1 /*
2 ** 2011 March 24
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Code for a demonstration virtual table that generates variations
14 ** on an input word at increasing edit distances from the original.
15 **
16 ** A fuzzer virtual table is created like this:
17 **
18 **     CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>);
19 **
20 ** When it is created, the new fuzzer table must be supplied with the
21 ** name of a "fuzzer data table", which must reside in the same database
22 ** file as the new fuzzer table. The fuzzer data table contains the various
23 ** transformations and their costs that the fuzzer logic uses to generate
24 ** variations.
25 **
26 ** The fuzzer data table must contain exactly four columns (more precisely,
27 ** the statement "SELECT * FROM <fuzzer_data_table>" must return records
28 ** that consist of four columns). It does not matter what the columns are
29 ** named.
30 **
31 ** Each row in the fuzzer data table represents a single character
32 ** transformation. The left most column of the row (column 0) contains an
33 ** integer value - the identifier of the ruleset to which the transformation
34 ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the
35 ** row (column 0) contains the input character or characters. The third
36 ** column contains the output character or characters. And the fourth column
37 ** contains the integer cost of making the transformation. For example:
38 **
39 **    CREATE TABLE f_data(ruleset, cFrom, cTo, Cost);
40 **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
41 **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
42 **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
43 **    INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
44 **
45 ** The first row inserted into the fuzzer data table by the SQL script
46 ** above indicates that the cost of inserting a letter 'a' is 100.  (All
47 ** costs are integers.  We recommend that costs be scaled so that the
48 ** average cost is around 100.) The second INSERT statement creates a rule
49 ** saying that the cost of deleting a single letter 'b' is 87.  The third
50 ** and fourth INSERT statements mean that the cost of transforming a
51 ** single letter "o" into the two-letter sequence "oe" is 38 and that the
52 ** cost of transforming "oe" back into "o" is 40.
53 **
54 ** The contents of the fuzzer data table are loaded into main memory when
55 ** a fuzzer table is first created, and may be internally reloaded by the
56 ** system at any subsequent time. Therefore, the fuzzer data table should be
57 ** populated before the fuzzer table is created and not modified thereafter.
58 ** If you do need to modify the contents of the fuzzer data table, it is
59 ** recommended that the associated fuzzer table be dropped, the fuzzer data
60 ** table edited, and the fuzzer table recreated within a single transaction.
61 ** Alternatively, the fuzzer data table can be edited then the database
62 ** connection can be closed and reopened.
63 **
64 ** Once it has been created, the fuzzer table can be queried as follows:
65 **
66 **    SELECT word, distance FROM f
67 **     WHERE word MATCH 'abcdefg'
68 **       AND distance<200;
69 **
70 ** This first query outputs the string "abcdefg" and all strings that
71 ** can be derived from that string by appling the specified transformations.
72 ** The strings are output together with their total transformation cost
73 ** (called "distance") and appear in order of increasing cost.  No string
74 ** is output more than once.  If there are multiple ways to transform the
75 ** target string into the output string then the lowest cost transform is
76 ** the one that is returned.  In the example, the search is limited to
77 ** strings with a total distance of less than 200.
78 **
79 ** The fuzzer is a read-only table.  Any attempt to DELETE, INSERT, or
80 ** UPDATE on a fuzzer table will throw an error.
81 **
82 ** It is important to put some kind of a limit on the fuzzer output.  This
83 ** can be either in the form of a LIMIT clause at the end of the query,
84 ** or better, a "distance<NNN" constraint where NNN is some number.  The
85 ** running time and memory requirement is exponential in the value of NNN
86 ** so you want to make sure that NNN is not too big.  A value of NNN that
87 ** is about twice the average transformation cost seems to give good results.
88 **
89 ** The fuzzer table can be useful for tasks such as spelling correction.
90 ** Suppose there is a second table vocabulary(w) where the w column contains
91 ** all correctly spelled words.   Let $word be a word you want to look up.
92 **
93 **   SELECT vocabulary.w FROM f, vocabulary
94 **    WHERE f.word MATCH $word
95 **      AND f.distance<=200
96 **      AND f.word=vocabulary.w
97 **    LIMIT 20
98 **
99 ** The query above gives the 20 closest words to the $word being tested.
100 ** (Note that for good performance, the vocubulary.w column should be
101 ** indexed.)
102 **
103 ** A similar query can be used to find all words in the dictionary that
104 ** begin with some prefix $prefix:
105 **
106 **   SELECT vocabulary.w FROM f, vocabulary
107 **    WHERE f.word MATCH $prefix
108 **      AND f.distance<=200
109 **      AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
110 **    LIMIT 50
111 **
112 ** This last query will show up to 50 words out of the vocabulary that
113 ** match or nearly match the $prefix.
114 **
115 ** MULTIPLE RULE SETS
116 **
117 ** Normally, the "ruleset" value associated with all character transformations
118 ** in the fuzzer data table is zero. However, if required, the fuzzer table
119 ** allows multiple rulesets to be defined. Each query uses only a single
120 ** ruleset. This allows, for example, a single fuzzer table to support
121 ** multiple languages.
122 **
123 ** By default, only the rules from ruleset 0 are used. To specify an
124 ** alternative ruleset, a "ruleset = ?" expression must be added to the
125 ** WHERE clause of a SELECT, where ? is the identifier of the desired
126 ** ruleset. For example:
127 **
128 **   SELECT vocabulary.w FROM f, vocabulary
129 **    WHERE f.word MATCH $word
130 **      AND f.distance<=200
131 **      AND f.word=vocabulary.w
132 **      AND f.ruleset=1  -- Specify the ruleset to use here
133 **    LIMIT 20
134 **
135 ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset
136 ** 0 is used.
