1 /*
2  * jdhuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains Huffman entropy decoding routines.
12  *
13  * Much of the complexity here has to do with supporting input suspension.
14  * If the data source module demands suspension, we want to be able to back
15  * up to the start of the current MCU.  To do this, we copy state variables
16  * into local working storage, and update them back to the permanent
17  * storage only upon successful completion of an MCU.
18  *
19  * NOTE: All referenced figures are from
20  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
21  */
22 
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
27 #include "jpegcomp.h"
28 #include "jstdhuff.c"
29 
30 
31 /*
32  * Expanded entropy decoder object for Huffman decoding.
33  *
34  * The savable_state subrecord contains fields that change within an MCU,
35  * but must not be updated permanently until we complete the MCU.
36  */
37 
38 typedef struct {
39   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
40 } savable_state;
41 
42 /* This macro is to work around compilers with missing or broken
43  * structure assignment.  You'll need to fix this code if you have
44  * such a compiler and you change MAX_COMPS_IN_SCAN.
45  */
46 
47 #ifndef NO_STRUCT_ASSIGN
48 #define ASSIGN_STATE(dest, src)  ((dest) = (src))
49 #else
50 #if MAX_COMPS_IN_SCAN == 4
51 #define ASSIGN_STATE(dest, src) \
52   ((dest).last_dc_val[0] = (src).last_dc_val[0], \
53    (dest).last_dc_val[1] = (src).last_dc_val[1], \
54    (dest).last_dc_val[2] = (src).last_dc_val[2], \
55    (dest).last_dc_val[3] = (src).last_dc_val[3])
56 #endif
57 #endif
58 
59 
60 typedef struct {
61   struct jpeg_entropy_decoder pub; /* public fields */
62 
63   /* These fields are loaded into local variables at start of each MCU.
64    * In case of suspension, we exit WITHOUT updating them.
65    */
66   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
67   savable_state saved;          /* Other state at start of MCU */
68 
69   /* These fields are NOT loaded into local working state. */
70   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
71 
72   /* Pointers to derived tables (these workspaces have image lifespan) */
73   d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
74   d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
75 
76   /* Precalculated info set up by start_pass for use in decode_mcu: */
77 
78   /* Pointers to derived tables to be used for each block within an MCU */
79   d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
80   d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
81   /* Whether we care about the DC and AC coefficient values for each block */
82   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
83   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
84 } huff_entropy_decoder;
85 
86 typedef huff_entropy_decoder *huff_entropy_ptr;
87 
88 
89 /*
90  * Initialize for a Huffman-compressed scan.
91  */
92 
93 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)94 start_pass_huff_decoder(j_decompress_ptr cinfo)
95 {
96   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
97   int ci, blkn, dctbl, actbl;
98   d_derived_tbl **pdtbl;
99   jpeg_component_info *compptr;
100 
101   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
102    * This ought to be an error condition, but we make it a warning because
103    * there are some baseline files out there with all zeroes in these bytes.
104    */
105   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
106       cinfo->Ah != 0 || cinfo->Al != 0)
107     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
108 
109   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
110     compptr = cinfo->cur_comp_info[ci];
111     dctbl = compptr->dc_tbl_no;
112     actbl = compptr->ac_tbl_no;
113     /* Compute derived values for Huffman tables */
114     /* We may do this more than once for a table, but it's not expensive */
115     pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
116     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
117     pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
118     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
119     /* Initialize DC predictions to 0 */
120     entropy->saved.last_dc_val[ci] = 0;
121   }
122 
123   /* Precalculate decoding info for each block in an MCU of this scan */
124   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
125     ci = cinfo->MCU_membership[blkn];
126     compptr = cinfo->cur_comp_info[ci];
127     /* Precalculate which table to use for each block */
128     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
129     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
130     /* Decide whether we really care about the coefficient values */
131     if (compptr->component_needed) {
132       entropy->dc_needed[blkn] = TRUE;
133       /* we don't need the ACs if producing a 1/8th-size image */
134       entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
135     } else {
136       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
137     }
138   }
139 
140   /* Initialize bitread state variables */
141   entropy->bitstate.bits_left = 0;
142   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
143   entropy->pub.insufficient_data = FALSE;
144 
145   /* Initialize restart counter */
146   entropy->restarts_to_go = cinfo->restart_interval;
147 }
148 
149 
150 /*
151  * Compute the derived values for a Huffman table.
