1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator.  The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
15 
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
22 
23 
24 #ifndef __WIN32__
25 #   if defined(_WIN32) || defined(WIN32)
26 #       define __WIN32__
27 #   endif
28 #endif
29 
30 #ifdef __WIN32__
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 extern int access(const char *path, int mode);
35 #ifdef __cplusplus
36 }
37 #endif
38 #else
39 #include <unistd.h>
40 #endif
41 
42 /* #define PRIVATE static */
43 #define PRIVATE
44 
45 #ifdef TEST
46 #define MAXRHS 5       /* Set low to exercise exception code */
47 #else
48 #define MAXRHS 1000
49 #endif
50 
51 extern void memory_error();
52 static int showPrecedenceConflict = 0;
53 static char *msort(char*,char**,int(*)(const char*,const char*));
54 
55 /*
56 ** Compilers are getting increasingly pedantic about type conversions
57 ** as C evolves ever closer to Ada....  To work around the latest problems
58 ** we have to define the following variant of strlen().
59 */
60 #define lemonStrlen(X)   ((int)strlen(X))
61 
62 /*
63 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
64 ** saying they are unsafe.  So we define our own versions of those routines too.
65 **
66 ** There are three routines here:  lemon_sprintf(), lemon_vsprintf(), and
67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
69 ** buffer, making sure the buffer is always zero-terminated.
70 **
71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
72 ** a few simply conversions:
73 **
74 **   %d
75 **   %s
76 **   %.*s
77 **
78 */
lemon_addtext(char * zBuf,int * pnUsed,const char * zIn,int nIn,int iWidth)79 static void lemon_addtext(
80   char *zBuf,           /* The buffer to which text is added */
81   int *pnUsed,          /* Slots of the buffer used so far */
82   const char *zIn,      /* Text to add */
83   int nIn,              /* Bytes of text to add.  -1 to use strlen() */
84   int iWidth            /* Field width.  Negative to left justify */
85 ){
86   if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
87   while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
88   if( nIn==0 ) return;
89   memcpy(&zBuf[*pnUsed], zIn, nIn);
90   *pnUsed += nIn;
91   while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
92   zBuf[*pnUsed] = 0;
93 }
lemon_vsprintf(char * str,const char * zFormat,va_list ap)94 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
95   int i, j, k, c;
96   int nUsed = 0;
97   const char *z;
98   char zTemp[50];
99   str[0] = 0;
100   for(i=j=0; (c = zFormat[i])!=0; i++){
101     if( c=='%' ){
102       int iWidth = 0;
103       lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
104       c = zFormat[++i];
105       if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
106         if( c=='-' ) i++;
107         while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
108         if( c=='-' ) iWidth = -iWidth;
109         c = zFormat[i];
110       }
111       if( c=='d' ){
112         int v = va_arg(ap, int);
113         if( v<0 ){
114           lemon_addtext(str, &nUsed, "-", 1, iWidth);
115           v = -v;
116         }else if( v==0 ){
117           lemon_addtext(str, &nUsed, "0", 1, iWidth);
118         }
119         k = 0;
120         while( v>0 ){
121           k++;
122           zTemp[sizeof(zTemp)-k] = (v%10) + '0';
123           v /= 10;
124         }
125         lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
126       }else if( c=='s' ){
127         z = va_arg(ap, const char*);
128         lemon_addtext(str, &nUsed, z, -1, iWidth);
129       }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
130         i += 2;
131         k = va_arg(ap, int);
132         z = va_arg(ap, const char*);
133         lemon_addtext(str, &nUsed, z, k, iWidth);
134       }else if( c=='%' ){
135         lemon_addtext(str, &nUsed, "%", 1, 0);
136       }else{
137         fprintf(stderr, "illegal format\n");
138         exit(1);
139       }
140       j = i+1;
141     }
142   }
143   lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
144   return nUsed;
145 }
lemon_sprintf(char * str,const char * format,...)146 static int lemon_sprintf(char *str, const char *format, ...){
147   va_list ap;
148   int rc;
149   va_start(ap, format);
150   rc = lemon_vsprintf(str, format, ap);
151   va_end(ap);
152   return rc;
153 }
lemon_strcpy(char * dest,const char * src)154 static void lemon_strcpy(char *dest, const char *src){
155   while( (*(dest++) = *(src++))!=0 ){}
156 }
lemon_strcat(char * dest,const char * src)157 static void lemon_strcat(char *dest, const char *src){
158   while( *dest ) dest++;
159   lemon_strcpy(dest, src);
160 }
161 
162 
163 /* a few forward declarations... */
164 struct rule;
165 struct lemon;
166 struct action;
167 
168 static struct action *Action_new(void);
169 static struct action *Action_sort(struct action *);
170 
171 /********** From the file "build.h" ************************************/
172 void FindRulePrecedences(struct lemon*);
173 void FindFirstSets(struct lemon*);
174 void FindStates(struct lemon*);
175 void FindLinks(struct lemon*);
176 void FindFollowSets(struct lemon*);
177 void FindActions(struct lemon*);
178 
179 /********* From the file "configlist.h" *********************************/
180 void Configlist_init(void);
181 struct config *Configlist_add(struct rule *, int);
182 struct config *Configlist_addbasis(struct rule *, int);
183 void Configlist_closure(struct lemon *);
184 void Configlist_sort(void);
185 void Configlist_sortbasis(void);
186 struct config *Configlist_return(void);
187 struct config *Configlist_basis(void);
188 void Configlist_eat(struct config *);
189 void Configlist_reset(void);
190 
191 /********* From the file "error.h" ***************************************/
192 void ErrorMsg(const char *, int,const char *, ...);
193 
194 /****** From the file "option.h" ******************************************/
195 enum option_type { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
196          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
197 struct s_options {
198   enum option_type type;
199   const char *label;
200   char *arg;
201   const char *message;
202 };
203 int    OptInit(char**,struct s_options*,FILE*);
204 int    OptNArgs(void);
205 char  *OptArg(int);
206 void   OptErr(int);
207 void   OptPrint(void);
208 
209 /******** From the file "parse.h" *****************************************/
210 void Parse(struct lemon *lemp);
211 
212 /********* From the file "plink.h" ***************************************/
213 struct plink *Plink_new(void);
214 void Plink_add(struct plink **, struct config *);
215 void Plink_copy(struct plink **, struct plink *);
216 void Plink_delete(struct plink *);
217 
218 /********** From the file "report.h" *************************************/
219 void Reprint(struct lemon *);
220 void ReportOutput(struct lemon *);
221 void ReportTable(struct lemon *, int, int);
222 void ReportHeader(struct lemon *);
223 void CompressTables(struct lemon *);
224 void ResortStates(struct lemon *);
225 
226 /********** From the file "set.h" ****************************************/
227 void  SetSize(int);             /* All sets will be of size N */
228 char *SetNew(void);               /* A new set for element 0..N */
229 void  SetFree(char*);             /* Deallocate a set */
230 int SetAdd(char*,int);            /* Add element to a set */
231 int SetUnion(char *,char *);    /* A <- A U B, thru element N */
232 #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
233 
234 /********** From the file "struct.h" *************************************/
235 /*
236 ** Principal data structures for the LEMON parser generator.
237 */
238 
239 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
240 
241 /* Symbols (terminals and nonterminals) of the grammar are stored
242 ** in the following: */
243 enum symbol_type {
244   TERMINAL,
245   NONTERMINAL,
246   MULTITERMINAL
247 };
248 enum e_assoc {
249     LEFT,
250     RIGHT,
251     NONE,
252     UNK
253 };
254 struct symbol {
255   const char *name;        /* Name of the symbol */
256   int index;               /* Index number for this symbol */
257   enum symbol_type type;   /* Symbols are all either TERMINALS or NTs */
258   struct rule *rule;       /* Linked list of rules of this (if an NT) */
259   struct symbol *fallback; /* fallback token in case this token doesn't parse */
260   int prec;                /* Precedence if defined (-1 otherwise) */
261   enum e_assoc assoc;      /* Associativity if precedence is defined */
262   char *firstset;          /* First-set for all rules of this symbol */
263   Boolean lambda;          /* True if NT and can generate an empty string */
264   int useCnt;              /* Number of times used */
265   char *destructor;        /* Code which executes whenever this symbol is
266                            ** popped from the stack during error processing */
267   int destLineno;          /* Line number for start of destructor.  Set to
268                            ** -1 for duplicate destructors. */
269   char *datatype;          /* The data type of information held by this
270                            ** object. Only used if type==NONTERMINAL */
271   int dtnum;               /* The data type number.  In the parser, the value
272                            ** stack is a union.  The .yy%d element of this
273                            ** union is the correct data type for this object */
274   int bContent;            /* True if this symbol ever carries content - if
275                            ** it is ever more than just syntax */
276   /* The following fields are used by MULTITERMINALs only */
277   int nsubsym;             /* Number of constituent symbols in the MULTI */
278   struct symbol **subsym;  /* Array of constituent symbols */
279 };
280 
281 /* Each production rule in the grammar is stored in the following
282 ** structure.  */
283 struct rule {
284   struct symbol *lhs;      /* Left-hand side of the rule */
285   const char *lhsalias;    /* Alias for the LHS (NULL if none) */
286   int lhsStart;            /* True if left-hand side is the start symbol */
287   int ruleline;            /* Line number for the rule */
288   int nrhs;                /* Number of RHS symbols */
289   struct symbol **rhs;     /* The RHS symbols */
290   const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
291   int line;                /* Line number at which code begins */
292   const char *code;        /* The code executed when this rule is reduced */
293   const char *codePrefix;  /* Setup code before code[] above */
294   const char *codeSuffix;  /* Breakdown code after code[] above */
295   struct symbol *precsym;  /* Precedence symbol for this rule */
296   int index;               /* An index number for this rule */
297   int iRule;               /* Rule number as used in the generated tables */
298   Boolean noCode;          /* True if this rule has no associated C code */
299   Boolean codeEmitted;     /* True if the code has been emitted already */
300   Boolean canReduce;       /* True if this rule is ever reduced */
301   Boolean doesReduce;      /* Reduce actions occur after optimization */
302   Boolean neverReduce;     /* Reduce is theoretically possible, but prevented
303                            ** by actions or other outside implementation */
304   struct rule *nextlhs;    /* Next rule with the same LHS */
305   struct rule *next;       /* Next rule in the global list */
306 };
307 
308 /* A configuration is a production rule of the grammar together with
309 ** a mark (dot) showing how much of that rule has been processed so far.
310 ** Configurations also contain a follow-set which is a list of terminal
311 ** symbols which are allowed to immediately follow the end of the rule.
312 ** Every configuration is recorded as an instance of the following: */
313 enum cfgstatus {
314   COMPLETE,
315   INCOMPLETE
316 };
317 struct config {
318   struct rule *rp;         /* The rule upon which the configuration is based */
319   int dot;                 /* The parse point */
320   char *fws;               /* Follow-set for this configuration only */
321   struct plink *fplp;      /* Follow-set forward propagation links */
322   struct plink *bplp;      /* Follow-set backwards propagation links */
323   struct state *stp;       /* Pointer to state which contains this */
324   enum cfgstatus status;   /* used during followset and shift computations */
325   struct config *next;     /* Next configuration in the state */
326   struct config *bp;       /* The next basis configuration */
327 };
328 
329 enum e_action {
330   SHIFT,
331   ACCEPT,
332   REDUCE,
333   ERROR,
334   SSCONFLICT,              /* A shift/shift conflict */
335   SRCONFLICT,              /* Was a reduce, but part of a conflict */
336   RRCONFLICT,              /* Was a reduce, but part of a conflict */
337   SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
338   RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
339   NOT_USED,                /* Deleted by compression */
340   SHIFTREDUCE              /* Shift first, then reduce */
341 };
342 
343 /* Every shift or reduce operation is stored as one of the following */
344 struct action {
345   struct symbol *sp;       /* The look-ahead symbol */
346   enum e_action type;
347   union {
348     struct state *stp;     /* The new state, if a shift */
349     struct rule *rp;       /* The rule, if a reduce */
350   } x;
351   struct symbol *spOpt;    /* SHIFTREDUCE optimization to this symbol */
352   struct action *next;     /* Next action for this state */
353   struct action *collide;  /* Next action with the same hash */
354 };
355 
356 /* Each state of the generated parser's finite state machine
357 ** is encoded as an instance of the following structure. */
358 struct state {
359   struct config *bp;       /* The basis configurations for this state */
360   struct config *cfp;      /* All configurations in this set */
361   int statenum;            /* Sequential number for this state */
362   struct action *ap;       /* List of actions for this state */
363   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
364   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
365   int iDfltReduce;         /* Default action is to REDUCE by this rule */
366   struct rule *pDfltReduce;/* The default REDUCE rule. */
367   int autoReduce;          /* True if this is an auto-reduce state */
368 };
369 #define NO_OFFSET (-2147483647)
370 
371 /* A followset propagation link indicates that the contents of one
372 ** configuration followset should be propagated to another whenever
373 ** the first changes. */
374 struct plink {
375   struct config *cfp;      /* The configuration to which linked */
376   struct plink *next;      /* The next propagate link */
377 };
378 
379 /* The state vector for the entire parser generator is recorded as
380 ** follows.  (LEMON uses no global variables and makes little use of
381 ** static variables.  Fields in the following structure can be thought
382 ** of as begin global variables in the program.) */
383 struct lemon {
384   struct state **sorted;   /* Table of states sorted by state number */
385   struct rule *rule;       /* List of all rules */
386   struct rule *startRule;  /* First rule */
387   int nstate;              /* Number of states */
388   int nxstate;             /* nstate with tail degenerate states removed */
389   int nrule;               /* Number of rules */
390   int nruleWithAction;     /* Number of rules with actions */
391   int nsymbol;             /* Number of terminal and nonterminal symbols */
392   int nterminal;           /* Number of terminal symbols */
393   int minShiftReduce;      /* Minimum shift-reduce action value */
394   int errAction;           /* Error action value */
395   int accAction;           /* Accept action value */
396   int noAction;            /* No-op action value */
397   int minReduce;           /* Minimum reduce action */
398   int maxAction;           /* Maximum action value of any kind */
399   struct symbol **symbols; /* Sorted array of pointers to symbols */
400   int errorcnt;            /* Number of errors */
401   struct symbol *errsym;   /* The error symbol */
402   struct symbol *wildcard; /* Token that matches anything */
403   char *name;              /* Name of the generated parser */
404   char *arg;               /* Declaration of the 3rd argument to parser */
405   char *ctx;               /* Declaration of 2nd argument to constructor */
406   char *tokentype;         /* Type of terminal symbols in the parser stack */
407   char *vartype;           /* The default type of non-terminal symbols */
408   char *start;             /* Name of the start symbol for the grammar */
409   char *stacksize;         /* Size of the parser stack */
410   char *include;           /* Code to put at the start of the C file */
411   char *error;             /* Code to execute when an error is seen */
412   char *overflow;          /* Code to execute on a stack overflow */
413   char *failure;           /* Code to execute on parser failure */
414   char *accept;            /* Code to execute when the parser excepts */
415   char *extracode;         /* Code appended to the generated file */
416   char *tokendest;         /* Code to execute to destroy token data */
417   char *vardest;           /* Code for the default non-terminal destructor */
418   char *filename;          /* Name of the input file */
419   char *outname;           /* Name of the current output file */
420   char *tokenprefix;       /* A prefix added to token names in the .h file */
421   int nconflict;           /* Number of parsing conflicts */
422   int nactiontab;          /* Number of entries in the yy_action[] table */
423   int nlookaheadtab;       /* Number of entries in yy_lookahead[] */
424   int tablesize;           /* Total table size of all tables in bytes */
425   int basisflag;           /* Print only basis configurations */
426   int printPreprocessed;   /* Show preprocessor output on stdout */
427   int has_fallback;        /* True if any %fallback is seen in the grammar */
428   int nolinenosflag;       /* True if #line statements should not be printed */
429   char *argv0;             /* Name of the program */
430 };
431 
432 #define MemoryCheck(X) if((X)==0){ \
433   extern void memory_error(); \
434   memory_error(); \
435 }
436 
437 /**************** From the file "table.h" *********************************/
438 /*
439 ** All code in this file has been automatically generated
440 ** from a specification in the file
441 **              "table.q"
442 ** by the associative array code building program "aagen".
443 ** Do not edit this file!  Instead, edit the specification
444 ** file, then rerun aagen.
445 */
446 /*
447 ** Code for processing tables in the LEMON parser generator.
448 */
449 /* Routines for handling a strings */
450 
451 const char *Strsafe(const char *);
452 
453 void Strsafe_init(void);
454 int Strsafe_insert(const char *);
455 const char *Strsafe_find(const char *);
456 
457 /* Routines for handling symbols of the grammar */
458 
459 struct symbol *Symbol_new(const char *);
460 int Symbolcmpp(const void *, const void *);
461 void Symbol_init(void);
462 int Symbol_insert(struct symbol *, const char *);
463 struct symbol *Symbol_find(const char *);
464 struct symbol *Symbol_Nth(int);
465 int Symbol_count(void);
466 struct symbol **Symbol_arrayof(void);
467 
468 /* Routines to manage the state table */
469 
470 int Configcmp(const char *, const char *);
471 struct state *State_new(void);
472 void State_init(void);
473 int State_insert(struct state *, struct config *);
474 struct state *State_find(struct config *);
475 struct state **State_arrayof(void);
476 
477 /* Routines used for efficiency in Configlist_add */
478 
479 void Configtable_init(void);
480 int Configtable_insert(struct config *);
481 struct config *Configtable_find(struct config *);
482 void Configtable_clear(int(*)(struct config *));
483 
484 /****************** From the file "action.c" *******************************/
485 /*
486 ** Routines processing parser actions in the LEMON parser generator.
487 */
488 
489 /* Allocate a new parser action */
Action_new(void)490 static struct action *Action_new(void){
491   static struct action *actionfreelist = 0;
492   struct action *newaction;
493 
494   if( actionfreelist==0 ){
495     int i;
496     int amt = 100;
497     actionfreelist = (struct action *)calloc(amt, sizeof(struct action));
498     if( actionfreelist==0 ){
499       fprintf(stderr,"Unable to allocate memory for a new parser action.");
500       exit(1);
501     }
502     for(i=0; i<amt-1; i++) actionfreelist[i].next = &actionfreelist[i+1];
503     actionfreelist[amt-1].next = 0;
504   }
505   newaction = actionfreelist;
506   actionfreelist = actionfreelist->next;
507   return newaction;
508 }
509 
510 /* Compare two actions for sorting purposes.  Return negative, zero, or
511 ** positive if the first action is less than, equal to, or greater than
512 ** the first
513 */
actioncmp(struct action * ap1,struct action * ap2)514 static int actioncmp(
515   struct action *ap1,
516   struct action *ap2
517 ){
518   int rc;
519   rc = ap1->sp->index - ap2->sp->index;
520   if( rc==0 ){
521     rc = (int)ap1->type - (int)ap2->type;
522   }
523   if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
524     rc = ap1->x.rp->index - ap2->x.rp->index;
525   }
526   if( rc==0 ){
527     rc = (int) (ap2 - ap1);
528   }
529   return rc;
530 }
531 
532 /* Sort parser actions */
Action_sort(struct action * ap)533 static struct action *Action_sort(
534   struct action *ap
535 ){
536   ap = (struct action *)msort((char *)ap,(char **)&ap->next,
537                               (int(*)(const char*,const char*))actioncmp);
538   return ap;
539 }
540 
Action_add(struct action ** app,enum e_action type,struct symbol * sp,char * arg)541 void Action_add(
542   struct action **app,
543   enum e_action type,
544   struct symbol *sp,
545   char *arg
546 ){
547   struct action *newaction;
548   newaction = Action_new();
549   newaction->next = *app;
550   *app = newaction;
551   newaction->type = type;
552   newaction->sp = sp;
553   newaction->spOpt = 0;
554   if( type==SHIFT ){
555     newaction->x.stp = (struct state *)arg;
556   }else{
557     newaction->x.rp = (struct rule *)arg;
558   }
559 }
560 /********************** New code to implement the "acttab" module ***********/
561 /*
562 ** This module implements routines use to construct the yy_action[] table.
563 */
564 
565 /*
566 ** The state of the yy_action table under construction is an instance of
567 ** the following structure.
568 **
569 ** The yy_action table maps the pair (state_number, lookahead) into an
570 ** action_number.  The table is an array of integers pairs.  The state_number
571 ** determines an initial offset into the yy_action array.  The lookahead
572 ** value is then added to this initial offset to get an index X into the
573 ** yy_action array. If the aAction[X].lookahead equals the value of the
574 ** of the lookahead input, then the value of the action_number output is
575 ** aAction[X].action.  If the lookaheads do not match then the
576 ** default action for the state_number is returned.
577 **
578 ** All actions associated with a single state_number are first entered
579 ** into aLookahead[] using multiple calls to acttab_action().  Then the
580 ** actions for that single state_number are placed into the aAction[]
581 ** array with a single call to acttab_insert().  The acttab_insert() call
582 ** also resets the aLookahead[] array in preparation for the next
583 ** state number.
