1 /*
2 ** 2001 September 22
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the implementation of generic hash-tables used in SQLite.
13 ** We've modified it slightly to serve as a standalone hash table
14 ** implementation for the full-text indexing module.
15 */
16 #include <assert.h>
17 #include <stdlib.h>
18 #include <string.h>
19 
20 /*
21 ** The code in this file is only compiled if:
22 **
23 **     * The FTS1 module is being built as an extension
24 **       (in which case SQLITE_CORE is not defined), or
25 **
26 **     * The FTS1 module is being built into the core of
27 **       SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
28 */
29 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
30 
31 
32 #include "fts1_hash.h"
33 
malloc_and_zero(int n)34 static void *malloc_and_zero(int n){
35   void *p = malloc(n);
36   if( p ){
37     memset(p, 0, n);
38   }
39   return p;
40 }
41 
42 /* Turn bulk memory into a hash table object by initializing the
43 ** fields of the Hash structure.
44 **
45 ** "pNew" is a pointer to the hash table that is to be initialized.
46 ** keyClass is one of the constants
47 ** FTS1_HASH_BINARY or FTS1_HASH_STRING.  The value of keyClass
48 ** determines what kind of key the hash table will use.  "copyKey" is
49 ** true if the hash table should make its own private copy of keys and
50 ** false if it should just use the supplied pointer.
51 */
sqlite3Fts1HashInit(fts1Hash * pNew,int keyClass,int copyKey)52 void sqlite3Fts1HashInit(fts1Hash *pNew, int keyClass, int copyKey){
53   assert( pNew!=0 );
54   assert( keyClass>=FTS1_HASH_STRING && keyClass<=FTS1_HASH_BINARY );
55   pNew->keyClass = keyClass;
56   pNew->copyKey = copyKey;
57   pNew->first = 0;
58   pNew->count = 0;
59   pNew->htsize = 0;
60   pNew->ht = 0;
61   pNew->xMalloc = malloc_and_zero;
62   pNew->xFree = free;
63 }
64 
65 /* Remove all entries from a hash table.  Reclaim all memory.
66 ** Call this routine to delete a hash table or to reset a hash table
67 ** to the empty state.
68 */
sqlite3Fts1HashClear(fts1Hash * pH)69 void sqlite3Fts1HashClear(fts1Hash *pH){
70   fts1HashElem *elem;         /* For looping over all elements of the table */
71 
72   assert( pH!=0 );
73   elem = pH->first;
74   pH->first = 0;
75   if( pH->ht ) pH->xFree(pH->ht);
76   pH->ht = 0;
77   pH->htsize = 0;
78   while( elem ){
79     fts1HashElem *next_elem = elem->next;
80     if( pH->copyKey && elem->pKey ){
81       pH->xFree(elem->pKey);
82     }
83     pH->xFree(elem);
84     elem = next_elem;
85   }
86   pH->count = 0;
87 }
88 
89 /*
90 ** Hash and comparison functions when the mode is FTS1_HASH_STRING
91 */
strHash(const void * pKey,int nKey)92 static int strHash(const void *pKey, int nKey){
93   const char *z = (const char *)pKey;
94   int h = 0;
95   if( nKey<=0 ) nKey = (int) strlen(z);
96   while( nKey > 0  ){
97     h = (h<<3) ^ h ^ *z++;
98     nKey--;
99   }
100   return h & 0x7fffffff;
101 }
strCompare(const void * pKey1,int n1,const void * pKey2,int n2)102 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
103   if( n1!=n2 ) return 1;
104   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
105 }
106 
107 /*
108 ** Hash and comparison functions when the mode is FTS1_HASH_BINARY
109 */
binHash(const void * pKey,int nKey)110 static int binHash(const void *pKey, int nKey){
111   int h = 0;
112   const char *z = (const char *)pKey;
113   while( nKey-- > 0 ){
114     h = (h<<3) ^ h ^ *(z++);
115   }
116   return h & 0x7fffffff;
117 }
binCompare(const void * pKey1,int n1,const void * pKey2,int n2)118 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
119   if( n1!=n2 ) return 1;
120   return memcmp(pKey1,pKey2,n1);
121 }
122 
123 /*
124 ** Return a pointer to the appropriate hash function given the key class.
125 **
126 ** The C syntax in this function definition may be unfamilar to some
127 ** programmers, so we provide the following additional explanation:
128 **
129 ** The name of the function is "hashFunction".  The function takes a
130 ** single parameter "keyClass".  The return value of hashFunction()
131 ** is a pointer to another function.  Specifically, the return value
132 ** of hashFunction() is a pointer to a function that takes two parameters
133 ** with types "const void*" and "int" and returns an "int".
