1 /* Rax -- A radix tree implementation.
2  *
3  * Version 1.2 -- 7 February 2019
4  *
5  * Copyright (c) 2017-2019, Salvatore Sanfilippo <antirez at gmail dot com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  *   * Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  *   * Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *   * Neither the name of Redis nor the names of its contributors may be used
17  *     to endorse or promote products derived from this software without
18  *     specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <stdlib.h>
34 #include <string.h>
35 #include <assert.h>
36 #include <stdio.h>
37 #include <errno.h>
38 #include <math.h>
39 #include "rax.h"
40 
41 #ifndef RAX_MALLOC_INCLUDE
42 #define RAX_MALLOC_INCLUDE "rax_malloc.h"
43 #endif
44 
45 #include RAX_MALLOC_INCLUDE
46 
47 /* This is a special pointer that is guaranteed to never have the same value
48  * of a radix tree node. It's used in order to report "not found" error without
49  * requiring the function to have multiple return values. */
50 void *raxNotFound = (void*)"rax-not-found-pointer";
51 
52 /* -------------------------------- Debugging ------------------------------ */
53 
54 void raxDebugShowNode(const char *msg, raxNode *n);
55 
56 /* Turn debugging messages on/off by compiling with RAX_DEBUG_MSG macro on.
57  * When RAX_DEBUG_MSG is defined by default Rax operations will emit a lot
58  * of debugging info to the standard output, however you can still turn
59  * debugging on/off in order to enable it only when you suspect there is an
60  * operation causing a bug using the function raxSetDebugMsg(). */
61 #ifdef RAX_DEBUG_MSG
62 #define debugf(...)                                                            \
63     if (raxDebugMsg) {                                                         \
64         printf("%s:%s:%d:\t", __FILE__, __func__, __LINE__);                   \
65         printf(__VA_ARGS__);                                                   \
66         fflush(stdout);                                                        \
67     }
68 
69 #define debugnode(msg,n) raxDebugShowNode(msg,n)
70 #else
71 #define debugf(...)
72 #define debugnode(msg,n)
73 #endif
74 
75 /* By default log debug info if RAX_DEBUG_MSG is defined. */
76 static int raxDebugMsg = 1;
77 
78 /* When debug messages are enabled, turn them on/off dynamically. By
79  * default they are enabled. Set the state to 0 to disable, and 1 to
80  * re-enable. */
raxSetDebugMsg(int onoff)81 void raxSetDebugMsg(int onoff) {
82     raxDebugMsg = onoff;
83 }
84 
85 /* ------------------------- raxStack functions --------------------------
86  * The raxStack is a simple stack of pointers that is capable of switching
87  * from using a stack-allocated array to dynamic heap once a given number of
88  * items are reached. It is used in order to retain the list of parent nodes
89  * while walking the radix tree in order to implement certain operations that
90  * need to navigate the tree upward.
91  * ------------------------------------------------------------------------- */
92 
93 /* Initialize the stack. */
raxStackInit(raxStack * ts)94 static inline void raxStackInit(raxStack *ts) {
95     ts->stack = ts->static_items;
96     ts->items = 0;
97     ts->maxitems = RAX_STACK_STATIC_ITEMS;
98     ts->oom = 0;
99 }
100 
101 /* Push an item into the stack, returns 1 on success, 0 on out of memory. */
raxStackPush(raxStack * ts,void * ptr)102 static inline int raxStackPush(raxStack *ts, void *ptr) {
103     if (ts->items == ts->maxitems) {
104         if (ts->stack == ts->static_items) {
105             ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2);
106             if (ts->stack == NULL) {
107                 ts->stack = ts->static_items;
108                 ts->oom = 1;
109                 errno = ENOMEM;
110                 return 0;
111             }
112             memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems);
113         } else {
114             void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2);
115             if (newalloc == NULL) {
116                 ts->oom = 1;
117                 errno = ENOMEM;
118                 return 0;
119             }
120             ts->stack = newalloc;
121         }
122         ts->maxitems *= 2;
123     }
124     ts->stack[ts->items] = ptr;
125     ts->items++;
126     return 1;
127 }
128 
129 /* Pop an item from the stack, the function returns NULL if there are no
130  * items to pop. */
raxStackPop(raxStack * ts)131 static inline void *raxStackPop(raxStack *ts) {
132     if (ts->items == 0) return NULL;
133     ts->items--;
134     return ts->stack[ts->items];
135 }
136 
137 /* Return the stack item at the top of the stack without actually consuming
138  * it. */
raxStackPeek(raxStack * ts)139 static inline void *raxStackPeek(raxStack *ts) {
140     if (ts->items == 0) return NULL;
141     return ts->stack[ts->items-1];
142 }
143 
144 /* Free the stack in case we used heap allocation. */
raxStackFree(raxStack * ts)145 static inline void raxStackFree(raxStack *ts) {
146     if (ts->stack != ts->static_items) rax_free(ts->stack);
147 }
148 
149 /* ----------------------------------------------------------------------------
150  * Radix tree implementation
151  * --------------------------------------------------------------------------*/
152 
153 /* Return the padding needed in the characters section of a node having size
154  * 'nodesize'. The padding is needed to store the child pointers to aligned
155  * addresses. Note that we add 4 to the node size because the node has a four
156  * bytes header. */
157 #define raxPadding(nodesize) ((sizeof(void*)-((nodesize+4) % sizeof(void*))) & (sizeof(void*)-1))
158 
159 /* Return the pointer to the last child pointer in a node. For the compressed
160  * nodes this is the only child pointer. */
161 #define raxNodeLastChildPtr(n) ((raxNode**) ( \
162     ((char*)(n)) + \
163     raxNodeCurrentLength(n) - \
164     sizeof(raxNode*) - \
165     (((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \
166 ))
167 
168 /* Return the pointer to the first child pointer. */
169 #define raxNodeFirstChildPtr(n) ((raxNode**) ( \
170     (n)->data + \
171     (n)->size + \
172     raxPadding((n)->size)))
173 
174 /* Return the current total size of the node. Note that the second line
175  * computes the padding after the string of characters, needed in order to
176  * save pointers to aligned addresses. */
177 #define raxNodeCurrentLength(n) ( \
178     sizeof(raxNode)+(n)->size+ \
179     raxPadding((n)->size)+ \
180     ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \
181     (((n)->iskey && !(n)->isnull)*sizeof(void*)) \
182 )
183 
184 /* Allocate a new non compressed node with the specified number of children.
185  * If datafield is true, the allocation is made large enough to hold the
186  * associated data pointer.
187  * Returns the new node pointer. On out of memory NULL is returned. */
raxNewNode(size_t children,int datafield)188 raxNode *raxNewNode(size_t children, int datafield) {
189     size_t nodesize = sizeof(raxNode)+children+raxPadding(children)+
190                       sizeof(raxNode*)*children;
191     if (datafield) nodesize += sizeof(void*);
192     raxNode *node = rax_malloc(nodesize);
193     if (node == NULL) return NULL;
194     node->iskey = 0;
195     node->isnull = 0;
196     node->iscompr = 0;
197     node->size = children;
198     return node;
199 }
200 
201 /* Allocate a new rax and return its pointer. On out of memory the function
202  * returns NULL. */
raxNew(void)203 rax *raxNew(void) {
204     rax *rax = rax_malloc(sizeof(*rax));
205     if (rax == NULL) return NULL;
206     rax->numele = 0;
207     rax->numnodes = 1;
208     rax->head = raxNewNode(0,0);
209     if (rax->head == NULL) {
210         rax_free(rax);
211         return NULL;
212     } else {
213         return rax;
214     }
215 }
216 
217 /* realloc the node to make room for auxiliary data in order
218  * to store an item in that node. On out of memory NULL is returned. */
raxReallocForData(raxNode * n,void * data)219 raxNode *raxReallocForData(raxNode *n, void *data) {
220     if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */
221     size_t curlen = raxNodeCurrentLength(n);
222     return rax_realloc(n,curlen+sizeof(void*));
223 }
224 
225 /* Set the node auxiliary data to the specified pointer. */
raxSetData(raxNode * n,void * data)226 void raxSetData(raxNode *n, void *data) {
227     n->iskey = 1;
228     if (data != NULL) {
229         n->isnull = 0;
230         void **ndata = (void**)
231             ((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
232         memcpy(ndata,&data,sizeof(data));
233     } else {
234         n->isnull = 1;
235     }
236 }
237 
238 /* Get the node auxiliary data. */
raxGetData(raxNode * n)239 void *raxGetData(raxNode *n) {
240     if (n->isnull) return NULL;
241     void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
242     void *data;
243     memcpy(&data,ndata,sizeof(data));
244     return data;
245 }
246 
247 /* Add a new child to the node 'n' representing the character 'c' and return
248  * its new pointer, as well as the child pointer by reference. Additionally
249  * '***parentlink' is populated with the raxNode pointer-to-pointer of where
250  * the new child was stored, which is useful for the caller to replace the
251  * child pointer if it gets reallocated.
252  *
253  * On success the new parent node pointer is returned (it may change because
254  * of the realloc, so the caller should discard 'n' and use the new value).
