1 /*-------------------------------------------------------------------------
2  *
3  * spgtextproc.c
4  *	  implementation of radix tree (compressed trie) over text
5  *
6  * In a text_ops SPGiST index, inner tuples can have a prefix which is the
7  * common prefix of all strings indexed under that tuple.  The node labels
8  * represent the next byte of the string(s) after the prefix.  Assuming we
9  * always use the longest possible prefix, we will get more than one node
10  * label unless the prefix length is restricted by SPGIST_MAX_PREFIX_LENGTH.
11  *
12  * To reconstruct the indexed string for any index entry, concatenate the
13  * inner-tuple prefixes and node labels starting at the root and working
14  * down to the leaf entry, then append the datum in the leaf entry.
15  * (While descending the tree, "level" is the number of bytes reconstructed
16  * so far.)
17  *
18  * However, there are two special cases for node labels: -1 indicates that
19  * there are no more bytes after the prefix-so-far, and -2 indicates that we
20  * had to split an existing allTheSame tuple (in such a case we have to create
21  * a node label that doesn't correspond to any string byte).  In either case,
22  * the node label does not contribute anything to the reconstructed string.
23  *
24  * Previously, we used a node label of zero for both special cases, but
25  * this was problematic because one can't tell whether a string ending at
26  * the current level can be pushed down into such a child node.  For
27  * backwards compatibility, we still support such node labels for reading;
28  * but no new entries will ever be pushed down into a zero-labeled child.
29  * No new entries ever get pushed into a -2-labeled child, either.
30  *
31  *
32  * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
33  * Portions Copyright (c) 1994, Regents of the University of California
34  *
35  * IDENTIFICATION
36  *			src/backend/access/spgist/spgtextproc.c
37  *
38  *-------------------------------------------------------------------------
39  */
40 #include "postgres.h"
41 
42 #include "access/spgist.h"
43 #include "catalog/pg_type.h"
44 #include "mb/pg_wchar.h"
45 #include "utils/builtins.h"
46 #include "utils/datum.h"
47 #include "utils/pg_locale.h"
48 
49 
50 /*
51  * In the worst case, an inner tuple in a text radix tree could have as many
52  * as 258 nodes (one for each possible byte value, plus the two special
53  * cases).  Each node can take 16 bytes on MAXALIGN=8 machines.  The inner
54  * tuple must fit on an index page of size BLCKSZ.  Rather than assuming we
55  * know the exact amount of overhead imposed by page headers, tuple headers,
56  * etc, we leave 100 bytes for that (the actual overhead should be no more
57  * than 56 bytes at this writing, so there is slop in this number).
58  * So we can safely create prefixes up to BLCKSZ - 258 * 16 - 100 bytes long.
59  * Unfortunately, because 258 * 16 is over 4K, there is no safe prefix length
60  * when BLCKSZ is less than 8K; it is always possible to get "SPGiST inner
61  * tuple size exceeds maximum" if there are too many distinct next-byte values
62  * at a given place in the tree.  Since use of nonstandard block sizes appears
63  * to be negligible in the field, we just live with that fact for now,
64  * choosing a max prefix size of 32 bytes when BLCKSZ is configured smaller
65  * than default.