134 */
hashFunction(int keyClass)135 static int (*hashFunction(int keyClass))(const void*,int){
136   if( keyClass==FTS1_HASH_STRING ){
137     return &strHash;
138   }else{
139     assert( keyClass==FTS1_HASH_BINARY );
140     return &binHash;
141   }
142 }
143 
144 /*
145 ** Return a pointer to the appropriate hash function given the key class.
146 **
147 ** For help in interpreted the obscure C code in the function definition,
148 ** see the header comment on the previous function.
149 */
compareFunction(int keyClass)150 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
151   if( keyClass==FTS1_HASH_STRING ){
152     return &strCompare;
153   }else{
154     assert( keyClass==FTS1_HASH_BINARY );
155     return &binCompare;
156   }
157 }
158 
159 /* Link an element into the hash table
160 */
insertElement(fts1Hash * pH,struct _fts1ht * pEntry,fts1HashElem * pNew)161 static void insertElement(
162   fts1Hash *pH,            /* The complete hash table */
163   struct _fts1ht *pEntry,  /* The entry into which pNew is inserted */
164   fts1HashElem *pNew       /* The element to be inserted */
165 ){
166   fts1HashElem *pHead;     /* First element already in pEntry */
167   pHead = pEntry->chain;
168   if( pHead ){
169     pNew->next = pHead;
170     pNew->prev = pHead->prev;
171     if( pHead->prev ){ pHead->prev->next = pNew; }
172     else             { pH->first = pNew; }
173     pHead->prev = pNew;
174   }else{
175     pNew->next = pH->first;
176     if( pH->first ){ pH->first->prev = pNew; }
177     pNew->prev = 0;
178     pH->first = pNew;
179   }
180   pEntry->count++;
181   pEntry->chain = pNew;
182 }
183 
184 
185 /* Resize the hash table so that it cantains "new_size" buckets.
186 ** "new_size" must be a power of 2.  The hash table might fail
187 ** to resize if sqliteMalloc() fails.
188 */
rehash(fts1Hash * pH,int new_size)189 static void rehash(fts1Hash *pH, int new_size){
190   struct _fts1ht *new_ht;          /* The new hash table */
191   fts1HashElem *elem, *next_elem;  /* For looping over existing elements */
192   int (*xHash)(const void*,int);   /* The hash function */
193 
194   assert( (new_size & (new_size-1))==0 );
195   new_ht = (struct _fts1ht *)pH->xMalloc( new_size*sizeof(struct _fts1ht) );
196   if( new_ht==0 ) return;
197   if( pH->ht ) pH->xFree(pH->ht);
198   pH->ht = new_ht;
199   pH->htsize = new_size;
200   xHash = hashFunction(pH->keyClass);
201   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
202     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
203     next_elem = elem->next;
204     insertElement(pH, &new_ht[h], elem);
205   }
206 }
207 
208 /* This function (for internal use only) locates an element in an
209 ** hash table that matches the given key.  The hash for this key has
210 ** already been computed and is passed as the 4th parameter.
211 */
findElementGivenHash(const fts1Hash * pH,const void * pKey,int nKey,int h)212 static fts1HashElem *findElementGivenHash(
213   const fts1Hash *pH, /* The pH to be searched */
214   const void *pKey,   /* The key we are searching for */
215   int nKey,
216   int h               /* The hash for this key. */
217 ){
218   fts1HashElem *elem;            /* Used to loop thru the element list */
219   int count;                     /* Number of elements left to test */
220   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
221 
222   if( pH->ht ){
223     struct _fts1ht *pEntry = &pH->ht[h];
224     elem = pEntry->chain;
225     count = pEntry->count;
226     xCompare = compareFunction(pH->keyClass);
227     while( count-- && elem ){
228       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
229         return elem;
230       }
231       elem = elem->next;
232     }
233   }
234   return 0;
235 }
236 
237 /* Remove a single entry from the hash table given a pointer to that
238 ** element and a hash on the element's key.