584 */
585 struct lookahead_action {
586   int lookahead;             /* Value of the lookahead token */
587   int action;                /* Action to take on the given lookahead */
588 };
589 typedef struct acttab acttab;
590 struct acttab {
591   int nAction;                 /* Number of used slots in aAction[] */
592   int nActionAlloc;            /* Slots allocated for aAction[] */
593   struct lookahead_action
594     *aAction,                  /* The yy_action[] table under construction */
595     *aLookahead;               /* A single new transaction set */
596   int mnLookahead;             /* Minimum aLookahead[].lookahead */
597   int mnAction;                /* Action associated with mnLookahead */
598   int mxLookahead;             /* Maximum aLookahead[].lookahead */
599   int nLookahead;              /* Used slots in aLookahead[] */
600   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
601   int nterminal;               /* Number of terminal symbols */
602   int nsymbol;                 /* total number of symbols */
603 };
604 
605 /* Return the number of entries in the yy_action table */
606 #define acttab_lookahead_size(X) ((X)->nAction)
607 
608 /* The value for the N-th entry in yy_action */
609 #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
610 
611 /* The value for the N-th entry in yy_lookahead */
612 #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
613 
614 /* Free all memory associated with the given acttab */
acttab_free(acttab * p)615 void acttab_free(acttab *p){
616   free( p->aAction );
617   free( p->aLookahead );
618   free( p );
619 }
620 
621 /* Allocate a new acttab structure */
acttab_alloc(int nsymbol,int nterminal)622 acttab *acttab_alloc(int nsymbol, int nterminal){
623   acttab *p = (acttab *) calloc( 1, sizeof(*p) );
624   if( p==0 ){
625     fprintf(stderr,"Unable to allocate memory for a new acttab.");
626     exit(1);
627   }
628   memset(p, 0, sizeof(*p));
629   p->nsymbol = nsymbol;
630   p->nterminal = nterminal;
631   return p;
632 }
633 
634 /* Add a new action to the current transaction set.
635 **
636 ** This routine is called once for each lookahead for a particular
637 ** state.
638 */
acttab_action(acttab * p,int lookahead,int action)639 void acttab_action(acttab *p, int lookahead, int action){
640   if( p->nLookahead>=p->nLookaheadAlloc ){
641     p->nLookaheadAlloc += 25;
642     p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
643                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
644     if( p->aLookahead==0 ){
645       fprintf(stderr,"malloc failed\n");
646       exit(1);
647     }
648   }
649   if( p->nLookahead==0 ){
650     p->mxLookahead = lookahead;
651     p->mnLookahead = lookahead;
652     p->mnAction = action;
653   }else{
654     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
655     if( p->mnLookahead>lookahead ){
656       p->mnLookahead = lookahead;
657       p->mnAction = action;
658     }
659   }
660   p->aLookahead[p->nLookahead].lookahead = lookahead;
661   p->aLookahead[p->nLookahead].action = action;
662   p->nLookahead++;
663 }
664 
665 /*
666 ** Add the transaction set built up with prior calls to acttab_action()
667 ** into the current action table.  Then reset the transaction set back
668 ** to an empty set in preparation for a new round of acttab_action() calls.
669 **
670 ** Return the offset into the action table of the new transaction.
671 **
672 ** If the makeItSafe parameter is true, then the offset is chosen so that
673 ** it is impossible to overread the yy_lookaside[] table regardless of
674 ** the lookaside token.  This is done for the terminal symbols, as they
675 ** come from external inputs and can contain syntax errors.  When makeItSafe
676 ** is false, there is more flexibility in selecting offsets, resulting in
677 ** a smaller table.  For non-terminal symbols, which are never syntax errors,
678 ** makeItSafe can be false.
679 */
acttab_insert(acttab * p,int makeItSafe)680 int acttab_insert(acttab *p, int makeItSafe){
681   int i, j, k, n, end;
682   assert( p->nLookahead>0 );
683 
684   /* Make sure we have enough space to hold the expanded action table
685   ** in the worst case.  The worst case occurs if the transaction set
686   ** must be appended to the current action table
687   */
688   n = p->nsymbol + 1;
689   if( p->nAction + n >= p->nActionAlloc ){
690     int oldAlloc = p->nActionAlloc;
691     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
692     p->aAction = (struct lookahead_action *) realloc( p->aAction,
693                           sizeof(p->aAction[0])*p->nActionAlloc);
694     if( p->aAction==0 ){
695       fprintf(stderr,"malloc failed\n");
696       exit(1);
697     }
698     for(i=oldAlloc; i<p->nActionAlloc; i++){
699       p->aAction[i].lookahead = -1;
700       p->aAction[i].action = -1;
701     }
702   }
703 
704   /* Scan the existing action table looking for an offset that is a
705   ** duplicate of the current transaction set.  Fall out of the loop
706   ** if and when the duplicate is found.
707   **
708   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
709   */
710   end = makeItSafe ? p->mnLookahead : 0;
711   for(i=p->nAction-1; i>=end; i--){
712     if( p->aAction[i].lookahead==p->mnLookahead ){
713       /* All lookaheads and actions in the aLookahead[] transaction
714       ** must match against the candidate aAction[i] entry. */
715       if( p->aAction[i].action!=p->mnAction ) continue;
716       for(j=0; j<p->nLookahead; j++){
717         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
718         if( k<0 || k>=p->nAction ) break;
719         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
720         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
721       }
722       if( j<p->nLookahead ) continue;
723 
724       /* No possible lookahead value that is not in the aLookahead[]
725       ** transaction is allowed to match aAction[i] */
726       n = 0;
727       for(j=0; j<p->nAction; j++){
728         if( p->aAction[j].lookahead<0 ) continue;
729         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
730       }
731       if( n==p->nLookahead ){
732         break;  /* An exact match is found at offset i */
733       }
734     }
735   }
736 
737   /* If no existing offsets exactly match the current transaction, find an
738   ** an empty offset in the aAction[] table in which we can add the
739   ** aLookahead[] transaction.
740   */
741   if( i<end ){
742     /* Look for holes in the aAction[] table that fit the current
743     ** aLookahead[] transaction.  Leave i set to the offset of the hole.
744     ** If no holes are found, i is left at p->nAction, which means the
745     ** transaction will be appended. */
746     i = makeItSafe ? p->mnLookahead : 0;
747     for(; i<p->nActionAlloc - p->mxLookahead; i++){
748       if( p->aAction[i].lookahead<0 ){
749         for(j=0; j<p->nLookahead; j++){
750           k = p->aLookahead[j].lookahead - p->mnLookahead + i;
751           if( k<0 ) break;
752           if( p->aAction[k].lookahead>=0 ) break;
753         }
754         if( j<p->nLookahead ) continue;
755         for(j=0; j<p->nAction; j++){
756           if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
757         }
758         if( j==p->nAction ){
759           break;  /* Fits in empty slots */
760         }
761       }
762     }
763   }
764   /* Insert transaction set at index i. */
765 #if 0
766   printf("Acttab:");
767   for(j=0; j<p->nLookahead; j++){
768     printf(" %d", p->aLookahead[j].lookahead);
769   }
770   printf(" inserted at %d\n", i);
771 #endif
772   for(j=0; j<p->nLookahead; j++){
773     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
774     p->aAction[k] = p->aLookahead[j];
775     if( k>=p->nAction ) p->nAction = k+1;
776   }
777   if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1;
778   p->nLookahead = 0;
779 
780   /* Return the offset that is added to the lookahead in order to get the
781   ** index into yy_action of the action */
782   return i - p->mnLookahead;
783 }
784 
785 /*
786 ** Return the size of the action table without the trailing syntax error
787 ** entries.
788 */
acttab_action_size(acttab * p)789 int acttab_action_size(acttab *p){
790   int n = p->nAction;
791   while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; }
792   return n;
793 }
794 
795 /********************** From the file "build.c" *****************************/
796 /*
797 ** Routines to construction the finite state machine for the LEMON
798 ** parser generator.
799 */
800 
801 /* Find a precedence symbol of every rule in the grammar.
802 **
803 ** Those rules which have a precedence symbol coded in the input
804 ** grammar using the "[symbol]" construct will already have the
805 ** rp->precsym field filled.  Other rules take as their precedence
806 ** symbol the first RHS symbol with a defined precedence.  If there
807 ** are not RHS symbols with a defined precedence, the precedence
808 ** symbol field is left blank.
809 */
FindRulePrecedences(struct lemon * xp)810 void FindRulePrecedences(struct lemon *xp)
811 {
812   struct rule *rp;
813   for(rp=xp->rule; rp; rp=rp->next){
814     if( rp->precsym==0 ){
815       int i, j;
816       for(i=0; i<rp->nrhs && rp->precsym==0; i++){
817         struct symbol *sp = rp->rhs[i];
818         if( sp->type==MULTITERMINAL ){
819           for(j=0; j<sp->nsubsym; j++){
820             if( sp->subsym[j]->prec>=0 ){
821               rp->precsym = sp->subsym[j];
822               break;
823             }
824           }
825         }else if( sp->prec>=0 ){
826           rp->precsym = rp->rhs[i];
827         }
828       }
829     }
830   }
831   return;
832 }
833 
834 /* Find all nonterminals which will generate the empty string.
835 ** Then go back and compute the first sets of every nonterminal.
836 ** The first set is the set of all terminal symbols which can begin
837 ** a string generated by that nonterminal.
838 */
FindFirstSets(struct lemon * lemp)839 void FindFirstSets(struct lemon *lemp)
840 {
841   int i, j;
842   struct rule *rp;
843   int progress;
844 
845   for(i=0; i<lemp->nsymbol; i++){
846     lemp->symbols[i]->lambda = LEMON_FALSE;
847   }
848   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
849     lemp->symbols[i]->firstset = SetNew();
850   }
851 
852   /* First compute all lambdas */
853   do{
854     progress = 0;
855     for(rp=lemp->rule; rp; rp=rp->next){
856       if( rp->lhs->lambda ) continue;
857       for(i=0; i<rp->nrhs; i++){
858         struct symbol *sp = rp->rhs[i];
859         assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
860         if( sp->lambda==LEMON_FALSE ) break;
861       }
862       if( i==rp->nrhs ){
863         rp->lhs->lambda = LEMON_TRUE;
864         progress = 1;
865       }
866     }
867   }while( progress );
868 
869   /* Now compute all first sets */
870   do{
871     struct symbol *s1, *s2;
872     progress = 0;
873     for(rp=lemp->rule; rp; rp=rp->next){
874       s1 = rp->lhs;
875       for(i=0; i<rp->nrhs; i++){
876         s2 = rp->rhs[i];
877         if( s2->type==TERMINAL ){
878           progress += SetAdd(s1->firstset,s2->index);
879           break;
880         }else if( s2->type==MULTITERMINAL ){
881           for(j=0; j<s2->nsubsym; j++){
882             progress += SetAdd(s1->firstset,s2->subsym[j]->index);
883           }
884           break;
885         }else if( s1==s2 ){
886           if( s1->lambda==LEMON_FALSE ) break;
887         }else{
888           progress += SetUnion(s1->firstset,s2->firstset);
889           if( s2->lambda==LEMON_FALSE ) break;
890         }
891       }
892     }
893   }while( progress );
894   return;
895 }
896 
897 /* Compute all LR(0) states for the grammar.  Links
898 ** are added to between some states so that the LR(1) follow sets
899 ** can be computed later.
900 */
901 PRIVATE struct state *getstate(struct lemon *);  /* forward reference */
FindStates(struct lemon * lemp)902 void FindStates(struct lemon *lemp)
903 {
904   struct symbol *sp;
905   struct rule *rp;
906 
907   Configlist_init();
908 
909   /* Find the start symbol */
910   if( lemp->start ){
911     sp = Symbol_find(lemp->start);
912     if( sp==0 ){
913       ErrorMsg(lemp->filename,0,
914         "The specified start symbol \"%s\" is not "
915         "in a nonterminal of the grammar.  \"%s\" will be used as the start "
916         "symbol instead.",lemp->start,lemp->startRule->lhs->name);
917       lemp->errorcnt++;
918       sp = lemp->startRule->lhs;
919     }
920   }else{
921     sp = lemp->startRule->lhs;
922   }
923 
924   /* Make sure the start symbol doesn't occur on the right-hand side of
925   ** any rule.  Report an error if it does.  (YACC would generate a new
926   ** start symbol in this case.) */
927   for(rp=lemp->rule; rp; rp=rp->next){
928     int i;
929     for(i=0; i<rp->nrhs; i++){
930       if( rp->rhs[i]==sp ){   /* FIX ME:  Deal with multiterminals */
931         ErrorMsg(lemp->filename,0,
932           "The start symbol \"%s\" occurs on the "
933           "right-hand side of a rule. This will result in a parser which "
934           "does not work properly.",sp->name);
935         lemp->errorcnt++;
936       }
937     }
938   }
939 
940   /* The basis configuration set for the first state
941   ** is all rules which have the start symbol as their
942   ** left-hand side */
943   for(rp=sp->rule; rp; rp=rp->nextlhs){
944     struct config *newcfp;
945     rp->lhsStart = 1;
946     newcfp = Configlist_addbasis(rp,0);
947     SetAdd(newcfp->fws,0);
948   }
949 
950   /* Compute the first state.  All other states will be
951   ** computed automatically during the computation of the first one.
952   ** The returned pointer to the first state is not used. */
953   (void)getstate(lemp);
954   return;
955 }
956 
957 /* Return a pointer to a state which is described by the configuration
958 ** list which has been built from calls to Configlist_add.
959 */
960 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
getstate(struct lemon * lemp)961 PRIVATE struct state *getstate(struct lemon *lemp)
962 {
963   struct config *cfp, *bp;
964   struct state *stp;
965 
966   /* Extract the sorted basis of the new state.  The basis was constructed
967   ** by prior calls to "Configlist_addbasis()". */
968   Configlist_sortbasis();
969   bp = Configlist_basis();
970 
971   /* Get a state with the same basis */
972   stp = State_find(bp);
973   if( stp ){
974     /* A state with the same basis already exists!  Copy all the follow-set
975     ** propagation links from the state under construction into the
976     ** preexisting state, then return a pointer to the preexisting state */
977     struct config *x, *y;
978     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
979       Plink_copy(&y->bplp,x->bplp);
980       Plink_delete(x->fplp);
981       x->fplp = x->bplp = 0;
982     }
983     cfp = Configlist_return();
984     Configlist_eat(cfp);
985   }else{
986     /* This really is a new state.  Construct all the details */
987     Configlist_closure(lemp);    /* Compute the configuration closure */
988     Configlist_sort();           /* Sort the configuration closure */
989     cfp = Configlist_return();   /* Get a pointer to the config list */
990     stp = State_new();           /* A new state structure */
991     MemoryCheck(stp);
992     stp->bp = bp;                /* Remember the configuration basis */
993     stp->cfp = cfp;              /* Remember the configuration closure */
994     stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
995     stp->ap = 0;                 /* No actions, yet. */
996     State_insert(stp,stp->bp);   /* Add to the state table */
997     buildshifts(lemp,stp);       /* Recursively compute successor states */
998   }
999   return stp;
1000 }
1001 
1002 /*
1003 ** Return true if two symbols are the same.
1004 */
same_symbol(struct symbol * a,struct symbol * b)1005 int same_symbol(struct symbol *a, struct symbol *b)
1006 {
1007   int i;
1008   if( a==b ) return 1;
1009   if( a->type!=MULTITERMINAL ) return 0;
1010   if( b->type!=MULTITERMINAL ) return 0;
1011   if( a->nsubsym!=b->nsubsym ) return 0;
1012   for(i=0; i<a->nsubsym; i++){
1013     if( a->subsym[i]!=b->subsym[i] ) return 0;
1014   }
1015   return 1;
1016 }
1017 
1018 /* Construct all successor states to the given state.  A "successor"
1019 ** state is any state which can be reached by a shift action.
1020 */
buildshifts(struct lemon * lemp,struct state * stp)1021 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
1022 {
1023   struct config *cfp;  /* For looping thru the config closure of "stp" */
1024   struct config *bcfp; /* For the inner loop on config closure of "stp" */
1025   struct config *newcfg;  /* */
1026   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
1027   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
1028   struct state *newstp; /* A pointer to a successor state */
1029 
1030   /* Each configuration becomes complete after it contributes to a successor
1031   ** state.  Initially, all configurations are incomplete */
1032   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
1033 
1034   /* Loop through all configurations of the state "stp" */
1035   for(cfp=stp->cfp; cfp; cfp=cfp->next){
1036     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
1037     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
1038     Configlist_reset();                      /* Reset the new config set */
1039     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
1040 
1041     /* For every configuration in the state "stp" which has the symbol "sp"
1042     ** following its dot, add the same configuration to the basis set under
1043     ** construction but with the dot shifted one symbol to the right. */
1044     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
1045       if( bcfp->status==COMPLETE ) continue;    /* Already used */
1046       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
1047       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
1048       if( !same_symbol(bsp,sp) ) continue;      /* Must be same as for "cfp" */
1049       bcfp->status = COMPLETE;                  /* Mark this config as used */
1050       newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
1051       Plink_add(&newcfg->bplp,bcfp);
1052     }
1053 
1054     /* Get a pointer to the state described by the basis configuration set
1055     ** constructed in the preceding loop */
1056     newstp = getstate(lemp);
1057 
1058     /* The state "newstp" is reached from the state "stp" by a shift action
1059     ** on the symbol "sp" */
1060     if( sp->type==MULTITERMINAL ){
1061       int i;
1062       for(i=0; i<sp->nsubsym; i++){
1063         Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
1064       }
1065     }else{
1066       Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
1067     }
1068   }
1069 }
1070 
1071 /*
1072 ** Construct the propagation links
1073 */
FindLinks(struct lemon * lemp)1074 void FindLinks(struct lemon *lemp)
1075 {
1076   int i;
1077   struct config *cfp, *other;
1078   struct state *stp;
1079   struct plink *plp;
1080 
1081   /* Housekeeping detail:
1082   ** Add to every propagate link a pointer back to the state to
1083   ** which the link is attached. */
1084   for(i=0; i<lemp->nstate; i++){
1085     stp = lemp->sorted[i];
1086     for(cfp=stp->cfp; cfp; cfp=cfp->next){
1087       cfp->stp = stp;
1088     }
1089   }
1090 
1091   /* Convert all backlinks into forward links.  Only the forward
1092   ** links are used in the follow-set computation. */
1093   for(i=0; i<lemp->nstate; i++){
1094     stp = lemp->sorted[i];
1095     for(cfp=stp->cfp; cfp; cfp=cfp->next){
1096       for(plp=cfp->bplp; plp; plp=plp->next){
1097         other = plp->cfp;
1098         Plink_add(&other->fplp,cfp);
1099       }
1100     }
1101   }
1102 }
1103 
1104 /* Compute all followsets.
1105 **
1106 ** A followset is the set of all symbols which can come immediately
1107 ** after a configuration.
1108 */
FindFollowSets(struct lemon * lemp)1109 void FindFollowSets(struct lemon *lemp)
1110 {
1111   int i;
1112   struct config *cfp;
1113   struct plink *plp;
1114   int progress;
1115   int change;
1116 
1117   for(i=0; i<lemp->nstate; i++){
1118     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1119       cfp->status = INCOMPLETE;
1120     }
1121   }
1122 
1123   do{
1124     progress = 0;
1125     for(i=0; i<lemp->nstate; i++){
1126       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1127         if( cfp->status==COMPLETE ) continue;
1128         for(plp=cfp->fplp; plp; plp=plp->next){
1129           change = SetUnion(plp->cfp->fws,cfp->fws);
1130           if( change ){
1131             plp->cfp->status = INCOMPLETE;
1132             progress = 1;
1133           }
1134         }
1135         cfp->status = COMPLETE;
1136       }
1137     }
1138   }while( progress );
1139 }
1140 
1141 static int resolve_conflict(struct action *,struct action *);
1142 
1143 /* Compute the reduce actions, and resolve conflicts.
1144 */
FindActions(struct lemon * lemp)1145 void FindActions(struct lemon *lemp)
1146 {
1147   int i,j;
1148   struct config *cfp;
1149   struct state *stp;
1150   struct symbol *sp;
1151   struct rule *rp;
1152 
1153   /* Add all of the reduce actions
1154   ** A reduce action is added for each element of the followset of
1155   ** a configuration which has its dot at the extreme right.
1156   */
1157   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
1158     stp = lemp->sorted[i];
1159     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
1160       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
1161         for(j=0; j<lemp->nterminal; j++){
1162           if( SetFind(cfp->fws,j) ){
1163             /* Add a reduce action to the state "stp" which will reduce by the
1164             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1165             Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1166           }
1167         }
1168       }
1169     }
1170   }
1171 
1172   /* Add the accepting token */
1173   if( lemp->start ){
1174     sp = Symbol_find(lemp->start);
1175     if( sp==0 ) sp = lemp->startRule->lhs;
1176   }else{
1177     sp = lemp->startRule->lhs;
1178   }
1179   /* Add to the first state (which is always the starting state of the
1180   ** finite state machine) an action to ACCEPT if the lookahead is the
1181   ** start nonterminal.  */
1182   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1183 
1184   /* Resolve conflicts */
1185   for(i=0; i<lemp->nstate; i++){
1186     struct action *ap, *nap;
1187     stp = lemp->sorted[i];
1188     /* assert( stp->ap ); */
1189     stp->ap = Action_sort(stp->ap);
1190     for(ap=stp->ap; ap && ap->next; ap=ap->next){
1191       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1192          /* The two actions "ap" and "nap" have the same lookahead.
1193          ** Figure out which one should be used */
1194          lemp->nconflict += resolve_conflict(ap,nap);
1195       }
1196     }
1197   }
1198 
1199   /* Report an error for each rule that can never be reduced. */
1200   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1201   for(i=0; i<lemp->nstate; i++){
1202     struct action *ap;
1203     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1204       if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1205     }
1206   }
1207   for(rp=lemp->rule; rp; rp=rp->next){
1208     if( rp->canReduce ) continue;
1209     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1210     lemp->errorcnt++;
1211   }
1212 }
1213 
1214 /* Resolve a conflict between the two given actions.  If the
1215 ** conflict can't be resolved, return non-zero.
1216 **
1217 ** NO LONGER TRUE:
1218 **   To resolve a conflict, first look to see if either action
1219 **   is on an error rule.  In that case, take the action which
1220 **   is not associated with the error rule.  If neither or both
1221 **   actions are associated with an error rule, then try to
1222 **   use precedence to resolve the conflict.