66  */
67 #define SPGIST_MAX_PREFIX_LENGTH	Max((int) (BLCKSZ - 258 * 16 - 100), 32)
68 
69 /* Struct for sorting values in picksplit */
70 typedef struct spgNodePtr
71 {
72 	Datum		d;
73 	int			i;
74 	int16		c;
75 } spgNodePtr;
76 
77 
78 Datum
spg_text_config(PG_FUNCTION_ARGS)79 spg_text_config(PG_FUNCTION_ARGS)
80 {
81 	/* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
82 	spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
83 
84 	cfg->prefixType = TEXTOID;
85 	cfg->labelType = INT2OID;
86 	cfg->canReturnData = true;
87 	cfg->longValuesOK = true;	/* suffixing will shorten long values */
88 	PG_RETURN_VOID();
89 }
90 
91 /*
92  * Form a text datum from the given not-necessarily-null-terminated string,
93  * using short varlena header format if possible
94  */
95 static Datum
formTextDatum(const char * data,int datalen)96 formTextDatum(const char *data, int datalen)
97 {
98 	char	   *p;
99 
100 	p = (char *) palloc(datalen + VARHDRSZ);
101 
102 	if (datalen + VARHDRSZ_SHORT <= VARATT_SHORT_MAX)
103 	{
104 		SET_VARSIZE_SHORT(p, datalen + VARHDRSZ_SHORT);
105 		if (datalen)
106 			memcpy(p + VARHDRSZ_SHORT, data, datalen);
107 	}
108 	else
109 	{
110 		SET_VARSIZE(p, datalen + VARHDRSZ);
111 		memcpy(p + VARHDRSZ, data, datalen);
112 	}
113 
114 	return PointerGetDatum(p);
115 }
116 
117 /*
118  * Find the length of the common prefix of a and b
119  */
120 static int
commonPrefix(const char * a,const char * b,int lena,int lenb)121 commonPrefix(const char *a, const char *b, int lena, int lenb)
122 {
123 	int			i = 0;
124 
125 	while (i < lena && i < lenb && *a == *b)
126 	{
127 		a++;
128 		b++;
129 		i++;
130 	}
131 
132 	return i;
133 }
134 
135 /*
136  * Binary search an array of int16 datums for a match to c
137  *
138  * On success, *i gets the match location; on failure, it gets where to insert
139  */
140 static bool
searchChar(Datum * nodeLabels,int nNodes,int16 c,int * i)141 searchChar(Datum *nodeLabels, int nNodes, int16 c, int *i)
142 {
143 	int			StopLow = 0,
144 				StopHigh = nNodes;
145 
146 	while (StopLow < StopHigh)
147 	{
148 		int			StopMiddle = (StopLow + StopHigh) >> 1;
149 		int16		middle = DatumGetInt16(nodeLabels[StopMiddle]);
150 
151 		if (c < middle)
152 			StopHigh = StopMiddle;
153 		else if (c > middle)
154 			StopLow = StopMiddle + 1;
155 		else
156 		{
157 			*i = StopMiddle;
158 			return true;
159 		}
160 	}
161 
162 	*i = StopHigh;
163 	return false;
164 }
165 
166 Datum
spg_text_choose(PG_FUNCTION_ARGS)167 spg_text_choose(PG_FUNCTION_ARGS)
168 {
169 	spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
170 	spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
171 	text	   *inText = DatumGetTextPP(in->datum);
172 	char	   *inStr = VARDATA_ANY(inText);
173 	int			inSize = VARSIZE_ANY_EXHDR(inText);
174 	char	   *prefixStr = NULL;
175 	int			prefixSize = 0;
176 	int			commonLen = 0;
177 	int16		nodeChar = 0;
178 	int			i = 0;
179 
180 	/* Check for prefix match, set nodeChar to first byte after prefix */
181 	if (in->hasPrefix)
182 	{
183 		text	   *prefixText = DatumGetTextPP(in->prefixDatum);
184 
185 		prefixStr = VARDATA_ANY(prefixText);
186 		prefixSize = VARSIZE_ANY_EXHDR(prefixText);
187 
188 		commonLen = commonPrefix(inStr + in->level,
189 								 prefixStr,
190 								 inSize - in->level,
191 								 prefixSize);
192 
193 		if (commonLen == prefixSize)
194 		{
195 			if (inSize - in->level > commonLen)
196 				nodeChar = *(unsigned char *) (inStr + in->level + commonLen);
197 			else
198 				nodeChar = -1;
199 		}
200 		else
201 		{
202 			/* Must split tuple because incoming value doesn't match prefix */
203 			out->resultType = spgSplitTuple;
204 
205 			if (commonLen == 0)
206 			{
207 				out->result.splitTuple.prefixHasPrefix = false;
208 			}
209 			else
210 			{
211 				out->result.splitTuple.prefixHasPrefix = true;
212 				out->result.splitTuple.prefixPrefixDatum =
213 					formTextDatum(prefixStr, commonLen);
214 			}
215 			out->result.splitTuple.nodeLabel =
216 				Int16GetDatum(*(unsigned char *) (prefixStr + commonLen));
217 
218 			if (prefixSize - commonLen == 1)
219 			{
220 				out->result.splitTuple.postfixHasPrefix = false;
221 			}
222 			else
223 			{
224 				out->result.splitTuple.postfixHasPrefix = true;
225 				out->result.splitTuple.postfixPrefixDatum =
226 					formTextDatum(prefixStr + commonLen + 1,
227 								  prefixSize - commonLen - 1);
228 			}
229 
230 			PG_RETURN_VOID();
231 		}
232 	}
233 	else if (inSize > in->level)
234 	{
235 		nodeChar = *(unsigned char *) (inStr + in->level);
236 	}
237 	else
238 	{
239 		nodeChar = -1;
240 	}
241 
242 	/* Look up nodeChar in the node label array */
243 	if (searchChar(in->nodeLabels, in->nNodes, nodeChar, &i))
244 	{
245 		/*
246 		 * Descend to existing node.  (If in->allTheSame, the core code will
247 		 * ignore our nodeN specification here, but that's OK.  We still have
248 		 * to provide the correct levelAdd and restDatum values, and those are
249 		 * the same regardless of which node gets chosen by core.)