152  * This routine also performs some validation checks on the table.
153  *
154  * Note this is also used by jdphuff.c.
155  */
156 
157 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)158 jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
159                         d_derived_tbl **pdtbl)
160 {
161   JHUFF_TBL *htbl;
162   d_derived_tbl *dtbl;
163   int p, i, l, si, numsymbols;
164   int lookbits, ctr;
165   char huffsize[257];
166   unsigned int huffcode[257];
167   unsigned int code;
168 
169   /* Note that huffsize[] and huffcode[] are filled in code-length order,
170    * paralleling the order of the symbols themselves in htbl->huffval[].
171    */
172 
173   /* Find the input Huffman table */
174   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
175     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
176   htbl =
177     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
178   if (htbl == NULL)
179     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
180 
181   /* Allocate a workspace if we haven't already done so. */
182   if (*pdtbl == NULL)
183     *pdtbl = (d_derived_tbl *)
184       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
185                                   sizeof(d_derived_tbl));
186   dtbl = *pdtbl;
187   dtbl->pub = htbl;             /* fill in back link */
188 
189   /* Figure C.1: make table of Huffman code length for each symbol */
190 
191   p = 0;
192   for (l = 1; l <= 16; l++) {
193     i = (int)htbl->bits[l];
194     if (i < 0 || p + i > 256)   /* protect against table overrun */
195       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
196     while (i--)
197       huffsize[p++] = (char)l;
198   }
199   huffsize[p] = 0;
200   numsymbols = p;
201 
202   /* Figure C.2: generate the codes themselves */
203   /* We also validate that the counts represent a legal Huffman code tree. */
204 
205   code = 0;
206   si = huffsize[0];
207   p = 0;
208   while (huffsize[p]) {
209     while (((int)huffsize[p]) == si) {
210       huffcode[p++] = code;
211       code++;
212     }
213     /* code is now 1 more than the last code used for codelength si; but
214      * it must still fit in si bits, since no code is allowed to be all ones.
215      */
216     if (((JLONG)code) >= (((JLONG)1) << si))
217       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
218     code <<= 1;
219     si++;
220   }
221 
222   /* Figure F.15: generate decoding tables for bit-sequential decoding */
223 
224   p = 0;
225   for (l = 1; l <= 16; l++) {
226     if (htbl->bits[l]) {
227       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
228        * minus the minimum code of length l
229        */
230       dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
231       p += htbl->bits[l];
232       dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
233     } else {
234       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
235     }
236   }
237   dtbl->valoffset[17] = 0;
238   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
239 
240   /* Compute lookahead tables to speed up decoding.
241    * First we set all the table entries to 0, indicating "too long";
242    * then we iterate through the Huffman codes that are short enough and
243    * fill in all the entries that correspond to bit sequences starting
244    * with that code.
245    */
246 
247   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
248     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
249 
250   p = 0;
251   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
252     for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
253       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
254       /* Generate left-justified code followed by all possible bit sequences */
255       lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
256       for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
257         dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
258         lookbits++;
259       }
260     }
261   }
262 
263   /* Validate symbols as being reasonable.
264    * For AC tables, we make no check, but accept all byte values 0..255.
265    * For DC tables, we require the symbols to be in range 0..15.
266    * (Tighter bounds could be applied depending on the data depth and mode,
267    * but this is sufficient to ensure safe decoding.)
268    */
269   if (isDC) {
270     for (i = 0; i < numsymbols; i++) {
271       int sym = htbl->huffval[i];
272       if (sym < 0 || sym > 15)
273         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
274     }
275   }
276 }
277 
278 
279 /*
280  * Out-of-line code for bit fetching (shared with jdphuff.c).
281  * See jdhuff.h for info about usage.
282  * Note: current values of get_buffer and bits_left are passed as parameters,
283  * but are returned in the corresponding fields of the state struct.
284  *
285  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
286  * of get_buffer to be used.  (On machines with wider words, an even larger
287  * buffer could be used.)  However, on some machines 32-bit shifts are
288  * quite slow and take time proportional to the number of places shifted.