137 **
138 ** LIMITS
139 **
140 ** The maximum ruleset number is 2147483647.  The maximum length of either
141 ** of the strings in the second or third column of the fuzzer data table
142 ** is 50 bytes.  The maximum cost on a rule is 1000.
143 */
144 #include "sqlite3ext.h"
145 SQLITE_EXTENSION_INIT1
146 
147 /* If SQLITE_DEBUG is not defined, disable assert statements. */
148 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
149 # define NDEBUG
150 #endif
151 
152 #include <stdlib.h>
153 #include <string.h>
154 #include <assert.h>
155 #include <stdio.h>
156 
157 #ifndef SQLITE_OMIT_VIRTUALTABLE
158 
159 /*
160 ** Forward declaration of objects used by this implementation
161 */
162 typedef struct fuzzer_vtab fuzzer_vtab;
163 typedef struct fuzzer_cursor fuzzer_cursor;
164 typedef struct fuzzer_rule fuzzer_rule;
165 typedef struct fuzzer_seen fuzzer_seen;
166 typedef struct fuzzer_stem fuzzer_stem;
167 
168 /*
169 ** Various types.
170 **
171 ** fuzzer_cost is the "cost" of an edit operation.
172 **
173 ** fuzzer_len is the length of a matching string.
174 **
175 ** fuzzer_ruleid is an ruleset identifier.
176 */
177 typedef int fuzzer_cost;
178 typedef signed char fuzzer_len;
179 typedef int fuzzer_ruleid;
180 
181 /*
182 ** Limits
183 */
184 #define FUZZER_MX_LENGTH           50   /* Maximum length of a rule string */
185 #define FUZZER_MX_RULEID   2147483647   /* Maximum rule ID */
186 #define FUZZER_MX_COST           1000   /* Maximum single-rule cost */
187 #define FUZZER_MX_OUTPUT_LENGTH   100   /* Maximum length of an output string */
188 
189 
190 /*
191 ** Each transformation rule is stored as an instance of this object.
192 ** All rules are kept on a linked list sorted by rCost.
193 */
194 struct fuzzer_rule {
195   fuzzer_rule *pNext;         /* Next rule in order of increasing rCost */
196   char *zFrom;                /* Transform from */
197   fuzzer_cost rCost;          /* Cost of this transformation */
198   fuzzer_len nFrom, nTo;      /* Length of the zFrom and zTo strings */
199   fuzzer_ruleid iRuleset;     /* The rule set to which this rule belongs */
200   char zTo[4];                /* Transform to (extra space appended) */
201 };
202 
203 /*
204 ** A stem object is used to generate variants.  It is also used to record
205 ** previously generated outputs.
206 **
207 ** Every stem is added to a hash table as it is output.  Generation of
208 ** duplicate stems is suppressed.
209 **
210 ** Active stems (those that might generate new outputs) are kepts on a linked
211 ** list sorted by increasing cost.  The cost is the sum of rBaseCost and
212 ** pRule->rCost.
213 */
214 struct fuzzer_stem {
215   char *zBasis;              /* Word being fuzzed */
216   const fuzzer_rule *pRule;  /* Current rule to apply */
217   fuzzer_stem *pNext;        /* Next stem in rCost order */
218   fuzzer_stem *pHash;        /* Next stem with same hash on zBasis */
219   fuzzer_cost rBaseCost;     /* Base cost of getting to zBasis */
220   fuzzer_cost rCostX;        /* Precomputed rBaseCost + pRule->rCost */
221   fuzzer_len nBasis;         /* Length of the zBasis string */
222   fuzzer_len n;              /* Apply pRule at this character offset */
223 };
224 
225 /*
226 ** A fuzzer virtual-table object
227 */
228 struct fuzzer_vtab {
229   sqlite3_vtab base;         /* Base class - must be first */
230   char *zClassName;          /* Name of this class.  Default: "fuzzer" */
231   fuzzer_rule *pRule;        /* All active rules in this fuzzer */
232   int nCursor;               /* Number of active cursors */
233 };
234 
235 #define FUZZER_HASH  4001    /* Hash table size */
236 #define FUZZER_NQUEUE  20    /* Number of slots on the stem queue */
237 
238 /* A fuzzer cursor object */
239 struct fuzzer_cursor {
240   sqlite3_vtab_cursor base;  /* Base class - must be first */
241   sqlite3_int64 iRowid;      /* The rowid of the current word */
242   fuzzer_vtab *pVtab;        /* The virtual table this cursor belongs to */
243   fuzzer_cost rLimit;        /* Maximum cost of any term */
244   fuzzer_stem *pStem;        /* Stem with smallest rCostX */
245   fuzzer_stem *pDone;        /* Stems already processed to completion */
246   fuzzer_stem *aQueue[FUZZER_NQUEUE];  /* Queue of stems with higher rCostX */
247   int mxQueue;               /* Largest used index in aQueue[] */
248   char *zBuf;                /* Temporary use buffer */
249   int nBuf;                  /* Bytes allocated for zBuf */
250   int nStem;                 /* Number of stems allocated */
251   int iRuleset;              /* Only process rules from this ruleset */
252   fuzzer_rule nullRule;      /* Null rule used first */
253   fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
254 };
255 
256 /*
257 ** The two input rule lists are both sorted in order of increasing
258 ** cost.  Merge them together into a single list, sorted by cost, and
259 ** return a pointer to the head of that list.