250 		 */
251 		int			levelAdd;
252 
253 		out->resultType = spgMatchNode;
254 		out->result.matchNode.nodeN = i;
255 		levelAdd = commonLen;
256 		if (nodeChar >= 0)
257 			levelAdd++;
258 		out->result.matchNode.levelAdd = levelAdd;
259 		if (inSize - in->level - levelAdd > 0)
260 			out->result.matchNode.restDatum =
261 				formTextDatum(inStr + in->level + levelAdd,
262 							  inSize - in->level - levelAdd);
263 		else
264 			out->result.matchNode.restDatum =
265 				formTextDatum(NULL, 0);
266 	}
267 	else if (in->allTheSame)
268 	{
269 		/*
270 		 * Can't use AddNode action, so split the tuple.  The upper tuple has
271 		 * the same prefix as before and uses a dummy node label -2 for the
272 		 * lower tuple.  The lower tuple has no prefix and the same node
273 		 * labels as the original tuple.
274 		 *
275 		 * Note: it might seem tempting to shorten the upper tuple's prefix,
276 		 * if it has one, then use its last byte as label for the lower tuple.
277 		 * But that doesn't win since we know the incoming value matches the
278 		 * whole prefix: we'd just end up splitting the lower tuple again.
279 		 */
280 		out->resultType = spgSplitTuple;
281 		out->result.splitTuple.prefixHasPrefix = in->hasPrefix;
282 		out->result.splitTuple.prefixPrefixDatum = in->prefixDatum;
283 		out->result.splitTuple.nodeLabel = Int16GetDatum(-2);
284 		out->result.splitTuple.postfixHasPrefix = false;
285 	}
286 	else
287 	{
288 		/* Add a node for the not-previously-seen nodeChar value */
289 		out->resultType = spgAddNode;
290 		out->result.addNode.nodeLabel = Int16GetDatum(nodeChar);
291 		out->result.addNode.nodeN = i;
292 	}
293 
294 	PG_RETURN_VOID();
295 }
296 
297 /* qsort comparator to sort spgNodePtr structs by "c" */
298 static int
cmpNodePtr(const void * a,const void * b)299 cmpNodePtr(const void *a, const void *b)
300 {
301 	const spgNodePtr *aa = (const spgNodePtr *) a;
302 	const spgNodePtr *bb = (const spgNodePtr *) b;
303 
304 	return aa->c - bb->c;
305 }
306 
307 Datum
spg_text_picksplit(PG_FUNCTION_ARGS)308 spg_text_picksplit(PG_FUNCTION_ARGS)
309 {
310 	spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
311 	spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
312 	text	   *text0 = DatumGetTextPP(in->datums[0]);
313 	int			i,
314 				commonLen;
315 	spgNodePtr *nodes;
316 
317 	/* Identify longest common prefix, if any */
318 	commonLen = VARSIZE_ANY_EXHDR(text0);
319 	for (i = 1; i < in->nTuples && commonLen > 0; i++)
320 	{
321 		text	   *texti = DatumGetTextPP(in->datums[i]);
322 		int			tmp = commonPrefix(VARDATA_ANY(text0),
323 									   VARDATA_ANY(texti),
324 									   VARSIZE_ANY_EXHDR(text0),
325 									   VARSIZE_ANY_EXHDR(texti));
326 
327 		if (tmp < commonLen)
328 			commonLen = tmp;
329 	}
330 
331 	/*
332 	 * Limit the prefix length, if necessary, to ensure that the resulting
333 	 * inner tuple will fit on a page.