255  * On out of memory NULL is returned, and the old node is still valid. */
raxAddChild(raxNode * n,unsigned char c,raxNode ** childptr,raxNode *** parentlink)256 raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {
257     assert(n->iscompr == 0);
258 
259     size_t curlen = raxNodeCurrentLength(n);
260     n->size++;
261     size_t newlen = raxNodeCurrentLength(n);
262     n->size--; /* For now restore the original size. We'll update it only on
263                   success at the end. */
264 
265     /* Alloc the new child we will link to 'n'. */
266     raxNode *child = raxNewNode(0,0);
267     if (child == NULL) return NULL;
268 
269     /* Make space in the original node. */
270     raxNode *newn = rax_realloc(n,newlen);
271     if (newn == NULL) {
272         rax_free(child);
273         return NULL;
274     }
275     n = newn;
276 
277     /* After the reallocation, we have up to 8/16 (depending on the system
278      * pointer size, and the required node padding) bytes at the end, that is,
279      * the additional char in the 'data' section, plus one pointer to the new
280      * child, plus the padding needed in order to store addresses into aligned
281      * locations.
282      *
283      * So if we start with the following node, having "abde" edges.
284      *
285      * Note:
286      * - We assume 4 bytes pointer for simplicity.
287      * - Each space below corresponds to one byte
288      *
289      * [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|
290      *
291      * After the reallocation we need: 1 byte for the new edge character
292      * plus 4 bytes for a new child pointer (assuming 32 bit machine).
293      * However after adding 1 byte to the edge char, the header + the edge
294      * characters are no longer aligned, so we also need 3 bytes of padding.
295      * In total the reallocation will add 1+4+3 bytes = 8 bytes:
296      *
297      * (Blank bytes are represented by ".")
298      *
299      * [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|[....][....]
300      *
301      * Let's find where to insert the new child in order to make sure
302      * it is inserted in-place lexicographically. Assuming we are adding
303      * a child "c" in our case pos will be = 2 after the end of the following
304      * loop. */
305     int pos;
306     for (pos = 0; pos < n->size; pos++) {
307         if (n->data[pos] > c) break;
308     }
309 
310     /* Now, if present, move auxiliary data pointer at the end
311      * so that we can mess with the other data without overwriting it.
312      * We will obtain something like that:
313      *
314      * [HDR*][abde][Aptr][Bptr][Dptr][Eptr][....][....]|AUXP|
315      */
316     unsigned char *src, *dst;
317     if (n->iskey && !n->isnull) {
318         src = ((unsigned char*)n+curlen-sizeof(void*));
319         dst = ((unsigned char*)n+newlen-sizeof(void*));
320         memmove(dst,src,sizeof(void*));
321     }
322 
323     /* Compute the "shift", that is, how many bytes we need to move the
324      * pointers section forward because of the addition of the new child
325      * byte in the string section. Note that if we had no padding, that
326      * would be always "1", since we are adding a single byte in the string
327      * section of the node (where now there is "abde" basically).
328      *
329      * However we have padding, so it could be zero, or up to 8.
330      *
331      * Another way to think at the shift is, how many bytes we need to
332      * move child pointers forward *other than* the obvious sizeof(void*)
333      * needed for the additional pointer itself. */
334     size_t shift = newlen - curlen - sizeof(void*);
335 
336     /* We said we are adding a node with edge 'c'. The insertion
337      * point is between 'b' and 'd', so the 'pos' variable value is
338      * the index of the first child pointer that we need to move forward
339      * to make space for our new pointer.
340      *
341      * To start, move all the child pointers after the insertion point
342      * of shift+sizeof(pointer) bytes on the right, to obtain:
343      *
344      * [HDR*][abde][Aptr][Bptr][....][....][Dptr][Eptr]|AUXP|
345      */
346     src = n->data+n->size+
347           raxPadding(n->size)+
348           sizeof(raxNode*)*pos;
349     memmove(src+shift+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));
350 
351     /* Move the pointers to the left of the insertion position as well. Often
352      * we don't need to do anything if there was already some padding to use. In
353      * that case the final destination of the pointers will be the same, however
354      * in our example there was no pre-existing padding, so we added one byte
355      * plus there bytes of padding. After the next memmove() things will look
356      * like that:
357      *
358      * [HDR*][abde][....][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
359      */
360     if (shift) {
361         src = (unsigned char*) raxNodeFirstChildPtr(n);
362         memmove(src+shift,src,sizeof(raxNode*)*pos);
363     }
364 
365     /* Now make the space for the additional char in the data section,
366      * but also move the pointers before the insertion point to the right
367      * by shift bytes, in order to obtain the following:
368      *
369      * [HDR*][ab.d][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
370      */
371     src = n->data+pos;
372     memmove(src+1,src,n->size-pos);
373 
374     /* We can now set the character and its child node pointer to get:
375      *
376      * [HDR*][abcd][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
377      * [HDR*][abcd][e...][Aptr][Bptr][Cptr][Dptr][Eptr]|AUXP|
378      */
379     n->data[pos] = c;
380     n->size++;
381     src = (unsigned char*) raxNodeFirstChildPtr(n);
382     raxNode **childfield = (raxNode**)(src+sizeof(raxNode*)*pos);
383     memcpy(childfield,&child,sizeof(child));
384     *childptr = child;
385     *parentlink = childfield;
386     return n;
387 }
388 
389 /* Turn the node 'n', that must be a node without any children, into a
390  * compressed node representing a set of nodes linked one after the other
391  * and having exactly one child each. The node can be a key or not: this
392  * property and the associated value if any will be preserved.
393  *
394  * The function also returns a child node, since the last node of the
395  * compressed chain cannot be part of the chain: it has zero children while
396  * we can only compress inner nodes with exactly one child each. */
raxCompressNode(raxNode * n,unsigned char * s,size_t len,raxNode ** child)397 raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) {
398     assert(n->size == 0 && n->iscompr == 0);
399     void *data = NULL; /* Initialized only to avoid warnings. */
400     size_t newsize;
401 
402     debugf("Compress node: %.*s\n", (int)len,s);
403 
404     /* Allocate the child to link to this node. */
405     *child = raxNewNode(0,0);
406     if (*child == NULL) return NULL;
407 
408     /* Make space in the parent node. */
409     newsize = sizeof(raxNode)+len+raxPadding(len)+sizeof(raxNode*);
410     if (n->iskey) {
411         data = raxGetData(n); /* To restore it later. */
412         if (!n->isnull) newsize += sizeof(void*);
413     }
414     raxNode *newn = rax_realloc(n,newsize);
415     if (newn == NULL) {
416         rax_free(*child);
417         return NULL;
418     }
419     n = newn;
420 
421     n->iscompr = 1;
422     n->size = len;
423     memcpy(n->data,s,len);
424     if (n->iskey) raxSetData(n,data);
425     raxNode **childfield = raxNodeLastChildPtr(n);
426     memcpy(childfield,child,sizeof(*child));
427     return n;
428 }
429 
430 /* Low level function that walks the tree looking for the string
431  * 's' of 'len' bytes. The function returns the number of characters
432  * of the key that was possible to process: if the returned integer
433  * is the same as 'len', then it means that the node corresponding to the
434  * string was found (however it may not be a key in case the node->iskey is
435  * zero or if simply we stopped in the middle of a compressed node, so that
436  * 'splitpos' is non zero).
437  *
438  * Otherwise if the returned integer is not the same as 'len', there was an
439  * early stop during the tree walk because of a character mismatch.
440  *
441  * The node where the search ended (because the full string was processed
442  * or because there was an early stop) is returned by reference as
443  * '*stopnode' if the passed pointer is not NULL. This node link in the
444  * parent's node is returned as '*plink' if not NULL. Finally, if the
445  * search stopped in a compressed node, '*splitpos' returns the index
446  * inside the compressed node where the search ended. This is useful to
447  * know where to split the node for insertion.
448  *
449  * Note that when we stop in the middle of a compressed node with
450  * a perfect match, this function will return a length equal to the
451  * 'len' argument (all the key matched), and will return a *splitpos which is
452  * always positive (that will represent the index of the character immediately
453  * *after* the last match in the current compressed node).
454  *
455  * When instead we stop at a compressed node and *splitpos is zero, it
456  * means that the current node represents the key (that is, none of the
457  * compressed node characters are needed to represent the key, just all
458  * its parents nodes). */
raxLowWalk(rax * rax,unsigned char * s,size_t len,raxNode ** stopnode,raxNode *** plink,int * splitpos,raxStack * ts)459 static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) {
460     raxNode *h = rax->head;
461     raxNode **parentlink = &rax->head;
462 
463     size_t i = 0; /* Position in the string. */
464     size_t j = 0; /* Position in the node children (or bytes if compressed).*/
465     while(h->size && i < len) {
466         debugnode("Lookup current node",h);
467         unsigned char *v = h->data;
468 
469         if (h->iscompr) {
470             for (j = 0; j < h->size && i < len; j++, i++) {
471                 if (v[j] != s[i]) break;
472             }
473             if (j != h->size) break;
474         } else {
475             /* Even when h->size is large, linear scan provides good
476              * performances compared to other approaches that are in theory
477              * more sounding, like performing a binary search. */
478             for (j = 0; j < h->size; j++) {
479                 if (v[j] == s[i]) break;
480             }
481             if (j == h->size) break;
482             i++;
483         }
484 
485         if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */
486         raxNode **children = raxNodeFirstChildPtr(h);
487         if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */
488         memcpy(&h,children+j,sizeof(h));
489         parentlink = children+j;
490         j = 0; /* If the new node is non compressed and we do not
491                   iterate again (since i == len) set the split
492                   position to 0 to signal this node represents
493                   the searched key. */
494     }
495     debugnode("Lookup stop node is",h);
496     if (stopnode) *stopnode = h;
497     if (plink) *plink = parentlink;
498     if (splitpos && h->iscompr) *splitpos = j;
499     return i;
500 }
501 
502 /* Insert the element 's' of size 'len', setting as auxiliary data
503  * the pointer 'data'. If the element is already present, the associated
504  * data is updated (only if 'overwrite' is set to 1), and 0 is returned,
505  * otherwise the element is inserted and 1 is returned. On out of memory the
506  * function returns 0 as well but sets errno to ENOMEM, otherwise errno will
507  * be set to 0.