289  * (This is true with most PC compilers, for instance.)  In this case it may
290  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
291  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
292  */
293 
294 #ifdef SLOW_SHIFT_32
295 #define MIN_GET_BITS  15        /* minimum allowable value */
296 #else
297 #define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
298 #endif
299 
300 
301 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)302 jpeg_fill_bit_buffer(bitread_working_state *state,
303                      register bit_buf_type get_buffer, register int bits_left,
304                      int nbits)
305 /* Load up the bit buffer to a depth of at least nbits */
306 {
307   /* Copy heavily used state fields into locals (hopefully registers) */
308   register const JOCTET *next_input_byte = state->next_input_byte;
309   register size_t bytes_in_buffer = state->bytes_in_buffer;
310   j_decompress_ptr cinfo = state->cinfo;
311 
312   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
313   /* (It is assumed that no request will be for more than that many bits.) */
314   /* We fail to do so only if we hit a marker or are forced to suspend. */
315 
316   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
317     while (bits_left < MIN_GET_BITS) {
318       register int c;
319 
320       /* Attempt to read a byte */
321       if (bytes_in_buffer == 0) {
322         if (!(*cinfo->src->fill_input_buffer) (cinfo))
323           return FALSE;
324         next_input_byte = cinfo->src->next_input_byte;
325         bytes_in_buffer = cinfo->src->bytes_in_buffer;
326       }
327       bytes_in_buffer--;
328       c = GETJOCTET(*next_input_byte++);
329 
330       /* If it's 0xFF, check and discard stuffed zero byte */
331       if (c == 0xFF) {
332         /* Loop here to discard any padding FF's on terminating marker,
333          * so that we can save a valid unread_marker value.  NOTE: we will
334          * accept multiple FF's followed by a 0 as meaning a single FF data
335          * byte.  This data pattern is not valid according to the standard.
336          */
337         do {
338           if (bytes_in_buffer == 0) {
339             if (!(*cinfo->src->fill_input_buffer) (cinfo))
340               return FALSE;
341             next_input_byte = cinfo->src->next_input_byte;
342             bytes_in_buffer = cinfo->src->bytes_in_buffer;
343           }
344           bytes_in_buffer--;
345           c = GETJOCTET(*next_input_byte++);
346         } while (c == 0xFF);
347 
348         if (c == 0) {
349           /* Found FF/00, which represents an FF data byte */
350           c = 0xFF;
351         } else {
352           /* Oops, it's actually a marker indicating end of compressed data.
353            * Save the marker code for later use.
354            * Fine point: it might appear that we should save the marker into
355            * bitread working state, not straight into permanent state.  But
356            * once we have hit a marker, we cannot need to suspend within the
357            * current MCU, because we will read no more bytes from the data
358            * source.  So it is OK to update permanent state right away.
359            */
360           cinfo->unread_marker = c;
361           /* See if we need to insert some fake zero bits. */
362           goto no_more_bytes;
363         }
364       }
365 
366       /* OK, load c into get_buffer */
367       get_buffer = (get_buffer << 8) | c;
368       bits_left += 8;
369     } /* end while */
370   } else {
371 no_more_bytes:
372     /* We get here if we've read the marker that terminates the compressed
373      * data segment.  There should be enough bits in the buffer register
374      * to satisfy the request; if so, no problem.
375      */
376     if (nbits > bits_left) {
377       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
378        * the data stream, so that we can produce some kind of image.
379        * We use a nonvolatile flag to ensure that only one warning message
380        * appears per data segment.