260 */
fuzzerMergeRules(fuzzer_rule * pA,fuzzer_rule * pB)261 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
262   fuzzer_rule head;
263   fuzzer_rule *pTail;
264 
265   pTail =  &head;
266   while( pA && pB ){
267     if( pA->rCost<=pB->rCost ){
268       pTail->pNext = pA;
269       pTail = pA;
270       pA = pA->pNext;
271     }else{
272       pTail->pNext = pB;
273       pTail = pB;
274       pB = pB->pNext;
275     }
276   }
277   if( pA==0 ){
278     pTail->pNext = pB;
279   }else{
280     pTail->pNext = pA;
281   }
282   return head.pNext;
283 }
284 
285 /*
286 ** Statement pStmt currently points to a row in the fuzzer data table. This
287 ** function allocates and populates a fuzzer_rule structure according to
288 ** the content of the row.
289 **
290 ** If successful, *ppRule is set to point to the new object and SQLITE_OK
291 ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
292 ** to an error message and an SQLite error code returned.
293 */
fuzzerLoadOneRule(fuzzer_vtab * p,sqlite3_stmt * pStmt,fuzzer_rule ** ppRule,char ** pzErr)294 static int fuzzerLoadOneRule(
295   fuzzer_vtab *p,                 /* Fuzzer virtual table handle */
296   sqlite3_stmt *pStmt,            /* Base rule on statements current row */
297   fuzzer_rule **ppRule,           /* OUT: New rule object */
298   char **pzErr                    /* OUT: Error message */
299 ){
300   sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0);
301   const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
302   const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
303   int nCost = sqlite3_column_int(pStmt, 3);
304 
305   int rc = SQLITE_OK;             /* Return code */
306   int nFrom;                      /* Size of string zFrom, in bytes */
307   int nTo;                        /* Size of string zTo, in bytes */
308   fuzzer_rule *pRule = 0;         /* New rule object to return */
309 
310   if( zFrom==0 ) zFrom = "";
311   if( zTo==0 ) zTo = "";
312   nFrom = (int)strlen(zFrom);
313   nTo = (int)strlen(zTo);
314 
315   /* Silently ignore null transformations */
316   if( strcmp(zFrom, zTo)==0 ){
317     *ppRule = 0;
318     return SQLITE_OK;
319   }
320 
321   if( nCost<=0 || nCost>FUZZER_MX_COST ){
322     *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
323         p->zClassName, FUZZER_MX_COST
324     );
325     rc = SQLITE_ERROR;
326   }else
327   if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){
328     *pzErr = sqlite3_mprintf("%s: maximum string length is %d",
329         p->zClassName, FUZZER_MX_LENGTH
330     );
331     rc = SQLITE_ERROR;
332   }else
333   if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){
334     *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d",
335         p->zClassName, FUZZER_MX_RULEID
336     );
337     rc = SQLITE_ERROR;
338   }else{
339 
340     pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
341     if( pRule==0 ){
342       rc = SQLITE_NOMEM;
343     }else{
344       memset(pRule, 0, sizeof(*pRule));
345       pRule->zFrom = pRule->zTo;
346       pRule->zFrom += nTo + 1;
347       pRule->nFrom = (fuzzer_len)nFrom;
348       memcpy(pRule->zFrom, zFrom, nFrom+1);
349       memcpy(pRule->zTo, zTo, nTo+1);
350       pRule->nTo = (fuzzer_len)nTo;
351       pRule->rCost = nCost;
352       pRule->iRuleset = (int)iRuleset;
353     }
354   }
355 
356   *ppRule = pRule;
357   return rc;
358 }
359 
360 /*
361 ** Load the content of the fuzzer data table into memory.
362 */
fuzzerLoadRules(sqlite3 * db,fuzzer_vtab * p,const char * zDb,const char * zData,char ** pzErr)363 static int fuzzerLoadRules(
364   sqlite3 *db,                    /* Database handle */
365   fuzzer_vtab *p,                 /* Virtual fuzzer table to configure */
366   const char *zDb,                /* Database containing rules data */
367   const char *zData,              /* Table containing rules data */
368   char **pzErr                    /* OUT: Error message */
369 ){
370   int rc = SQLITE_OK;             /* Return code */
371   char *zSql;                     /* SELECT used to read from rules table */
372   fuzzer_rule *pHead = 0;
373 
374   zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData);
375   if( zSql==0 ){
376     rc = SQLITE_NOMEM;
377   }else{
378     int rc2;                      /* finalize() return code */
379     sqlite3_stmt *pStmt = 0;
380     rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
381     if( rc!=SQLITE_OK ){
382       *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
383     }else if( sqlite3_column_count(pStmt)!=4 ){
384       *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
385           p->zClassName, zData, sqlite3_column_count(pStmt)
386       );
387       rc = SQLITE_ERROR;
388     }else{
389       while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
390         fuzzer_rule *pRule = 0;
391         rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr);
392         if( pRule ){
393           pRule->pNext = pHead;
394           pHead = pRule;
395         }
396       }
397     }
398     rc2 = sqlite3_finalize(pStmt);
399     if( rc==SQLITE_OK ) rc = rc2;
400   }
401   sqlite3_free(zSql);
402 
403   /* All rules are now in a singly linked list starting at pHead. This
404   ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to
405   ** point to the head of the sorted list.