508  */
raxGenericInsert(rax * rax,unsigned char * s,size_t len,void * data,void ** old,int overwrite)509 int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) {
510     size_t i;
511     int j = 0; /* Split position. If raxLowWalk() stops in a compressed
512                   node, the index 'j' represents the char we stopped within the
513                   compressed node, that is, the position where to split the
514                   node for insertion. */
515     raxNode *h, **parentlink;
516 
517     debugf("### Insert %.*s with value %p\n", (int)len, s, data);
518     i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL);
519 
520     /* If i == len we walked following the whole string. If we are not
521      * in the middle of a compressed node, the string is either already
522      * inserted or this middle node is currently not a key, but can represent
523      * our key. We have just to reallocate the node and make space for the
524      * data pointer. */
525     if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) {
526         debugf("### Insert: node representing key exists\n");
527         /* Make space for the value pointer if needed. */
528         if (!h->iskey || (h->isnull && overwrite)) {
529             h = raxReallocForData(h,data);
530             if (h) memcpy(parentlink,&h,sizeof(h));
531         }
532         if (h == NULL) {
533             errno = ENOMEM;
534             return 0;
535         }
536 
537         /* Update the existing key if there is already one. */
538         if (h->iskey) {
539             if (old) *old = raxGetData(h);
540             if (overwrite) raxSetData(h,data);
541             errno = 0;
542             return 0; /* Element already exists. */
543         }
544 
545         /* Otherwise set the node as a key. Note that raxSetData()
546          * will set h->iskey. */
547         raxSetData(h,data);
548         rax->numele++;
549         return 1; /* Element inserted. */
550     }
551 
552     /* If the node we stopped at is a compressed node, we need to
553      * split it before to continue.
554      *
555      * Splitting a compressed node have a few possible cases.
556      * Imagine that the node 'h' we are currently at is a compressed
557      * node containing the string "ANNIBALE" (it means that it represents
558      * nodes A -> N -> N -> I -> B -> A -> L -> E with the only child
559      * pointer of this node pointing at the 'E' node, because remember that
560      * we have characters at the edges of the graph, not inside the nodes
561      * themselves.
562      *
563      * In order to show a real case imagine our node to also point to
564      * another compressed node, that finally points at the node without
565      * children, representing 'O':
566      *
567      *     "ANNIBALE" -> "SCO" -> []
568      *
569      * When inserting we may face the following cases. Note that all the cases
570      * require the insertion of a non compressed node with exactly two
571      * children, except for the last case which just requires splitting a
572      * compressed node.
573      *
574      * 1) Inserting "ANNIENTARE"
575      *
576      *               |B| -> "ALE" -> "SCO" -> []
577      *     "ANNI" -> |-|
578      *               |E| -> (... continue algo ...) "NTARE" -> []
579      *
580      * 2) Inserting "ANNIBALI"
581      *
582      *                  |E| -> "SCO" -> []
583      *     "ANNIBAL" -> |-|
584      *                  |I| -> (... continue algo ...) []
585      *
586      * 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node)
587      *
588      *            |N| -> "NIBALE" -> "SCO" -> []
589      *     |A| -> |-|
590      *            |G| -> (... continue algo ...) |O| -> []
591      *
592      * 4) Inserting "CIAO"
593      *
594      *     |A| -> "NNIBALE" -> "SCO" -> []
595      *     |-|
596      *     |C| -> (... continue algo ...) "IAO" -> []
597      *
598      * 5) Inserting "ANNI"
599      *
600      *     "ANNI" -> "BALE" -> "SCO" -> []
601      *
602      * The final algorithm for insertion covering all the above cases is as
603      * follows.
604      *
605      * ============================= ALGO 1 =============================
606      *
607      * For the above cases 1 to 4, that is, all cases where we stopped in
608      * the middle of a compressed node for a character mismatch, do:
609      *
610      * Let $SPLITPOS be the zero-based index at which, in the
611      * compressed node array of characters, we found the mismatching
612      * character. For example if the node contains "ANNIBALE" and we add
613      * "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the
614      * mismatching character is found.
615      *
616      * 1. Save the current compressed node $NEXT pointer (the pointer to the
617      *    child element, that is always present in compressed nodes).
618      *
619      * 2. Create "split node" having as child the non common letter
620      *    at the compressed node. The other non common letter (at the key)
621      *    will be added later as we continue the normal insertion algorithm
622      *    at step "6".
623      *
624      * 3a. IF $SPLITPOS == 0:
625      *     Replace the old node with the split node, by copying the auxiliary
626      *     data if any. Fix parent's reference. Free old node eventually
627      *     (we still need its data for the next steps of the algorithm).
628      *
629      * 3b. IF $SPLITPOS != 0:
630      *     Trim the compressed node (reallocating it as well) in order to
631      *     contain $splitpos characters. Change child pointer in order to link
632      *     to the split node. If new compressed node len is just 1, set
633      *     iscompr to 0 (layout is the same). Fix parent's reference.
634      *
635      * 4a. IF the postfix len (the length of the remaining string of the
636      *     original compressed node after the split character) is non zero,
637      *     create a "postfix node". If the postfix node has just one character
638      *     set iscompr to 0, otherwise iscompr to 1. Set the postfix node
639      *     child pointer to $NEXT.
640      *
641      * 4b. IF the postfix len is zero, just use $NEXT as postfix pointer.
642      *
643      * 5. Set child[0] of split node to postfix node.
644      *
645      * 6. Set the split node as the current node, set current index at child[1]
646      *    and continue insertion algorithm as usually.
647      *
648      * ============================= ALGO 2 =============================
649      *
650      * For case 5, that is, if we stopped in the middle of a compressed
651      * node but no mismatch was found, do:
652      *
653      * Let $SPLITPOS be the zero-based index at which, in the
654      * compressed node array of characters, we stopped iterating because
655      * there were no more keys character to match. So in the example of
656      * the node "ANNIBALE", adding the string "ANNI", the $SPLITPOS is 4.
657      *
658      * 1. Save the current compressed node $NEXT pointer (the pointer to the
659      *    child element, that is always present in compressed nodes).
660      *
661      * 2. Create a "postfix node" containing all the characters from $SPLITPOS
662      *    to the end. Use $NEXT as the postfix node child pointer.
663      *    If the postfix node length is 1, set iscompr to 0.
664      *    Set the node as a key with the associated value of the new
665      *    inserted key.
666      *
667      * 3. Trim the current node to contain the first $SPLITPOS characters.
668      *    As usually if the new node length is just 1, set iscompr to 0.
669      *    Take the iskey / associated value as it was in the original node.
670      *    Fix the parent's reference.
671      *
672      * 4. Set the postfix node as the only child pointer of the trimmed
673      *    node created at step 1.