1223 **
1224 ** If either action is a SHIFT, then it must be apx.  This
1225 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1226 */
resolve_conflict(struct action * apx,struct action * apy)1227 static int resolve_conflict(
1228   struct action *apx,
1229   struct action *apy
1230 ){
1231   struct symbol *spx, *spy;
1232   int errcnt = 0;
1233   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
1234   if( apx->type==SHIFT && apy->type==SHIFT ){
1235     apy->type = SSCONFLICT;
1236     errcnt++;
1237   }
1238   if( apx->type==SHIFT && apy->type==REDUCE ){
1239     spx = apx->sp;
1240     spy = apy->x.rp->precsym;
1241     if( spy==0 || spx->prec<0 || spy->prec<0 ){
1242       /* Not enough precedence information. */
1243       apy->type = SRCONFLICT;
1244       errcnt++;
1245     }else if( spx->prec>spy->prec ){    /* higher precedence wins */
1246       apy->type = RD_RESOLVED;
1247     }else if( spx->prec<spy->prec ){
1248       apx->type = SH_RESOLVED;
1249     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1250       apy->type = RD_RESOLVED;                             /* associativity */
1251     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
1252       apx->type = SH_RESOLVED;
1253     }else{
1254       assert( spx->prec==spy->prec && spx->assoc==NONE );
1255       apx->type = ERROR;
1256     }
1257   }else if( apx->type==REDUCE && apy->type==REDUCE ){
1258     spx = apx->x.rp->precsym;
1259     spy = apy->x.rp->precsym;
1260     if( spx==0 || spy==0 || spx->prec<0 ||
1261     spy->prec<0 || spx->prec==spy->prec ){
1262       apy->type = RRCONFLICT;
1263       errcnt++;
1264     }else if( spx->prec>spy->prec ){
1265       apy->type = RD_RESOLVED;
1266     }else if( spx->prec<spy->prec ){
1267       apx->type = RD_RESOLVED;
1268     }
1269   }else{
1270     assert(
1271       apx->type==SH_RESOLVED ||
1272       apx->type==RD_RESOLVED ||
1273       apx->type==SSCONFLICT ||
1274       apx->type==SRCONFLICT ||
1275       apx->type==RRCONFLICT ||
1276       apy->type==SH_RESOLVED ||
1277       apy->type==RD_RESOLVED ||
1278       apy->type==SSCONFLICT ||
1279       apy->type==SRCONFLICT ||
1280       apy->type==RRCONFLICT
1281     );
1282     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1283     ** REDUCEs on the list.  If we reach this point it must be because
1284     ** the parser conflict had already been resolved. */
1285   }
1286   return errcnt;
1287 }
1288 /********************* From the file "configlist.c" *************************/
1289 /*
1290 ** Routines to processing a configuration list and building a state
1291 ** in the LEMON parser generator.
1292 */
1293 
1294 static struct config *freelist = 0;      /* List of free configurations */
1295 static struct config *current = 0;       /* Top of list of configurations */
1296 static struct config **currentend = 0;   /* Last on list of configs */
1297 static struct config *basis = 0;         /* Top of list of basis configs */
1298 static struct config **basisend = 0;     /* End of list of basis configs */
1299 
1300 /* Return a pointer to a new configuration */
newconfig(void)1301 PRIVATE struct config *newconfig(void){
1302   struct config *newcfg;
1303   if( freelist==0 ){
1304     int i;
1305     int amt = 3;
1306     freelist = (struct config *)calloc( amt, sizeof(struct config) );
1307     if( freelist==0 ){
1308       fprintf(stderr,"Unable to allocate memory for a new configuration.");
1309       exit(1);
1310     }
1311     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1312     freelist[amt-1].next = 0;
1313   }
1314   newcfg = freelist;
1315   freelist = freelist->next;
1316   return newcfg;
1317 }
1318 
1319 /* The configuration "old" is no longer used */
deleteconfig(struct config * old)1320 PRIVATE void deleteconfig(struct config *old)
1321 {
1322   old->next = freelist;
1323   freelist = old;
1324 }
1325 
1326 /* Initialized the configuration list builder */
Configlist_init(void)1327 void Configlist_init(void){
1328   current = 0;
1329   currentend = &current;
1330   basis = 0;
1331   basisend = &basis;
1332   Configtable_init();
1333   return;
1334 }
1335 
1336 /* Initialized the configuration list builder */
Configlist_reset(void)1337 void Configlist_reset(void){
1338   current = 0;
1339   currentend = &current;
1340   basis = 0;
1341   basisend = &basis;
1342   Configtable_clear(0);
1343   return;
1344 }
1345 
1346 /* Add another configuration to the configuration list */
Configlist_add(struct rule * rp,int dot)1347 struct config *Configlist_add(
1348   struct rule *rp,    /* The rule */
1349   int dot             /* Index into the RHS of the rule where the dot goes */
1350 ){
1351   struct config *cfp, model;
1352 
1353   assert( currentend!=0 );
1354   model.rp = rp;
1355   model.dot = dot;
1356   cfp = Configtable_find(&model);
1357   if( cfp==0 ){
1358     cfp = newconfig();
1359     cfp->rp = rp;
1360     cfp->dot = dot;
1361     cfp->fws = SetNew();
1362     cfp->stp = 0;
1363     cfp->fplp = cfp->bplp = 0;
1364     cfp->next = 0;
1365     cfp->bp = 0;
1366     *currentend = cfp;
1367     currentend = &cfp->next;
1368     Configtable_insert(cfp);
1369   }
1370   return cfp;
1371 }
1372 
1373 /* Add a basis configuration to the configuration list */
Configlist_addbasis(struct rule * rp,int dot)1374 struct config *Configlist_addbasis(struct rule *rp, int dot)
1375 {
1376   struct config *cfp, model;
1377 
1378   assert( basisend!=0 );
1379   assert( currentend!=0 );
1380   model.rp = rp;
1381   model.dot = dot;
1382   cfp = Configtable_find(&model);
1383   if( cfp==0 ){
1384     cfp = newconfig();
1385     cfp->rp = rp;
1386     cfp->dot = dot;
1387     cfp->fws = SetNew();
1388     cfp->stp = 0;
1389     cfp->fplp = cfp->bplp = 0;
1390     cfp->next = 0;
1391     cfp->bp = 0;
1392     *currentend = cfp;
1393     currentend = &cfp->next;
1394     *basisend = cfp;
1395     basisend = &cfp->bp;
1396     Configtable_insert(cfp);
1397   }
1398   return cfp;
1399 }
1400 
1401 /* Compute the closure of the configuration list */
Configlist_closure(struct lemon * lemp)1402 void Configlist_closure(struct lemon *lemp)
1403 {
1404   struct config *cfp, *newcfp;
1405   struct rule *rp, *newrp;
1406   struct symbol *sp, *xsp;
1407   int i, dot;
1408 
1409   assert( currentend!=0 );
1410   for(cfp=current; cfp; cfp=cfp->next){
1411     rp = cfp->rp;
1412     dot = cfp->dot;
1413     if( dot>=rp->nrhs ) continue;
1414     sp = rp->rhs[dot];
1415     if( sp->type==NONTERMINAL ){
1416       if( sp->rule==0 && sp!=lemp->errsym ){
1417         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1418           sp->name);
1419         lemp->errorcnt++;
1420       }
1421       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1422         newcfp = Configlist_add(newrp,0);
1423         for(i=dot+1; i<rp->nrhs; i++){
1424           xsp = rp->rhs[i];
1425           if( xsp->type==TERMINAL ){
1426             SetAdd(newcfp->fws,xsp->index);
1427             break;
1428           }else if( xsp->type==MULTITERMINAL ){
1429             int k;
1430             for(k=0; k<xsp->nsubsym; k++){
1431               SetAdd(newcfp->fws, xsp->subsym[k]->index);
1432             }
1433             break;
1434           }else{
1435             SetUnion(newcfp->fws,xsp->firstset);
1436             if( xsp->lambda==LEMON_FALSE ) break;
1437           }
1438         }
1439         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1440       }
1441     }
1442   }
1443   return;
1444 }
1445 
1446 /* Sort the configuration list */
Configlist_sort(void)1447 void Configlist_sort(void){
1448   current = (struct config*)msort((char*)current,(char**)&(current->next),
1449                                   Configcmp);
1450   currentend = 0;
1451   return;
1452 }
1453 
1454 /* Sort the basis configuration list */
Configlist_sortbasis(void)1455 void Configlist_sortbasis(void){
1456   basis = (struct config*)msort((char*)current,(char**)&(current->bp),
1457                                 Configcmp);
1458   basisend = 0;
1459   return;
1460 }
1461 
1462 /* Return a pointer to the head of the configuration list and
1463 ** reset the list */
Configlist_return(void)1464 struct config *Configlist_return(void){
1465   struct config *old;
1466   old = current;
1467   current = 0;
1468   currentend = 0;
1469   return old;
1470 }
1471 
1472 /* Return a pointer to the head of the configuration list and
1473 ** reset the list */
Configlist_basis(void)1474 struct config *Configlist_basis(void){
1475   struct config *old;
1476   old = basis;
1477   basis = 0;
1478   basisend = 0;
1479   return old;
1480 }
1481 
1482 /* Free all elements of the given configuration list */
Configlist_eat(struct config * cfp)1483 void Configlist_eat(struct config *cfp)
1484 {
1485   struct config *nextcfp;
1486   for(; cfp; cfp=nextcfp){
1487     nextcfp = cfp->next;
1488     assert( cfp->fplp==0 );
1489     assert( cfp->bplp==0 );
1490     if( cfp->fws ) SetFree(cfp->fws);
1491     deleteconfig(cfp);
1492   }
1493   return;
1494 }
1495 /***************** From the file "error.c" *********************************/
1496 /*
1497 ** Code for printing error message.
1498 */
1499 
ErrorMsg(const char * filename,int lineno,const char * format,...)1500 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1501   va_list ap;
1502   fprintf(stderr, "%s:%d: ", filename, lineno);
1503   va_start(ap, format);
1504   vfprintf(stderr,format,ap);
1505   va_end(ap);
1506   fprintf(stderr, "\n");
1507 }
1508 /**************** From the file "main.c" ************************************/
1509 /*
1510 ** Main program file for the LEMON parser generator.
1511 */
1512 
1513 /* Report an out-of-memory condition and abort.  This function
1514 ** is used mostly by the "MemoryCheck" macro in struct.h
1515 */
memory_error(void)1516 void memory_error(void){
1517   fprintf(stderr,"Out of memory.  Aborting...\n");
1518   exit(1);
1519 }
1520 
1521 static int nDefine = 0;      /* Number of -D options on the command line */
1522 static char **azDefine = 0;  /* Name of the -D macros */
1523 
1524 /* This routine is called with the argument to each -D command-line option.
1525 ** Add the macro defined to the azDefine array.
1526 */
handle_D_option(char * z)1527 static void handle_D_option(char *z){
1528   char **paz;
1529   nDefine++;
1530   azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1531   if( azDefine==0 ){
1532     fprintf(stderr,"out of memory\n");
1533     exit(1);
1534   }
1535   paz = &azDefine[nDefine-1];
1536   *paz = (char *) malloc( lemonStrlen(z)+1 );
1537   if( *paz==0 ){
1538     fprintf(stderr,"out of memory\n");
1539     exit(1);
1540   }
1541   lemon_strcpy(*paz, z);
1542   for(z=*paz; *z && *z!='='; z++){}
1543   *z = 0;
1544 }
1545 
1546 /* Rember the name of the output directory
1547 */
1548 static char *outputDir = NULL;
handle_d_option(char * z)1549 static void handle_d_option(char *z){
1550   outputDir = (char *) malloc( lemonStrlen(z)+1 );
1551   if( outputDir==0 ){
1552     fprintf(stderr,"out of memory\n");
1553     exit(1);
1554   }
1555   lemon_strcpy(outputDir, z);
1556 }
1557 
1558 static char *user_templatename = NULL;
handle_T_option(char * z)1559 static void handle_T_option(char *z){
1560   user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1561   if( user_templatename==0 ){
1562     memory_error();
1563   }
1564   lemon_strcpy(user_templatename, z);
1565 }
1566 
1567 /* Merge together to lists of rules ordered by rule.iRule */
Rule_merge(struct rule * pA,struct rule * pB)1568 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
1569   struct rule *pFirst = 0;
1570   struct rule **ppPrev = &pFirst;
1571   while( pA && pB ){
1572     if( pA->iRule<pB->iRule ){
1573       *ppPrev = pA;
1574       ppPrev = &pA->next;
1575       pA = pA->next;
1576     }else{
1577       *ppPrev = pB;
1578       ppPrev = &pB->next;
1579       pB = pB->next;
1580     }
1581   }
1582   if( pA ){
1583     *ppPrev = pA;
1584   }else{
1585     *ppPrev = pB;
1586   }
1587   return pFirst;
1588 }
1589 
1590 /*
1591 ** Sort a list of rules in order of increasing iRule value
1592 */
Rule_sort(struct rule * rp)1593 static struct rule *Rule_sort(struct rule *rp){
1594   unsigned int i;
1595   struct rule *pNext;
1596   struct rule *x[32];
1597   memset(x, 0, sizeof(x));
1598   while( rp ){
1599     pNext = rp->next;
1600     rp->next = 0;
1601     for(i=0; i<sizeof(x)/sizeof(x[0])-1 && x[i]; i++){
1602       rp = Rule_merge(x[i], rp);
1603       x[i] = 0;
1604     }
1605     x[i] = rp;
1606     rp = pNext;
1607   }
1608   rp = 0;
1609   for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
1610     rp = Rule_merge(x[i], rp);
1611   }
1612   return rp;
1613 }
1614 
1615 /* forward reference */
1616 static const char *minimum_size_type(int lwr, int upr, int *pnByte);
1617 
1618 /* Print a single line of the "Parser Stats" output
1619 */
stats_line(const char * zLabel,int iValue)1620 static void stats_line(const char *zLabel, int iValue){
1621   int nLabel = lemonStrlen(zLabel);
1622   printf("  %s%.*s %5d\n", zLabel,
1623          35-nLabel, "................................",
1624          iValue);
1625 }
1626 
1627 /* The main program.  Parse the command line and do it... */
main(int argc,char ** argv)1628 int main(int argc, char **argv){
1629   static int version = 0;
1630   static int rpflag = 0;
1631   static int basisflag = 0;
1632   static int compress = 0;
1633   static int quiet = 0;
1634   static int statistics = 0;
1635   static int mhflag = 0;
1636   static int nolinenosflag = 0;
1637   static int noResort = 0;
1638   static int sqlFlag = 0;
1639   static int printPP = 0;
1640 
1641   static struct s_options options[] = {
1642     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1643     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1644     {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory.  Default '.'"},
1645     {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1646     {OPT_FLAG, "E", (char*)&printPP, "Print input file after preprocessing."},
1647     {OPT_FSTR, "f", 0, "Ignored.  (Placeholder for -f compiler options.)"},
1648     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1649     {OPT_FSTR, "I", 0, "Ignored.  (Placeholder for '-I' compiler options.)"},
1650     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1651     {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1652     {OPT_FSTR, "O", 0, "Ignored.  (Placeholder for '-O' compiler options.)"},
1653     {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1654                     "Show conflicts resolved by precedence rules"},
1655     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1656     {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1657     {OPT_FLAG, "s", (char*)&statistics,
1658                                    "Print parser stats to standard output."},
1659     {OPT_FLAG, "S", (char*)&sqlFlag,
1660                     "Generate the *.sql file describing the parser tables."},
1661     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1662     {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1663     {OPT_FSTR, "W", 0, "Ignored.  (Placeholder for '-W' compiler options.)"},
1664     {OPT_FLAG,0,0,0}
1665   };
1666   int i;
1667   int exitcode;
1668   struct lemon lem;
1669   struct rule *rp;
1670 
1671   (void)argc;
1672   OptInit(argv,options,stderr);
1673   if( version ){
1674      printf("Lemon version 1.0\n");
1675      exit(0);
1676   }
1677   if( OptNArgs()!=1 ){
1678     fprintf(stderr,"Exactly one filename argument is required.\n");
1679     exit(1);
1680   }
1681   memset(&lem, 0, sizeof(lem));
1682   lem.errorcnt = 0;
1683 
1684   /* Initialize the machine */
1685   Strsafe_init();
1686   Symbol_init();
1687   State_init();
1688   lem.argv0 = argv[0];
1689   lem.filename = OptArg(0);
1690   lem.basisflag = basisflag;
1691   lem.nolinenosflag = nolinenosflag;
1692   lem.printPreprocessed = printPP;
1693   Symbol_new("$");
1694 
1695   /* Parse the input file */
1696   Parse(&lem);
1697   if( lem.printPreprocessed || lem.errorcnt ) exit(lem.errorcnt);
1698   if( lem.nrule==0 ){
1699     fprintf(stderr,"Empty grammar.\n");
1700     exit(1);
1701   }
1702   lem.errsym = Symbol_find("error");
1703 
1704   /* Count and index the symbols of the grammar */
1705   Symbol_new("{default}");
1706   lem.nsymbol = Symbol_count();
1707   lem.symbols = Symbol_arrayof();
1708   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1709   qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
1710   for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1711   while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
1712   assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
1713   lem.nsymbol = i - 1;
1714   for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
1715   lem.nterminal = i;
1716 
1717   /* Assign sequential rule numbers.  Start with 0.  Put rules that have no
1718   ** reduce action C-code associated with them last, so that the switch()
1719   ** statement that selects reduction actions will have a smaller jump table.
1720   */
1721   for(i=0, rp=lem.rule; rp; rp=rp->next){
1722     rp->iRule = rp->code ? i++ : -1;
1723   }
1724   lem.nruleWithAction = i;
1725   for(rp=lem.rule; rp; rp=rp->next){
1726     if( rp->iRule<0 ) rp->iRule = i++;
1727   }
1728   lem.startRule = lem.rule;
1729   lem.rule = Rule_sort(lem.rule);
1730 
1731   /* Generate a reprint of the grammar, if requested on the command line */
1732   if( rpflag ){
1733     Reprint(&lem);
1734   }else{
1735     /* Initialize the size for all follow and first sets */
1736     SetSize(lem.nterminal+1);
1737 
1738     /* Find the precedence for every production rule (that has one) */
1739     FindRulePrecedences(&lem);
1740 
1741     /* Compute the lambda-nonterminals and the first-sets for every
1742     ** nonterminal */
1743     FindFirstSets(&lem);
1744 
1745     /* Compute all LR(0) states.  Also record follow-set propagation
1746     ** links so that the follow-set can be computed later */
1747     lem.nstate = 0;
1748     FindStates(&lem);
1749     lem.sorted = State_arrayof();
1750 
1751     /* Tie up loose ends on the propagation links */
1752     FindLinks(&lem);
1753 
1754     /* Compute the follow set of every reducible configuration */
1755     FindFollowSets(&lem);
1756 
1757     /* Compute the action tables */
1758     FindActions(&lem);
1759 
1760     /* Compress the action tables */
1761     if( compress==0 ) CompressTables(&lem);
1762 
1763     /* Reorder and renumber the states so that states with fewer choices
1764     ** occur at the end.  This is an optimization that helps make the
1765     ** generated parser tables smaller. */
1766     if( noResort==0 ) ResortStates(&lem);
1767 
1768     /* Generate a report of the parser generated.  (the "y.output" file) */
1769     if( !quiet ) ReportOutput(&lem);
1770 
1771     /* Generate the source code for the parser */
1772     ReportTable(&lem, mhflag, sqlFlag);
1773 
1774     /* Produce a header file for use by the scanner.  (This step is
1775     ** omitted if the "-m" option is used because makeheaders will
1776     ** generate the file for us.) */
1777     if( !mhflag ) ReportHeader(&lem);
1778   }
1779   if( statistics ){
1780     printf("Parser statistics:\n");
1781     stats_line("terminal symbols", lem.nterminal);
1782     stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
1783     stats_line("total symbols", lem.nsymbol);
1784     stats_line("rules", lem.nrule);
1785     stats_line("states", lem.nxstate);
1786     stats_line("conflicts", lem.nconflict);
1787     stats_line("action table entries", lem.nactiontab);
1788     stats_line("lookahead table entries", lem.nlookaheadtab);
1789     stats_line("total table size (bytes)", lem.tablesize);
1790   }
1791   if( lem.nconflict > 0 ){
1792     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1793   }
1794 
1795   /* return 0 on success, 1 on failure. */
1796   exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1797   exit(exitcode);
1798   return (exitcode);
1799 }
1800 /******************** From the file "msort.c" *******************************/
1801 /*
1802 ** A generic merge-sort program.
1803 **
1804 ** USAGE:
1805 ** Let "ptr" be a pointer to some structure which is at the head of
1806 ** a null-terminated list.  Then to sort the list call:
1807 **
1808 **     ptr = msort(ptr,&(ptr->next),cmpfnc);
1809 **
1810 ** In the above, "cmpfnc" is a pointer to a function which compares
1811 ** two instances of the structure and returns an integer, as in
1812 ** strcmp.  The second argument is a pointer to the pointer to the
1813 ** second element of the linked list.  This address is used to compute
1814 ** the offset to the "next" field within the structure.  The offset to
1815 ** the "next" field must be constant for all structures in the list.
1816 **
1817 ** The function returns a new pointer which is the head of the list
1818 ** after sorting.
1819 **
1820 ** ALGORITHM:
1821 ** Merge-sort.
1822 */
1823 
1824 /*
1825 ** Return a pointer to the next structure in the linked list.
1826 */
1827 #define NEXT(A) (*(char**)(((char*)A)+offset))
1828 
1829 /*
1830 ** Inputs:
1831 **   a:       A sorted, null-terminated linked list.  (May be null).
1832 **   b:       A sorted, null-terminated linked list.  (May be null).
1833 **   cmp:     A pointer to the comparison function.
1834 **   offset:  Offset in the structure to the "next" field.