406   */
407   if( rc==SQLITE_OK ){
408     unsigned int i;
409     fuzzer_rule *pX;
410     fuzzer_rule *a[15];
411     for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
412     while( (pX = pHead)!=0 ){
413       pHead = pX->pNext;
414       pX->pNext = 0;
415       for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
416         pX = fuzzerMergeRules(a[i], pX);
417         a[i] = 0;
418       }
419       a[i] = fuzzerMergeRules(a[i], pX);
420     }
421     for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
422       pX = fuzzerMergeRules(a[i], pX);
423     }
424     p->pRule = fuzzerMergeRules(p->pRule, pX);
425   }else{
426     /* An error has occurred. Setting p->pRule to point to the head of the
427     ** allocated list ensures that the list will be cleaned up in this case.
428     */
429     assert( p->pRule==0 );
430     p->pRule = pHead;
431   }
432 
433   return rc;
434 }
435 
436 /*
437 ** This function converts an SQL quoted string into an unquoted string
438 ** and returns a pointer to a buffer allocated using sqlite3_malloc()
439 ** containing the result. The caller should eventually free this buffer
440 ** using sqlite3_free.
441 **
442 ** Examples:
443 **
444 **     "abc"   becomes   abc
445 **     'xyz'   becomes   xyz
446 **     [pqr]   becomes   pqr
447 **     `mno`   becomes   mno
448 */
fuzzerDequote(const char * zIn)449 static char *fuzzerDequote(const char *zIn){
450   int nIn;                        /* Size of input string, in bytes */
451   char *zOut;                     /* Output (dequoted) string */
452 
453   nIn = (int)strlen(zIn);
454   zOut = sqlite3_malloc(nIn+1);
455   if( zOut ){
456     char q = zIn[0];              /* Quote character (if any ) */
457 
458     if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
459       memcpy(zOut, zIn, nIn+1);
460     }else{
461       int iOut = 0;               /* Index of next byte to write to output */
462       int iIn;                    /* Index of next byte to read from input */
463 
464       if( q=='[' ) q = ']';
465       for(iIn=1; iIn<nIn; iIn++){
466         if( zIn[iIn]==q ) iIn++;
467         zOut[iOut++] = zIn[iIn];
468       }
469     }
470     assert( (int)strlen(zOut)<=nIn );
471   }
472   return zOut;
473 }
474 
475 /*
476 ** xDisconnect/xDestroy method for the fuzzer module.
477 */
fuzzerDisconnect(sqlite3_vtab * pVtab)478 static int fuzzerDisconnect(sqlite3_vtab *pVtab){
479   fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
480   assert( p->nCursor==0 );
481   while( p->pRule ){
482     fuzzer_rule *pRule = p->pRule;
483     p->pRule = pRule->pNext;
484     sqlite3_free(pRule);
485   }
486   sqlite3_free(p);
487   return SQLITE_OK;
488 }
489 
490 /*
491 ** xConnect/xCreate method for the fuzzer module. Arguments are:
492 **
493 **   argv[0]   -> module name  ("fuzzer")
494 **   argv[1]   -> database name
495 **   argv[2]   -> table name
496 **   argv[3]   -> fuzzer rule table name
497 */
fuzzerConnect(sqlite3 * db,void * pAux,int argc,const char * const * argv,sqlite3_vtab ** ppVtab,char ** pzErr)498 static int fuzzerConnect(
499   sqlite3 *db,
500   void *pAux,
501   int argc, const char *const*argv,
502   sqlite3_vtab **ppVtab,
503   char **pzErr
504 ){
505   int rc = SQLITE_OK;             /* Return code */
506   fuzzer_vtab *pNew = 0;          /* New virtual table */
507   const char *zModule = argv[0];
508   const char *zDb = argv[1];
509 
510   if( argc!=4 ){
511     *pzErr = sqlite3_mprintf(
512         "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule
513     );
514     rc = SQLITE_ERROR;
515   }else{
516     int nModule;                  /* Length of zModule, in bytes */
517 
518     nModule = (int)strlen(zModule);
519     pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1);
520     if( pNew==0 ){
521       rc = SQLITE_NOMEM;
522     }else{
523       char *zTab;                 /* Dequoted name of fuzzer data table */
524 
525       memset(pNew, 0, sizeof(*pNew));
526       pNew->zClassName = (char*)&pNew[1];
527       memcpy(pNew->zClassName, zModule, nModule+1);
528 
529       zTab = fuzzerDequote(argv[3]);
530       if( zTab==0 ){
531         rc = SQLITE_NOMEM;
532       }else{
533         rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr);
534         sqlite3_free(zTab);
535       }
536 
537       if( rc==SQLITE_OK ){
538         rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)");
539       }
540       if( rc!=SQLITE_OK ){
541         fuzzerDisconnect((sqlite3_vtab *)pNew);
542         pNew = 0;
543       }
544     }
545   }
546 
547   *ppVtab = (sqlite3_vtab *)pNew;
548   return rc;
549 }
550 
551 /*
552 ** Open a new fuzzer cursor.