674      */
675 
676     /* ------------------------- ALGORITHM 1 --------------------------- */
677     if (h->iscompr && i != len) {
678         debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n",
679             h->size, h->data, (void*)h);
680         debugf("Still to insert: %.*s\n", (int)(len-i), s+i);
681         debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]);
682         debugf("Other (key) letter is '%c'\n", s[i]);
683 
684         /* 1: Save next pointer. */
685         raxNode **childfield = raxNodeLastChildPtr(h);
686         raxNode *next;
687         memcpy(&next,childfield,sizeof(next));
688         debugf("Next is %p\n", (void*)next);
689         debugf("iskey %d\n", h->iskey);
690         if (h->iskey) {
691             debugf("key value is %p\n", raxGetData(h));
692         }
693 
694         /* Set the length of the additional nodes we will need. */
695         size_t trimmedlen = j;
696         size_t postfixlen = h->size - j - 1;
697         int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
698         size_t nodesize;
699 
700         /* 2: Create the split node. Also allocate the other nodes we'll need
701          *    ASAP, so that it will be simpler to handle OOM. */
702         raxNode *splitnode = raxNewNode(1, split_node_is_key);
703         raxNode *trimmed = NULL;
704         raxNode *postfix = NULL;
705 
706         if (trimmedlen) {
707             nodesize = sizeof(raxNode)+trimmedlen+raxPadding(trimmedlen)+
708                        sizeof(raxNode*);
709             if (h->iskey && !h->isnull) nodesize += sizeof(void*);
710             trimmed = rax_malloc(nodesize);
711         }
712 
713         if (postfixlen) {
714             nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
715                        sizeof(raxNode*);
716             postfix = rax_malloc(nodesize);
717         }
718 
719         /* OOM? Abort now that the tree is untouched. */
720         if (splitnode == NULL ||
721             (trimmedlen && trimmed == NULL) ||
722             (postfixlen && postfix == NULL))
723         {
724             rax_free(splitnode);
725             rax_free(trimmed);
726             rax_free(postfix);
727             errno = ENOMEM;
728             return 0;
729         }
730         splitnode->data[0] = h->data[j];
731 
732         if (j == 0) {
733             /* 3a: Replace the old node with the split node. */
734             if (h->iskey) {
735                 void *ndata = raxGetData(h);
736                 raxSetData(splitnode,ndata);
737             }
738             memcpy(parentlink,&splitnode,sizeof(splitnode));
739         } else {
740             /* 3b: Trim the compressed node. */
741             trimmed->size = j;
742             memcpy(trimmed->data,h->data,j);
743             trimmed->iscompr = j > 1 ? 1 : 0;
744             trimmed->iskey = h->iskey;
745             trimmed->isnull = h->isnull;
746             if (h->iskey && !h->isnull) {
747                 void *ndata = raxGetData(h);
748                 raxSetData(trimmed,ndata);
749             }
750             raxNode **cp = raxNodeLastChildPtr(trimmed);
751             memcpy(cp,&splitnode,sizeof(splitnode));
752             memcpy(parentlink,&trimmed,sizeof(trimmed));
753             parentlink = cp; /* Set parentlink to splitnode parent. */
754             rax->numnodes++;
755         }
756 
757         /* 4: Create the postfix node: what remains of the original
758          * compressed node after the split. */
759         if (postfixlen) {
760             /* 4a: create a postfix node. */
761             postfix->iskey = 0;
762             postfix->isnull = 0;
763             postfix->size = postfixlen;
764             postfix->iscompr = postfixlen > 1;
765             memcpy(postfix->data,h->data+j+1,postfixlen);
766             raxNode **cp = raxNodeLastChildPtr(postfix);
767             memcpy(cp,&next,sizeof(next));
768             rax->numnodes++;
769         } else {
770             /* 4b: just use next as postfix node. */
771             postfix = next;
772         }
773 
774         /* 5: Set splitnode first child as the postfix node. */
775         raxNode **splitchild = raxNodeLastChildPtr(splitnode);
776         memcpy(splitchild,&postfix,sizeof(postfix));
777 
778         /* 6. Continue insertion: this will cause the splitnode to
779          * get a new child (the non common character at the currently
780          * inserted key). */
781         rax_free(h);
782         h = splitnode;
783     } else if (h->iscompr && i == len) {
784     /* ------------------------- ALGORITHM 2 --------------------------- */
785         debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n",
786             h->size, h->data, (void*)h, j);
787 
788         /* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */
789         size_t postfixlen = h->size - j;
790         size_t nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
791                           sizeof(raxNode*);
792         if (data != NULL) nodesize += sizeof(void*);
793         raxNode *postfix = rax_malloc(nodesize);
794 
795         nodesize = sizeof(raxNode)+j+raxPadding(j)+sizeof(raxNode*);
796         if (h->iskey && !h->isnull) nodesize += sizeof(void*);
797         raxNode *trimmed = rax_malloc(nodesize);
798 
799         if (postfix == NULL || trimmed == NULL) {
800             rax_free(postfix);
801             rax_free(trimmed);
802             errno = ENOMEM;
803             return 0;
804         }
805 
806         /* 1: Save next pointer. */
807         raxNode **childfield = raxNodeLastChildPtr(h);
808         raxNode *next;
809         memcpy(&next,childfield,sizeof(next));
810 
811         /* 2: Create the postfix node. */
812         postfix->size = postfixlen;
813         postfix->iscompr = postfixlen > 1;
814         postfix->iskey = 1;
815         postfix->isnull = 0;
816         memcpy(postfix->data,h->data+j,postfixlen);
817         raxSetData(postfix,data);
818         raxNode **cp = raxNodeLastChildPtr(postfix);
819         memcpy(cp,&next,sizeof(next));
820         rax->numnodes++;
821 
822         /* 3: Trim the compressed node. */
823         trimmed->size = j;
824         trimmed->iscompr = j > 1;
825         trimmed->iskey = 0;
826         trimmed->isnull = 0;
827         memcpy(trimmed->data,h->data,j);
828         memcpy(parentlink,&trimmed,sizeof(trimmed));
829         if (h->iskey) {
830             void *aux = raxGetData(h);
831             raxSetData(trimmed,aux);
832         }
833 
834         /* Fix the trimmed node child pointer to point to
835          * the postfix node. */
836         cp = raxNodeLastChildPtr(trimmed);
837         memcpy(cp,&postfix,sizeof(postfix));
838 
839         /* Finish! We don't need to continue with the insertion
840          * algorithm for ALGO 2. The key is already inserted. */
841         rax->numele++;
842         rax_free(h);
843         return 1; /* Key inserted. */
844     }
845 
846     /* We walked the radix tree as far as we could, but still there are left
847      * chars in our string. We need to insert the missing nodes. */
848     while(i < len) {
849         raxNode *child;
850 
851         /* If this node is going to have a single child, and there
852          * are other characters, so that that would result in a chain
853          * of single-childed nodes, turn it into a compressed node. */
854         if (h->size == 0 && len-i > 1) {
855             debugf("Inserting compressed node\n");
856             size_t comprsize = len-i;
857             if (comprsize > RAX_NODE_MAX_SIZE)
858                 comprsize = RAX_NODE_MAX_SIZE;
859             raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
860             if (newh == NULL) goto oom;
861             h = newh;
862             memcpy(parentlink,&h,sizeof(h));
863             parentlink = raxNodeLastChildPtr(h);
864             i += comprsize;
865         } else {
866             debugf("Inserting normal node\n");
867             raxNode **new_parentlink;
868             raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
869             if (newh == NULL) goto oom;
870             h = newh;
871             memcpy(parentlink,&h,sizeof(h));
872             parentlink = new_parentlink;
873             i++;
874         }
875         rax->numnodes++;
876         h = child;
877     }
878     raxNode *newh = raxReallocForData(h,data);
879     if (newh == NULL) goto oom;
880     h = newh;
881     if (!h->iskey) rax->numele++;
882     raxSetData(h,data);
883     memcpy(parentlink,&h,sizeof(h));
884     return 1; /* Element inserted. */
885 
886 oom:
887     /* This code path handles out of memory after part of the sub-tree was
888      * already modified. Set the node as a key, and then remove it. However we
889      * do that only if the node is a terminal node, otherwise if the OOM
890      * happened reallocating a node in the middle, we don't need to free
891      * anything. */
892     if (h->size == 0) {
893         h->isnull = 1;
894         h->iskey = 1;
895         rax->numele++; /* Compensate the next remove. */
896         assert(raxRemove(rax,s,i,NULL) != 0);
897     }
898     errno = ENOMEM;
899     return 0;
900 }
901 
902 /* Overwriting insert. Just a wrapper for raxGenericInsert() that will
903  * update the element if there is already one for the same key. */
raxInsert(rax * rax,unsigned char * s,size_t len,void * data,void ** old)904 int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
905     return raxGenericInsert(rax,s,len,data,old,1);
906 }
907 
908 /* Non overwriting insert function: this if an element with the same key
909  * exists, the value is not updated and the function returns 0.
910  * This is a just a wrapper for raxGenericInsert(). */
raxTryInsert(rax * rax,unsigned char * s,size_t len,void * data,void ** old)911 int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
912     return raxGenericInsert(rax,s,len,data,old,0);
913 }
914 
915 /* Find a key in the rax, returns raxNotFound special void pointer value
916  * if the item was not found, otherwise the value associated with the
917  * item is returned. */
raxFind(rax * rax,unsigned char * s,size_t len)918 void *raxFind(rax *rax, unsigned char *s, size_t len) {
919     raxNode *h;
920 
921     debugf("### Lookup: %.*s\n", (int)len, s);
922     int splitpos = 0;
923     size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL);
924     if (i != len || (h->iscompr && splitpos != 0) || !h->iskey)
925         return raxNotFound;
926     return raxGetData(h);
927 }
928 
929 /* Return the memory address where the 'parent' node stores the specified
930  * 'child' pointer, so that the caller can update the pointer with another
931  * one if needed. The function assumes it will find a match, otherwise the
932  * operation is an undefined behavior (it will continue scanning the
933  * memory without any bound checking). */
raxFindParentLink(raxNode * parent,raxNode * child)934 raxNode **raxFindParentLink(raxNode *parent, raxNode *child) {
935     raxNode **cp = raxNodeFirstChildPtr(parent);
936     raxNode *c;
937     while(1) {
938         memcpy(&c,cp,sizeof(c));
939         if (c == child) break;
940         cp++;
941     }
942     return cp;
943 }
944 
945 /* Low level child removal from node. The new node pointer (after the child
946  * removal) is returned. Note that this function does not fix the pointer
947  * of the parent node in its parent, so this task is up to the caller.
948  * The function never fails for out of memory. */
raxRemoveChild(raxNode * parent,raxNode * child)949 raxNode *raxRemoveChild(raxNode *parent, raxNode *child) {
950     debugnode("raxRemoveChild before", parent);
951     /* If parent is a compressed node (having a single child, as for definition
952      * of the data structure), the removal of the child consists into turning
953      * it into a normal node without children. */
954     if (parent->iscompr) {
955         void *data = NULL;
956         if (parent->iskey) data = raxGetData(parent);
957         parent->isnull = 0;
958         parent->iscompr = 0;
959         parent->size = 0;
960         if (parent->iskey) raxSetData(parent,data);
961         debugnode("raxRemoveChild after", parent);
962         return parent;
963     }
964 
965     /* Otherwise we need to scan for the child pointer and memmove()
966      * accordingly.
967      *
968      * 1. To start we seek the first element in both the children
969      *    pointers and edge bytes in the node. */
970     raxNode **cp = raxNodeFirstChildPtr(parent);
971     raxNode **c = cp;
972     unsigned char *e = parent->data;
973 
974     /* 2. Search the child pointer to remove inside the array of children
975      *    pointers. */
976     while(1) {
977         raxNode *aux;
978         memcpy(&aux,c,sizeof(aux));
979         if (aux == child) break;
980         c++;
981         e++;
982     }
983 
984     /* 3. Remove the edge and the pointer by memmoving the remaining children
985      *    pointer and edge bytes one position before. */
986     int taillen = parent->size - (e - parent->data) - 1;
987     debugf("raxRemoveChild tail len: %d\n", taillen);
988     memmove(e,e+1,taillen);
989 
990     /* Compute the shift, that is the amount of bytes we should move our
991      * child pointers to the left, since the removal of one edge character
992      * and the corresponding padding change, may change the layout.