1835 **
1836 ** Return Value:
1837 **   A pointer to the head of a sorted list containing the elements
1838 **   of both a and b.
1839 **
1840 ** Side effects:
1841 **   The "next" pointers for elements in the lists a and b are
1842 **   changed.
1843 */
merge(char * a,char * b,int (* cmp)(const char *,const char *),int offset)1844 static char *merge(
1845   char *a,
1846   char *b,
1847   int (*cmp)(const char*,const char*),
1848   int offset
1849 ){
1850   char *ptr, *head;
1851 
1852   if( a==0 ){
1853     head = b;
1854   }else if( b==0 ){
1855     head = a;
1856   }else{
1857     if( (*cmp)(a,b)<=0 ){
1858       ptr = a;
1859       a = NEXT(a);
1860     }else{
1861       ptr = b;
1862       b = NEXT(b);
1863     }
1864     head = ptr;
1865     while( a && b ){
1866       if( (*cmp)(a,b)<=0 ){
1867         NEXT(ptr) = a;
1868         ptr = a;
1869         a = NEXT(a);
1870       }else{
1871         NEXT(ptr) = b;
1872         ptr = b;
1873         b = NEXT(b);
1874       }
1875     }
1876     if( a ) NEXT(ptr) = a;
1877     else    NEXT(ptr) = b;
1878   }
1879   return head;
1880 }
1881 
1882 /*
1883 ** Inputs:
1884 **   list:      Pointer to a singly-linked list of structures.
1885 **   next:      Pointer to pointer to the second element of the list.
1886 **   cmp:       A comparison function.
1887 **
1888 ** Return Value:
1889 **   A pointer to the head of a sorted list containing the elements
1890 **   originally in list.
1891 **
1892 ** Side effects:
1893 **   The "next" pointers for elements in list are changed.
1894 */
1895 #define LISTSIZE 30
msort(char * list,char ** next,int (* cmp)(const char *,const char *))1896 static char *msort(
1897   char *list,
1898   char **next,
1899   int (*cmp)(const char*,const char*)
1900 ){
1901   unsigned long offset;
1902   char *ep;
1903   char *set[LISTSIZE];
1904   int i;
1905   offset = (unsigned long)((char*)next - (char*)list);
1906   for(i=0; i<LISTSIZE; i++) set[i] = 0;
1907   while( list ){
1908     ep = list;
1909     list = NEXT(list);
1910     NEXT(ep) = 0;
1911     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1912       ep = merge(ep,set[i],cmp,offset);
1913       set[i] = 0;
1914     }
1915     set[i] = ep;
1916   }
1917   ep = 0;
1918   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1919   return ep;
1920 }
1921 /************************ From the file "option.c" **************************/
1922 static char **g_argv;
1923 static struct s_options *op;
1924 static FILE *errstream;
1925 
1926 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1927 
1928 /*
1929 ** Print the command line with a carrot pointing to the k-th character
1930 ** of the n-th field.
1931 */
errline(int n,int k,FILE * err)1932 static void errline(int n, int k, FILE *err)
1933 {
1934   int spcnt, i;
1935   if( g_argv[0] ) fprintf(err,"%s",g_argv[0]);
1936   spcnt = lemonStrlen(g_argv[0]) + 1;
1937   for(i=1; i<n && g_argv[i]; i++){
1938     fprintf(err," %s",g_argv[i]);
1939     spcnt += lemonStrlen(g_argv[i])+1;
1940   }
1941   spcnt += k;
1942   for(; g_argv[i]; i++) fprintf(err," %s",g_argv[i]);
1943   if( spcnt<20 ){
1944     fprintf(err,"\n%*s^-- here\n",spcnt,"");
1945   }else{
1946     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1947   }
1948 }
1949 
1950 /*
1951 ** Return the index of the N-th non-switch argument.  Return -1
1952 ** if N is out of range.
1953 */
argindex(int n)1954 static int argindex(int n)
1955 {
1956   int i;
1957   int dashdash = 0;
1958   if( g_argv!=0 && *g_argv!=0 ){
1959     for(i=1; g_argv[i]; i++){
1960       if( dashdash || !ISOPT(g_argv[i]) ){
1961         if( n==0 ) return i;
1962         n--;
1963       }
1964       if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
1965     }
1966   }
1967   return -1;
1968 }
1969 
1970 static char emsg[] = "Command line syntax error: ";
1971 
1972 /*
1973 ** Process a flag command line argument.
1974 */
handleflags(int i,FILE * err)1975 static int handleflags(int i, FILE *err)
1976 {
1977   int v;
1978   int errcnt = 0;
1979   int j;
1980   for(j=0; op[j].label; j++){
1981     if( strncmp(&g_argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1982   }
1983   v = g_argv[i][0]=='-' ? 1 : 0;
1984   if( op[j].label==0 ){
1985     if( err ){
1986       fprintf(err,"%sundefined option.\n",emsg);
1987       errline(i,1,err);
1988     }
1989     errcnt++;
1990   }else if( op[j].arg==0 ){
1991     /* Ignore this option */
1992   }else if( op[j].type==OPT_FLAG ){
1993     *((int*)op[j].arg) = v;
1994   }else if( op[j].type==OPT_FFLAG ){
1995     (*(void(*)(int))(op[j].arg))(v);
1996   }else if( op[j].type==OPT_FSTR ){
1997     (*(void(*)(char *))(op[j].arg))(&g_argv[i][2]);
1998   }else{
1999     if( err ){
2000       fprintf(err,"%smissing argument on switch.\n",emsg);
2001       errline(i,1,err);
2002     }
2003     errcnt++;
2004   }
2005   return errcnt;
2006 }
2007 
2008 /*
2009 ** Process a command line switch which has an argument.
2010 */
handleswitch(int i,FILE * err)2011 static int handleswitch(int i, FILE *err)
2012 {
2013   int lv = 0;
2014   double dv = 0.0;
2015   char *sv = 0, *end;
2016   char *cp;
2017   int j;
2018   int errcnt = 0;
2019   cp = strchr(g_argv[i],'=');
2020   assert( cp!=0 );
2021   *cp = 0;
2022   for(j=0; op[j].label; j++){
2023     if( strcmp(g_argv[i],op[j].label)==0 ) break;
2024   }
2025   *cp = '=';
2026   if( op[j].label==0 ){
2027     if( err ){
2028       fprintf(err,"%sundefined option.\n",emsg);
2029       errline(i,0,err);
2030     }
2031     errcnt++;
2032   }else{
2033     cp++;
2034     switch( op[j].type ){
2035       case OPT_FLAG:
2036       case OPT_FFLAG:
2037         if( err ){
2038           fprintf(err,"%soption requires an argument.\n",emsg);
2039           errline(i,0,err);
2040         }
2041         errcnt++;
2042         break;
2043       case OPT_DBL:
2044       case OPT_FDBL:
2045         dv = strtod(cp,&end);
2046         if( *end ){
2047           if( err ){
2048             fprintf(err,
2049                "%sillegal character in floating-point argument.\n",emsg);
2050             errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2051           }
2052           errcnt++;
2053         }
2054         break;
2055       case OPT_INT:
2056       case OPT_FINT:
2057         lv = strtol(cp,&end,0);
2058         if( *end ){
2059           if( err ){
2060             fprintf(err,"%sillegal character in integer argument.\n",emsg);
2061             errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2062           }
2063           errcnt++;
2064         }
2065         break;
2066       case OPT_STR:
2067       case OPT_FSTR:
2068         sv = cp;
2069         break;
2070     }
2071     switch( op[j].type ){
2072       case OPT_FLAG:
2073       case OPT_FFLAG:
2074         break;
2075       case OPT_DBL:
2076         *(double*)(op[j].arg) = dv;
2077         break;
2078       case OPT_FDBL:
2079         (*(void(*)(double))(op[j].arg))(dv);
2080         break;
2081       case OPT_INT:
2082         *(int*)(op[j].arg) = lv;
2083         break;
2084       case OPT_FINT:
2085         (*(void(*)(int))(op[j].arg))((int)lv);
2086         break;
2087       case OPT_STR:
2088         *(char**)(op[j].arg) = sv;
2089         break;
2090       case OPT_FSTR:
2091         (*(void(*)(char *))(op[j].arg))(sv);
2092         break;
2093     }
2094   }
2095   return errcnt;
2096 }
2097 
OptInit(char ** a,struct s_options * o,FILE * err)2098 int OptInit(char **a, struct s_options *o, FILE *err)
2099 {
2100   int errcnt = 0;
2101   g_argv = a;
2102   op = o;
2103   errstream = err;
2104   if( g_argv && *g_argv && op ){
2105     int i;
2106     for(i=1; g_argv[i]; i++){
2107       if( g_argv[i][0]=='+' || g_argv[i][0]=='-' ){
2108         errcnt += handleflags(i,err);
2109       }else if( strchr(g_argv[i],'=') ){
2110         errcnt += handleswitch(i,err);
2111       }
2112     }
2113   }
2114   if( errcnt>0 ){
2115     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
2116     OptPrint();
2117     exit(1);
2118   }
2119   return 0;
2120 }
2121 
OptNArgs(void)2122 int OptNArgs(void){
2123   int cnt = 0;
2124   int dashdash = 0;
2125   int i;
2126   if( g_argv!=0 && g_argv[0]!=0 ){
2127     for(i=1; g_argv[i]; i++){
2128       if( dashdash || !ISOPT(g_argv[i]) ) cnt++;
2129       if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
2130     }
2131   }
2132   return cnt;
2133 }
2134 
OptArg(int n)2135 char *OptArg(int n)
2136 {
2137   int i;
2138   i = argindex(n);
2139   return i>=0 ? g_argv[i] : 0;
2140 }
2141 
OptErr(int n)2142 void OptErr(int n)
2143 {
2144   int i;
2145   i = argindex(n);
2146   if( i>=0 ) errline(i,0,errstream);
2147 }
2148 
OptPrint(void)2149 void OptPrint(void){
2150   int i;
2151   int max, len;
2152   max = 0;
2153   for(i=0; op[i].label; i++){
2154     len = lemonStrlen(op[i].label) + 1;
2155     switch( op[i].type ){
2156       case OPT_FLAG:
2157       case OPT_FFLAG:
2158         break;
2159       case OPT_INT:
2160       case OPT_FINT:
2161         len += 9;       /* length of "<integer>" */
2162         break;
2163       case OPT_DBL:
2164       case OPT_FDBL:
2165         len += 6;       /* length of "<real>" */
2166         break;
2167       case OPT_STR:
2168       case OPT_FSTR:
2169         len += 8;       /* length of "<string>" */
2170         break;
2171     }
2172     if( len>max ) max = len;
2173   }
2174   for(i=0; op[i].label; i++){
2175     switch( op[i].type ){
2176       case OPT_FLAG:
2177       case OPT_FFLAG:
2178         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
2179         break;
2180       case OPT_INT:
2181       case OPT_FINT:
2182         fprintf(errstream,"  -%s<integer>%*s  %s\n",op[i].label,
2183           (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
2184         break;
2185       case OPT_DBL:
2186       case OPT_FDBL:
2187         fprintf(errstream,"  -%s<real>%*s  %s\n",op[i].label,
2188           (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
2189         break;
2190       case OPT_STR:
2191       case OPT_FSTR:
2192         fprintf(errstream,"  -%s<string>%*s  %s\n",op[i].label,
2193           (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
2194         break;
2195     }
2196   }
2197 }
2198 /*********************** From the file "parse.c" ****************************/
2199 /*
2200 ** Input file parser for the LEMON parser generator.
2201 */
2202 
2203 /* The state of the parser */
2204 enum e_state {
2205   INITIALIZE,
2206   WAITING_FOR_DECL_OR_RULE,
2207   WAITING_FOR_DECL_KEYWORD,
2208   WAITING_FOR_DECL_ARG,
2209   WAITING_FOR_PRECEDENCE_SYMBOL,
2210   WAITING_FOR_ARROW,
2211   IN_RHS,
2212   LHS_ALIAS_1,
2213   LHS_ALIAS_2,
2214   LHS_ALIAS_3,
2215   RHS_ALIAS_1,
2216   RHS_ALIAS_2,
2217   PRECEDENCE_MARK_1,
2218   PRECEDENCE_MARK_2,
2219   RESYNC_AFTER_RULE_ERROR,
2220   RESYNC_AFTER_DECL_ERROR,
2221   WAITING_FOR_DESTRUCTOR_SYMBOL,
2222   WAITING_FOR_DATATYPE_SYMBOL,
2223   WAITING_FOR_FALLBACK_ID,
2224   WAITING_FOR_WILDCARD_ID,
2225   WAITING_FOR_CLASS_ID,
2226   WAITING_FOR_CLASS_TOKEN,
2227   WAITING_FOR_TOKEN_NAME
2228 };
2229 struct pstate {
2230   char *filename;       /* Name of the input file */
2231   int tokenlineno;      /* Linenumber at which current token starts */
2232   int errorcnt;         /* Number of errors so far */
2233   char *tokenstart;     /* Text of current token */
2234   struct lemon *gp;     /* Global state vector */
2235   enum e_state state;        /* The state of the parser */
2236   struct symbol *fallback;   /* The fallback token */
2237   struct symbol *tkclass;    /* Token class symbol */
2238   struct symbol *lhs;        /* Left-hand side of current rule */
2239   const char *lhsalias;      /* Alias for the LHS */
2240   int nrhs;                  /* Number of right-hand side symbols seen */
2241   struct symbol *rhs[MAXRHS];  /* RHS symbols */
2242   const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
2243   struct rule *prevrule;     /* Previous rule parsed */
2244   const char *declkeyword;   /* Keyword of a declaration */
2245   char **declargslot;        /* Where the declaration argument should be put */
2246   int insertLineMacro;       /* Add #line before declaration insert */
2247   int *decllinenoslot;       /* Where to write declaration line number */
2248   enum e_assoc declassoc;    /* Assign this association to decl arguments */
2249   int preccounter;           /* Assign this precedence to decl arguments */
2250   struct rule *firstrule;    /* Pointer to first rule in the grammar */
2251   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
2252 };
2253 
2254 /* Parse a single token */
parseonetoken(struct pstate * psp)2255 static void parseonetoken(struct pstate *psp)
2256 {
2257   const char *x;
2258   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
2259 #if 0
2260   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
2261     x,psp->state);
2262 #endif
2263   switch( psp->state ){
2264     case INITIALIZE:
2265       psp->prevrule = 0;
2266       psp->preccounter = 0;
2267       psp->firstrule = psp->lastrule = 0;
2268       psp->gp->nrule = 0;
2269       /* fall through */
2270     case WAITING_FOR_DECL_OR_RULE:
2271       if( x[0]=='%' ){
2272         psp->state = WAITING_FOR_DECL_KEYWORD;
2273       }else if( ISLOWER(x[0]) ){
2274         psp->lhs = Symbol_new(x);
2275         psp->nrhs = 0;
2276         psp->lhsalias = 0;
2277         psp->state = WAITING_FOR_ARROW;
2278       }else if( x[0]=='{' ){
2279         if( psp->prevrule==0 ){
2280           ErrorMsg(psp->filename,psp->tokenlineno,
2281             "There is no prior rule upon which to attach the code "
2282             "fragment which begins on this line.");
2283           psp->errorcnt++;
2284         }else if( psp->prevrule->code!=0 ){
2285           ErrorMsg(psp->filename,psp->tokenlineno,
2286             "Code fragment beginning on this line is not the first "
2287             "to follow the previous rule.");
2288           psp->errorcnt++;
2289         }else if( strcmp(x, "{NEVER-REDUCE")==0 ){
2290           psp->prevrule->neverReduce = 1;
2291         }else{
2292           psp->prevrule->line = psp->tokenlineno;
2293           psp->prevrule->code = &x[1];
2294           psp->prevrule->noCode = 0;
2295         }
2296       }else if( x[0]=='[' ){
2297         psp->state = PRECEDENCE_MARK_1;
2298       }else{
2299         ErrorMsg(psp->filename,psp->tokenlineno,
2300           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2301           x);
2302         psp->errorcnt++;
2303       }
2304       break;
2305     case PRECEDENCE_MARK_1:
2306       if( !ISUPPER(x[0]) ){
2307         ErrorMsg(psp->filename,psp->tokenlineno,
2308           "The precedence symbol must be a terminal.");
2309         psp->errorcnt++;
2310       }else if( psp->prevrule==0 ){
2311         ErrorMsg(psp->filename,psp->tokenlineno,
2312           "There is no prior rule to assign precedence \"[%s]\".",x);
2313         psp->errorcnt++;
2314       }else if( psp->prevrule->precsym!=0 ){
2315         ErrorMsg(psp->filename,psp->tokenlineno,
2316           "Precedence mark on this line is not the first "
2317           "to follow the previous rule.");
2318         psp->errorcnt++;
2319       }else{
2320         psp->prevrule->precsym = Symbol_new(x);
2321       }
2322       psp->state = PRECEDENCE_MARK_2;
2323       break;
2324     case PRECEDENCE_MARK_2:
2325       if( x[0]!=']' ){
2326         ErrorMsg(psp->filename,psp->tokenlineno,
2327           "Missing \"]\" on precedence mark.");
2328         psp->errorcnt++;
2329       }
2330       psp->state = WAITING_FOR_DECL_OR_RULE;
2331       break;
2332     case WAITING_FOR_ARROW:
2333       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2334         psp->state = IN_RHS;
2335       }else if( x[0]=='(' ){
2336         psp->state = LHS_ALIAS_1;
2337       }else{
2338         ErrorMsg(psp->filename,psp->tokenlineno,
2339           "Expected to see a \":\" following the LHS symbol \"%s\".",
2340           psp->lhs->name);
2341         psp->errorcnt++;
2342         psp->state = RESYNC_AFTER_RULE_ERROR;
2343       }
2344       break;
2345     case LHS_ALIAS_1:
2346       if( ISALPHA(x[0]) ){
2347         psp->lhsalias = x;
2348         psp->state = LHS_ALIAS_2;
2349       }else{
2350         ErrorMsg(psp->filename,psp->tokenlineno,
2351           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2352           x,psp->lhs->name);
2353         psp->errorcnt++;
2354         psp->state = RESYNC_AFTER_RULE_ERROR;
2355       }
2356       break;
2357     case LHS_ALIAS_2:
2358       if( x[0]==')' ){
2359         psp->state = LHS_ALIAS_3;
2360       }else{
2361         ErrorMsg(psp->filename,psp->tokenlineno,
2362           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2363         psp->errorcnt++;
2364         psp->state = RESYNC_AFTER_RULE_ERROR;
2365       }
2366       break;
2367     case LHS_ALIAS_3:
2368       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2369         psp->state = IN_RHS;
2370       }else{
2371         ErrorMsg(psp->filename,psp->tokenlineno,
2372           "Missing \"->\" following: \"%s(%s)\".",
2373            psp->lhs->name,psp->lhsalias);
2374         psp->errorcnt++;
2375         psp->state = RESYNC_AFTER_RULE_ERROR;
2376       }
2377       break;
2378     case IN_RHS:
2379       if( x[0]=='.' ){
2380         struct rule *rp;
2381         rp = (struct rule *)calloc( sizeof(struct rule) +
2382              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2383         if( rp==0 ){
2384           ErrorMsg(psp->filename,psp->tokenlineno,
2385             "Can't allocate enough memory for this rule.");
2386           psp->errorcnt++;
2387           psp->prevrule = 0;
2388         }else{
2389           int i;
2390           rp->ruleline = psp->tokenlineno;
2391           rp->rhs = (struct symbol**)&rp[1];
2392           rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2393           for(i=0; i<psp->nrhs; i++){
2394             rp->rhs[i] = psp->rhs[i];
2395             rp->rhsalias[i] = psp->alias[i];
2396             if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; }
2397           }
2398           rp->lhs = psp->lhs;
2399           rp->lhsalias = psp->lhsalias;
2400           rp->nrhs = psp->nrhs;
2401           rp->code = 0;
2402           rp->noCode = 1;
2403           rp->precsym = 0;
2404           rp->index = psp->gp->nrule++;
2405           rp->nextlhs = rp->lhs->rule;
2406           rp->lhs->rule = rp;
2407           rp->next = 0;
2408           if( psp->firstrule==0 ){
2409             psp->firstrule = psp->lastrule = rp;
2410           }else{
2411             psp->lastrule->next = rp;
2412             psp->lastrule = rp;
2413           }
2414           psp->prevrule = rp;
2415         }
2416         psp->state = WAITING_FOR_DECL_OR_RULE;
2417       }else if( ISALPHA(x[0]) ){
2418         if( psp->nrhs>=MAXRHS ){
2419           ErrorMsg(psp->filename,psp->tokenlineno,
2420             "Too many symbols on RHS of rule beginning at \"%s\".",
2421             x);
2422           psp->errorcnt++;
2423           psp->state = RESYNC_AFTER_RULE_ERROR;
2424         }else{
2425           psp->rhs[psp->nrhs] = Symbol_new(x);
2426           psp->alias[psp->nrhs] = 0;
2427           psp->nrhs++;
2428         }
2429       }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 && ISUPPER(x[1]) ){
2430         struct symbol *msp = psp->rhs[psp->nrhs-1];
2431         if( msp->type!=MULTITERMINAL ){
2432           struct symbol *origsp = msp;
2433           msp = (struct symbol *) calloc(1,sizeof(*msp));