334 	 */
335 	commonLen = Min(commonLen, SPGIST_MAX_PREFIX_LENGTH);
336 
337 	/* Set node prefix to be that string, if it's not empty */
338 	if (commonLen == 0)
339 	{
340 		out->hasPrefix = false;
341 	}
342 	else
343 	{
344 		out->hasPrefix = true;
345 		out->prefixDatum = formTextDatum(VARDATA_ANY(text0), commonLen);
346 	}
347 
348 	/* Extract the node label (first non-common byte) from each value */
349 	nodes = (spgNodePtr *) palloc(sizeof(spgNodePtr) * in->nTuples);
350 
351 	for (i = 0; i < in->nTuples; i++)
352 	{
353 		text	   *texti = DatumGetTextPP(in->datums[i]);
354 
355 		if (commonLen < VARSIZE_ANY_EXHDR(texti))
356 			nodes[i].c = *(unsigned char *) (VARDATA_ANY(texti) + commonLen);
357 		else
358 			nodes[i].c = -1;	/* use -1 if string is all common */
359 		nodes[i].i = i;
360 		nodes[i].d = in->datums[i];
361 	}
362 
363 	/*
364 	 * Sort by label values so that we can group the values into nodes.  This
365 	 * also ensures that the nodes are ordered by label value, allowing the
366 	 * use of binary search in searchChar.
367 	 */
368 	qsort(nodes, in->nTuples, sizeof(*nodes), cmpNodePtr);
369 
370 	/* And emit results */
371 	out->nNodes = 0;
372 	out->nodeLabels = (Datum *) palloc(sizeof(Datum) * in->nTuples);
373 	out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples);
374 	out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples);
375 
376 	for (i = 0; i < in->nTuples; i++)
377 	{
378 		text	   *texti = DatumGetTextPP(nodes[i].d);
379 		Datum		leafD;
380 
381 		if (i == 0 || nodes[i].c != nodes[i - 1].c)
382 		{
383 			out->nodeLabels[out->nNodes] = Int16GetDatum(nodes[i].c);
384 			out->nNodes++;
385 		}
386 
387 		if (commonLen < VARSIZE_ANY_EXHDR(texti))
388 			leafD = formTextDatum(VARDATA_ANY(texti) + commonLen + 1,
389 								  VARSIZE_ANY_EXHDR(texti) - commonLen - 1);
390 		else
391 			leafD = formTextDatum(NULL, 0);
392 
393 		out->leafTupleDatums[nodes[i].i] = leafD;
394 		out->mapTuplesToNodes[nodes[i].i] = out->nNodes - 1;
395 	}
396 
397 	PG_RETURN_VOID();
398 }
399 
400 Datum
spg_text_inner_consistent(PG_FUNCTION_ARGS)401 spg_text_inner_consistent(PG_FUNCTION_ARGS)
402 {
403 	spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
404 	spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
405 	bool		collate_is_c = lc_collate_is_c(PG_GET_COLLATION());
406 	text	   *reconstructedValue;
407 	text	   *reconstrText;
408 	int			maxReconstrLen;
409 	text	   *prefixText = NULL;
410 	int			prefixSize = 0;
411 	int			i;
412 
413 	/*
414 	 * Reconstruct values represented at this tuple, including parent data,
415 	 * prefix of this tuple if any, and the node label if it's non-dummy.
416 	 * in->level should be the length of the previously reconstructed value,
417 	 * and the number of bytes added here is prefixSize or prefixSize + 1.
418 	 *
419 	 * Note: we assume that in->reconstructedValue isn't toasted and doesn't
420 	 * have a short varlena header.  This is okay because it must have been
421 	 * created by a previous invocation of this routine, and we always emit
422 	 * long-format reconstructed values.