993      * We just check if in the old version of the node there was at the
994      * end just a single byte and all padding: in that case removing one char
995      * will remove a whole sizeof(void*) word. */
996     size_t shift = ((parent->size+4) % sizeof(void*)) == 1 ? sizeof(void*) : 0;
997 
998     /* Move the children pointers before the deletion point. */
999     if (shift)
1000         memmove(((char*)cp)-shift,cp,(parent->size-taillen-1)*sizeof(raxNode**));
1001 
1002     /* Move the remaining "tail" pointers at the right position as well. */
1003     size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0;
1004     memmove(((char*)c)-shift,c+1,taillen*sizeof(raxNode**)+valuelen);
1005 
1006     /* 4. Update size. */
1007     parent->size--;
1008 
1009     /* realloc the node according to the theoretical memory usage, to free
1010      * data if we are over-allocating right now. */
1011     raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent));
1012     if (newnode) {
1013         debugnode("raxRemoveChild after", newnode);
1014     }
1015     /* Note: if rax_realloc() fails we just return the old address, which
1016      * is valid. */
1017     return newnode ? newnode : parent;
1018 }
1019 
1020 /* Remove the specified item. Returns 1 if the item was found and
1021  * deleted, 0 otherwise. */
raxRemove(rax * rax,unsigned char * s,size_t len,void ** old)1022 int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) {
1023     raxNode *h;
1024     raxStack ts;
1025 
1026     debugf("### Delete: %.*s\n", (int)len, s);
1027     raxStackInit(&ts);
1028     int splitpos = 0;
1029     size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts);
1030     if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) {
1031         raxStackFree(&ts);
1032         return 0;
1033     }
1034     if (old) *old = raxGetData(h);
1035     h->iskey = 0;
1036     rax->numele--;
1037 
1038     /* If this node has no children, the deletion needs to reclaim the
1039      * no longer used nodes. This is an iterative process that needs to
1040      * walk the three upward, deleting all the nodes with just one child
1041      * that are not keys, until the head of the rax is reached or the first
1042      * node with more than one child is found. */
1043 
1044     int trycompress = 0; /* Will be set to 1 if we should try to optimize the
1045                             tree resulting from the deletion. */
1046 
1047     if (h->size == 0) {
1048         debugf("Key deleted in node without children. Cleanup needed.\n");
1049         raxNode *child = NULL;
1050         while(h != rax->head) {
1051             child = h;
1052             debugf("Freeing child %p [%.*s] key:%d\n", (void*)child,
1053                 (int)child->size, (char*)child->data, child->iskey);
1054             rax_free(child);
1055             rax->numnodes--;
1056             h = raxStackPop(&ts);
1057              /* If this node has more then one child, or actually holds
1058               * a key, stop here. */
1059             if (h->iskey || (!h->iscompr && h->size != 1)) break;
1060         }
1061         if (child) {
1062             debugf("Unlinking child %p from parent %p\n",
1063                 (void*)child, (void*)h);
1064             raxNode *new = raxRemoveChild(h,child);
1065             if (new != h) {
1066                 raxNode *parent = raxStackPeek(&ts);
1067                 raxNode **parentlink;
1068                 if (parent == NULL) {
1069                     parentlink = &rax->head;
1070                 } else {
1071                     parentlink = raxFindParentLink(parent,h);
1072                 }
1073                 memcpy(parentlink,&new,sizeof(new));
1074             }
1075 
1076             /* If after the removal the node has just a single child
1077              * and is not a key, we need to try to compress it. */
1078             if (new->size == 1 && new->iskey == 0) {
1079                 trycompress = 1;
1080                 h = new;
1081             }
1082         }
1083     } else if (h->size == 1) {
1084         /* If the node had just one child, after the removal of the key
1085          * further compression with adjacent nodes is potentially possible. */
1086         trycompress = 1;
1087     }
1088 
1089     /* Don't try node compression if our nodes pointers stack is not
1090      * complete because of OOM while executing raxLowWalk() */
1091     if (trycompress && ts.oom) trycompress = 0;
1092 
1093     /* Recompression: if trycompress is true, 'h' points to a radix tree node
1094      * that changed in a way that could allow to compress nodes in this
1095      * sub-branch. Compressed nodes represent chains of nodes that are not
1096      * keys and have a single child, so there are two deletion events that
1097      * may alter the tree so that further compression is needed:
1098      *
1099      * 1) A node with a single child was a key and now no longer is a key.
1100      * 2) A node with two children now has just one child.
1101      *
1102      * We try to navigate upward till there are other nodes that can be
1103      * compressed, when we reach the upper node which is not a key and has
1104      * a single child, we scan the chain of children to collect the
1105      * compressible part of the tree, and replace the current node with the
1106      * new one, fixing the child pointer to reference the first non
1107      * compressible node.
1108      *
1109      * Example of case "1". A tree stores the keys "FOO" = 1 and
1110      * "FOOBAR" = 2:
1111      *
1112      *
1113      * "FOO" -> "BAR" -> [] (2)
1114      *           (1)
1115      *
1116      * After the removal of "FOO" the tree can be compressed as:
1117      *
1118      * "FOOBAR" -> [] (2)
1119      *
1120      *
1121      * Example of case "2". A tree stores the keys "FOOBAR" = 1 and
1122      * "FOOTER" = 2:
1123      *
1124      *          |B| -> "AR" -> [] (1)
1125      * "FOO" -> |-|
1126      *          |T| -> "ER" -> [] (2)
1127      *
1128      * After the removal of "FOOTER" the resulting tree is:
1129      *
1130      * "FOO" -> |B| -> "AR" -> [] (1)
1131      *
1132      * That can be compressed into:
1133      *
1134      * "FOOBAR" -> [] (1)
1135      */
1136     if (trycompress) {
1137         debugf("After removing %.*s:\n", (int)len, s);
1138         debugnode("Compression may be needed",h);
1139         debugf("Seek start node\n");
1140 
1141         /* Try to reach the upper node that is compressible.
1142          * At the end of the loop 'h' will point to the first node we
1143          * can try to compress and 'parent' to its parent. */
1144         raxNode *parent;
1145         while(1) {
1146             parent = raxStackPop(&ts);
1147             if (!parent || parent->iskey ||
1148                 (!parent->iscompr && parent->size != 1)) break;
1149             h = parent;
1150             debugnode("Going up to",h);
1151         }
1152         raxNode *start = h; /* Compression starting node. */
1153 
1154         /* Scan chain of nodes we can compress. */
1155         size_t comprsize = h->size;
1156         int nodes = 1;
1157         while(h->size != 0) {
1158             raxNode **cp = raxNodeLastChildPtr(h);
1159             memcpy(&h,cp,sizeof(h));
1160             if (h->iskey || (!h->iscompr && h->size != 1)) break;
1161             /* Stop here if going to the next node would result into
1162              * a compressed node larger than h->size can hold. */
1163             if (comprsize + h->size > RAX_NODE_MAX_SIZE) break;
1164             nodes++;
1165             comprsize += h->size;
1166         }
1167         if (nodes > 1) {
1168             /* If we can compress, create the new node and populate it. */
1169             size_t nodesize =
1170                 sizeof(raxNode)+comprsize+raxPadding(comprsize)+sizeof(raxNode*);
1171             raxNode *new = rax_malloc(nodesize);
1172             /* An out of memory here just means we cannot optimize this
1173              * node, but the tree is left in a consistent state. */
1174             if (new == NULL) {
1175                 raxStackFree(&ts);
1176                 return 1;
1177             }
1178             new->iskey = 0;
1179             new->isnull = 0;
1180             new->iscompr = 1;
1181             new->size = comprsize;
1182             rax->numnodes++;
1183 
1184             /* Scan again, this time to populate the new node content and
1185              * to fix the new node child pointer. At the same time we free
1186              * all the nodes that we'll no longer use. */
1187             comprsize = 0;
1188             h = start;
1189             while(h->size != 0) {
1190                 memcpy(new->data+comprsize,h->data,h->size);
1191                 comprsize += h->size;
1192                 raxNode **cp = raxNodeLastChildPtr(h);
1193                 raxNode *tofree = h;
1194                 memcpy(&h,cp,sizeof(h));
1195                 rax_free(tofree); rax->numnodes--;
1196                 if (h->iskey || (!h->iscompr && h->size != 1)) break;
1197             }
1198             debugnode("New node",new);
1199 
1200             /* Now 'h' points to the first node that we still need to use,
1201              * so our new node child pointer will point to it. */
1202             raxNode **cp = raxNodeLastChildPtr(new);
1203             memcpy(cp,&h,sizeof(h));
1204 
1205             /* Fix parent link. */
1206             if (parent) {
1207                 raxNode **parentlink = raxFindParentLink(parent,start);
1208                 memcpy(parentlink,&new,sizeof(new));
1209             } else {
1210                 rax->head = new;
1211             }
1212 
1213             debugf("Compressed %d nodes, %d total bytes\n",
1214                 nodes, (int)comprsize);
1215         }
1216     }
1217     raxStackFree(&ts);
1218     return 1;
1219 }
1220 
1221 /* This is the core of raxFree(): performs a depth-first scan of the
1222  * tree and releases all the nodes found. */
raxRecursiveFree(rax * rax,raxNode * n,void (* free_callback)(void *))1223 void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) {
1224     debugnode("free traversing",n);
1225     int numchildren = n->iscompr ? 1 : n->size;
1226     raxNode **cp = raxNodeLastChildPtr(n);
1227     while(numchildren--) {
1228         raxNode *child;
1229         memcpy(&child,cp,sizeof(child));
1230         raxRecursiveFree(rax,child,free_callback);
1231         cp--;
1232     }
1233     debugnode("free depth-first",n);
1234     if (free_callback && n->iskey && !n->isnull)
1235         free_callback(raxGetData(n));
1236     rax_free(n);
1237     rax->numnodes--;
1238 }
1239 
1240 /* Free a whole radix tree, calling the specified callback in order to
1241  * free the auxiliary data. */
raxFreeWithCallback(rax * rax,void (* free_callback)(void *))1242 void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) {
1243     raxRecursiveFree(rax,rax->head,free_callback);
1244     assert(rax->numnodes == 0);
1245     rax_free(rax);
1246 }
1247 
1248 /* Free a whole radix tree. */
raxFree(rax * rax)1249 void raxFree(rax *rax) {
1250     raxFreeWithCallback(rax,NULL);
1251 }
1252 
1253 /* ------------------------------- Iterator --------------------------------- */
1254 
1255 /* Initialize a Rax iterator. This call should be performed a single time
1256  * to initialize the iterator, and must be followed by a raxSeek() call,
1257  * otherwise the raxPrev()/raxNext() functions will just return EOF. */
raxStart(raxIterator * it,rax * rt)1258 void raxStart(raxIterator *it, rax *rt) {
1259     it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */
1260     it->rt = rt;
1261     it->key_len = 0;
1262     it->key = it->key_static_string;
1263     it->key_max = RAX_ITER_STATIC_LEN;
1264     it->data = NULL;
1265     it->node_cb = NULL;
1266     raxStackInit(&it->stack);
1267 }
1268 
1269 /* Append characters at the current key string of the iterator 'it'. This
1270  * is a low level function used to implement the iterator, not callable by
1271  * the user. Returns 0 on out of memory, otherwise 1 is returned. */
raxIteratorAddChars(raxIterator * it,unsigned char * s,size_t len)1272 int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) {
1273     if (len == 0) return 1;
1274     if (it->key_max < it->key_len+len) {
1275         unsigned char *old = (it->key == it->key_static_string) ? NULL :
1276                                                                   it->key;
1277         size_t new_max = (it->key_len+len)*2;
1278         it->key = rax_realloc(old,new_max);
1279         if (it->key == NULL) {
1280             it->key = (!old) ? it->key_static_string : old;
1281             errno = ENOMEM;
1282             return 0;
1283         }
1284         if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len);
1285         it->key_max = new_max;
1286     }
1287     /* Use memmove since there could be an overlap between 's' and
1288      * it->key when we use the current key in order to re-seek. */
1289     memmove(it->key+it->key_len,s,len);
1290     it->key_len += len;
1291     return 1;
1292 }
1293 
1294 /* Remove the specified number of chars from the right of the current
1295  * iterator key. */
raxIteratorDelChars(raxIterator * it,size_t count)1296 void raxIteratorDelChars(raxIterator *it, size_t count) {
1297     it->key_len -= count;
1298 }
1299 
1300 /* Do an iteration step towards the next element. At the end of the step the
1301  * iterator key will represent the (new) current key. If it is not possible
1302  * to step in the specified direction since there are no longer elements, the
1303  * iterator is flagged with RAX_ITER_EOF.
1304  *
1305  * If 'noup' is true the function starts directly scanning for the next
1306  * lexicographically smaller children, and the current node is already assumed
1307  * to be the parent of the last key node, so the first operation to go back to
1308  * the parent will be skipped. This option is used by raxSeek() when
1309  * implementing seeking a non existing element with the ">" or "<" options:
1310  * the starting node is not a key in that particular case, so we start the scan
1311  * from a node that does not represent the key set.
1312  *
1313  * The function returns 1 on success or 0 on out of memory. */
raxIteratorNextStep(raxIterator * it,int noup)1314 int raxIteratorNextStep(raxIterator *it, int noup) {
1315     if (it->flags & RAX_ITER_EOF) {
1316         return 1;
1317     } else if (it->flags & RAX_ITER_JUST_SEEKED) {
1318         it->flags &= ~RAX_ITER_JUST_SEEKED;
1319         return 1;
1320     }
1321 
1322     /* Save key len, stack items and the node where we are currently
1323      * so that on iterator EOF we can restore the current key and state. */
1324     size_t orig_key_len = it->key_len;
1325     size_t orig_stack_items = it->stack.items;
1326     raxNode *orig_node = it->node;
1327 
1328     while(1) {
1329         int children = it->node->iscompr ? 1 : it->node->size;
1330         if (!noup && children) {
1331             debugf("GO DEEPER\n");
1332             /* Seek the lexicographically smaller key in this subtree, which
1333              * is the first one found always going towards the first child
1334              * of every successive node. */
1335             if (!raxStackPush(&it->stack,it->node)) return 0;
1336             raxNode **cp = raxNodeFirstChildPtr(it->node);
1337             if (!raxIteratorAddChars(it,it->node->data,
1338                 it->node->iscompr ? it->node->size : 1)) return 0;
1339             memcpy(&it->node,cp,sizeof(it->node));
1340             /* Call the node callback if any, and replace the node pointer
1341              * if the callback returns true. */
1342             if (it->node_cb && it->node_cb(&it->node))
1343                 memcpy(cp,&it->node,sizeof(it->node));
1344             /* For "next" step, stop every time we find a key along the
1345              * way, since the key is lexicographically smaller compared to
1346              * what follows in the sub-children. */
1347             if (it->node->iskey) {
1348                 it->data = raxGetData(it->node);
1349                 return 1;
1350             }
1351         } else {
1352             /* If we finished exploring the previous sub-tree, switch to the
1353              * new one: go upper until a node is found where there are
1354              * children representing keys lexicographically greater than the
1355              * current key. */
1356             while(1) {
1357                 int old_noup = noup;
1358 
1359                 /* Already on head? Can't go up, iteration finished. */
1360                 if (!noup && it->node == it->rt->head) {
1361                     it->flags |= RAX_ITER_EOF;
1362                     it->stack.items = orig_stack_items;
1363                     it->key_len = orig_key_len;
1364                     it->node = orig_node;
1365                     return 1;
1366                 }
1367                 /* If there are no children at the current node, try parent's
1368                  * next child. */
1369                 unsigned char prevchild = it->key[it->key_len-1];
1370                 if (!noup) {
1371                     it->node = raxStackPop(&it->stack);
1372                 } else {
1373                     noup = 0;
1374                 }
1375                 /* Adjust the current key to represent the node we are
1376                  * at. */
1377                 int todel = it->node->iscompr ? it->node->size : 1;
1378                 raxIteratorDelChars(it,todel);
1379 
1380                 /* Try visiting the next child if there was at least one
1381                  * additional child. */
1382                 if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
1383                     raxNode **cp = raxNodeFirstChildPtr(it->node);
1384                     int i = 0;
1385                     while (i < it->node->size) {
1386                         debugf("SCAN NEXT %c\n", it->node->data[i]);
1387                         if (it->node->data[i] > prevchild) break;
1388                         i++;
1389                         cp++;
1390                     }
1391                     if (i != it->node->size) {
1392                         debugf("SCAN found a new node\n");
1393                         raxIteratorAddChars(it,it->node->data+i,1);
1394                         if (!raxStackPush(&it->stack,it->node)) return 0;
1395                         memcpy(&it->node,cp,sizeof(it->node));
1396                         /* Call the node callback if any, and replace the node
1397                          * pointer if the callback returns true. */
1398                         if (it->node_cb && it->node_cb(&it->node))
1399                             memcpy(cp,&it->node,sizeof(it->node));
1400                         if (it->node->iskey) {
1401                             it->data = raxGetData(it->node);
1402                             return 1;
1403                         }
1404                         break;
1405                     }
1406                 }
1407             }
1408         }
1409     }
1410 }
1411 
1412 /* Seek the greatest key in the subtree at the current node. Return 0 on
1413  * out of memory, otherwise 1. This is a helper function for different
1414  * iteration functions below. */
raxSeekGreatest(raxIterator * it)1415 int raxSeekGreatest(raxIterator *it) {
1416     while(it->node->size) {
1417         if (it->node->iscompr) {
1418             if (!raxIteratorAddChars(it,it->node->data,
1419                 it->node->size)) return 0;
1420         } else {
1421             if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1))
1422                 return 0;
1423         }
1424         raxNode **cp = raxNodeLastChildPtr(it->node);
1425         if (!raxStackPush(&it->stack,it->node)) return 0;
1426         memcpy(&it->node,cp,sizeof(it->node));
1427     }
1428     return 1;
1429 }
1430 
1431 /* Like raxIteratorNextStep() but implements an iteration step moving
1432  * to the lexicographically previous element. The 'noup' option has a similar
1433  * effect to the one of raxIteratorNextStep(). */
raxIteratorPrevStep(raxIterator * it,int noup)1434 int raxIteratorPrevStep(raxIterator *it, int noup) {
1435     if (it->flags & RAX_ITER_EOF) {
1436         return 1;
1437     } else if (it->flags & RAX_ITER_JUST_SEEKED) {
1438         it->flags &= ~RAX_ITER_JUST_SEEKED;
1439         return 1;
1440     }
1441 
1442     /* Save key len, stack items and the node where we are currently
1443      * so that on iterator EOF we can restore the current key and state. */
1444     size_t orig_key_len = it->key_len;
1445     size_t orig_stack_items = it->stack.items;
1446     raxNode *orig_node = it->node;
1447 
1448     while(1) {
1449         int old_noup = noup;
1450 
1451         /* Already on head? Can't go up, iteration finished. */
1452         if (!noup && it->node == it->rt->head) {
1453             it->flags |= RAX_ITER_EOF;
1454             it->stack.items = orig_stack_items;
1455             it->key_len = orig_key_len;
1456             it->node = orig_node;
1457             return 1;
1458         }
1459 
1460         unsigned char prevchild = it->key[it->key_len-1];
1461         if (!noup) {
1462             it->node = raxStackPop(&it->stack);
1463         } else {
1464             noup = 0;
1465         }
1466 
1467         /* Adjust the current key to represent the node we are
1468          * at. */
1469         int todel = it->node->iscompr ? it->node->size : 1;
1470         raxIteratorDelChars(it,todel);
1471 
1472         /* Try visiting the prev child if there is at least one
1473          * child. */
1474         if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
1475             raxNode **cp = raxNodeLastChildPtr(it->node);
1476             int i = it->node->size-1;
1477             while (i >= 0) {
1478                 debugf("SCAN PREV %c\n", it->node->data[i]);
1479                 if (it->node->data[i] < prevchild) break;
1480                 i--;
1481                 cp--;
1482             }
1483             /* If we found a new subtree to explore in this node,
1484              * go deeper following all the last children in order to
1485              * find the key lexicographically greater. */
1486             if (i != -1) {
1487                 debugf("SCAN found a new node\n");
1488                 /* Enter the node we just found. */
1489                 if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0;
1490                 if (!raxStackPush(&it->stack,it->node)) return 0;
1491                 memcpy(&it->node,cp,sizeof(it->node));
1492                 /* Seek sub-tree max. */
1493                 if (!raxSeekGreatest(it)) return 0;
1494             }
1495         }
1496 
1497         /* Return the key: this could be the key we found scanning a new
1498          * subtree, or if we did not find a new subtree to explore here,
1499          * before giving up with this node, check if it's a key itself. */
1500         if (it->node->iskey) {
1501             it->data = raxGetData(it->node);
1502             return 1;
1503         }
1504     }
1505 }
1506 
1507 /* Seek an iterator at the specified element.