381        */
382       if (!cinfo->entropy->insufficient_data) {
383         WARNMS(cinfo, JWRN_HIT_MARKER);
384         cinfo->entropy->insufficient_data = TRUE;
385       }
386       /* Fill the buffer with zero bits */
387       get_buffer <<= MIN_GET_BITS - bits_left;
388       bits_left = MIN_GET_BITS;
389     }
390   }
391 
392   /* Unload the local registers */
393   state->next_input_byte = next_input_byte;
394   state->bytes_in_buffer = bytes_in_buffer;
395   state->get_buffer = get_buffer;
396   state->bits_left = bits_left;
397 
398   return TRUE;
399 }
400 
401 
402 /* Macro version of the above, which performs much better but does not
403    handle markers.  We have to hand off any blocks with markers to the
404    slower routines. */
405 
406 #define GET_BYTE { \
407   register int c0, c1; \
408   c0 = GETJOCTET(*buffer++); \
409   c1 = GETJOCTET(*buffer); \
410   /* Pre-execute most common case */ \
411   get_buffer = (get_buffer << 8) | c0; \
412   bits_left += 8; \
413   if (c0 == 0xFF) { \
414     /* Pre-execute case of FF/00, which represents an FF data byte */ \
415     buffer++; \
416     if (c1 != 0) { \
417       /* Oops, it's actually a marker indicating end of compressed data. */ \
418       cinfo->unread_marker = c1; \
419       /* Back out pre-execution and fill the buffer with zero bits */ \
420       buffer -= 2; \
421       get_buffer &= ~0xFF; \
422     } \
423   } \
424 }
425 
426 #if SIZEOF_SIZE_T == 8 || defined(_WIN64)
427 
428 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
429 #define FILL_BIT_BUFFER_FAST \
430   if (bits_left <= 16) { \
431     GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
432   }
433 
434 #else
435 
436 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
437 #define FILL_BIT_BUFFER_FAST \
438   if (bits_left <= 16) { \
439     GET_BYTE GET_BYTE \
440   }
441 
442 #endif
443 
444 
445 /*
446  * Out-of-line code for Huffman code decoding.
447  * See jdhuff.h for info about usage.
448  */
449 
450 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)451 jpeg_huff_decode(bitread_working_state *state,
452                  register bit_buf_type get_buffer, register int bits_left,
453                  d_derived_tbl *htbl, int min_bits)
454 {
455   register int l = min_bits;
456   register JLONG code;
457 
458   /* HUFF_DECODE has determined that the code is at least min_bits */
459   /* bits long, so fetch that many bits in one swoop. */
460 
461   CHECK_BIT_BUFFER(*state, l, return -1);
462   code = GET_BITS(l);
463 
464   /* Collect the rest of the Huffman code one bit at a time. */
465   /* This is per Figure F.16. */
466 
467   while (code > htbl->maxcode[l]) {
468     code <<= 1;
469     CHECK_BIT_BUFFER(*state, 1, return -1);
470     code |= GET_BITS(1);
471     l++;
472   }
473 
474   /* Unload the local registers */
475   state->get_buffer = get_buffer;
476   state->bits_left = bits_left;
477 
478   /* With garbage input we may reach the sentinel value l = 17. */
479 
480   if (l > 16) {
481     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
482     return 0;                   /* fake a zero as the safest result */
483   }
484 
485   return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
486 }
487 
488 
489 /*
490  * Figure F.12: extend sign bit.
491  * On some machines, a shift and add will be faster than a table lookup.
492  */
493 
494 #define AVOID_TABLES
495 #ifdef AVOID_TABLES
496 
497 #define NEG_1  ((unsigned int)-1)
498 #define HUFF_EXTEND(x, s) \
499   ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
500 
501 #else
502 
503 #define HUFF_EXTEND(x, s) \
504   ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
505 
506 static const int extend_test[16] = {   /* entry n is 2**(n-1) */
507   0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
508   0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
509 };
510 
511 static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
512   0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
513   ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
514   ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
515   ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
516 };
517 
518 #endif /* AVOID_TABLES */
519 
520 
521 /*
522  * Check for a restart marker & resynchronize decoder.
523  * Returns FALSE if must suspend.
524  */
525 
526 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)527 process_restart(j_decompress_ptr cinfo)
528 {
529   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
530   int ci;
531 
532   /* Throw away any unused bits remaining in bit buffer; */
533   /* include any full bytes in next_marker's count of discarded bytes */
534   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
535   entropy->bitstate.bits_left = 0;
536 
537   /* Advance past the RSTn marker */
538   if (!(*cinfo->marker->read_restart_marker) (cinfo))
539     return FALSE;
540 
541   /* Re-initialize DC predictions to 0 */
542   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
543     entropy->saved.last_dc_val[ci] = 0;
544 
545   /* Reset restart counter */
546   entropy->restarts_to_go = cinfo->restart_interval;
547 
548   /* Reset out-of-data flag, unless read_restart_marker left us smack up
549    * against a marker.  In that case we will end up treating the next data
550    * segment as empty, and we can avoid producing bogus output pixels by
551    * leaving the flag set.