2434           memset(msp, 0, sizeof(*msp));
2435           msp->type = MULTITERMINAL;
2436           msp->nsubsym = 1;
2437           msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2438           msp->subsym[0] = origsp;
2439           msp->name = origsp->name;
2440           psp->rhs[psp->nrhs-1] = msp;
2441         }
2442         msp->nsubsym++;
2443         msp->subsym = (struct symbol **) realloc(msp->subsym,
2444           sizeof(struct symbol*)*msp->nsubsym);
2445         msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2446         if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
2447           ErrorMsg(psp->filename,psp->tokenlineno,
2448             "Cannot form a compound containing a non-terminal");
2449           psp->errorcnt++;
2450         }
2451       }else if( x[0]=='(' && psp->nrhs>0 ){
2452         psp->state = RHS_ALIAS_1;
2453       }else{
2454         ErrorMsg(psp->filename,psp->tokenlineno,
2455           "Illegal character on RHS of rule: \"%s\".",x);
2456         psp->errorcnt++;
2457         psp->state = RESYNC_AFTER_RULE_ERROR;
2458       }
2459       break;
2460     case RHS_ALIAS_1:
2461       if( ISALPHA(x[0]) ){
2462         psp->alias[psp->nrhs-1] = x;
2463         psp->state = RHS_ALIAS_2;
2464       }else{
2465         ErrorMsg(psp->filename,psp->tokenlineno,
2466           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2467           x,psp->rhs[psp->nrhs-1]->name);
2468         psp->errorcnt++;
2469         psp->state = RESYNC_AFTER_RULE_ERROR;
2470       }
2471       break;
2472     case RHS_ALIAS_2:
2473       if( x[0]==')' ){
2474         psp->state = IN_RHS;
2475       }else{
2476         ErrorMsg(psp->filename,psp->tokenlineno,
2477           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2478         psp->errorcnt++;
2479         psp->state = RESYNC_AFTER_RULE_ERROR;
2480       }
2481       break;
2482     case WAITING_FOR_DECL_KEYWORD:
2483       if( ISALPHA(x[0]) ){
2484         psp->declkeyword = x;
2485         psp->declargslot = 0;
2486         psp->decllinenoslot = 0;
2487         psp->insertLineMacro = 1;
2488         psp->state = WAITING_FOR_DECL_ARG;
2489         if( strcmp(x,"name")==0 ){
2490           psp->declargslot = &(psp->gp->name);
2491           psp->insertLineMacro = 0;
2492         }else if( strcmp(x,"include")==0 ){
2493           psp->declargslot = &(psp->gp->include);
2494         }else if( strcmp(x,"code")==0 ){
2495           psp->declargslot = &(psp->gp->extracode);
2496         }else if( strcmp(x,"token_destructor")==0 ){
2497           psp->declargslot = &psp->gp->tokendest;
2498         }else if( strcmp(x,"default_destructor")==0 ){
2499           psp->declargslot = &psp->gp->vardest;
2500         }else if( strcmp(x,"token_prefix")==0 ){
2501           psp->declargslot = &psp->gp->tokenprefix;
2502           psp->insertLineMacro = 0;
2503         }else if( strcmp(x,"syntax_error")==0 ){
2504           psp->declargslot = &(psp->gp->error);
2505         }else if( strcmp(x,"parse_accept")==0 ){
2506           psp->declargslot = &(psp->gp->accept);
2507         }else if( strcmp(x,"parse_failure")==0 ){
2508           psp->declargslot = &(psp->gp->failure);
2509         }else if( strcmp(x,"stack_overflow")==0 ){
2510           psp->declargslot = &(psp->gp->overflow);
2511         }else if( strcmp(x,"extra_argument")==0 ){
2512           psp->declargslot = &(psp->gp->arg);
2513           psp->insertLineMacro = 0;
2514         }else if( strcmp(x,"extra_context")==0 ){
2515           psp->declargslot = &(psp->gp->ctx);
2516           psp->insertLineMacro = 0;
2517         }else if( strcmp(x,"token_type")==0 ){
2518           psp->declargslot = &(psp->gp->tokentype);
2519           psp->insertLineMacro = 0;
2520         }else if( strcmp(x,"default_type")==0 ){
2521           psp->declargslot = &(psp->gp->vartype);
2522           psp->insertLineMacro = 0;
2523         }else if( strcmp(x,"stack_size")==0 ){
2524           psp->declargslot = &(psp->gp->stacksize);
2525           psp->insertLineMacro = 0;
2526         }else if( strcmp(x,"start_symbol")==0 ){
2527           psp->declargslot = &(psp->gp->start);
2528           psp->insertLineMacro = 0;
2529         }else if( strcmp(x,"left")==0 ){
2530           psp->preccounter++;
2531           psp->declassoc = LEFT;
2532           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2533         }else if( strcmp(x,"right")==0 ){
2534           psp->preccounter++;
2535           psp->declassoc = RIGHT;
2536           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2537         }else if( strcmp(x,"nonassoc")==0 ){
2538           psp->preccounter++;
2539           psp->declassoc = NONE;
2540           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2541         }else if( strcmp(x,"destructor")==0 ){
2542           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2543         }else if( strcmp(x,"type")==0 ){
2544           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2545         }else if( strcmp(x,"fallback")==0 ){
2546           psp->fallback = 0;
2547           psp->state = WAITING_FOR_FALLBACK_ID;
2548         }else if( strcmp(x,"token")==0 ){
2549           psp->state = WAITING_FOR_TOKEN_NAME;
2550         }else if( strcmp(x,"wildcard")==0 ){
2551           psp->state = WAITING_FOR_WILDCARD_ID;
2552         }else if( strcmp(x,"token_class")==0 ){
2553           psp->state = WAITING_FOR_CLASS_ID;
2554         }else{
2555           ErrorMsg(psp->filename,psp->tokenlineno,
2556             "Unknown declaration keyword: \"%%%s\".",x);
2557           psp->errorcnt++;
2558           psp->state = RESYNC_AFTER_DECL_ERROR;
2559         }
2560       }else{
2561         ErrorMsg(psp->filename,psp->tokenlineno,
2562           "Illegal declaration keyword: \"%s\".",x);
2563         psp->errorcnt++;
2564         psp->state = RESYNC_AFTER_DECL_ERROR;
2565       }
2566       break;
2567     case WAITING_FOR_DESTRUCTOR_SYMBOL:
2568       if( !ISALPHA(x[0]) ){
2569         ErrorMsg(psp->filename,psp->tokenlineno,
2570           "Symbol name missing after %%destructor keyword");
2571         psp->errorcnt++;
2572         psp->state = RESYNC_AFTER_DECL_ERROR;
2573       }else{
2574         struct symbol *sp = Symbol_new(x);
2575         psp->declargslot = &sp->destructor;
2576         psp->decllinenoslot = &sp->destLineno;
2577         psp->insertLineMacro = 1;
2578         psp->state = WAITING_FOR_DECL_ARG;
2579       }
2580       break;
2581     case WAITING_FOR_DATATYPE_SYMBOL:
2582       if( !ISALPHA(x[0]) ){
2583         ErrorMsg(psp->filename,psp->tokenlineno,
2584           "Symbol name missing after %%type keyword");
2585         psp->errorcnt++;
2586         psp->state = RESYNC_AFTER_DECL_ERROR;
2587       }else{
2588         struct symbol *sp = Symbol_find(x);
2589         if((sp) && (sp->datatype)){
2590           ErrorMsg(psp->filename,psp->tokenlineno,
2591             "Symbol %%type \"%s\" already defined", x);
2592           psp->errorcnt++;
2593           psp->state = RESYNC_AFTER_DECL_ERROR;
2594         }else{
2595           if (!sp){
2596             sp = Symbol_new(x);
2597           }
2598           psp->declargslot = &sp->datatype;
2599           psp->insertLineMacro = 0;
2600           psp->state = WAITING_FOR_DECL_ARG;
2601         }
2602       }
2603       break;
2604     case WAITING_FOR_PRECEDENCE_SYMBOL:
2605       if( x[0]=='.' ){
2606         psp->state = WAITING_FOR_DECL_OR_RULE;
2607       }else if( ISUPPER(x[0]) ){
2608         struct symbol *sp;
2609         sp = Symbol_new(x);
2610         if( sp->prec>=0 ){
2611           ErrorMsg(psp->filename,psp->tokenlineno,
2612             "Symbol \"%s\" has already be given a precedence.",x);
2613           psp->errorcnt++;
2614         }else{
2615           sp->prec = psp->preccounter;
2616           sp->assoc = psp->declassoc;
2617         }
2618       }else{
2619         ErrorMsg(psp->filename,psp->tokenlineno,
2620           "Can't assign a precedence to \"%s\".",x);
2621         psp->errorcnt++;
2622       }
2623       break;
2624     case WAITING_FOR_DECL_ARG:
2625       if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
2626         const char *zOld, *zNew;
2627         char *zBuf, *z;
2628         int nOld, n, nLine = 0, nNew, nBack;
2629         int addLineMacro;
2630         char zLine[50];
2631         zNew = x;
2632         if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2633         nNew = lemonStrlen(zNew);
2634         if( *psp->declargslot ){
2635           zOld = *psp->declargslot;
2636         }else{
2637           zOld = "";
2638         }
2639         nOld = lemonStrlen(zOld);
2640         n = nOld + nNew + 20;
2641         addLineMacro = !psp->gp->nolinenosflag
2642                        && psp->insertLineMacro
2643                        && psp->tokenlineno>1
2644                        && (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2645         if( addLineMacro ){
2646           for(z=psp->filename, nBack=0; *z; z++){
2647             if( *z=='\\' ) nBack++;
2648           }
2649           lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
2650           nLine = lemonStrlen(zLine);
2651           n += nLine + lemonStrlen(psp->filename) + nBack;
2652         }
2653         *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2654         zBuf = *psp->declargslot + nOld;
2655         if( addLineMacro ){
2656           if( nOld && zBuf[-1]!='\n' ){
2657             *(zBuf++) = '\n';
2658           }
2659           memcpy(zBuf, zLine, nLine);
2660           zBuf += nLine;
2661           *(zBuf++) = '"';
2662           for(z=psp->filename; *z; z++){
2663             if( *z=='\\' ){
2664               *(zBuf++) = '\\';
2665             }
2666             *(zBuf++) = *z;
2667           }
2668           *(zBuf++) = '"';
2669           *(zBuf++) = '\n';
2670         }
2671         if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2672           psp->decllinenoslot[0] = psp->tokenlineno;
2673         }
2674         memcpy(zBuf, zNew, nNew);
2675         zBuf += nNew;
2676         *zBuf = 0;
2677         psp->state = WAITING_FOR_DECL_OR_RULE;
2678       }else{
2679         ErrorMsg(psp->filename,psp->tokenlineno,
2680           "Illegal argument to %%%s: %s",psp->declkeyword,x);
2681         psp->errorcnt++;
2682         psp->state = RESYNC_AFTER_DECL_ERROR;
2683       }
2684       break;
2685     case WAITING_FOR_FALLBACK_ID:
2686       if( x[0]=='.' ){
2687         psp->state = WAITING_FOR_DECL_OR_RULE;
2688       }else if( !ISUPPER(x[0]) ){
2689         ErrorMsg(psp->filename, psp->tokenlineno,
2690           "%%fallback argument \"%s\" should be a token", x);
2691         psp->errorcnt++;
2692       }else{
2693         struct symbol *sp = Symbol_new(x);
2694         if( psp->fallback==0 ){
2695           psp->fallback = sp;
2696         }else if( sp->fallback ){
2697           ErrorMsg(psp->filename, psp->tokenlineno,
2698             "More than one fallback assigned to token %s", x);
2699           psp->errorcnt++;
2700         }else{
2701           sp->fallback = psp->fallback;
2702           psp->gp->has_fallback = 1;
2703         }
2704       }
2705       break;
2706     case WAITING_FOR_TOKEN_NAME:
2707       /* Tokens do not have to be declared before use.  But they can be
2708       ** in order to control their assigned integer number.  The number for
2709       ** each token is assigned when it is first seen.  So by including
2710       **
2711       **     %token ONE TWO THREE
2712       **
2713       ** early in the grammar file, that assigns small consecutive values
2714       ** to each of the tokens ONE TWO and THREE.
2715       */
2716       if( x[0]=='.' ){
2717         psp->state = WAITING_FOR_DECL_OR_RULE;
2718       }else if( !ISUPPER(x[0]) ){
2719         ErrorMsg(psp->filename, psp->tokenlineno,
2720           "%%token argument \"%s\" should be a token", x);
2721         psp->errorcnt++;
2722       }else{
2723         (void)Symbol_new(x);
2724       }
2725       break;
2726     case WAITING_FOR_WILDCARD_ID:
2727       if( x[0]=='.' ){
2728         psp->state = WAITING_FOR_DECL_OR_RULE;
2729       }else if( !ISUPPER(x[0]) ){
2730         ErrorMsg(psp->filename, psp->tokenlineno,
2731           "%%wildcard argument \"%s\" should be a token", x);
2732         psp->errorcnt++;
2733       }else{
2734         struct symbol *sp = Symbol_new(x);
2735         if( psp->gp->wildcard==0 ){
2736           psp->gp->wildcard = sp;
2737         }else{
2738           ErrorMsg(psp->filename, psp->tokenlineno,
2739             "Extra wildcard to token: %s", x);
2740           psp->errorcnt++;
2741         }
2742       }
2743       break;
2744     case WAITING_FOR_CLASS_ID:
2745       if( !ISLOWER(x[0]) ){
2746         ErrorMsg(psp->filename, psp->tokenlineno,
2747           "%%token_class must be followed by an identifier: %s", x);
2748         psp->errorcnt++;
2749         psp->state = RESYNC_AFTER_DECL_ERROR;
2750      }else if( Symbol_find(x) ){
2751         ErrorMsg(psp->filename, psp->tokenlineno,
2752           "Symbol \"%s\" already used", x);
2753         psp->errorcnt++;
2754         psp->state = RESYNC_AFTER_DECL_ERROR;
2755       }else{
2756         psp->tkclass = Symbol_new(x);
2757         psp->tkclass->type = MULTITERMINAL;
2758         psp->state = WAITING_FOR_CLASS_TOKEN;
2759       }
2760       break;
2761     case WAITING_FOR_CLASS_TOKEN:
2762       if( x[0]=='.' ){
2763         psp->state = WAITING_FOR_DECL_OR_RULE;
2764       }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
2765         struct symbol *msp = psp->tkclass;
2766         msp->nsubsym++;
2767         msp->subsym = (struct symbol **) realloc(msp->subsym,
2768           sizeof(struct symbol*)*msp->nsubsym);
2769         if( !ISUPPER(x[0]) ) x++;
2770         msp->subsym[msp->nsubsym-1] = Symbol_new(x);
2771       }else{
2772         ErrorMsg(psp->filename, psp->tokenlineno,
2773           "%%token_class argument \"%s\" should be a token", x);
2774         psp->errorcnt++;
2775         psp->state = RESYNC_AFTER_DECL_ERROR;
2776       }
2777       break;
2778     case RESYNC_AFTER_RULE_ERROR:
2779 /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2780 **      break; */
2781     case RESYNC_AFTER_DECL_ERROR:
2782       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2783       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2784       break;
2785   }
2786 }
2787 
2788 /* The text in the input is part of the argument to an %ifdef or %ifndef.
2789 ** Evaluate the text as a boolean expression.  Return true or false.
2790 */
eval_preprocessor_boolean(char * z,int lineno)2791 static int eval_preprocessor_boolean(char *z, int lineno){
2792   int neg = 0;
2793   int res = 0;
2794   int okTerm = 1;
2795   int i;
2796   for(i=0; z[i]!=0; i++){
2797     if( ISSPACE(z[i]) ) continue;
2798     if( z[i]=='!' ){
2799       if( !okTerm ) goto pp_syntax_error;
2800       neg = !neg;
2801       continue;
2802     }
2803     if( z[i]=='|' && z[i+1]=='|' ){
2804       if( okTerm ) goto pp_syntax_error;
2805       if( res ) return 1;
2806       i++;
2807       okTerm = 1;
2808       continue;
2809     }
2810     if( z[i]=='&' && z[i+1]=='&' ){
2811       if( okTerm ) goto pp_syntax_error;
2812       if( !res ) return 0;
2813       i++;
2814       okTerm = 1;
2815       continue;
2816     }
2817     if( z[i]=='(' ){
2818       int k;
2819       int n = 1;
2820       if( !okTerm ) goto pp_syntax_error;
2821       for(k=i+1; z[k]; k++){
2822         if( z[k]==')' ){
2823           n--;
2824           if( n==0 ){
2825             z[k] = 0;
2826             res = eval_preprocessor_boolean(&z[i+1], -1);
2827             z[k] = ')';
2828             if( res<0 ){
2829               i = i-res;
2830               goto pp_syntax_error;
2831             }
2832             i = k;
2833             break;
2834           }
2835         }else if( z[k]=='(' ){
2836           n++;
2837         }else if( z[k]==0 ){
2838           i = k;
2839           goto pp_syntax_error;
2840         }
2841       }
2842       if( neg ){
2843         res = !res;
2844         neg = 0;
2845       }
2846       okTerm = 0;
2847       continue;
2848     }
2849     if( ISALPHA(z[i]) ){
2850       int j, k, n;
2851       if( !okTerm ) goto pp_syntax_error;
2852       for(k=i+1; ISALNUM(z[k]) || z[k]=='_'; k++){}
2853       n = k - i;
2854       res = 0;
2855       for(j=0; j<nDefine; j++){
2856         if( strncmp(azDefine[j],&z[i],n)==0 && azDefine[j][n]==0 ){
2857           res = 1;
2858           break;
2859         }
2860       }
2861       i = k-1;
2862       if( neg ){
2863         res = !res;
2864         neg = 0;
2865       }
2866       okTerm = 0;
2867       continue;
2868     }
2869     goto pp_syntax_error;
2870   }
2871   return res;
2872 
2873 pp_syntax_error:
2874   if( lineno>0 ){
2875     fprintf(stderr, "%%if syntax error on line %d.\n", lineno);
2876     fprintf(stderr, "  %.*s <-- syntax error here\n", i+1, z);
2877     exit(1);
2878   }else{
2879     return -(i+1);
2880   }
2881 }
2882 
2883 /* Run the preprocessor over the input file text.  The global variables
2884 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2885 ** macros.  This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2886 ** comments them out.  Text in between is also commented out as appropriate.
2887 */
preprocess_input(char * z)2888 static void preprocess_input(char *z){
2889   int i, j, k;
2890   int exclude = 0;
2891   int start = 0;
2892   int lineno = 1;
2893   int start_lineno = 1;
2894   for(i=0; z[i]; i++){
2895     if( z[i]=='\n' ) lineno++;
2896     if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2897     if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
2898       if( exclude ){
2899         exclude--;
2900         if( exclude==0 ){
2901           for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2902         }
2903       }
2904       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2905     }else if( strncmp(&z[i],"%else",5)==0 && ISSPACE(z[i+5]) ){
2906       if( exclude==1){
2907         exclude = 0;
2908         for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2909       }else if( exclude==0 ){
2910         exclude = 1;
2911         start = i;
2912         start_lineno = lineno;
2913       }
2914       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2915     }else if( strncmp(&z[i],"%ifdef ",7)==0
2916           || strncmp(&z[i],"%if ",4)==0
2917           || strncmp(&z[i],"%ifndef ",8)==0 ){
2918       if( exclude ){
2919         exclude++;
2920       }else{
2921         int isNot;
2922         int iBool;
2923         for(j=i; z[j] && !ISSPACE(z[j]); j++){}
2924         iBool = j;
2925         isNot = (j==i+7);
2926         while( z[j] && z[j]!='\n' ){ j++; }
2927         k = z[j];
2928         z[j] = 0;
2929         exclude = eval_preprocessor_boolean(&z[iBool], lineno);
2930         z[j] = k;
2931         if( !isNot ) exclude = !exclude;
2932         if( exclude ){
2933           start = i;
2934           start_lineno = lineno;
2935         }
2936       }
2937       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2938     }
2939   }
2940   if( exclude ){
2941     fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2942     exit(1);
2943   }
2944 }
2945 
2946 /* In spite of its name, this function is really a scanner.  It read
2947 ** in the entire input file (all at once) then tokenizes it.  Each
2948 ** token is passed to the function "parseonetoken" which builds all
2949 ** the appropriate data structures in the global state vector "gp".