1508  * Return 0 if the seek failed for syntax error or out of memory. Otherwise
1509  * 1 is returned. When 0 is returned for out of memory, errno is set to
1510  * the ENOMEM value. */
raxSeek(raxIterator * it,const char * op,unsigned char * ele,size_t len)1511 int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) {
1512     int eq = 0, lt = 0, gt = 0, first = 0, last = 0;
1513 
1514     it->stack.items = 0; /* Just resetting. Initialized by raxStart(). */
1515     it->flags |= RAX_ITER_JUST_SEEKED;
1516     it->flags &= ~RAX_ITER_EOF;
1517     it->key_len = 0;
1518     it->node = NULL;
1519 
1520     /* Set flags according to the operator used to perform the seek. */
1521     if (op[0] == '>') {
1522         gt = 1;
1523         if (op[1] == '=') eq = 1;
1524     } else if (op[0] == '<') {
1525         lt = 1;
1526         if (op[1] == '=') eq = 1;
1527     } else if (op[0] == '=') {
1528         eq = 1;
1529     } else if (op[0] == '^') {
1530         first = 1;
1531     } else if (op[0] == '$') {
1532         last = 1;
1533     } else {
1534         errno = 0;
1535         return 0; /* Error. */
1536     }
1537 
1538     /* If there are no elements, set the EOF condition immediately and
1539      * return. */
1540     if (it->rt->numele == 0) {
1541         it->flags |= RAX_ITER_EOF;
1542         return 1;
1543     }
1544 
1545     if (first) {
1546         /* Seeking the first key greater or equal to the empty string
1547          * is equivalent to seeking the smaller key available. */
1548         return raxSeek(it,">=",NULL,0);
1549     }
1550 
1551     if (last) {
1552         /* Find the greatest key taking always the last child till a
1553          * final node is found. */
1554         it->node = it->rt->head;
1555         if (!raxSeekGreatest(it)) return 0;
1556         assert(it->node->iskey);
1557         it->data = raxGetData(it->node);
1558         return 1;
1559     }
1560 
1561     /* We need to seek the specified key. What we do here is to actually
1562      * perform a lookup, and later invoke the prev/next key code that
1563      * we already use for iteration. */
1564     int splitpos = 0;
1565     size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack);
1566 
1567     /* Return OOM on incomplete stack info. */
1568     if (it->stack.oom) return 0;
1569 
1570     if (eq && i == len && (!it->node->iscompr || splitpos == 0) &&
1571         it->node->iskey)
1572     {
1573         /* We found our node, since the key matches and we have an
1574          * "equal" condition. */
1575         if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */
1576         it->data = raxGetData(it->node);
1577     } else if (lt || gt) {
1578         /* Exact key not found or eq flag not set. We have to set as current
1579          * key the one represented by the node we stopped at, and perform
1580          * a next/prev operation to seek. */
1581         raxIteratorAddChars(it, ele, i-splitpos);
1582 
1583         /* We need to set the iterator in the correct state to call next/prev
1584          * step in order to seek the desired element. */
1585         debugf("After initial seek: i=%d len=%d key=%.*s\n",
1586             (int)i, (int)len, (int)it->key_len, it->key);
1587         if (i != len && !it->node->iscompr) {
1588             /* If we stopped in the middle of a normal node because of a
1589              * mismatch, add the mismatching character to the current key
1590              * and call the iterator with the 'noup' flag so that it will try
1591              * to seek the next/prev child in the current node directly based
1592              * on the mismatching character. */
1593             if (!raxIteratorAddChars(it,ele+i,1)) return 0;
1594             debugf("Seek normal node on mismatch: %.*s\n",
1595                 (int)it->key_len, (char*)it->key);
1596 
1597             it->flags &= ~RAX_ITER_JUST_SEEKED;
1598             if (lt && !raxIteratorPrevStep(it,1)) return 0;
1599             if (gt && !raxIteratorNextStep(it,1)) return 0;
1600             it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
1601         } else if (i != len && it->node->iscompr) {
1602             debugf("Compressed mismatch: %.*s\n",
1603                 (int)it->key_len, (char*)it->key);
1604             /* In case of a mismatch within a compressed node. */
1605             int nodechar = it->node->data[splitpos];
1606             int keychar = ele[i];
1607             it->flags &= ~RAX_ITER_JUST_SEEKED;
1608             if (gt) {
1609                 /* If the key the compressed node represents is greater
1610                  * than our seek element, continue forward, otherwise set the
1611                  * state in order to go back to the next sub-tree. */
1612                 if (nodechar > keychar) {
1613                     if (!raxIteratorNextStep(it,0)) return 0;
1614                 } else {
1615                     if (!raxIteratorAddChars(it,it->node->data,it->node->size))
1616                         return 0;
1617                     if (!raxIteratorNextStep(it,1)) return 0;
1618                 }
1619             }
1620             if (lt) {
1621                 /* If the key the compressed node represents is smaller
1622                  * than our seek element, seek the greater key in this
1623                  * subtree, otherwise set the state in order to go back to
1624                  * the previous sub-tree. */
1625                 if (nodechar < keychar) {
1626                     if (!raxSeekGreatest(it)) return 0;
1627                     it->data = raxGetData(it->node);
1628                 } else {
1629                     if (!raxIteratorAddChars(it,it->node->data,it->node->size))
1630                         return 0;
1631                     if (!raxIteratorPrevStep(it,1)) return 0;
1632                 }
1633             }
1634             it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
1635         } else {
1636             debugf("No mismatch: %.*s\n",
1637                 (int)it->key_len, (char*)it->key);
1638             /* If there was no mismatch we are into a node representing the
1639              * key, (but which is not a key or the seek operator does not
1640              * include 'eq'), or we stopped in the middle of a compressed node
1641              * after processing all the key. Continue iterating as this was
1642              * a legitimate key we stopped at. */
1643             it->flags &= ~RAX_ITER_JUST_SEEKED;
1644             if (it->node->iscompr && it->node->iskey && splitpos && lt) {
1645                 /* If we stopped in the middle of a compressed node with
1646                  * perfect match, and the condition is to seek a key "<" than
1647                  * the specified one, then if this node is a key it already
1648                  * represents our match. For instance we may have nodes:
1649                  *
1650                  * "f" -> "oobar" = 1 -> "" = 2
1651                  *
1652                  * Representing keys "f" = 1, "foobar" = 2. A seek for
1653                  * the key < "foo" will stop in the middle of the "oobar"
1654                  * node, but will be our match, representing the key "f".
1655                  *
1656                  * So in that case, we don't seek backward. */
1657                 it->data = raxGetData(it->node);
1658             } else {
1659                 if (gt && !raxIteratorNextStep(it,0)) return 0;
1660                 if (lt && !raxIteratorPrevStep(it,0)) return 0;
1661             }
1662             it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
1663         }
1664     } else {
1665         /* If we are here just eq was set but no match was found. */
1666         it->flags |= RAX_ITER_EOF;
1667         return 1;
1668     }
1669     return 1;
1670 }
1671 
1672 /* Go to the next element in the scope of the iterator 'it'.
1673  * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
1674  * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
raxNext(raxIterator * it)1675 int raxNext(raxIterator *it) {
1676     if (!raxIteratorNextStep(it,0)) {
1677         errno = ENOMEM;
1678         return 0;
1679     }
1680     if (it->flags & RAX_ITER_EOF) {
1681         errno = 0;
1682         return 0;
1683     }
1684     return 1;
1685 }
1686 
1687 /* Go to the previous element in the scope of the iterator 'it'.
1688  * If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
1689  * returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
raxPrev(raxIterator * it)1690 int raxPrev(raxIterator *it) {
1691     if (!raxIteratorPrevStep(it,0)) {
1692         errno = ENOMEM;
1693         return 0;
1694     }
1695     if (it->flags & RAX_ITER_EOF) {
1696         errno = 0;
1697         return 0;
1698     }
1699     return 1;
1700 }
1701 
1702 /* Perform a random walk starting in the current position of the iterator.