552    */
553   if (cinfo->unread_marker == 0)
554     entropy->pub.insufficient_data = FALSE;
555 
556   return TRUE;
557 }
558 
559 
560 LOCAL(boolean)
decode_mcu_slow(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)561 decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
562 {
563   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
564   BITREAD_STATE_VARS;
565   int blkn;
566   savable_state state;
567   /* Outer loop handles each block in the MCU */
568 
569   /* Load up working state */
570   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
571   ASSIGN_STATE(state, entropy->saved);
572 
573   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
574     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
575     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
576     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
577     register int s, k, r;
578 
579     /* Decode a single block's worth of coefficients */
580 
581     /* Section F.2.2.1: decode the DC coefficient difference */
582     HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
583     if (s) {
584       CHECK_BIT_BUFFER(br_state, s, return FALSE);
585       r = GET_BITS(s);
586       s = HUFF_EXTEND(r, s);
587     }
588 
589     if (entropy->dc_needed[blkn]) {
590       /* Convert DC difference to actual value, update last_dc_val */
591       int ci = cinfo->MCU_membership[blkn];
592       /* This is really just
593        *   s += state.last_dc_val[ci];
594        * It is written this way in order to shut up UBSan.
595        */
596       s = (int)((unsigned int)s + (unsigned int)state.last_dc_val[ci]);
597       state.last_dc_val[ci] = s;
598       if (block) {
599         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
600         (*block)[0] = (JCOEF)s;
601       }
602     }
603 
604     if (entropy->ac_needed[blkn] && block) {
605 
606       /* Section F.2.2.2: decode the AC coefficients */
607       /* Since zeroes are skipped, output area must be cleared beforehand */
608       for (k = 1; k < DCTSIZE2; k++) {
609         HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
610 
611         r = s >> 4;
612         s &= 15;
613 
614         if (s) {
615           k += r;
616           CHECK_BIT_BUFFER(br_state, s, return FALSE);
617           r = GET_BITS(s);
618           s = HUFF_EXTEND(r, s);
619           /* Output coefficient in natural (dezigzagged) order.
620            * Note: the extra entries in jpeg_natural_order[] will save us
621            * if k >= DCTSIZE2, which could happen if the data is corrupted.
622            */
623           (*block)[jpeg_natural_order[k]] = (JCOEF)s;
624         } else {
625           if (r != 15)
626             break;
627           k += 15;
628         }
629       }
630 
631     } else {
632 
633       /* Section F.2.2.2: decode the AC coefficients */
634       /* In this path we just discard the values */
635       for (k = 1; k < DCTSIZE2; k++) {
636         HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
637 
638         r = s >> 4;
639         s &= 15;
640 
641         if (s) {
642           k += r;
643           CHECK_BIT_BUFFER(br_state, s, return FALSE);
644           DROP_BITS(s);
645         } else {
646           if (r != 15)
647             break;
648           k += 15;
649         }
650       }
651     }
652   }
653 
654   /* Completed MCU, so update state */
655   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
656   ASSIGN_STATE(entropy->saved, state);
657   return TRUE;
658 }
659 
660 
661 LOCAL(boolean)
decode_mcu_fast(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)662 decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
663 {
664   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
665   BITREAD_STATE_VARS;
666   JOCTET *buffer;
667   int blkn;
668   savable_state state;
669   /* Outer loop handles each block in the MCU */
670 
671   /* Load up working state */
672   BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
673   buffer = (JOCTET *)br_state.next_input_byte;
674   ASSIGN_STATE(state, entropy->saved);
675 
676   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
677     JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
678     d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
679     d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
680     register int s, k, r, l;
681 
682     HUFF_DECODE_FAST(s, l, dctbl);
683     if (s) {
684       FILL_BIT_BUFFER_FAST
685       r = GET_BITS(s);
686       s = HUFF_EXTEND(r, s);
