2562 			stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2563 		}
2564 		else if (toowide_cnt == 0 && nmultiple == ndistinct)
2565 		{
2566 			/*
2567 			 * Every value in the sample appeared more than once.  Assume the
2568 			 * column has just these values.  (This case is meant to address
2569 			 * columns with small, fixed sets of possible values, such as
2570 			 * boolean or enum columns.  If there are any values that appear
2571 			 * just once in the sample, including too-wide values, we should
2572 			 * assume that that's not what we're dealing with.)
2573 			 */
2574 			stats->stadistinct = ndistinct;
2575 		}
2576 		else
2577 		{
2578 			/*----------
2579 			 * Estimate the number of distinct values using the estimator
2580 			 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2581 			 *		n*d / (n - f1 + f1*n/N)
2582 			 * where f1 is the number of distinct values that occurred
2583 			 * exactly once in our sample of n rows (from a total of N),
2584 			 * and d is the total number of distinct values in the sample.
2585 			 * This is their Duj1 estimator; the other estimators they
2586 			 * recommend are considerably more complex, and are numerically
2587 			 * very unstable when n is much smaller than N.
2588 			 *
2589 			 * In this calculation, we consider only non-nulls.  We used to
2590 			 * include rows with null values in the n and N counts, but that
2591 			 * leads to inaccurate answers in columns with many nulls, and
2592 			 * it's intuitively bogus anyway considering the desired result is
2593 			 * the number of distinct non-null values.
2594 			 *
2595 			 * Overwidth values are assumed to have been distinct.
2596 			 *----------
2597 			 */
2598 			int			f1 = ndistinct - nmultiple + toowide_cnt;
2599 			int			d = f1 + nmultiple;
2600 			double		n = samplerows - null_cnt;
2601 			double		N = totalrows * (1.0 - stats->stanullfrac);
2602 			double		stadistinct;
2603 
2604 			/* N == 0 shouldn't happen, but just in case ... */
2605 			if (N > 0)
2606 				stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2607 			else
2608 				stadistinct = 0;
2609 
2610 			/* Clamp to sane range in case of roundoff error */
2611 			if (stadistinct < d)
2612 				stadistinct = d;
2613 			if (stadistinct > N)
2614 				stadistinct = N;
2615 			/* And round to integer */
2616 			stats->stadistinct = floor(stadistinct + 0.5);
2617 		}
2618 
2619 		/*
2620 		 * If we estimated the number of distinct values at more than 10% of
2621 		 * the total row count (a very arbitrary limit), then assume that
2622 		 * stadistinct should scale with the row count rather than be a fixed
2623 		 * value.
2624 		 */
2625 		if (stats->stadistinct > 0.1 * totalrows)
2626 			stats->stadistinct = -(stats->stadistinct / totalrows);
2627 
2628 		/*
2629 		 * Decide how many values are worth storing as most-common values. If
2630 		 * we are able to generate a complete MCV list (all the values in the
2631 		 * sample will fit, and we think these are all the ones in the table),
2632 		 * then do so.  Otherwise, store only those values that are
2633 		 * significantly more common than the values not in the list.
2634 		 *
2635 		 * Note: the first of these cases is meant to address columns with
2636 		 * small, fixed sets of possible values, such as boolean or enum
2637 		 * columns.  If we can *completely* represent the column population by
2638 		 * an MCV list that will fit into the stats target, then we should do
2639 		 * so and thus provide the planner with complete information.  But if
2640 		 * the MCV list is not complete, it's generally worth being more
2641 		 * selective, and not just filling it all the way up to the stats
2642 		 * target.