2950 */
Parse(struct lemon * gp)2951 void Parse(struct lemon *gp)
2952 {
2953   struct pstate ps;
2954   FILE *fp;
2955   char *filebuf;
2956   unsigned int filesize;
2957   int lineno;
2958   int c;
2959   char *cp, *nextcp;
2960   int startline = 0;
2961 
2962   memset(&ps, '\0', sizeof(ps));
2963   ps.gp = gp;
2964   ps.filename = gp->filename;
2965   ps.errorcnt = 0;
2966   ps.state = INITIALIZE;
2967 
2968   /* Begin by reading the input file */
2969   fp = fopen(ps.filename,"rb");
2970   if( fp==0 ){
2971     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2972     gp->errorcnt++;
2973     return;
2974   }
2975   fseek(fp,0,2);
2976   filesize = ftell(fp);
2977   rewind(fp);
2978   filebuf = (char *)malloc( filesize+1 );
2979   if( filesize>100000000 || filebuf==0 ){
2980     ErrorMsg(ps.filename,0,"Input file too large.");
2981     free(filebuf);
2982     gp->errorcnt++;
2983     fclose(fp);
2984     return;
2985   }
2986   if( fread(filebuf,1,filesize,fp)!=filesize ){
2987     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2988       filesize);
2989     free(filebuf);
2990     gp->errorcnt++;
2991     fclose(fp);
2992     return;
2993   }
2994   fclose(fp);
2995   filebuf[filesize] = 0;
2996 
2997   /* Make an initial pass through the file to handle %ifdef and %ifndef */
2998   preprocess_input(filebuf);
2999   if( gp->printPreprocessed ){
3000     printf("%s\n", filebuf);
3001     return;
3002   }
3003 
3004   /* Now scan the text of the input file */
3005   lineno = 1;
3006   for(cp=filebuf; (c= *cp)!=0; ){
3007     if( c=='\n' ) lineno++;              /* Keep track of the line number */
3008     if( ISSPACE(c) ){ cp++; continue; }  /* Skip all white space */
3009     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
3010       cp+=2;
3011       while( (c= *cp)!=0 && c!='\n' ) cp++;
3012       continue;
3013     }
3014     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
3015       cp+=2;
3016       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
3017         if( c=='\n' ) lineno++;
3018         cp++;
3019       }
3020       if( c ) cp++;
3021       continue;
3022     }
3023     ps.tokenstart = cp;                /* Mark the beginning of the token */
3024     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
3025     if( c=='\"' ){                     /* String literals */
3026       cp++;
3027       while( (c= *cp)!=0 && c!='\"' ){
3028         if( c=='\n' ) lineno++;
3029         cp++;
3030       }
3031       if( c==0 ){
3032         ErrorMsg(ps.filename,startline,
3033             "String starting on this line is not terminated before "
3034             "the end of the file.");
3035         ps.errorcnt++;
3036         nextcp = cp;
3037       }else{
3038         nextcp = cp+1;
3039       }
3040     }else if( c=='{' ){               /* A block of C code */
3041       int level;
3042       cp++;
3043       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
3044         if( c=='\n' ) lineno++;
3045         else if( c=='{' ) level++;
3046         else if( c=='}' ) level--;
3047         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
3048           int prevc;
3049           cp = &cp[2];
3050           prevc = 0;
3051           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
3052             if( c=='\n' ) lineno++;
3053             prevc = c;
3054             cp++;
3055           }
3056         }else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
3057           cp = &cp[2];
3058           while( (c= *cp)!=0 && c!='\n' ) cp++;
3059           if( c ) lineno++;
3060         }else if( c=='\'' || c=='\"' ){    /* String a character literals */
3061           int startchar, prevc;
3062           startchar = c;
3063           prevc = 0;
3064           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
3065             if( c=='\n' ) lineno++;
3066             if( prevc=='\\' ) prevc = 0;
3067             else              prevc = c;
3068           }
3069         }
3070       }
3071       if( c==0 ){
3072         ErrorMsg(ps.filename,ps.tokenlineno,
3073           "C code starting on this line is not terminated before "
3074           "the end of the file.");
3075         ps.errorcnt++;
3076         nextcp = cp;
3077       }else{
3078         nextcp = cp+1;
3079       }
3080     }else if( ISALNUM(c) ){          /* Identifiers */
3081       while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3082       nextcp = cp;
3083     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
3084       cp += 3;
3085       nextcp = cp;
3086     }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
3087       cp += 2;
3088       while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3089       nextcp = cp;
3090     }else{                          /* All other (one character) operators */
3091       cp++;
3092       nextcp = cp;
3093     }
3094     c = *cp;
3095     *cp = 0;                        /* Null terminate the token */
3096     parseonetoken(&ps);             /* Parse the token */
3097     *cp = (char)c;                  /* Restore the buffer */
3098     cp = nextcp;
3099   }
3100   free(filebuf);                    /* Release the buffer after parsing */
3101   gp->rule = ps.firstrule;
3102   gp->errorcnt = ps.errorcnt;
3103 }
3104 /*************************** From the file "plink.c" *********************/
3105 /*
3106 ** Routines processing configuration follow-set propagation links
3107 ** in the LEMON parser generator.
3108 */
3109 static struct plink *plink_freelist = 0;
3110 
3111 /* Allocate a new plink */
Plink_new(void)3112 struct plink *Plink_new(void){
3113   struct plink *newlink;
3114 
3115   if( plink_freelist==0 ){
3116     int i;
3117     int amt = 100;
3118     plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
3119     if( plink_freelist==0 ){
3120       fprintf(stderr,
3121       "Unable to allocate memory for a new follow-set propagation link.\n");
3122       exit(1);
3123     }
3124     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
3125     plink_freelist[amt-1].next = 0;
3126   }
3127   newlink = plink_freelist;
3128   plink_freelist = plink_freelist->next;
3129   return newlink;
3130 }
3131 
3132 /* Add a plink to a plink list */
Plink_add(struct plink ** plpp,struct config * cfp)3133 void Plink_add(struct plink **plpp, struct config *cfp)
3134 {
3135   struct plink *newlink;
3136   newlink = Plink_new();
3137   newlink->next = *plpp;
3138   *plpp = newlink;
3139   newlink->cfp = cfp;
3140 }
3141 
3142 /* Transfer every plink on the list "from" to the list "to" */
Plink_copy(struct plink ** to,struct plink * from)3143 void Plink_copy(struct plink **to, struct plink *from)
3144 {
3145   struct plink *nextpl;
3146   while( from ){
3147     nextpl = from->next;
3148     from->next = *to;
3149     *to = from;
3150     from = nextpl;
3151   }
3152 }
3153 
3154 /* Delete every plink on the list */
Plink_delete(struct plink * plp)3155 void Plink_delete(struct plink *plp)
3156 {
3157   struct plink *nextpl;
3158 
3159   while( plp ){
3160     nextpl = plp->next;
3161     plp->next = plink_freelist;
3162     plink_freelist = plp;
3163     plp = nextpl;
3164   }
3165 }
3166 /*********************** From the file "report.c" **************************/
3167 /*
3168 ** Procedures for generating reports and tables in the LEMON parser generator.
3169 */
3170 
3171 /* Generate a filename with the given suffix.  Space to hold the
3172 ** name comes from malloc() and must be freed by the calling
3173 ** function.
3174 */
file_makename(struct lemon * lemp,const char * suffix)3175 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
3176 {
3177   char *name;
3178   char *cp;
3179   char *filename = lemp->filename;
3180   int sz;
3181 
3182   if( outputDir ){
3183     cp = strrchr(filename, '/');
3184     if( cp ) filename = cp + 1;
3185   }
3186   sz = lemonStrlen(filename);
3187   sz += lemonStrlen(suffix);
3188   if( outputDir ) sz += lemonStrlen(outputDir) + 1;
3189   sz += 5;
3190   name = (char*)malloc( sz );
3191   if( name==0 ){
3192     fprintf(stderr,"Can't allocate space for a filename.\n");
3193     exit(1);
3194   }
3195   name[0] = 0;
3196   if( outputDir ){
3197     lemon_strcpy(name, outputDir);
3198     lemon_strcat(name, "/");
3199   }
3200   lemon_strcat(name,filename);
3201   cp = strrchr(name,'.');
3202   if( cp ) *cp = 0;
3203   lemon_strcat(name,suffix);
3204   return name;
3205 }
3206 
3207 /* Open a file with a name based on the name of the input file,
3208 ** but with a different (specified) suffix, and return a pointer
3209 ** to the stream */
file_open(struct lemon * lemp,const char * suffix,const char * mode)3210 PRIVATE FILE *file_open(
3211   struct lemon *lemp,
3212   const char *suffix,
3213   const char *mode
3214 ){
3215   FILE *fp;
3216 
3217   if( lemp->outname ) free(lemp->outname);
3218   lemp->outname = file_makename(lemp, suffix);
3219   fp = fopen(lemp->outname,mode);
3220   if( fp==0 && *mode=='w' ){
3221     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
3222     lemp->errorcnt++;
3223     return 0;
3224   }
3225   return fp;
3226 }
3227 
3228 /* Print the text of a rule
3229 */
rule_print(FILE * out,struct rule * rp)3230 void rule_print(FILE *out, struct rule *rp){
3231   int i, j;
3232   fprintf(out, "%s",rp->lhs->name);
3233   /*    if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
3234   fprintf(out," ::=");
3235   for(i=0; i<rp->nrhs; i++){
3236     struct symbol *sp = rp->rhs[i];
3237     if( sp->type==MULTITERMINAL ){
3238       fprintf(out," %s", sp->subsym[0]->name);
3239       for(j=1; j<sp->nsubsym; j++){
3240         fprintf(out,"|%s", sp->subsym[j]->name);
3241       }
3242     }else{
3243       fprintf(out," %s", sp->name);
3244     }
3245     /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
3246   }
3247 }
3248 
3249 /* Duplicate the input file without comments and without actions
3250 ** on rules */
Reprint(struct lemon * lemp)3251 void Reprint(struct lemon *lemp)
3252 {
3253   struct rule *rp;
3254   struct symbol *sp;
3255   int i, j, maxlen, len, ncolumns, skip;
3256   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3257   maxlen = 10;
3258   for(i=0; i<lemp->nsymbol; i++){
3259     sp = lemp->symbols[i];
3260     len = lemonStrlen(sp->name);
3261     if( len>maxlen ) maxlen = len;
3262   }
3263   ncolumns = 76/(maxlen+5);
3264   if( ncolumns<1 ) ncolumns = 1;
3265   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
3266   for(i=0; i<skip; i++){
3267     printf("//");
3268     for(j=i; j<lemp->nsymbol; j+=skip){
3269       sp = lemp->symbols[j];
3270       assert( sp->index==j );
3271       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
3272     }
3273     printf("\n");
3274   }
3275   for(rp=lemp->rule; rp; rp=rp->next){
3276     rule_print(stdout, rp);
3277     printf(".");
3278     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
3279     /* if( rp->code ) printf("\n    %s",rp->code); */
3280     printf("\n");
3281   }
3282 }
3283 
3284 /* Print a single rule.
3285 */
RulePrint(FILE * fp,struct rule * rp,int iCursor)3286 void RulePrint(FILE *fp, struct rule *rp, int iCursor){
3287   struct symbol *sp;
3288   int i, j;
3289   fprintf(fp,"%s ::=",rp->lhs->name);
3290   for(i=0; i<=rp->nrhs; i++){
3291     if( i==iCursor ) fprintf(fp," *");
3292     if( i==rp->nrhs ) break;
3293     sp = rp->rhs[i];
3294     if( sp->type==MULTITERMINAL ){
3295       fprintf(fp," %s", sp->subsym[0]->name);
3296       for(j=1; j<sp->nsubsym; j++){
3297         fprintf(fp,"|%s",sp->subsym[j]->name);
3298       }
3299     }else{
3300       fprintf(fp," %s", sp->name);
3301     }
3302   }
3303 }
3304 
3305 /* Print the rule for a configuration.
3306 */
ConfigPrint(FILE * fp,struct config * cfp)3307 void ConfigPrint(FILE *fp, struct config *cfp){
3308   RulePrint(fp, cfp->rp, cfp->dot);
3309 }
3310 
3311 /* #define TEST */
3312 #if 0
3313 /* Print a set */
3314 PRIVATE void SetPrint(out,set,lemp)
3315 FILE *out;
3316 char *set;
3317 struct lemon *lemp;
3318 {
3319   int i;
3320   char *spacer;
3321   spacer = "";
3322   fprintf(out,"%12s[","");
3323   for(i=0; i<lemp->nterminal; i++){
3324     if( SetFind(set,i) ){
3325       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
3326       spacer = " ";
3327     }
3328   }
3329   fprintf(out,"]\n");
3330 }
3331 
3332 /* Print a plink chain */
3333 PRIVATE void PlinkPrint(out,plp,tag)
3334 FILE *out;
3335 struct plink *plp;
3336 char *tag;
3337 {
3338   while( plp ){
3339     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
3340     ConfigPrint(out,plp->cfp);
3341     fprintf(out,"\n");
3342     plp = plp->next;
3343   }
3344 }
3345 #endif
3346 
3347 /* Print an action to the given file descriptor.  Return FALSE if
3348 ** nothing was actually printed.
3349 */
PrintAction(struct action * ap,FILE * fp,int indent)3350 int PrintAction(
3351   struct action *ap,          /* The action to print */
3352   FILE *fp,                   /* Print the action here */
3353   int indent                  /* Indent by this amount */
3354 ){
3355   int result = 1;
3356   switch( ap->type ){
3357     case SHIFT: {
3358       struct state *stp = ap->x.stp;
3359       fprintf(fp,"%*s shift        %-7d",indent,ap->sp->name,stp->statenum);
3360       break;
3361     }
3362     case REDUCE: {
3363       struct rule *rp = ap->x.rp;
3364       fprintf(fp,"%*s reduce       %-7d",indent,ap->sp->name,rp->iRule);
3365       RulePrint(fp, rp, -1);
3366       break;
3367     }
3368     case SHIFTREDUCE: {
3369       struct rule *rp = ap->x.rp;
3370       fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
3371       RulePrint(fp, rp, -1);
3372       break;
3373     }
3374     case ACCEPT:
3375       fprintf(fp,"%*s accept",indent,ap->sp->name);
3376       break;
3377     case ERROR:
3378       fprintf(fp,"%*s error",indent,ap->sp->name);
3379       break;
3380     case SRCONFLICT:
3381     case RRCONFLICT:
3382       fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
3383         indent,ap->sp->name,ap->x.rp->iRule);
3384       break;
3385     case SSCONFLICT:
3386       fprintf(fp,"%*s shift        %-7d ** Parsing conflict **",
3387         indent,ap->sp->name,ap->x.stp->statenum);
3388       break;
3389     case SH_RESOLVED:
3390       if( showPrecedenceConflict ){
3391         fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
3392                 indent,ap->sp->name,ap->x.stp->statenum);
3393       }else{
3394         result = 0;
3395       }
3396       break;
3397     case RD_RESOLVED:
3398       if( showPrecedenceConflict ){
3399         fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
3400                 indent,ap->sp->name,ap->x.rp->iRule);
3401       }else{
3402         result = 0;
3403       }
3404       break;
3405     case NOT_USED:
3406       result = 0;
3407       break;
3408   }
3409   if( result && ap->spOpt ){
3410     fprintf(fp,"  /* because %s==%s */", ap->sp->name, ap->spOpt->name);
3411   }
3412   return result;
3413 }
3414 
3415 /* Generate the "*.out" log file */
ReportOutput(struct lemon * lemp)3416 void ReportOutput(struct lemon *lemp)
3417 {
3418   int i, n;
3419   struct state *stp;
3420   struct config *cfp;
3421   struct action *ap;
3422   struct rule *rp;
3423   FILE *fp;
3424 
3425   fp = file_open(lemp,".out","wb");
3426   if( fp==0 ) return;
3427   for(i=0; i<lemp->nxstate; i++){
3428     stp = lemp->sorted[i];
3429     fprintf(fp,"State %d:\n",stp->statenum);
3430     if( lemp->basisflag ) cfp=stp->bp;
3431     else                  cfp=stp->cfp;
3432     while( cfp ){
3433       char buf[20];
3434       if( cfp->dot==cfp->rp->nrhs ){
3435         lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
3436         fprintf(fp,"    %5s ",buf);
3437       }else{
3438         fprintf(fp,"          ");
3439       }
3440       ConfigPrint(fp,cfp);
3441       fprintf(fp,"\n");
3442 #if 0
3443       SetPrint(fp,cfp->fws,lemp);
3444       PlinkPrint(fp,cfp->fplp,"To  ");
3445       PlinkPrint(fp,cfp->bplp,"From");
3446 #endif
3447       if( lemp->basisflag ) cfp=cfp->bp;
3448       else                  cfp=cfp->next;
3449     }
3450     fprintf(fp,"\n");
3451     for(ap=stp->ap; ap; ap=ap->next){
3452       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
3453     }
3454     fprintf(fp,"\n");
3455   }
3456   fprintf(fp, "----------------------------------------------------\n");
3457   fprintf(fp, "Symbols:\n");
3458   fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
3459   for(i=0; i<lemp->nsymbol; i++){
3460     int j;
3461     struct symbol *sp;
3462 
3463     sp = lemp->symbols[i];
3464     fprintf(fp, "  %3d: %s", i, sp->name);
3465     if( sp->type==NONTERMINAL ){
3466       fprintf(fp, ":");
3467       if( sp->lambda ){
3468         fprintf(fp, " <lambda>");
3469       }
3470       for(j=0; j<lemp->nterminal; j++){
3471         if( sp->firstset && SetFind(sp->firstset, j) ){
3472           fprintf(fp, " %s", lemp->symbols[j]->name);
3473         }
3474       }
3475     }
3476     if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
3477     fprintf(fp, "\n");
3478   }
3479   fprintf(fp, "----------------------------------------------------\n");
3480   fprintf(fp, "Syntax-only Symbols:\n");
3481   fprintf(fp, "The following symbols never carry semantic content.\n\n");
3482   for(i=n=0; i<lemp->nsymbol; i++){
3483     int w;
3484     struct symbol *sp = lemp->symbols[i];
3485     if( sp->bContent ) continue;
3486     w = (int)strlen(sp->name);
3487     if( n>0 && n+w>75 ){
3488       fprintf(fp,"\n");
3489       n = 0;
3490     }
3491     if( n>0 ){
3492       fprintf(fp, " ");
3493       n++;
3494     }
3495     fprintf(fp, "%s", sp->name);
3496     n += w;
3497   }
3498   if( n>0 ) fprintf(fp, "\n");
3499   fprintf(fp, "----------------------------------------------------\n");
3500   fprintf(fp, "Rules:\n");
3501   for(rp=lemp->rule; rp; rp=rp->next){
3502     fprintf(fp, "%4d: ", rp->iRule);
3503     rule_print(fp, rp);
3504     fprintf(fp,".");
3505     if( rp->precsym ){
3506       fprintf(fp," [%s precedence=%d]",
3507               rp->precsym->name, rp->precsym->prec);
3508     }
3509     fprintf(fp,"\n");
3510   }
3511   fclose(fp);
3512   return;
3513 }
3514 
3515 /* Search for the file "name" which is in the same directory as
3516 ** the executable */
pathsearch(char * argv0,char * name,int modemask)3517 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3518 {
3519   const char *pathlist;
3520   char *pathbufptr = 0;
3521   char *pathbuf = 0;
3522   char *path,*cp;
3523   char c;
3524 
3525 #ifdef __WIN32__
3526   cp = strrchr(argv0,'\\');
3527 #else
3528   cp = strrchr(argv0,'/');
3529 #endif
3530   if( cp ){
3531     c = *cp;
3532     *cp = 0;
3533     path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3534     if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
3535     *cp = c;
3536   }else{
3537     pathlist = getenv("PATH");
3538     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3539     pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3540     path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3541     if( (pathbuf != 0) && (path!=0) ){
3542       pathbufptr = pathbuf;
3543       lemon_strcpy(pathbuf, pathlist);
3544       while( *pathbuf ){
3545         cp = strchr(pathbuf,':');
3546         if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3547         c = *cp;
3548         *cp = 0;
3549         lemon_sprintf(path,"%s/%s",pathbuf,name);
3550         *cp = c;
3551         if( c==0 ) pathbuf[0] = 0;
3552         else pathbuf = &cp[1];
3553         if( access(path,modemask)==0 ) break;
3554       }
3555     }
3556     free(pathbufptr);
3557   }
3558   return path;
3559 }
3560 
3561 /* Given an action, compute the integer value for that action
3562 ** which is to be put in the action table of the generated machine.
3563 ** Return negative if no action should be generated.
3564 */
compute_action(struct lemon * lemp,struct action * ap)3565 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3566 {
3567   int act;
3568   switch( ap->type ){
3569     case SHIFT:  act = ap->x.stp->statenum;                        break;
3570     case SHIFTREDUCE: {
3571       /* Since a SHIFT is inherient after a prior REDUCE, convert any
3572       ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3573       ** REDUCE action: */
3574       if( ap->sp->index>=lemp->nterminal ){
3575         act = lemp->minReduce + ap->x.rp->iRule;
3576       }else{
3577         act = lemp->minShiftReduce + ap->x.rp->iRule;
3578       }
3579       break;
3580     }
3581     case REDUCE: act = lemp->minReduce + ap->x.rp->iRule;          break;
3582     case ERROR:  act = lemp->errAction;                            break;
3583     case ACCEPT: act = lemp->accAction;                            break;
3584     default:     act = -1; break;
3585   }
3586   return act;
3587 }
3588 
3589 #define LINESIZE 1000
3590 /* The next cluster of routines are for reading the template file
3591 ** and writing the results to the generated parser */
3592 /* The first function transfers data from "in" to "out" until
3593 ** a line is seen which begins with "%%".  The line number is
3594 ** tracked.
3595 **
3596 ** if name!=0, then any word that begin with "Parse" is changed to
3597 ** begin with *name instead.