423 	 */
424 	reconstructedValue = (text *) DatumGetPointer(in->reconstructedValue);
425 	Assert(reconstructedValue == NULL ? in->level == 0 :
426 		   VARSIZE_ANY_EXHDR(reconstructedValue) == in->level);
427 
428 	maxReconstrLen = in->level + 1;
429 	if (in->hasPrefix)
430 	{
431 		prefixText = DatumGetTextPP(in->prefixDatum);
432 		prefixSize = VARSIZE_ANY_EXHDR(prefixText);
433 		maxReconstrLen += prefixSize;
434 	}
435 
436 	reconstrText = palloc(VARHDRSZ + maxReconstrLen);
437 	SET_VARSIZE(reconstrText, VARHDRSZ + maxReconstrLen);
438 
439 	if (in->level)
440 		memcpy(VARDATA(reconstrText),
441 			   VARDATA(reconstructedValue),
442 			   in->level);
443 	if (prefixSize)
444 		memcpy(((char *) VARDATA(reconstrText)) + in->level,
445 			   VARDATA_ANY(prefixText),
446 			   prefixSize);
447 	/* last byte of reconstrText will be filled in below */
448 
449 	/*
450 	 * Scan the child nodes.  For each one, complete the reconstructed value
451 	 * and see if it's consistent with the query.  If so, emit an entry into
452 	 * the output arrays.
453 	 */
454 	out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
455 	out->levelAdds = (int *) palloc(sizeof(int) * in->nNodes);
456 	out->reconstructedValues = (Datum *) palloc(sizeof(Datum) * in->nNodes);
457 	out->nNodes = 0;
458 
459 	for (i = 0; i < in->nNodes; i++)
460 	{
461 		int16		nodeChar = DatumGetInt16(in->nodeLabels[i]);
462 		int			thisLen;
463 		bool		res = true;
464 		int			j;
465 
466 		/* If nodeChar is a dummy value, don't include it in data */
467 		if (nodeChar <= 0)
468 			thisLen = maxReconstrLen - 1;
469 		else
470 		{
471 			((unsigned char *) VARDATA(reconstrText))[maxReconstrLen - 1] = nodeChar;
472 			thisLen = maxReconstrLen;
473 		}
474 
475 		for (j = 0; j < in->nkeys; j++)
476 		{
477 			StrategyNumber strategy = in->scankeys[j].sk_strategy;
478 			text	   *inText;
479 			int			inSize;
480 			int			r;
481 
482 			/*
483 			 * If it's a collation-aware operator, but the collation is C, we
484 			 * can treat it as non-collation-aware.  With non-C collation we
485 			 * need to traverse whole tree :-( so there's no point in making
486 			 * any check here.  (Note also that our reconstructed value may
487 			 * well end with a partial multibyte character, so that applying
488 			 * any encoding-sensitive test to it would be risky anyhow.)
489 			 */
490 			if (strategy > 10)
491 			{
492 				if (collate_is_c)
493 					strategy -= 10;
494 				else
495 					continue;
496 			}
497 
498 			inText = DatumGetTextPP(in->scankeys[j].sk_argument);
499 			inSize = VARSIZE_ANY_EXHDR(inText);
500 
501 			r = memcmp(VARDATA(reconstrText), VARDATA_ANY(inText),
502 					   Min(inSize, thisLen));
503 
504 			switch (strategy)
505 			{
506 				case BTLessStrategyNumber:
507 				case BTLessEqualStrategyNumber:
508 					if (r > 0)
509 						res = false;
510 					break;
511 				case BTEqualStrategyNumber:
512 					if (r != 0 || inSize < thisLen)
513 						res = false;
514 					break;
515 				case BTGreaterEqualStrategyNumber:
516 				case BTGreaterStrategyNumber:
517 					if (r < 0)
518 						res = false;
519 					break;
520 				default:
521 					elog(ERROR, "unrecognized strategy number: %d",
522 						 in->scankeys[j].sk_strategy);
523 					break;
524 			}
525 
526 			if (!res)
527 				break;			/* no need to consider remaining conditions */
528 		}
529 
530 		if (res)
531 		{
532 			out->nodeNumbers[out->nNodes] = i;