553 */
fuzzerOpen(sqlite3_vtab * pVTab,sqlite3_vtab_cursor ** ppCursor)554 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
555   fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
556   fuzzer_cursor *pCur;
557   pCur = sqlite3_malloc( sizeof(*pCur) );
558   if( pCur==0 ) return SQLITE_NOMEM;
559   memset(pCur, 0, sizeof(*pCur));
560   pCur->pVtab = p;
561   *ppCursor = &pCur->base;
562   p->nCursor++;
563   return SQLITE_OK;
564 }
565 
566 /*
567 ** Free all stems in a list.
568 */
fuzzerClearStemList(fuzzer_stem * pStem)569 static void fuzzerClearStemList(fuzzer_stem *pStem){
570   while( pStem ){
571     fuzzer_stem *pNext = pStem->pNext;
572     sqlite3_free(pStem);
573     pStem = pNext;
574   }
575 }
576 
577 /*
578 ** Free up all the memory allocated by a cursor.  Set it rLimit to 0
579 ** to indicate that it is at EOF.
580 */
fuzzerClearCursor(fuzzer_cursor * pCur,int clearHash)581 static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
582   int i;
583   fuzzerClearStemList(pCur->pStem);
584   fuzzerClearStemList(pCur->pDone);
585   for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
586   pCur->rLimit = (fuzzer_cost)0;
587   if( clearHash && pCur->nStem ){
588     pCur->mxQueue = 0;
589     pCur->pStem = 0;
590     pCur->pDone = 0;
591     memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
592     memset(pCur->apHash, 0, sizeof(pCur->apHash));
593   }
594   pCur->nStem = 0;
595 }
596 
597 /*
598 ** Close a fuzzer cursor.
599 */
fuzzerClose(sqlite3_vtab_cursor * cur)600 static int fuzzerClose(sqlite3_vtab_cursor *cur){
601   fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
602   fuzzerClearCursor(pCur, 0);
603   sqlite3_free(pCur->zBuf);
604   pCur->pVtab->nCursor--;
605   sqlite3_free(pCur);
606   return SQLITE_OK;
607 }
608 
609 /*
610 ** Compute the current output term for a fuzzer_stem.
611 */
fuzzerRender(fuzzer_stem * pStem,char ** pzBuf,int * pnBuf)612 static int fuzzerRender(
613   fuzzer_stem *pStem,   /* The stem to be rendered */
614   char **pzBuf,         /* Write results into this buffer.  realloc if needed */
615   int *pnBuf            /* Size of the buffer */
616 ){
617   const fuzzer_rule *pRule = pStem->pRule;
618   int n;                          /* Size of output term without nul-term */
619   char *z;                        /* Buffer to assemble output term in */
620 
621   n = pStem->nBasis + pRule->nTo - pRule->nFrom;
622   if( (*pnBuf)<n+1 ){
623     (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
624     if( (*pzBuf)==0 ) return SQLITE_NOMEM;
625     (*pnBuf) = n+100;
626   }
627   n = pStem->n;
628   z = *pzBuf;
629   if( n<0 ){
630     memcpy(z, pStem->zBasis, pStem->nBasis+1);
631   }else{
632     memcpy(z, pStem->zBasis, n);
633     memcpy(&z[n], pRule->zTo, pRule->nTo);
634     memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
635            pStem->nBasis-n-pRule->nFrom+1);
636   }
637 
638   assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 );
639   return SQLITE_OK;
640 }
641 
642 /*
643 ** Compute a hash on zBasis.
644 */
fuzzerHash(const char * z)645 static unsigned int fuzzerHash(const char *z){
646   unsigned int h = 0;
647   while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
648   return h % FUZZER_HASH;
649 }
650 
651 /*
652 ** Current cost of a stem
653 */
fuzzerCost(fuzzer_stem * pStem)654 static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
655   return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
656 }
657 
658 #if 0
659 /*
660 ** Print a description of a fuzzer_stem on stderr.
661 */
662 static void fuzzerStemPrint(
663   const char *zPrefix,
664   fuzzer_stem *pStem,
665   const char *zSuffix
666 ){
667   if( pStem->n<0 ){
668     fprintf(stderr, "%s[%s](%d)-->self%s",
669        zPrefix,
670        pStem->zBasis, pStem->rBaseCost,
671        zSuffix
672     );
673   }else{
674     char *zBuf = 0;
675     int nBuf = 0;
676     if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
677     fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
678       zPrefix,
679       pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
680       zSuffix
681     );
682     sqlite3_free(zBuf);
683   }
684 }
685 #endif
686 
687 /*
688 ** Return 1 if the string to which the cursor is point has already
689 ** been emitted.  Return 0 if not.  Return -1 on a memory allocation
690 ** failures.
691 */
fuzzerSeen(fuzzer_cursor * pCur,fuzzer_stem * pStem)692 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
693   unsigned int h;
694   fuzzer_stem *pLookup;
695 
696   if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
697     return -1;
698   }
699   h = fuzzerHash(pCur->zBuf);
700   pLookup = pCur->apHash[h];
701   while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
702     pLookup = pLookup->pHash;
703   }
704   return pLookup!=0;
705 }
706 
707 /*
708 ** If argument pRule is NULL, this function returns false.
709 **
710 ** Otherwise, it returns true if rule pRule should be skipped. A rule
711 ** should be skipped if it does not belong to rule-set iRuleset, or if
712 ** applying it to stem pStem would create a string longer than
713 ** FUZZER_MX_OUTPUT_LENGTH bytes.