2643 		 */
2644 		if (track_cnt == ndistinct && toowide_cnt == 0 &&
2645 			stats->stadistinct > 0 &&
2646 			track_cnt <= num_mcv)
2647 		{
2648 			/* Track list includes all values seen, and all will fit */
2649 			num_mcv = track_cnt;
2650 		}
2651 		else
2652 		{
2653 			int		   *mcv_counts;
2654 
2655 			/* Incomplete list; decide how many values are worth keeping */
2656 			if (num_mcv > track_cnt)
2657 				num_mcv = track_cnt;
2658 
2659 			if (num_mcv > 0)
2660 			{
2661 				mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2662 				for (i = 0; i < num_mcv; i++)
2663 					mcv_counts[i] = track[i].count;
2664 
2665 				num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2666 										   stats->stadistinct,
2667 										   stats->stanullfrac,
2668 										   samplerows, totalrows);
2669 			}
2670 		}
2671 
2672 		/* Generate MCV slot entry */
2673 		if (num_mcv > 0)
2674 		{
2675 			MemoryContext old_context;
2676 			Datum	   *mcv_values;
2677 			float4	   *mcv_freqs;
2678 
2679 			/* Must copy the target values into anl_context */
2680 			old_context = MemoryContextSwitchTo(stats->anl_context);
2681 			mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2682 			mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2683 			for (i = 0; i < num_mcv; i++)
2684 			{
2685 				mcv_values[i] = datumCopy(values[track[i].first].value,
2686 										  stats->attrtype->typbyval,
2687 										  stats->attrtype->typlen);
2688 				mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2689 			}
2690 			MemoryContextSwitchTo(old_context);
2691 
2692 			stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
2693 			stats->staop[slot_idx] = mystats->eqopr;
2694 			stats->stacoll[slot_idx] = stats->attrcollid;
2695 			stats->stanumbers[slot_idx] = mcv_freqs;
2696 			stats->numnumbers[slot_idx] = num_mcv;
2697 			stats->stavalues[slot_idx] = mcv_values;
2698 			stats->numvalues[slot_idx] = num_mcv;
2699 
2700 			/*
2701 			 * Accept the defaults for stats->statypid and others. They have
2702 			 * been set before we were called (see vacuum.h)
2703 			 */
2704 			slot_idx++;
2705 		}
2706 
2707 		/*
2708 		 * Generate a histogram slot entry if there are at least two distinct
2709 		 * values not accounted for in the MCV list.  (This ensures the
2710 		 * histogram won't collapse to empty or a singleton.)
2711 		 */
2712 		num_hist = ndistinct - num_mcv;
2713 		if (num_hist > num_bins)
2714 			num_hist = num_bins + 1;
2715 		if (num_hist >= 2)
2716 		{
2717 			MemoryContext old_context;
2718 			Datum	   *hist_values;
2719 			int			nvals;
2720 			int			pos,
2721 						posfrac,
2722 						delta,
2723 						deltafrac;
2724 
2725 			/* Sort the MCV items into position order to speed next loop */
2726 			qsort((void *) track, num_mcv,
2727 				  sizeof(ScalarMCVItem), compare_mcvs);
2728 
2729 			/*
2730 			 * Collapse out the MCV items from the values[] array.
2731 			 *
2732 			 * Note we destroy the values[] array here... but we don't need it
2733 			 * for anything more.  We do, however, still need values_cnt.
2734 			 * nvals will be the number of remaining entries in values[].
2735 			 */
2736 			if (num_mcv > 0)
2737 			{
2738 				int			src,
2739 							dest;
2740 				int			j;
2741 
2742 				src = dest = 0;
2743 				j = 0;			/* index of next interesting MCV item */
2744 				while (src < values_cnt)
2745 				{
2746 					int			ncopy;
2747 
2748 					if (j < num_mcv)
2749 					{
2750 						int			first = track[j].first;
2751 
2752 						if (src >= first)
2753 						{
2754 							/* advance past this MCV item */
2755 							src = first + track[j].count;
2756 							j++;
2757 							continue;
2758 						}
2759 						ncopy = first - src;
2760 					}
2761 					else
2762 						ncopy = values_cnt - src;
2763 					memmove(&values[dest], &values[src],
2764 							ncopy * sizeof(ScalarItem));
2765 					src += ncopy;
2766 					dest += ncopy;
2767 				}
2768 				nvals = dest;
2769 			}
2770 			else
2771 				nvals = values_cnt;
2772 			Assert(nvals >= num_hist);
2773 
2774 			/* Must copy the target values into anl_context */
2775 			old_context = MemoryContextSwitchTo(stats->anl_context);
2776 			hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
2777 
2778 			/*
2779 			 * The object of this loop is to copy the first and last values[]
2780 			 * entries along with evenly-spaced values in between.  So the
2781 			 * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)].  But
2782 			 * computing that subscript directly risks integer overflow when
2783 			 * the stats target is more than a couple thousand.  Instead we
2784 			 * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
2785 			 * the integral and fractional parts of the sum separately.