3598 */
tplt_xfer(char * name,FILE * in,FILE * out,int * lineno)3599 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3600 {
3601   int i, iStart;
3602   char line[LINESIZE];
3603   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3604     (*lineno)++;
3605     iStart = 0;
3606     if( name ){
3607       for(i=0; line[i]; i++){
3608         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3609           && (i==0 || !ISALPHA(line[i-1]))
3610         ){
3611           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3612           fprintf(out,"%s",name);
3613           i += 4;
3614           iStart = i+1;
3615         }
3616       }
3617     }
3618     fprintf(out,"%s",&line[iStart]);
3619   }
3620 }
3621 
3622 /* Skip forward past the header of the template file to the first "%%"
3623 */
tplt_skip_header(FILE * in,int * lineno)3624 PRIVATE void tplt_skip_header(FILE *in, int *lineno)
3625 {
3626   char line[LINESIZE];
3627   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3628     (*lineno)++;
3629   }
3630 }
3631 
3632 /* The next function finds the template file and opens it, returning
3633 ** a pointer to the opened file. */
tplt_open(struct lemon * lemp)3634 PRIVATE FILE *tplt_open(struct lemon *lemp)
3635 {
3636   static char templatename[] = "lempar.c";
3637   char buf[1000];
3638   FILE *in;
3639   char *tpltname;
3640   char *toFree = 0;
3641   char *cp;
3642 
3643   /* first, see if user specified a template filename on the command line. */
3644   if (user_templatename != 0) {
3645     if( access(user_templatename,004)==-1 ){
3646       fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3647         user_templatename);
3648       lemp->errorcnt++;
3649       return 0;
3650     }
3651     in = fopen(user_templatename,"rb");
3652     if( in==0 ){
3653       fprintf(stderr,"Can't open the template file \"%s\".\n",
3654               user_templatename);
3655       lemp->errorcnt++;
3656       return 0;
3657     }
3658     return in;
3659   }
3660 
3661   cp = strrchr(lemp->filename,'.');
3662   if( cp ){
3663     lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3664   }else{
3665     lemon_sprintf(buf,"%s.lt",lemp->filename);
3666   }
3667   if( access(buf,004)==0 ){
3668     tpltname = buf;
3669   }else if( access(templatename,004)==0 ){
3670     tpltname = templatename;
3671   }else{
3672     toFree = tpltname = pathsearch(lemp->argv0,templatename,0);
3673   }
3674   if( tpltname==0 ){
3675     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3676     templatename);
3677     lemp->errorcnt++;
3678     return 0;
3679   }
3680   in = fopen(tpltname,"rb");
3681   if( in==0 ){
3682     fprintf(stderr,"Can't open the template file \"%s\".\n",tpltname);
3683     lemp->errorcnt++;
3684   }
3685   free(toFree);
3686   return in;
3687 }
3688 
3689 /* Print a #line directive line to the output file. */
tplt_linedir(FILE * out,int lineno,char * filename)3690 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3691 {
3692   fprintf(out,"#line %d \"",lineno);
3693   while( *filename ){
3694     if( *filename == '\\' ) putc('\\',out);
3695     putc(*filename,out);
3696     filename++;
3697   }
3698   fprintf(out,"\"\n");
3699 }
3700 
3701 /* Print a string to the file and keep the linenumber up to date */
tplt_print(FILE * out,struct lemon * lemp,char * str,int * lineno)3702 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3703 {
3704   if( str==0 ) return;
3705   while( *str ){
3706     putc(*str,out);
3707     if( *str=='\n' ) (*lineno)++;
3708     str++;
3709   }
3710   if( str[-1]!='\n' ){
3711     putc('\n',out);
3712     (*lineno)++;
3713   }
3714   if (!lemp->nolinenosflag) {
3715     (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3716   }
3717   return;
3718 }
3719 
3720 /*
3721 ** The following routine emits code for the destructor for the
3722 ** symbol sp
3723 */
emit_destructor_code(FILE * out,struct symbol * sp,struct lemon * lemp,int * lineno)3724 void emit_destructor_code(
3725   FILE *out,
3726   struct symbol *sp,
3727   struct lemon *lemp,
3728   int *lineno
3729 ){
3730  char *cp = 0;
3731 
3732  if( sp->type==TERMINAL ){
3733    cp = lemp->tokendest;
3734    if( cp==0 ) return;
3735    fprintf(out,"{\n"); (*lineno)++;
3736  }else if( sp->destructor ){
3737    cp = sp->destructor;
3738    fprintf(out,"{\n"); (*lineno)++;
3739    if( !lemp->nolinenosflag ){
3740      (*lineno)++;
3741      tplt_linedir(out,sp->destLineno,lemp->filename);
3742    }
3743  }else if( lemp->vardest ){
3744    cp = lemp->vardest;
3745    if( cp==0 ) return;
3746    fprintf(out,"{\n"); (*lineno)++;
3747  }else{
3748    assert( 0 );  /* Cannot happen */
3749  }
3750  for(; *cp; cp++){
3751    if( *cp=='$' && cp[1]=='$' ){
3752      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3753      cp++;
3754      continue;
3755    }
3756    if( *cp=='\n' ) (*lineno)++;
3757    fputc(*cp,out);
3758  }
3759  fprintf(out,"\n"); (*lineno)++;
3760  if (!lemp->nolinenosflag) {
3761    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3762  }
3763  fprintf(out,"}\n"); (*lineno)++;
3764  return;
3765 }
3766 
3767 /*
3768 ** Return TRUE (non-zero) if the given symbol has a destructor.
3769 */
has_destructor(struct symbol * sp,struct lemon * lemp)3770 int has_destructor(struct symbol *sp, struct lemon *lemp)
3771 {
3772   int ret;
3773   if( sp->type==TERMINAL ){
3774     ret = lemp->tokendest!=0;
3775   }else{
3776     ret = lemp->vardest!=0 || sp->destructor!=0;
3777   }
3778   return ret;
3779 }
3780 
3781 /*
3782 ** Append text to a dynamically allocated string.  If zText is 0 then
3783 ** reset the string to be empty again.  Always return the complete text
3784 ** of the string (which is overwritten with each call).
3785 **
3786 ** n bytes of zText are stored.  If n==0 then all of zText up to the first
3787 ** \000 terminator is stored.  zText can contain up to two instances of
3788 ** %d.  The values of p1 and p2 are written into the first and second
3789 ** %d.
3790 **
3791 ** If n==-1, then the previous character is overwritten.
3792 */
append_str(const char * zText,int n,int p1,int p2)3793 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3794   static char empty[1] = { 0 };
3795   static char *z = 0;
3796   static int alloced = 0;
3797   static int used = 0;
3798   int c;
3799   char zInt[40];
3800   if( zText==0 ){
3801     if( used==0 && z!=0 ) z[0] = 0;
3802     used = 0;
3803     return z;
3804   }
3805   if( n<=0 ){
3806     if( n<0 ){
3807       used += n;
3808       assert( used>=0 );
3809     }
3810     n = lemonStrlen(zText);
3811   }
3812   if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3813     alloced = n + sizeof(zInt)*2 + used + 200;
3814     z = (char *) realloc(z,  alloced);
3815   }
3816   if( z==0 ) return empty;
3817   while( n-- > 0 ){
3818     c = *(zText++);
3819     if( c=='%' && n>0 && zText[0]=='d' ){
3820       lemon_sprintf(zInt, "%d", p1);
3821       p1 = p2;
3822       lemon_strcpy(&z[used], zInt);
3823       used += lemonStrlen(&z[used]);
3824       zText++;
3825       n--;
3826     }else{
3827       z[used++] = (char)c;
3828     }
3829   }
3830   z[used] = 0;
3831   return z;
3832 }
3833 
3834 /*
3835 ** Write and transform the rp->code string so that symbols are expanded.
3836 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3837 **
3838 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3839 ** to be defined.
3840 */
translate_code(struct lemon * lemp,struct rule * rp)3841 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
3842   char *cp, *xp;
3843   int i;
3844   int rc = 0;            /* True if yylhsminor is used */
3845   int dontUseRhs0 = 0;   /* If true, use of left-most RHS label is illegal */
3846   const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
3847   char lhsused = 0;      /* True if the LHS element has been used */
3848   char lhsdirect;        /* True if LHS writes directly into stack */
3849   char used[MAXRHS];     /* True for each RHS element which is used */
3850   char zLhs[50];         /* Convert the LHS symbol into this string */
3851   char zOvwrt[900];      /* Comment that to allow LHS to overwrite RHS */
3852 
3853   for(i=0; i<rp->nrhs; i++) used[i] = 0;
3854   lhsused = 0;
3855 
3856   if( rp->code==0 ){
3857     static char newlinestr[2] = { '\n', '\0' };
3858     rp->code = newlinestr;
3859     rp->line = rp->ruleline;
3860     rp->noCode = 1;
3861   }else{
3862     rp->noCode = 0;
3863   }
3864 
3865 
3866   if( rp->nrhs==0 ){
3867     /* If there are no RHS symbols, then writing directly to the LHS is ok */
3868     lhsdirect = 1;
3869   }else if( rp->rhsalias[0]==0 ){
3870     /* The left-most RHS symbol has no value.  LHS direct is ok.  But
3871     ** we have to call the destructor on the RHS symbol first. */
3872     lhsdirect = 1;
3873     if( has_destructor(rp->rhs[0],lemp) ){
3874       append_str(0,0,0,0);
3875       append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3876                  rp->rhs[0]->index,1-rp->nrhs);
3877       rp->codePrefix = Strsafe(append_str(0,0,0,0));
3878       rp->noCode = 0;
3879     }
3880   }else if( rp->lhsalias==0 ){
3881     /* There is no LHS value symbol. */
3882     lhsdirect = 1;
3883   }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
3884     /* The LHS symbol and the left-most RHS symbol are the same, so
3885     ** direct writing is allowed */
3886     lhsdirect = 1;
3887     lhsused = 1;
3888     used[0] = 1;
3889     if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
3890       ErrorMsg(lemp->filename,rp->ruleline,
3891         "%s(%s) and %s(%s) share the same label but have "
3892         "different datatypes.",
3893         rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
3894       lemp->errorcnt++;
3895     }
3896   }else{
3897     lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
3898                   rp->lhsalias, rp->rhsalias[0]);
3899     zSkip = strstr(rp->code, zOvwrt);
3900     if( zSkip!=0 ){
3901       /* The code contains a special comment that indicates that it is safe
3902       ** for the LHS label to overwrite left-most RHS label. */
3903       lhsdirect = 1;
3904     }else{
3905       lhsdirect = 0;
3906     }
3907   }
3908   if( lhsdirect ){
3909     sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
3910   }else{
3911     rc = 1;
3912     sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
3913   }
3914 
3915   append_str(0,0,0,0);
3916 
3917   /* This const cast is wrong but harmless, if we're careful. */
3918   for(cp=(char *)rp->code; *cp; cp++){
3919     if( cp==zSkip ){
3920       append_str(zOvwrt,0,0,0);
3921       cp += lemonStrlen(zOvwrt)-1;
3922       dontUseRhs0 = 1;
3923       continue;
3924     }
3925     if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
3926       char saved;
3927       for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
3928       saved = *xp;
3929       *xp = 0;
3930       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3931         append_str(zLhs,0,0,0);
3932         cp = xp;
3933         lhsused = 1;
3934       }else{
3935         for(i=0; i<rp->nrhs; i++){
3936           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3937             if( i==0 && dontUseRhs0 ){
3938               ErrorMsg(lemp->filename,rp->ruleline,
3939                  "Label %s used after '%s'.",
3940                  rp->rhsalias[0], zOvwrt);
3941               lemp->errorcnt++;
3942             }else if( cp!=rp->code && cp[-1]=='@' ){
3943               /* If the argument is of the form @X then substituted
3944               ** the token number of X, not the value of X */
3945               append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3946             }else{
3947               struct symbol *sp = rp->rhs[i];
3948               int dtnum;
3949               if( sp->type==MULTITERMINAL ){
3950                 dtnum = sp->subsym[0]->dtnum;
3951               }else{
3952                 dtnum = sp->dtnum;
3953               }
3954               append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3955             }
3956             cp = xp;
3957             used[i] = 1;
3958             break;
3959           }
3960         }
3961       }
3962       *xp = saved;
3963     }
3964     append_str(cp, 1, 0, 0);
3965   } /* End loop */
3966 
3967   /* Main code generation completed */
3968   cp = append_str(0,0,0,0);
3969   if( cp && cp[0] ) rp->code = Strsafe(cp);
3970   append_str(0,0,0,0);
3971 
3972   /* Check to make sure the LHS has been used */
3973   if( rp->lhsalias && !lhsused ){
3974     ErrorMsg(lemp->filename,rp->ruleline,
3975       "Label \"%s\" for \"%s(%s)\" is never used.",
3976         rp->lhsalias,rp->lhs->name,rp->lhsalias);
3977     lemp->errorcnt++;
3978   }
3979 
3980   /* Generate destructor code for RHS minor values which are not referenced.
3981   ** Generate error messages for unused labels and duplicate labels.
3982   */
3983   for(i=0; i<rp->nrhs; i++){
3984     if( rp->rhsalias[i] ){
3985       if( i>0 ){
3986         int j;
3987         if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
3988           ErrorMsg(lemp->filename,rp->ruleline,
3989             "%s(%s) has the same label as the LHS but is not the left-most "
3990             "symbol on the RHS.",
3991             rp->rhs[i]->name, rp->rhsalias[i]);
3992           lemp->errorcnt++;
3993         }
3994         for(j=0; j<i; j++){
3995           if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
3996             ErrorMsg(lemp->filename,rp->ruleline,
3997               "Label %s used for multiple symbols on the RHS of a rule.",
3998               rp->rhsalias[i]);
3999             lemp->errorcnt++;
4000             break;
4001           }
4002         }
4003       }
4004       if( !used[i] ){
4005         ErrorMsg(lemp->filename,rp->ruleline,
4006           "Label %s for \"%s(%s)\" is never used.",
4007           rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
4008         lemp->errorcnt++;
4009       }
4010     }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
4011       append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
4012          rp->rhs[i]->index,i-rp->nrhs+1);
4013     }
4014   }
4015 
4016   /* If unable to write LHS values directly into the stack, write the
4017   ** saved LHS value now. */
4018   if( lhsdirect==0 ){
4019     append_str("  yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
4020     append_str(zLhs, 0, 0, 0);
4021     append_str(";\n", 0, 0, 0);
4022   }
4023 
4024   /* Suffix code generation complete */
4025   cp = append_str(0,0,0,0);
4026   if( cp && cp[0] ){
4027     rp->codeSuffix = Strsafe(cp);
4028     rp->noCode = 0;
4029   }
4030 
4031   return rc;
4032 }
4033 
4034 /*
4035 ** Generate code which executes when the rule "rp" is reduced.  Write
4036 ** the code to "out".  Make sure lineno stays up-to-date.
4037 */
emit_code(FILE * out,struct rule * rp,struct lemon * lemp,int * lineno)4038 PRIVATE void emit_code(
4039   FILE *out,
4040   struct rule *rp,
4041   struct lemon *lemp,
4042   int *lineno
4043 ){
4044  const char *cp;
4045 
4046  /* Setup code prior to the #line directive */
4047  if( rp->codePrefix && rp->codePrefix[0] ){
4048    fprintf(out, "{%s", rp->codePrefix);
4049    for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4050  }
4051 
4052  /* Generate code to do the reduce action */
4053  if( rp->code ){
4054    if( !lemp->nolinenosflag ){
4055      (*lineno)++;
4056      tplt_linedir(out,rp->line,lemp->filename);
4057    }
4058    fprintf(out,"{%s",rp->code);
4059    for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4060    fprintf(out,"}\n"); (*lineno)++;
4061    if( !lemp->nolinenosflag ){
4062      (*lineno)++;
4063      tplt_linedir(out,*lineno,lemp->outname);
4064    }
4065  }
4066 
4067  /* Generate breakdown code that occurs after the #line directive */
4068  if( rp->codeSuffix && rp->codeSuffix[0] ){
4069    fprintf(out, "%s", rp->codeSuffix);
4070    for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4071  }
4072 
4073  if( rp->codePrefix ){
4074    fprintf(out, "}\n"); (*lineno)++;
4075  }
4076 
4077  return;
4078 }
4079 
4080 /*
4081 ** Print the definition of the union used for the parser's data stack.
4082 ** This union contains fields for every possible data type for tokens
4083 ** and nonterminals.  In the process of computing and printing this
4084 ** union, also set the ".dtnum" field of every terminal and nonterminal
4085 ** symbol.
4086 */
print_stack_union(FILE * out,struct lemon * lemp,int * plineno,int mhflag)4087 void print_stack_union(
4088   FILE *out,                  /* The output stream */
4089   struct lemon *lemp,         /* The main info structure for this parser */
4090   int *plineno,               /* Pointer to the line number */
4091   int mhflag                  /* True if generating makeheaders output */
4092 ){
4093   int lineno = *plineno;    /* The line number of the output */
4094   char **types;             /* A hash table of datatypes */
4095   int arraysize;            /* Size of the "types" array */
4096   int maxdtlength;          /* Maximum length of any ".datatype" field. */
4097   char *stddt;              /* Standardized name for a datatype */
4098   int i,j;                  /* Loop counters */
4099   unsigned hash;            /* For hashing the name of a type */
4100   const char *name;         /* Name of the parser */
4101 
4102   /* Allocate and initialize types[] and allocate stddt[] */
4103   arraysize = lemp->nsymbol * 2;
4104   types = (char**)calloc( arraysize, sizeof(char*) );
4105   if( types==0 ){
4106     fprintf(stderr,"Out of memory.\n");
4107     exit(1);
4108   }
4109   for(i=0; i<arraysize; i++) types[i] = 0;
4110   maxdtlength = 0;
4111   if( lemp->vartype ){
4112     maxdtlength = lemonStrlen(lemp->vartype);
4113   }
4114   for(i=0; i<lemp->nsymbol; i++){
4115     int len;
4116     struct symbol *sp = lemp->symbols[i];
4117     if( sp->datatype==0 ) continue;
4118     len = lemonStrlen(sp->datatype);
4119     if( len>maxdtlength ) maxdtlength = len;
4120   }
4121   stddt = (char*)malloc( maxdtlength*2 + 1 );
4122   if( stddt==0 ){
4123     fprintf(stderr,"Out of memory.\n");
4124     exit(1);
4125   }
4126 
4127   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
4128   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
4129   ** used for terminal symbols.  If there is no %default_type defined then
4130   ** 0 is also used as the .dtnum value for nonterminals which do not specify
4131   ** a datatype using the %type directive.
4132   */
4133   for(i=0; i<lemp->nsymbol; i++){
4134     struct symbol *sp = lemp->symbols[i];
4135     char *cp;
4136     if( sp==lemp->errsym ){
4137       sp->dtnum = arraysize+1;
4138       continue;
4139     }
4140     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
4141       sp->dtnum = 0;
4142       continue;
4143     }
4144     cp = sp->datatype;
4145     if( cp==0 ) cp = lemp->vartype;
4146     j = 0;
4147     while( ISSPACE(*cp) ) cp++;
4148     while( *cp ) stddt[j++] = *cp++;
4149     while( j>0 && ISSPACE(stddt[j-1]) ) j--;
4150     stddt[j] = 0;
4151     if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
4152       sp->dtnum = 0;
4153       continue;
4154     }
4155     hash = 0;
4156     for(j=0; stddt[j]; j++){
4157       hash = hash*53 + stddt[j];
4158     }
4159     hash = (hash & 0x7fffffff)%arraysize;
4160     while( types[hash] ){
4161       if( strcmp(types[hash],stddt)==0 ){
4162         sp->dtnum = hash + 1;
4163         break;
4164       }
4165       hash++;
4166       if( hash>=(unsigned)arraysize ) hash = 0;
4167     }
4168     if( types[hash]==0 ){
4169       sp->dtnum = hash + 1;
4170       types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
4171       if( types[hash]==0 ){
4172         fprintf(stderr,"Out of memory.\n");
4173         exit(1);
4174       }
4175       lemon_strcpy(types[hash],stddt);
4176     }
4177   }
4178 
4179   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
4180   name = lemp->name ? lemp->name : "Parse";
4181   lineno = *plineno;
4182   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
4183   fprintf(out,"#define %sTOKENTYPE %s\n",name,
4184     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
4185   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
4186   fprintf(out,"typedef union {\n"); lineno++;
4187   fprintf(out,"  int yyinit;\n"); lineno++;
4188   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
4189   for(i=0; i<arraysize; i++){
4190     if( types[i]==0 ) continue;
4191     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
4192     free(types[i]);
4193   }
4194   if( lemp->errsym && lemp->errsym->useCnt ){
4195     fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
4196   }
4197   free(stddt);
4198   free(types);
4199   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
4200   *plineno = lineno;
4201 }
4202 
4203 /*
4204 ** Return the name of a C datatype able to represent values between
4205 ** lwr and upr, inclusive.  If pnByte!=NULL then also write the sizeof
4206 ** for that type (1, 2, or 4) into *pnByte.
4207 */
minimum_size_type(int lwr,int upr,int * pnByte)4208 static const char *minimum_size_type(int lwr, int upr, int *pnByte){
4209   const char *zType = "int";
4210   int nByte = 4;
4211   if( lwr>=0 ){
4212     if( upr<=255 ){
4213       zType = "unsigned char";
4214       nByte = 1;
4215     }else if( upr<65535 ){
4216       zType = "unsigned short int";
4217       nByte = 2;
4218     }else{
4219       zType = "unsigned int";
4220       nByte = 4;
4221     }
4222   }else if( lwr>=-127 && upr<=127 ){
4223     zType = "signed char";
4224     nByte = 1;
4225   }else if( lwr>=-32767 && upr<32767 ){
4226     zType = "short";
4227     nByte = 2;
4228   }
4229   if( pnByte ) *pnByte = nByte;
4230   return zType;
4231 }
4232 
4233 /*
4234 ** Each state contains a set of token transaction and a set of
4235 ** nonterminal transactions.  Each of these sets makes an instance
4236 ** of the following structure.  An array of these structures is used
4237 ** to order the creation of entries in the yy_action[] table.
4238 */
4239 struct axset {
4240   struct state *stp;   /* A pointer to a state */
4241   int isTkn;           /* True to use tokens.  False for non-terminals */
4242   int nAction;         /* Number of actions */
4243   int iOrder;          /* Original order of action sets */
4244 };
4245 
4246 /*
4247 ** Compare to axset structures for sorting purposes
4248 */
axset_compare(const void * a,const void * b)4249 static int axset_compare(const void *a, const void *b){
4250   struct axset *p1 = (struct axset*)a;
4251   struct axset *p2 = (struct axset*)b;
4252   int c;
4253   c = p2->nAction - p1->nAction;
4254   if( c==0 ){
4255     c = p1->iOrder - p2->iOrder;
4256   }
4257   assert( c!=0 || p1==p2 );
4258   return c;
4259 }
4260 
4261 /*
4262 ** Write text on "out" that describes the rule "rp".