714 */
fuzzerSkipRule(const fuzzer_rule * pRule,fuzzer_stem * pStem,int iRuleset)715 static int fuzzerSkipRule(
716   const fuzzer_rule *pRule,       /* Determine whether or not to skip this */
717   fuzzer_stem *pStem,             /* Stem rule may be applied to */
718   int iRuleset                    /* Rule-set used by the current query */
719 ){
720   return pRule && (
721       (pRule->iRuleset!=iRuleset)
722    || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH
723   );
724 }
725 
726 /*
727 ** Advance a fuzzer_stem to its next value.   Return 0 if there are
728 ** no more values that can be generated by this fuzzer_stem.  Return
729 ** -1 on a memory allocation failure.
730 */
fuzzerAdvance(fuzzer_cursor * pCur,fuzzer_stem * pStem)731 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
732   const fuzzer_rule *pRule;
733   while( (pRule = pStem->pRule)!=0 ){
734     assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset );
735     while( pStem->n < pStem->nBasis - pRule->nFrom ){
736       pStem->n++;
737       if( pRule->nFrom==0
738        || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
739       ){
740         /* Found a rewrite case.  Make sure it is not a duplicate */
741         int rc = fuzzerSeen(pCur, pStem);
742         if( rc<0 ) return -1;
743         if( rc==0 ){
744           fuzzerCost(pStem);
745           return 1;
746         }
747       }
748     }
749     pStem->n = -1;
750     do{
751       pRule = pRule->pNext;
752     }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) );
753     pStem->pRule = pRule;
754     if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
755   }
756   return 0;
757 }
758 
759 /*
760 ** The two input stem lists are both sorted in order of increasing
761 ** rCostX.  Merge them together into a single list, sorted by rCostX, and
762 ** return a pointer to the head of that new list.
763 */
fuzzerMergeStems(fuzzer_stem * pA,fuzzer_stem * pB)764 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
765   fuzzer_stem head;
766   fuzzer_stem *pTail;
767 
768   pTail =  &head;
769   while( pA && pB ){
770     if( pA->rCostX<=pB->rCostX ){
771       pTail->pNext = pA;
772       pTail = pA;
773       pA = pA->pNext;
774     }else{
775       pTail->pNext = pB;
776       pTail = pB;
777       pB = pB->pNext;
778     }
779   }
780   if( pA==0 ){
781     pTail->pNext = pB;
782   }else{
783     pTail->pNext = pA;
784   }
785   return head.pNext;
786 }
787 
788 /*
789 ** Load pCur->pStem with the lowest-cost stem.  Return a pointer
790 ** to the lowest-cost stem.
791 */
fuzzerLowestCostStem(fuzzer_cursor * pCur)792 static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
793   fuzzer_stem *pBest, *pX;
794   int iBest;
795   int i;
796 
797   if( pCur->pStem==0 ){
798     iBest = -1;
799     pBest = 0;
800     for(i=0; i<=pCur->mxQueue; i++){
801       pX = pCur->aQueue[i];
802       if( pX==0 ) continue;
803       if( pBest==0 || pBest->rCostX>pX->rCostX ){
804         pBest = pX;
805         iBest = i;
806       }
807     }
808     if( pBest ){
809       pCur->aQueue[iBest] = pBest->pNext;
810       pBest->pNext = 0;
811       pCur->pStem = pBest;
812     }
813   }
814   return pCur->pStem;
815 }
816 
817 /*
818 ** Insert pNew into queue of pending stems.  Then find the stem
819 ** with the lowest rCostX and move it into pCur->pStem.
820 ** list.  The insert is done such the pNew is in the correct order
821 ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
822 */
fuzzerInsert(fuzzer_cursor * pCur,fuzzer_stem * pNew)823 static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
824   fuzzer_stem *pX;
825   int i;
826 
827   /* If pCur->pStem exists and is greater than pNew, then make pNew
828   ** the new pCur->pStem and insert the old pCur->pStem instead.
829   */
830   if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
831     pNew->pNext = 0;
832     pCur->pStem = pNew;
833     pNew = pX;
834   }
835 
836   /* Insert the new value */
837   pNew->pNext = 0;
838   pX = pNew;
839   for(i=0; i<=pCur->mxQueue; i++){
840     if( pCur->aQueue[i] ){
841       pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
842       pCur->aQueue[i] = 0;
843     }else{
844       pCur->aQueue[i] = pX;
845       break;
846     }
847   }
848   if( i>pCur->mxQueue ){
849     if( i<FUZZER_NQUEUE ){
850       pCur->mxQueue = i;
851       pCur->aQueue[i] = pX;
852     }else{
853       assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
854       pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
855       pCur->aQueue[FUZZER_NQUEUE-1] = pX;
856     }
857   }
858 
859   return fuzzerLowestCostStem(pCur);
860 }
861 
862 /*
863 ** Allocate a new fuzzer_stem.  Add it to the hash table but do not
864 ** link it into either the pCur->pStem or pCur->pDone lists.