2786 			 */
2787 			delta = (nvals - 1) / (num_hist - 1);
2788 			deltafrac = (nvals - 1) % (num_hist - 1);
2789 			pos = posfrac = 0;
2790 
2791 			for (i = 0; i < num_hist; i++)
2792 			{
2793 				hist_values[i] = datumCopy(values[pos].value,
2794 										   stats->attrtype->typbyval,
2795 										   stats->attrtype->typlen);
2796 				pos += delta;
2797 				posfrac += deltafrac;
2798 				if (posfrac >= (num_hist - 1))
2799 				{
2800 					/* fractional part exceeds 1, carry to integer part */
2801 					pos++;
2802 					posfrac -= (num_hist - 1);
2803 				}
2804 			}
2805 
2806 			MemoryContextSwitchTo(old_context);
2807 
2808 			stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
2809 			stats->staop[slot_idx] = mystats->ltopr;
2810 			stats->stacoll[slot_idx] = stats->attrcollid;
2811 			stats->stavalues[slot_idx] = hist_values;
2812 			stats->numvalues[slot_idx] = num_hist;
2813 
2814 			/*
2815 			 * Accept the defaults for stats->statypid and others. They have
2816 			 * been set before we were called (see vacuum.h)
2817 			 */
2818 			slot_idx++;
2819 		}
2820 
2821 		/* Generate a correlation entry if there are multiple values */
2822 		if (values_cnt > 1)
2823 		{
2824 			MemoryContext old_context;
2825 			float4	   *corrs;
2826 			double		corr_xsum,
2827 						corr_x2sum;
2828 
2829 			/* Must copy the target values into anl_context */
2830 			old_context = MemoryContextSwitchTo(stats->anl_context);
2831 			corrs = (float4 *) palloc(sizeof(float4));
2832 			MemoryContextSwitchTo(old_context);
2833 
2834 			/*----------
2835 			 * Since we know the x and y value sets are both
2836 			 *		0, 1, ..., values_cnt-1
2837 			 * we have sum(x) = sum(y) =
2838 			 *		(values_cnt-1)*values_cnt / 2
2839 			 * and sum(x^2) = sum(y^2) =
2840 			 *		(values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
2841 			 *----------
2842 			 */
2843 			corr_xsum = ((double) (values_cnt - 1)) *
2844 				((double) values_cnt) / 2.0;
2845 			corr_x2sum = ((double) (values_cnt - 1)) *
2846 				((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
2847 
2848 			/* And the correlation coefficient reduces to */
2849 			corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
2850 				(values_cnt * corr_x2sum - corr_xsum * corr_xsum);
2851 
2852 			stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
2853 			stats->staop[slot_idx] = mystats->ltopr;
2854 			stats->stacoll[slot_idx] = stats->attrcollid;
2855 			stats->stanumbers[slot_idx] = corrs;
2856 			stats->numnumbers[slot_idx] = 1;
2857 			slot_idx++;
2858 		}
2859 	}
2860 	else if (nonnull_cnt > 0)
2861 	{
2862 		/* We found some non-null values, but they were all too wide */
2863 		Assert(nonnull_cnt == toowide_cnt);
2864 		stats->stats_valid = true;
2865 		/* Do the simple null-frac and width stats */
2866 		stats->stanullfrac = (double) null_cnt / (double) samplerows;
2867 		if (is_varwidth)
2868 			stats->stawidth = total_width / (double) nonnull_cnt;
2869 		else
2870 			stats->stawidth = stats->attrtype->typlen;
2871 		/* Assume all too-wide values are distinct, so it's a unique column */
2872 		stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2873 	}