687     }
688 
689     if (entropy->dc_needed[blkn]) {
690       int ci = cinfo->MCU_membership[blkn];
691       s = (int)((unsigned int)s + (unsigned int)state.last_dc_val[ci]);
692       state.last_dc_val[ci] = s;
693       if (block)
694         (*block)[0] = (JCOEF)s;
695     }
696 
697     if (entropy->ac_needed[blkn] && block) {
698 
699       for (k = 1; k < DCTSIZE2; k++) {
700         HUFF_DECODE_FAST(s, l, actbl);
701         r = s >> 4;
702         s &= 15;
703 
704         if (s) {
705           k += r;
706           FILL_BIT_BUFFER_FAST
707           r = GET_BITS(s);
708           s = HUFF_EXTEND(r, s);
709           (*block)[jpeg_natural_order[k]] = (JCOEF)s;
710         } else {
711           if (r != 15) break;
712           k += 15;
713         }
714       }
715 
716     } else {
717 
718       for (k = 1; k < DCTSIZE2; k++) {
719         HUFF_DECODE_FAST(s, l, actbl);
720         r = s >> 4;
721         s &= 15;
722 
723         if (s) {
724           k += r;
725           FILL_BIT_BUFFER_FAST
726           DROP_BITS(s);
727         } else {
728           if (r != 15) break;
729           k += 15;
730         }
731       }
732     }
733   }
734 
735   if (cinfo->unread_marker != 0) {
736     cinfo->unread_marker = 0;
737     return FALSE;
738   }
739 
740   br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
741   br_state.next_input_byte = buffer;
742   BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
743   ASSIGN_STATE(entropy->saved, state);
744   return TRUE;
745 }
746 
747 
748 /*
749  * Decode and return one MCU's worth of Huffman-compressed coefficients.
750  * The coefficients are reordered from zigzag order into natural array order,
751  * but are not dequantized.
752  *
753  * The i'th block of the MCU is stored into the block pointed to by
754  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
755  * (Wholesale zeroing is usually a little faster than retail...)
756  *
757  * Returns FALSE if data source requested suspension.  In that case no
758  * changes have been made to permanent state.  (Exception: some output
759  * coefficients may already have been assigned.  This is harmless for
760  * this module, since we'll just re-assign them on the next call.)
761  */
762 
763 #define BUFSIZE  (DCTSIZE2 * 8)
764 
765 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)766 decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
767 {
768   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
769   int usefast = 1;
770 
771   /* Process restart marker if needed; may have to suspend */
772   if (cinfo->restart_interval) {
773     if (entropy->restarts_to_go == 0)
774       if (!process_restart(cinfo))
775         return FALSE;
776     usefast = 0;
777   }
778 
779   if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
780       cinfo->unread_marker != 0)
781     usefast = 0;
782 
783   /* If we've run out of data, just leave the MCU set to zeroes.
784    * This way, we return uniform gray for the remainder of the segment.
785    */
786   if (!entropy->pub.insufficient_data) {
787 
788     if (usefast) {
789       if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
790     } else {
791 use_slow:
792       if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
793     }
794 
795   }
796 
797   /* Account for restart interval (no-op if not using restarts) */
798   entropy->restarts_to_go--;
799 
800   return TRUE;
801 }
802 
803 
804 /*
805  * Module initialization routine for Huffman entropy decoding.
806  */
807 
808 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)809 jinit_huff_decoder(j_decompress_ptr cinfo)
810 {
811   huff_entropy_ptr entropy;
812   int i;
813 
814   /* Motion JPEG frames typically do not include the Huffman tables if they
815      are the default tables.  Thus, if the tables are not set by the time
816      the Huffman decoder is initialized (usually within the body of
817      jpeg_start_decompress()), we set them to default values. */
818   std_huff_tables((j_common_ptr)cinfo);
819 
820   entropy = (huff_entropy_ptr)
821     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
822                                 sizeof(huff_entropy_decoder));
823   cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
824   entropy->pub.start_pass = start_pass_huff_decoder;
825   entropy->pub.decode_mcu = decode_mcu;
826 
827   /* Mark tables unallocated */
828   for (i = 0; i < NUM_HUFF_TBLS; i++) {
829     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
830   }
831 }
832