1703  * Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned
1704  * and the iterator is set to the node reached after doing a random walk
1705  * of 'steps' steps. If the 'steps' argument is 0, the random walk is performed
1706  * using a random number of steps between 1 and two times the logarithm of
1707  * the number of elements.
1708  *
1709  * NOTE: if you use this function to generate random elements from the radix
1710  * tree, expect a disappointing distribution. A random walk produces good
1711  * random elements if the tree is not sparse, however in the case of a radix
1712  * tree certain keys will be reported much more often than others. At least
1713  * this function should be able to explore every possible element eventually. */
raxRandomWalk(raxIterator * it,size_t steps)1714 int raxRandomWalk(raxIterator *it, size_t steps) {
1715     if (it->rt->numele == 0) {
1716         it->flags |= RAX_ITER_EOF;
1717         return 0;
1718     }
1719 
1720     if (steps == 0) {
1721         size_t fle = 1+floor(log(it->rt->numele));
1722         fle *= 2;
1723         steps = 1 + rand() % fle;
1724     }
1725 
1726     raxNode *n = it->node;
1727     while(steps > 0 || !n->iskey) {
1728         int numchildren = n->iscompr ? 1 : n->size;
1729         int r = rand() % (numchildren+(n != it->rt->head));
1730 
1731         if (r == numchildren) {
1732             /* Go up to parent. */
1733             n = raxStackPop(&it->stack);
1734             int todel = n->iscompr ? n->size : 1;
1735             raxIteratorDelChars(it,todel);
1736         } else {
1737             /* Select a random child. */
1738             if (n->iscompr) {
1739                 if (!raxIteratorAddChars(it,n->data,n->size)) return 0;
1740             } else {
1741                 if (!raxIteratorAddChars(it,n->data+r,1)) return 0;
1742             }
1743             raxNode **cp = raxNodeFirstChildPtr(n)+r;
1744             if (!raxStackPush(&it->stack,n)) return 0;
1745             memcpy(&n,cp,sizeof(n));
1746         }
1747         if (n->iskey) steps--;
1748     }
1749     it->node = n;
1750     it->data = raxGetData(it->node);
1751     return 1;
1752 }
1753 
1754 /* Compare the key currently pointed by the iterator to the specified
1755  * key according to the specified operator. Returns 1 if the comparison is
1756  * true, otherwise 0 is returned. */
raxCompare(raxIterator * iter,const char * op,unsigned char * key,size_t key_len)1757 int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) {
1758     int eq = 0, lt = 0, gt = 0;
1759 
1760     if (op[0] == '=' || op[1] == '=') eq = 1;
1761     if (op[0] == '>') gt = 1;
1762     else if (op[0] == '<') lt = 1;
1763     else if (op[1] != '=') return 0; /* Syntax error. */
1764 
1765     size_t minlen = key_len < iter->key_len ? key_len : iter->key_len;
1766     int cmp = memcmp(iter->key,key,minlen);
1767 
1768     /* Handle == */
1769     if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len;
1770 
1771     /* Handle >, >=, <, <= */
1772     if (cmp == 0) {
1773         /* Same prefix: longer wins. */
1774         if (eq && key_len == iter->key_len) return 1;
1775         else if (lt) return iter->key_len < key_len;
1776         else if (gt) return iter->key_len > key_len;
1777         else return 0; /* Avoid warning, just 'eq' is handled before. */
1778     } else if (cmp > 0) {
1779         return gt ? 1 : 0;
1780     } else /* (cmp < 0) */ {
1781         return lt ? 1 : 0;
1782     }
1783 }
1784 
1785 /* Free the iterator. */
raxStop(raxIterator * it)1786 void raxStop(raxIterator *it) {
1787     if (it->key != it->key_static_string) rax_free(it->key);
1788     raxStackFree(&it->stack);
1789 }
1790 
1791 /* Return if the iterator is in an EOF state. This happens when raxSeek()
1792  * failed to seek an appropriate element, so that raxNext() or raxPrev()
1793  * will return zero, or when an EOF condition was reached while iterating
1794  * with raxNext() and raxPrev(). */
raxEOF(raxIterator * it)1795 int raxEOF(raxIterator *it) {
1796     return it->flags & RAX_ITER_EOF;
1797 }
1798 
1799 /* Return the number of elements inside the radix tree. */
raxSize(rax * rax)1800 uint64_t raxSize(rax *rax) {
1801     return rax->numele;
1802 }
1803 
1804 /* ----------------------------- Introspection ------------------------------ */
1805 
1806 /* This function is mostly used for debugging and learning purposes.
1807  * It shows an ASCII representation of a tree on standard output, outline
1808  * all the nodes and the contained keys.
1809  *
1810  * The representation is as follow:
1811  *
1812  *  "foobar" (compressed node)
1813  *  [abc] (normal node with three children)
1814  *  [abc]=0x12345678 (node is a key, pointing to value 0x12345678)
1815  *  [] (a normal empty node)
1816  *
1817  *  Children are represented in new indented lines, each children prefixed by
1818  *  the "`-(x)" string, where "x" is the edge byte.
1819  *
1820  *  [abc]
1821  *   `-(a) "ladin"
1822  *   `-(b) [kj]
1823  *   `-(c) []
1824  *
1825  *  However when a node has a single child the following representation
1826  *  is used instead:
1827  *
1828  *  [abc] -> "ladin" -> []
1829  */
1830 
1831 /* The actual implementation of raxShow(). */
raxRecursiveShow(int level,int lpad,raxNode * n)1832 void raxRecursiveShow(int level, int lpad, raxNode *n) {
1833     char s = n->iscompr ? '"' : '[';
1834     char e = n->iscompr ? '"' : ']';
1835 
1836     int numchars = printf("%c%.*s%c", s, n->size, n->data, e);
1837     if (n->iskey) {
1838         numchars += printf("=%p",raxGetData(n));
1839     }
1840 
1841     int numchildren = n->iscompr ? 1 : n->size;
1842     /* Note that 7 and 4 magic constants are the string length
1843      * of " `-(x) " and " -> " respectively. */
1844     if (level) {
1845         lpad += (numchildren > 1) ? 7 : 4;
1846         if (numchildren == 1) lpad += numchars;
1847     }
1848     raxNode **cp = raxNodeFirstChildPtr(n);
1849     for (int i = 0; i < numchildren; i++) {
1850         char *branch = " `-(%c) ";
1851         if (numchildren > 1) {
1852             printf("\n");
1853             for (int j = 0; j < lpad; j++) putchar(' ');
1854             printf(branch,n->data[i]);
1855         } else {
1856             printf(" -> ");
1857         }
1858         raxNode *child;
1859         memcpy(&child,cp,sizeof(child));
1860         raxRecursiveShow(level+1,lpad,child);
1861         cp++;
1862     }
1863 }
1864 
1865 /* Show a tree, as outlined in the comment above. */
raxShow(rax * rax)1866 void raxShow(rax *rax) {
1867     raxRecursiveShow(0,0,rax->head);
1868     putchar('\n');
1869 }
1870 
1871 /* Used by debugnode() macro to show info about a given node. */
raxDebugShowNode(const char * msg,raxNode * n)1872 void raxDebugShowNode(const char *msg, raxNode *n) {
1873     if (raxDebugMsg == 0) return;
1874     printf("%s: %p [%.*s] key:%u size:%u children:",
1875         msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size);
1876     int numcld = n->iscompr ? 1 : n->size;
1877     raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1);
1878     while(numcld--) {
1879         raxNode *child;
1880         memcpy(&child,cldptr,sizeof(child));
1881         cldptr++;
1882         printf("%p ", (void*)child);
1883     }
1884     printf("\n");
1885     fflush(stdout);
1886 }
1887 
1888 /* Touch all the nodes of a tree returning a check sum. This is useful
1889  * in order to make Valgrind detect if there is something wrong while
1890  * reading the data structure.
1891  *
1892  * This function was used in order to identify Rax bugs after a big refactoring
1893  * using this technique:
1894  *
1895  * 1. The rax-test is executed using Valgrind, adding a printf() so that for
1896  *    the fuzz tester we see what iteration in the loop we are in.
1897  * 2. After every modification of the radix tree made by the fuzz tester
1898  *    in rax-test.c, we add a call to raxTouch().
1899  * 3. Now as soon as an operation will corrupt the tree, raxTouch() will
1900  *    detect it (via Valgrind) immediately. We can add more calls to narrow
1901  *    the state.
1902  * 4. At this point a good idea is to enable Rax debugging messages immediately
1903  *    before the moment the tree is corrupted, to see what happens.
1904  */
raxTouch(raxNode * n)1905 unsigned long raxTouch(raxNode *n) {
1906     debugf("Touching %p\n", (void*)n);
1907     unsigned long sum = 0;
1908     if (n->iskey) {
1909         sum += (unsigned long)raxGetData(n);
1910     }
1911 
1912     int numchildren = n->iscompr ? 1 : n->size;
1913     raxNode **cp = raxNodeFirstChildPtr(n);
1914     int count = 0;
1915     for (int i = 0; i < numchildren; i++) {
1916         if (numchildren > 1) {
1917             sum += (long)n->data[i];
1918         }
1919         raxNode *child;
1920         memcpy(&child,cp,sizeof(child));
1921         if (child == (void*)0x65d1760) count++;
1922         if (count > 1) exit(1);
1923         sum += raxTouch(child);
1924         cp++;
1925     }
1926     return sum;
1927 }
1928