2874 	else if (null_cnt > 0)
2875 	{
2876 		/* We found only nulls; assume the column is entirely null */
2877 		stats->stats_valid = true;
2878 		stats->stanullfrac = 1.0;
2879 		if (is_varwidth)
2880 			stats->stawidth = 0;	/* "unknown" */
2881 		else
2882 			stats->stawidth = stats->attrtype->typlen;
2883 		stats->stadistinct = 0.0;	/* "unknown" */
2884 	}
2885 
2886 	/* We don't need to bother cleaning up any of our temporary palloc's */
2887 }
2888 
2889 /*
2890  * qsort_arg comparator for sorting ScalarItems
2891  *
2892  * Aside from sorting the items, we update the tupnoLink[] array
2893  * whenever two ScalarItems are found to contain equal datums.  The array
2894  * is indexed by tupno; for each ScalarItem, it contains the highest
2895  * tupno that that item's datum has been found to be equal to.  This allows
2896  * us to avoid additional comparisons in compute_scalar_stats().
2897  */
2898 static int
compare_scalars(const void * a,const void * b,void * arg)2899 compare_scalars(const void *a, const void *b, void *arg)
2900 {
2901 	Datum		da = ((const ScalarItem *) a)->value;
2902 	int			ta = ((const ScalarItem *) a)->tupno;
2903 	Datum		db = ((const ScalarItem *) b)->value;
2904 	int			tb = ((const ScalarItem *) b)->tupno;
2905 	CompareScalarsContext *cxt = (CompareScalarsContext *) arg;
2906 	int			compare;
2907 
2908 	compare = ApplySortComparator(da, false, db, false, cxt->ssup);
2909 	if (compare != 0)
2910 		return compare;
2911 
2912 	/*
2913 	 * The two datums are equal, so update cxt->tupnoLink[].
2914 	 */
2915 	if (cxt->tupnoLink[ta] < tb)
2916 		cxt->tupnoLink[ta] = tb;
2917 	if (cxt->tupnoLink[tb] < ta)
2918 		cxt->tupnoLink[tb] = ta;
2919 
2920 	/*
2921 	 * For equal datums, sort by tupno
2922 	 */
2923 	return ta - tb;
2924 }
2925 
2926 /*
2927  * qsort comparator for sorting ScalarMCVItems by position
2928  */
2929 static int
compare_mcvs(const void * a,const void * b)2930 compare_mcvs(const void *a, const void *b)
2931 {
2932 	int			da = ((const ScalarMCVItem *) a)->first;
2933 	int			db = ((const ScalarMCVItem *) b)->first;
2934 
2935 	return da - db;
2936 }
2937 
2938 /*
2939  * Analyze the list of common values in the sample and decide how many are
2940  * worth storing in the table's MCV list.
2941  *
2942  * mcv_counts is assumed to be a list of the counts of the most common values
2943  * seen in the sample, starting with the most common.  The return value is the
2944  * number that are significantly more common than the values not in the list,
2945  * and which are therefore deemed worth storing in the table's MCV list.
2946  */
2947 static int
analyze_mcv_list(int * mcv_counts,int num_mcv,double stadistinct,double stanullfrac,int samplerows,double totalrows)2948 analyze_mcv_list(int *mcv_counts,
2949 				 int num_mcv,
2950 				 double stadistinct,
2951 				 double stanullfrac,
2952 				 int samplerows,
2953 				 double totalrows)
2954 {
2955 	double		ndistinct_table;
2956 	double		sumcount;
2957 	int			i;
2958 
2959 	/*
2960 	 * If the entire table was sampled, keep the whole list.  This also
2961 	 * protects us against division by zero in the code below.