239 */
removeElementGivenHash(fts1Hash * pH,fts1HashElem * elem,int h)240 static void removeElementGivenHash(
241   fts1Hash *pH,         /* The pH containing "elem" */
242   fts1HashElem* elem,   /* The element to be removed from the pH */
243   int h                 /* Hash value for the element */
244 ){
245   struct _fts1ht *pEntry;
246   if( elem->prev ){
247     elem->prev->next = elem->next;
248   }else{
249     pH->first = elem->next;
250   }
251   if( elem->next ){
252     elem->next->prev = elem->prev;
253   }
254   pEntry = &pH->ht[h];
255   if( pEntry->chain==elem ){
256     pEntry->chain = elem->next;
257   }
258   pEntry->count--;
259   if( pEntry->count<=0 ){
260     pEntry->chain = 0;
261   }
262   if( pH->copyKey && elem->pKey ){
263     pH->xFree(elem->pKey);
264   }
265   pH->xFree( elem );
266   pH->count--;
267   if( pH->count<=0 ){
268     assert( pH->first==0 );
269     assert( pH->count==0 );
270     fts1HashClear(pH);
271   }
272 }
273 
274 /* Attempt to locate an element of the hash table pH with a key
275 ** that matches pKey,nKey.  Return the data for this element if it is
276 ** found, or NULL if there is no match.
277 */
sqlite3Fts1HashFind(const fts1Hash * pH,const void * pKey,int nKey)278 void *sqlite3Fts1HashFind(const fts1Hash *pH, const void *pKey, int nKey){
279   int h;                 /* A hash on key */
280   fts1HashElem *elem;    /* The element that matches key */
281   int (*xHash)(const void*,int);  /* The hash function */
282 
283   if( pH==0 || pH->ht==0 ) return 0;
284   xHash = hashFunction(pH->keyClass);
285   assert( xHash!=0 );
286   h = (*xHash)(pKey,nKey);
287   assert( (pH->htsize & (pH->htsize-1))==0 );
288   elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
289   return elem ? elem->data : 0;
290 }
291 
292 /* Insert an element into the hash table pH.  The key is pKey,nKey
293 ** and the data is "data".
294 **
295 ** If no element exists with a matching key, then a new
296 ** element is created.  A copy of the key is made if the copyKey
297 ** flag is set.  NULL is returned.
298 **
299 ** If another element already exists with the same key, then the
300 ** new data replaces the old data and the old data is returned.
301 ** The key is not copied in this instance.  If a malloc fails, then
302 ** the new data is returned and the hash table is unchanged.
303 **
304 ** If the "data" parameter to this function is NULL, then the
305 ** element corresponding to "key" is removed from the hash table.
306 */
sqlite3Fts1HashInsert(fts1Hash * pH,const void * pKey,int nKey,void * data)307 void *sqlite3Fts1HashInsert(
308   fts1Hash *pH,        /* The hash table to insert into */
309   const void *pKey,    /* The key */
310   int nKey,            /* Number of bytes in the key */
311   void *data           /* The data */
312 ){
313   int hraw;                 /* Raw hash value of the key */
314   int h;                    /* the hash of the key modulo hash table size */
315   fts1HashElem *elem;       /* Used to loop thru the element list */
316   fts1HashElem *new_elem;   /* New element added to the pH */
317   int (*xHash)(const void*,int);  /* The hash function */
318 
319   assert( pH!=0 );
320   xHash = hashFunction(pH->keyClass);
321   assert( xHash!=0 );
322   hraw = (*xHash)(pKey, nKey);
323   assert( (pH->htsize & (pH->htsize-1))==0 );
324   h = hraw & (pH->htsize-1);
325   elem = findElementGivenHash(pH,pKey,nKey,h);
326   if( elem ){
327     void *old_data = elem->data;
328     if( data==0 ){
329       removeElementGivenHash(pH,elem,h);
330     }else{
331       elem->data = data;
332     }
333     return old_data;
334   }
335   if( data==0 ) return 0;
336   new_elem = (fts1HashElem*)pH->xMalloc( sizeof(fts1HashElem) );
337   if( new_elem==0 ) return data;
338   if( pH->copyKey && pKey!=0 ){
339     new_elem->pKey = pH->xMalloc( nKey );
340     if( new_elem->pKey==0 ){
341       pH->xFree(new_elem);
342       return data;
343     }
344     memcpy((void*)new_elem->pKey, pKey, nKey);
345   }else{
346     new_elem->pKey = (void*)pKey;
347   }
348   new_elem->nKey = nKey;
349   pH->count++;
350   if( pH->htsize==0 ){
351     rehash(pH,8);
352     if( pH->htsize==0 ){
353       pH->count = 0;
354       pH->xFree(new_elem);
355       return data;
356     }
357   }
358   if( pH->count > pH->htsize ){
359     rehash(pH,pH->htsize*2);
360   }
361   assert( pH->htsize>0 );
362   assert( (pH->htsize & (pH->htsize-1))==0 );
363   h = hraw & (pH->htsize-1);
364   insertElement(pH, &pH->ht[h], new_elem);
365   new_elem->data = data;
366   return 0;
367 }
368 
369 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */
370