865 */
fuzzerNewStem(fuzzer_cursor * pCur,const char * zWord,fuzzer_cost rBaseCost)866 static fuzzer_stem *fuzzerNewStem(
867   fuzzer_cursor *pCur,
868   const char *zWord,
869   fuzzer_cost rBaseCost
870 ){
871   fuzzer_stem *pNew;
872   fuzzer_rule *pRule;
873   unsigned int h;
874 
875   pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 );
876   if( pNew==0 ) return 0;
877   memset(pNew, 0, sizeof(*pNew));
878   pNew->zBasis = (char*)&pNew[1];
879   pNew->nBasis = (fuzzer_len)strlen(zWord);
880   memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
881   pRule = pCur->pVtab->pRule;
882   while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){
883     pRule = pRule->pNext;
884   }
885   pNew->pRule = pRule;
886   pNew->n = -1;
887   pNew->rBaseCost = pNew->rCostX = rBaseCost;
888   h = fuzzerHash(pNew->zBasis);
889   pNew->pHash = pCur->apHash[h];
890   pCur->apHash[h] = pNew;
891   pCur->nStem++;
892   return pNew;
893 }
894 
895 
896 /*
897 ** Advance a cursor to its next row of output
898 */
fuzzerNext(sqlite3_vtab_cursor * cur)899 static int fuzzerNext(sqlite3_vtab_cursor *cur){
900   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
901   int rc;
902   fuzzer_stem *pStem, *pNew;
903 
904   pCur->iRowid++;
905 
906   /* Use the element the cursor is currently point to to create
907   ** a new stem and insert the new stem into the priority queue.
908   */
909   pStem = pCur->pStem;
910   if( pStem->rCostX>0 ){
911     rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
912     if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
913     pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
914     if( pNew ){
915       if( fuzzerAdvance(pCur, pNew)==0 ){
916         pNew->pNext = pCur->pDone;
917         pCur->pDone = pNew;
918       }else{
919         if( fuzzerInsert(pCur, pNew)==pNew ){
920           return SQLITE_OK;
921         }
922       }
923     }else{
924       return SQLITE_NOMEM;
925     }
926   }
927 
928   /* Adjust the priority queue so that the first element of the
929   ** stem list is the next lowest cost word.
930   */
931   while( (pStem = pCur->pStem)!=0 ){
932     int res = fuzzerAdvance(pCur, pStem);
933     if( res<0 ){
934       return SQLITE_NOMEM;
935     }else if( res>0 ){
936       pCur->pStem = 0;
937       pStem = fuzzerInsert(pCur, pStem);
938       if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
939         if( rc<0 ) return SQLITE_NOMEM;
940         continue;
941       }
942       return SQLITE_OK;  /* New word found */
943     }
944     pCur->pStem = 0;
945     pStem->pNext = pCur->pDone;
946     pCur->pDone = pStem;
947     if( fuzzerLowestCostStem(pCur) ){
948       rc = fuzzerSeen(pCur, pCur->pStem);
949       if( rc<0 ) return SQLITE_NOMEM;
950       if( rc==0 ){
951         return SQLITE_OK;
952       }
953     }
954   }
955 
956   /* Reach this point only if queue has been exhausted and there is
957   ** nothing left to be output. */
958   pCur->rLimit = (fuzzer_cost)0;
959   return SQLITE_OK;
960 }
961 
962 /*
963 ** Called to "rewind" a cursor back to the beginning so that
964 ** it starts its output over again.  Always called at least once
965 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
966 */
fuzzerFilter(sqlite3_vtab_cursor * pVtabCursor,int idxNum,const char * idxStr,int argc,sqlite3_value ** argv)967 static int fuzzerFilter(
968   sqlite3_vtab_cursor *pVtabCursor,
969   int idxNum, const char *idxStr,
970   int argc, sqlite3_value **argv
971 ){
972   fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
973   const char *zWord = "";
974   fuzzer_stem *pStem;
975   int idx;
976 
977   fuzzerClearCursor(pCur, 1);
978   pCur->rLimit = 2147483647;
979   idx = 0;
980   if( idxNum & 1 ){
981     zWord = (const char*)sqlite3_value_text(argv[0]);
982     idx++;
983   }
984   if( idxNum & 2 ){
985     pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]);
986     idx++;
987   }
988   if( idxNum & 4 ){
989     pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]);
990     idx++;
991   }
992   pCur->nullRule.pNext = pCur->pVtab->pRule;
993   pCur->nullRule.rCost = 0;
994   pCur->nullRule.nFrom = 0;
995   pCur->nullRule.nTo = 0;
996   pCur->nullRule.zFrom = "";
997   pCur->iRowid = 1;
998   assert( pCur->pStem==0 );
999 
1000   /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this
1001   ** query will return zero rows.  */
1002   if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){
1003     pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
1004     if( pStem==0 ) return SQLITE_NOMEM;
1005     pStem->pRule = &pCur->nullRule;
1006     pStem->n = pStem->nBasis;
1007   }else{
1008     pCur->rLimit = 0;
1009   }
1010 
1011   return SQLITE_OK;
1012 }
1013 
1014 /*
1015 ** Only the word and distance columns have values.  All other columns
1016 ** return NULL
1017 */
fuzzerColumn(sqlite3_vtab_cursor * cur,sqlite3_context * ctx,int i)1018 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
1019   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1020   if( i==0 ){
1021     /* the "word" column */
1022     if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
1023       return SQLITE_NOMEM;
1024     }
1025     sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
1026   }else if( i==1 ){
1027     /* the "distance" column */
1028     sqlite3_result_int(ctx, pCur->pStem->rCostX);
1029   }else{
1030     /* All other columns are NULL */
1031     sqlite3_result_null(ctx);
1032   }
1033   return SQLITE_OK;
1034 }
1035 
1036 /*
1037 ** The rowid.
1038 */
fuzzerRowid(sqlite3_vtab_cursor * cur,sqlite_int64 * pRowid)1039 static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
1040   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1041   *pRowid = pCur->iRowid;
1042   return SQLITE_OK;
1043 }
1044 
1045 /*
1046 ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
1047 ** that the cursor has nothing more to output.