2962 	 */
2963 	if (samplerows == totalrows || totalrows <= 1.0)
2964 		return num_mcv;
2965 
2966 	/* Re-extract the estimated number of distinct nonnull values in table */
2967 	ndistinct_table = stadistinct;
2968 	if (ndistinct_table < 0)
2969 		ndistinct_table = -ndistinct_table * totalrows;
2970 
2971 	/*
2972 	 * Exclude the least common values from the MCV list, if they are not
2973 	 * significantly more common than the estimated selectivity they would
2974 	 * have if they weren't in the list.  All non-MCV values are assumed to be
2975 	 * equally common, after taking into account the frequencies of all the
2976 	 * values in the MCV list and the number of nulls (c.f. eqsel()).
2977 	 *
2978 	 * Here sumcount tracks the total count of all but the last (least common)
2979 	 * value in the MCV list, allowing us to determine the effect of excluding
2980 	 * that value from the list.
2981 	 *
2982 	 * Note that we deliberately do this by removing values from the full
2983 	 * list, rather than starting with an empty list and adding values,
2984 	 * because the latter approach can fail to add any values if all the most
2985 	 * common values have around the same frequency and make up the majority
2986 	 * of the table, so that the overall average frequency of all values is
2987 	 * roughly the same as that of the common values.  This would lead to any
2988 	 * uncommon values being significantly overestimated.
2989 	 */
2990 	sumcount = 0.0;
2991 	for (i = 0; i < num_mcv - 1; i++)
2992 		sumcount += mcv_counts[i];
2993 
2994 	while (num_mcv > 0)
2995 	{
2996 		double		selec,
2997 					otherdistinct,
2998 					N,
2999 					n,
3000 					K,
3001 					variance,
3002 					stddev;
3003 
3004 		/*
3005 		 * Estimated selectivity the least common value would have if it
3006 		 * wasn't in the MCV list (c.f. eqsel()).
3007 		 */
3008 		selec = 1.0 - sumcount / samplerows - stanullfrac;
3009 		if (selec < 0.0)
3010 			selec = 0.0;
3011 		if (selec > 1.0)
3012 			selec = 1.0;
3013 		otherdistinct = ndistinct_table - (num_mcv - 1);
3014 		if (otherdistinct > 1)
3015 			selec /= otherdistinct;
3016 
3017 		/*
3018 		 * If the value is kept in the MCV list, its population frequency is
3019 		 * assumed to equal its sample frequency.  We use the lower end of a
3020 		 * textbook continuity-corrected Wald-type confidence interval to
3021 		 * determine if that is significantly more common than the non-MCV
3022 		 * frequency --- specifically we assume the population frequency is
3023 		 * highly likely to be within around 2 standard errors of the sample
3024 		 * frequency, which equates to an interval of 2 standard deviations
3025 		 * either side of the sample count, plus an additional 0.5 for the
3026 		 * continuity correction.  Since we are sampling without replacement,
3027 		 * this is a hypergeometric distribution.
3028 		 *
3029 		 * XXX: Empirically, this approach seems to work quite well, but it
3030 		 * may be worth considering more advanced techniques for estimating
3031 		 * the confidence interval of the hypergeometric distribution.
3032 		 */
3033 		N = totalrows;
3034 		n = samplerows;
3035 		K = N * mcv_counts[num_mcv - 1] / n;
3036 		variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
3037 		stddev = sqrt(variance);
3038 
3039 		if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
3040 		{
3041 			/*
3042 			 * The value is significantly more common than the non-MCV
3043 			 * selectivity would suggest.  Keep it, and all the other more
3044 			 * common values in the list.
3045 			 */
3046 			break;
3047 		}
3048 		else
3049 		{
3050 			/* Discard this value and consider the next least common value */
3051 			num_mcv--;
3052 			if (num_mcv == 0)
3053 				break;
3054 			sumcount -= mcv_counts[num_mcv - 1];
3055 		}
3056 	}
3057 	return num_mcv;
3058 }
3059