533 			out->levelAdds[out->nNodes] = thisLen - in->level;
534 			SET_VARSIZE(reconstrText, VARHDRSZ + thisLen);
535 			out->reconstructedValues[out->nNodes] =
536 				datumCopy(PointerGetDatum(reconstrText), false, -1);
537 			out->nNodes++;
538 		}
539 	}
540 
541 	PG_RETURN_VOID();
542 }
543 
544 Datum
spg_text_leaf_consistent(PG_FUNCTION_ARGS)545 spg_text_leaf_consistent(PG_FUNCTION_ARGS)
546 {
547 	spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
548 	spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
549 	int			level = in->level;
550 	text	   *leafValue,
551 			   *reconstrValue = NULL;
552 	char	   *fullValue;
553 	int			fullLen;
554 	bool		res;
555 	int			j;
556 
557 	/* all tests are exact */
558 	out->recheck = false;
559 
560 	leafValue = DatumGetTextPP(in->leafDatum);
561 
562 	if (DatumGetPointer(in->reconstructedValue))
563 		reconstrValue = DatumGetTextP(in->reconstructedValue);
564 
565 	Assert(reconstrValue == NULL ? level == 0 :
566 		   VARSIZE_ANY_EXHDR(reconstrValue) == level);
567 
568 	/* Reconstruct the full string represented by this leaf tuple */
569 	fullLen = level + VARSIZE_ANY_EXHDR(leafValue);
570 	if (VARSIZE_ANY_EXHDR(leafValue) == 0 && level > 0)
571 	{
572 		fullValue = VARDATA(reconstrValue);
573 		out->leafValue = PointerGetDatum(reconstrValue);
574 	}
575 	else
576 	{
577 		text	   *fullText = palloc(VARHDRSZ + fullLen);
578 
579 		SET_VARSIZE(fullText, VARHDRSZ + fullLen);
580 		fullValue = VARDATA(fullText);
581 		if (level)
582 			memcpy(fullValue, VARDATA(reconstrValue), level);
583 		if (VARSIZE_ANY_EXHDR(leafValue) > 0)
584 			memcpy(fullValue + level, VARDATA_ANY(leafValue),
585 				   VARSIZE_ANY_EXHDR(leafValue));
586 		out->leafValue = PointerGetDatum(fullText);
587 	}
588 
589 	/* Perform the required comparison(s) */
590 	res = true;
591 	for (j = 0; j < in->nkeys; j++)
592 	{
593 		StrategyNumber strategy = in->scankeys[j].sk_strategy;
594 		text	   *query = DatumGetTextPP(in->scankeys[j].sk_argument);
595 		int			queryLen = VARSIZE_ANY_EXHDR(query);
596 		int			r;
597 
598 		if (strategy > 10)
599 		{
600 			/* Collation-aware comparison */
601 			strategy -= 10;
602 
603 			/* If asserts enabled, verify encoding of reconstructed string */
604 			Assert(pg_verifymbstr(fullValue, fullLen, false));
605 
606 			r = varstr_cmp(fullValue, fullLen,
607 						   VARDATA_ANY(query), queryLen,
608 						   PG_GET_COLLATION());
609 		}
610 		else
611 		{
612 			/* Non-collation-aware comparison */
613 			r = memcmp(fullValue, VARDATA_ANY(query), Min(queryLen, fullLen));
614 
615 			if (r == 0)
616 			{
617 				if (queryLen > fullLen)
618 					r = -1;
619 				else if (queryLen < fullLen)
620 					r = 1;
621 			}
622 		}
623 
624 		switch (strategy)
625 		{
626 			case BTLessStrategyNumber:
627 				res = (r < 0);
628 				break;
629 			case BTLessEqualStrategyNumber:
630 				res = (r <= 0);
631 				break;
632 			case BTEqualStrategyNumber:
633 				res = (r == 0);
634 				break;
635 			case BTGreaterEqualStrategyNumber:
636 				res = (r >= 0);
637 				break;
638 			case BTGreaterStrategyNumber:
639 				res = (r > 0);
640 				break;
641 			default:
642 				elog(ERROR, "unrecognized strategy number: %d",
643 					 in->scankeys[j].sk_strategy);
644 				res = false;
645 				break;
646 		}
647 
648 		if (!res)
649 			break;				/* no need to consider remaining conditions */
650 	}
651 
652 	PG_RETURN_BOOL(res);
653 }
654