1048 */
fuzzerEof(sqlite3_vtab_cursor * cur)1049 static int fuzzerEof(sqlite3_vtab_cursor *cur){
1050   fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1051   return pCur->rLimit<=(fuzzer_cost)0;
1052 }
1053 
1054 /*
1055 ** Search for terms of these forms:
1056 **
1057 **   (A)    word MATCH $str
1058 **   (B1)   distance < $value
1059 **   (B2)   distance <= $value
1060 **   (C)    ruleid == $ruleid
1061 **
1062 ** The distance< and distance<= are both treated as distance<=.
1063 ** The query plan number is a bit vector:
1064 **
1065 **   bit 1:   Term of the form (A) found
1066 **   bit 2:   Term like (B1) or (B2) found
1067 **   bit 3:   Term like (C) found
1068 **
1069 ** If bit-1 is set, $str is always in filter.argv[0].  If bit-2 is set
1070 ** then $value is in filter.argv[0] if bit-1 is clear and is in
1071 ** filter.argv[1] if bit-1 is set.  If bit-3 is set, then $ruleid is
1072 ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
1073 ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
1074 ** filter.argv[2] if both bit-1 and bit-2 are set.
1075 */
fuzzerBestIndex(sqlite3_vtab * tab,sqlite3_index_info * pIdxInfo)1076 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
1077   int iPlan = 0;
1078   int iDistTerm = -1;
1079   int iRulesetTerm = -1;
1080   int i;
1081   int seenMatch = 0;
1082   const struct sqlite3_index_constraint *pConstraint;
1083   double rCost = 1e12;
1084 
1085   pConstraint = pIdxInfo->aConstraint;
1086   for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
1087     if( pConstraint->iColumn==0
1088      && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1089       seenMatch = 1;
1090     }
1091     if( pConstraint->usable==0 ) continue;
1092     if( (iPlan & 1)==0
1093      && pConstraint->iColumn==0
1094      && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
1095     ){
1096       iPlan |= 1;
1097       pIdxInfo->aConstraintUsage[i].argvIndex = 1;
1098       pIdxInfo->aConstraintUsage[i].omit = 1;
1099       rCost /= 1e6;
1100     }
1101     if( (iPlan & 2)==0
1102      && pConstraint->iColumn==1
1103      && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
1104            || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
1105     ){
1106       iPlan |= 2;
1107       iDistTerm = i;
1108       rCost /= 10.0;
1109     }
1110     if( (iPlan & 4)==0
1111      && pConstraint->iColumn==2
1112      && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
1113     ){
1114       iPlan |= 4;
1115       pIdxInfo->aConstraintUsage[i].omit = 1;
1116       iRulesetTerm = i;
1117       rCost /= 10.0;
1118     }
1119   }
1120   if( iPlan & 2 ){
1121     pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
1122   }
1123   if( iPlan & 4 ){
1124     int idx = 1;
1125     if( iPlan & 1 ) idx++;
1126     if( iPlan & 2 ) idx++;
1127     pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
1128   }
1129   pIdxInfo->idxNum = iPlan;
1130   if( pIdxInfo->nOrderBy==1
1131    && pIdxInfo->aOrderBy[0].iColumn==1
1132    && pIdxInfo->aOrderBy[0].desc==0
1133   ){
1134     pIdxInfo->orderByConsumed = 1;
1135   }
1136   if( seenMatch && (iPlan&1)==0 ) rCost = 1e99;
1137   pIdxInfo->estimatedCost = rCost;
1138 
1139   return SQLITE_OK;
1140 }
1141 
1142 /*
1143 ** A virtual table module that implements the "fuzzer".
1144 */
1145 static sqlite3_module fuzzerModule = {
1146   0,                           /* iVersion */
1147   fuzzerConnect,
1148   fuzzerConnect,
1149   fuzzerBestIndex,
1150   fuzzerDisconnect,
1151   fuzzerDisconnect,
1152   fuzzerOpen,                  /* xOpen - open a cursor */
1153   fuzzerClose,                 /* xClose - close a cursor */
1154   fuzzerFilter,                /* xFilter - configure scan constraints */
1155   fuzzerNext,                  /* xNext - advance a cursor */
1156   fuzzerEof,                   /* xEof - check for end of scan */
1157   fuzzerColumn,                /* xColumn - read data */
1158   fuzzerRowid,                 /* xRowid - read data */
1159   0,                           /* xUpdate */
1160   0,                           /* xBegin */
1161   0,                           /* xSync */
1162   0,                           /* xCommit */
1163   0,                           /* xRollback */
1164   0,                           /* xFindMethod */
1165   0,                           /* xRename */
1166 };
1167 
1168 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1169 
1170 
1171 #ifdef _WIN32
1172 __declspec(dllexport)
1173 #endif
sqlite3_fuzzer_init(sqlite3 * db,char ** pzErrMsg,const sqlite3_api_routines * pApi)1174 int sqlite3_fuzzer_init(
1175   sqlite3 *db,
1176   char **pzErrMsg,
1177   const sqlite3_api_routines *pApi
1178 ){
1179   int rc = SQLITE_OK;
1180   SQLITE_EXTENSION_INIT2(pApi);
1181 #ifndef SQLITE_OMIT_VIRTUALTABLE
1182   rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
1183 #endif
1184   return rc;
1185 }
1186