4263 */
writeRuleText(FILE * out,struct rule * rp)4264 static void writeRuleText(FILE *out, struct rule *rp){
4265   int j;
4266   fprintf(out,"%s ::=", rp->lhs->name);
4267   for(j=0; j<rp->nrhs; j++){
4268     struct symbol *sp = rp->rhs[j];
4269     if( sp->type!=MULTITERMINAL ){
4270       fprintf(out," %s", sp->name);
4271     }else{
4272       int k;
4273       fprintf(out," %s", sp->subsym[0]->name);
4274       for(k=1; k<sp->nsubsym; k++){
4275         fprintf(out,"|%s",sp->subsym[k]->name);
4276       }
4277     }
4278   }
4279 }
4280 
4281 
4282 /* Generate C source code for the parser */
ReportTable(struct lemon * lemp,int mhflag,int sqlFlag)4283 void ReportTable(
4284   struct lemon *lemp,
4285   int mhflag,     /* Output in makeheaders format if true */
4286   int sqlFlag     /* Generate the *.sql file too */
4287 ){
4288   FILE *out, *in, *sql;
4289   char line[LINESIZE];
4290   int  lineno;
4291   struct state *stp;
4292   struct action *ap;
4293   struct rule *rp;
4294   struct acttab *pActtab;
4295   int i, j, n, sz;
4296   int nLookAhead;
4297   int szActionType;     /* sizeof(YYACTIONTYPE) */
4298   int szCodeType;       /* sizeof(YYCODETYPE)   */
4299   const char *name;
4300   int mnTknOfst, mxTknOfst;
4301   int mnNtOfst, mxNtOfst;
4302   struct axset *ax;
4303   char *prefix;
4304 
4305   lemp->minShiftReduce = lemp->nstate;
4306   lemp->errAction = lemp->minShiftReduce + lemp->nrule;
4307   lemp->accAction = lemp->errAction + 1;
4308   lemp->noAction = lemp->accAction + 1;
4309   lemp->minReduce = lemp->noAction + 1;
4310   lemp->maxAction = lemp->minReduce + lemp->nrule;
4311 
4312   in = tplt_open(lemp);
4313   if( in==0 ) return;
4314   out = file_open(lemp,".c","wb");
4315   if( out==0 ){
4316     fclose(in);
4317     return;
4318   }
4319   if( sqlFlag==0 ){
4320     sql = 0;
4321   }else{
4322     sql = file_open(lemp, ".sql", "wb");
4323     if( sql==0 ){
4324       fclose(in);
4325       fclose(out);
4326       return;
4327     }
4328     fprintf(sql,
4329        "BEGIN;\n"
4330        "CREATE TABLE symbol(\n"
4331        "  id INTEGER PRIMARY KEY,\n"
4332        "  name TEXT NOT NULL,\n"
4333        "  isTerminal BOOLEAN NOT NULL,\n"
4334        "  fallback INTEGER REFERENCES symbol"
4335                " DEFERRABLE INITIALLY DEFERRED\n"
4336        ");\n"
4337     );
4338     for(i=0; i<lemp->nsymbol; i++){
4339       fprintf(sql,
4340          "INSERT INTO symbol(id,name,isTerminal,fallback)"
4341          "VALUES(%d,'%s',%s",
4342          i, lemp->symbols[i]->name,
4343          i<lemp->nterminal ? "TRUE" : "FALSE"
4344       );
4345       if( lemp->symbols[i]->fallback ){
4346         fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index);
4347       }else{
4348         fprintf(sql, ",NULL);\n");
4349       }
4350     }
4351     fprintf(sql,
4352       "CREATE TABLE rule(\n"
4353       "  ruleid INTEGER PRIMARY KEY,\n"
4354       "  lhs INTEGER REFERENCES symbol(id),\n"
4355       "  txt TEXT\n"
4356       ");\n"
4357       "CREATE TABLE rulerhs(\n"
4358       "  ruleid INTEGER REFERENCES rule(ruleid),\n"
4359       "  pos INTEGER,\n"
4360       "  sym INTEGER REFERENCES symbol(id)\n"
4361       ");\n"
4362     );
4363     for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4364       assert( i==rp->iRule );
4365       fprintf(sql,
4366         "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'",
4367         rp->iRule, rp->lhs->index
4368       );
4369       writeRuleText(sql, rp);
4370       fprintf(sql,"');\n");
4371       for(j=0; j<rp->nrhs; j++){
4372         struct symbol *sp = rp->rhs[j];
4373         if( sp->type!=MULTITERMINAL ){
4374           fprintf(sql,
4375             "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4376             i,j,sp->index
4377           );
4378         }else{
4379           int k;
4380           for(k=0; k<sp->nsubsym; k++){
4381             fprintf(sql,
4382               "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4383               i,j,sp->subsym[k]->index
4384             );
4385           }
4386         }
4387       }
4388     }
4389     fprintf(sql, "COMMIT;\n");
4390   }
4391   lineno = 1;
4392 
4393   fprintf(out,
4394      "/* This file is automatically generated by Lemon from input grammar\n"
4395      "** source file \"%s\". */\n", lemp->filename); lineno += 2;
4396 
4397   /* The first %include directive begins with a C-language comment,
4398   ** then skip over the header comment of the template file
4399   */
4400   if( lemp->include==0 ) lemp->include = "";
4401   for(i=0; ISSPACE(lemp->include[i]); i++){
4402     if( lemp->include[i]=='\n' ){
4403       lemp->include += i+1;
4404       i = -1;
4405     }
4406   }
4407   if( lemp->include[0]=='/' ){
4408     tplt_skip_header(in,&lineno);
4409   }else{
4410     tplt_xfer(lemp->name,in,out,&lineno);
4411   }
4412 
4413   /* Generate the include code, if any */
4414   tplt_print(out,lemp,lemp->include,&lineno);
4415   if( mhflag ){
4416     char *incName = file_makename(lemp, ".h");
4417     fprintf(out,"#include \"%s\"\n", incName); lineno++;
4418     free(incName);
4419   }
4420   tplt_xfer(lemp->name,in,out,&lineno);
4421 
4422   /* Generate #defines for all tokens */
4423   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4424   else                    prefix = "";
4425   if( mhflag ){
4426     fprintf(out,"#if INTERFACE\n"); lineno++;
4427   }else{
4428     fprintf(out,"#ifndef %s%s\n", prefix, lemp->symbols[1]->name);
4429   }
4430   for(i=1; i<lemp->nterminal; i++){
4431     fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4432     lineno++;
4433   }
4434   fprintf(out,"#endif\n"); lineno++;
4435   tplt_xfer(lemp->name,in,out,&lineno);
4436 
4437   /* Generate the defines */
4438   fprintf(out,"#define YYCODETYPE %s\n",
4439     minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++;
4440   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol);  lineno++;
4441   fprintf(out,"#define YYACTIONTYPE %s\n",
4442     minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
4443   if( lemp->wildcard ){
4444     fprintf(out,"#define YYWILDCARD %d\n",
4445        lemp->wildcard->index); lineno++;
4446   }
4447   print_stack_union(out,lemp,&lineno,mhflag);
4448   fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
4449   if( lemp->stacksize ){
4450     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
4451   }else{
4452     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
4453   }
4454   fprintf(out, "#endif\n"); lineno++;
4455   if( mhflag ){
4456     fprintf(out,"#if INTERFACE\n"); lineno++;
4457   }
4458   name = lemp->name ? lemp->name : "Parse";
4459   if( lemp->arg && lemp->arg[0] ){
4460     i = lemonStrlen(lemp->arg);
4461     while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
4462     while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
4463     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
4464     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
4465     fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]);  lineno++;
4466     fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n",
4467                  name,lemp->arg,&lemp->arg[i]);  lineno++;
4468     fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n",
4469                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
4470   }else{
4471     fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
4472     fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
4473     fprintf(out,"#define %sARG_PARAM\n",name); lineno++;
4474     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
4475     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
4476   }
4477   if( lemp->ctx && lemp->ctx[0] ){
4478     i = lemonStrlen(lemp->ctx);
4479     while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--;
4480     while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--;
4481     fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx);  lineno++;
4482     fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx);  lineno++;
4483     fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]);  lineno++;
4484     fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n",
4485                  name,lemp->ctx,&lemp->ctx[i]);  lineno++;
4486     fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n",
4487                  name,&lemp->ctx[i],&lemp->ctx[i]);  lineno++;
4488   }else{
4489     fprintf(out,"#define %sCTX_SDECL\n",name); lineno++;
4490     fprintf(out,"#define %sCTX_PDECL\n",name); lineno++;
4491     fprintf(out,"#define %sCTX_PARAM\n",name); lineno++;
4492     fprintf(out,"#define %sCTX_FETCH\n",name); lineno++;
4493     fprintf(out,"#define %sCTX_STORE\n",name); lineno++;
4494   }
4495   if( mhflag ){
4496     fprintf(out,"#endif\n"); lineno++;
4497   }
4498   if( lemp->errsym && lemp->errsym->useCnt ){
4499     fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
4500     fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
4501   }
4502   if( lemp->has_fallback ){
4503     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
4504   }
4505 
4506   /* Compute the action table, but do not output it yet.  The action
4507   ** table must be computed before generating the YYNSTATE macro because
4508   ** we need to know how many states can be eliminated.
4509   */
4510   ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
4511   if( ax==0 ){
4512     fprintf(stderr,"malloc failed\n");
4513     exit(1);
4514   }
4515   for(i=0; i<lemp->nxstate; i++){
4516     stp = lemp->sorted[i];
4517     ax[i*2].stp = stp;
4518     ax[i*2].isTkn = 1;
4519     ax[i*2].nAction = stp->nTknAct;
4520     ax[i*2+1].stp = stp;
4521     ax[i*2+1].isTkn = 0;
4522     ax[i*2+1].nAction = stp->nNtAct;
4523   }
4524   mxTknOfst = mnTknOfst = 0;
4525   mxNtOfst = mnNtOfst = 0;
4526   /* In an effort to minimize the action table size, use the heuristic
4527   ** of placing the largest action sets first */
4528   for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
4529   qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
4530   pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
4531   for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
4532     stp = ax[i].stp;
4533     if( ax[i].isTkn ){
4534       for(ap=stp->ap; ap; ap=ap->next){
4535         int action;
4536         if( ap->sp->index>=lemp->nterminal ) continue;
4537         action = compute_action(lemp, ap);
4538         if( action<0 ) continue;
4539         acttab_action(pActtab, ap->sp->index, action);
4540       }
4541       stp->iTknOfst = acttab_insert(pActtab, 1);
4542       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
4543       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
4544     }else{
4545       for(ap=stp->ap; ap; ap=ap->next){
4546         int action;
4547         if( ap->sp->index<lemp->nterminal ) continue;
4548         if( ap->sp->index==lemp->nsymbol ) continue;
4549         action = compute_action(lemp, ap);
4550         if( action<0 ) continue;
4551         acttab_action(pActtab, ap->sp->index, action);
4552       }
4553       stp->iNtOfst = acttab_insert(pActtab, 0);
4554       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
4555       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
4556     }
4557 #if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
4558     { int jj, nn;
4559       for(jj=nn=0; jj<pActtab->nAction; jj++){
4560         if( pActtab->aAction[jj].action<0 ) nn++;
4561       }
4562       printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4563              i, stp->statenum, ax[i].isTkn ? "Token" : "Var  ",
4564              ax[i].nAction, pActtab->nAction, nn);
4565     }
4566 #endif
4567   }
4568   free(ax);
4569 
4570   /* Mark rules that are actually used for reduce actions after all
4571   ** optimizations have been applied
4572   */
4573   for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
4574   for(i=0; i<lemp->nxstate; i++){
4575     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
4576       if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
4577         ap->x.rp->doesReduce = 1;
4578       }
4579     }
4580   }
4581 
4582   /* Finish rendering the constants now that the action table has
4583   ** been computed */
4584   fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
4585   fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
4586   fprintf(out,"#define YYNRULE_WITH_ACTION  %d\n",lemp->nruleWithAction);
4587          lineno++;
4588   fprintf(out,"#define YYNTOKEN             %d\n",lemp->nterminal); lineno++;
4589   fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;
4590   i = lemp->minShiftReduce;
4591   fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",i); lineno++;
4592   i += lemp->nrule;
4593   fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
4594   fprintf(out,"#define YY_ERROR_ACTION      %d\n", lemp->errAction); lineno++;
4595   fprintf(out,"#define YY_ACCEPT_ACTION     %d\n", lemp->accAction); lineno++;
4596   fprintf(out,"#define YY_NO_ACTION         %d\n", lemp->noAction); lineno++;
4597   fprintf(out,"#define YY_MIN_REDUCE        %d\n", lemp->minReduce); lineno++;
4598   i = lemp->minReduce + lemp->nrule;
4599   fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
4600   tplt_xfer(lemp->name,in,out,&lineno);
4601 
4602   /* Now output the action table and its associates:
4603   **
4604   **  yy_action[]        A single table containing all actions.
4605   **  yy_lookahead[]     A table containing the lookahead for each entry in
4606   **                     yy_action.  Used to detect hash collisions.
4607   **  yy_shift_ofst[]    For each state, the offset into yy_action for
4608   **                     shifting terminals.
4609   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
4610   **                     shifting non-terminals after a reduce.
4611   **  yy_default[]       Default action for each state.
4612   */
4613 
4614   /* Output the yy_action table */
4615   lemp->nactiontab = n = acttab_action_size(pActtab);
4616   lemp->tablesize += n*szActionType;
4617   fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
4618   fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
4619   for(i=j=0; i<n; i++){
4620     int action = acttab_yyaction(pActtab, i);
4621     if( action<0 ) action = lemp->noAction;
4622     if( j==0 ) fprintf(out," /* %5d */ ", i);
4623     fprintf(out, " %4d,", action);
4624     if( j==9 || i==n-1 ){
4625       fprintf(out, "\n"); lineno++;
4626       j = 0;
4627     }else{
4628       j++;
4629     }
4630   }
4631   fprintf(out, "};\n"); lineno++;
4632 
4633   /* Output the yy_lookahead table */
4634   lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
4635   lemp->tablesize += n*szCodeType;
4636   fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
4637   for(i=j=0; i<n; i++){
4638     int la = acttab_yylookahead(pActtab, i);
4639     if( la<0 ) la = lemp->nsymbol;
4640     if( j==0 ) fprintf(out," /* %5d */ ", i);
4641     fprintf(out, " %4d,", la);
4642     if( j==9 ){
4643       fprintf(out, "\n"); lineno++;
4644       j = 0;
4645     }else{
4646       j++;
4647     }
4648   }
4649   /* Add extra entries to the end of the yy_lookahead[] table so that
4650   ** yy_shift_ofst[]+iToken will always be a valid index into the array,
4651   ** even for the largest possible value of yy_shift_ofst[] and iToken. */
4652   nLookAhead = lemp->nterminal + lemp->nactiontab;
4653   while( i<nLookAhead ){
4654     if( j==0 ) fprintf(out," /* %5d */ ", i);
4655     fprintf(out, " %4d,", lemp->nterminal);
4656     if( j==9 ){
4657       fprintf(out, "\n"); lineno++;
4658       j = 0;
4659     }else{
4660       j++;
4661     }
4662     i++;
4663   }
4664   if( j>0 ){ fprintf(out, "\n"); lineno++; }
4665   fprintf(out, "};\n"); lineno++;
4666 
4667   /* Output the yy_shift_ofst[] table */
4668   n = lemp->nxstate;
4669   while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
4670   fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
4671   fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
4672   fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
4673   fprintf(out, "static const %s yy_shift_ofst[] = {\n",
4674        minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
4675        lineno++;
4676   lemp->tablesize += n*sz;
4677   for(i=j=0; i<n; i++){
4678     int ofst;
4679     stp = lemp->sorted[i];
4680     ofst = stp->iTknOfst;
4681     if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
4682     if( j==0 ) fprintf(out," /* %5d */ ", i);
4683     fprintf(out, " %4d,", ofst);
4684     if( j==9 || i==n-1 ){
4685       fprintf(out, "\n"); lineno++;
4686       j = 0;
4687     }else{
4688       j++;
4689     }
4690   }
4691   fprintf(out, "};\n"); lineno++;
4692 
4693   /* Output the yy_reduce_ofst[] table */
4694   n = lemp->nxstate;
4695   while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
4696   fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
4697   fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
4698   fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
4699   fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
4700           minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
4701   lemp->tablesize += n*sz;
4702   for(i=j=0; i<n; i++){
4703     int ofst;
4704     stp = lemp->sorted[i];
4705     ofst = stp->iNtOfst;
4706     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4707     if( j==0 ) fprintf(out," /* %5d */ ", i);
4708     fprintf(out, " %4d,", ofst);
4709     if( j==9 || i==n-1 ){
4710       fprintf(out, "\n"); lineno++;
4711       j = 0;
4712     }else{
4713       j++;
4714     }
4715   }
4716   fprintf(out, "};\n"); lineno++;
4717 
4718   /* Output the default action table */
4719   fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
4720   n = lemp->nxstate;
4721   lemp->tablesize += n*szActionType;
4722   for(i=j=0; i<n; i++){
4723     stp = lemp->sorted[i];
4724     if( j==0 ) fprintf(out," /* %5d */ ", i);
4725     if( stp->iDfltReduce<0 ){
4726       fprintf(out, " %4d,", lemp->errAction);
4727     }else{
4728       fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
4729     }
4730     if( j==9 || i==n-1 ){
4731       fprintf(out, "\n"); lineno++;
4732       j = 0;
4733     }else{
4734       j++;
4735     }
4736   }
4737   fprintf(out, "};\n"); lineno++;
4738   tplt_xfer(lemp->name,in,out,&lineno);
4739 
4740   /* Generate the table of fallback tokens.
4741   */
4742   if( lemp->has_fallback ){
4743     int mx = lemp->nterminal - 1;
4744     /* 2019-08-28:  Generate fallback entries for every token to avoid
4745     ** having to do a range check on the index */
4746     /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
4747     lemp->tablesize += (mx+1)*szCodeType;
4748     for(i=0; i<=mx; i++){
4749       struct symbol *p = lemp->symbols[i];
4750       if( p->fallback==0 ){
4751         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
4752       }else{
4753         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
4754           p->name, p->fallback->name);
4755       }
4756       lineno++;
4757     }
4758   }
4759   tplt_xfer(lemp->name, in, out, &lineno);
4760 
4761   /* Generate a table containing the symbolic name of every symbol
4762   */
4763   for(i=0; i<lemp->nsymbol; i++){
4764     lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
4765     fprintf(out,"  /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++;
4766   }
4767   tplt_xfer(lemp->name,in,out,&lineno);
4768 
4769   /* Generate a table containing a text string that describes every
4770   ** rule in the rule set of the grammar.  This information is used
4771   ** when tracing REDUCE actions.
4772   */
4773   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4774     assert( rp->iRule==i );
4775     fprintf(out," /* %3d */ \"", i);
4776     writeRuleText(out, rp);
4777     fprintf(out,"\",\n"); lineno++;
4778   }
4779   tplt_xfer(lemp->name,in,out,&lineno);
4780 
4781   /* Generate code which executes every time a symbol is popped from
4782   ** the stack while processing errors or while destroying the parser.
4783   ** (In other words, generate the %destructor actions)
4784   */
4785   if( lemp->tokendest ){
4786     int once = 1;
4787     for(i=0; i<lemp->nsymbol; i++){
4788       struct symbol *sp = lemp->symbols[i];
4789       if( sp==0 || sp->type!=TERMINAL ) continue;
4790       if( once ){
4791         fprintf(out, "      /* TERMINAL Destructor */\n"); lineno++;
4792         once = 0;
4793       }
4794       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4795     }
4796     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
4797     if( i<lemp->nsymbol ){
4798       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4799       fprintf(out,"      break;\n"); lineno++;
4800     }
4801   }
4802   if( lemp->vardest ){
4803     struct symbol *dflt_sp = 0;
4804     int once = 1;
4805     for(i=0; i<lemp->nsymbol; i++){
4806       struct symbol *sp = lemp->symbols[i];
4807       if( sp==0 || sp->type==TERMINAL ||
4808           sp->index<=0 || sp->destructor!=0 ) continue;
4809       if( once ){
4810         fprintf(out, "      /* Default NON-TERMINAL Destructor */\n");lineno++;
4811         once = 0;
4812       }
4813       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4814       dflt_sp = sp;
4815     }
4816     if( dflt_sp!=0 ){
4817       emit_destructor_code(out,dflt_sp,lemp,&lineno);
4818     }
4819     fprintf(out,"      break;\n"); lineno++;
4820   }
4821   for(i=0; i<lemp->nsymbol; i++){
4822     struct symbol *sp = lemp->symbols[i];
4823     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
4824     if( sp->destLineno<0 ) continue;  /* Already emitted */
4825     fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
4826 
4827     /* Combine duplicate destructors into a single case */
4828     for(j=i+1; j<lemp->nsymbol; j++){
4829       struct symbol *sp2 = lemp->symbols[j];
4830       if( sp2 && sp2->type!=TERMINAL && sp2->destructor
4831           && sp2->dtnum==sp->dtnum
4832           && strcmp(sp->destructor,sp2->destructor)==0 ){
4833          fprintf(out,"    case %d: /* %s */\n",
4834                  sp2->index, sp2->name); lineno++;
4835          sp2->destLineno = -1;  /* Avoid emitting this destructor again */
4836       }
4837     }
4838 
4839     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4840     fprintf(out,"      break;\n"); lineno++;
4841   }
4842   tplt_xfer(lemp->name,in,out,&lineno);
4843 
4844   /* Generate code which executes whenever the parser stack overflows */
4845   tplt_print(out,lemp,lemp->overflow,&lineno);
4846   tplt_xfer(lemp->name,in,out,&lineno);
4847 
4848   /* Generate the tables of rule information.  yyRuleInfoLhs[] and
4849   ** yyRuleInfoNRhs[].
4850   **
4851   ** Note: This code depends on the fact that rules are number
4852   ** sequentially beginning with 0.
4853   */
4854   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4855     fprintf(out,"  %4d,  /* (%d) ", rp->lhs->index, i);
4856      rule_print(out, rp);
4857     fprintf(out," */\n"); lineno++;
4858   }
4859   tplt_xfer(lemp->name,in,out,&lineno);
4860   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4861     fprintf(out,"  %3d,  /* (%d) ", -rp->nrhs, i);
4862     rule_print(out, rp);
4863     fprintf(out," */\n"); lineno++;
4864   }
4865   tplt_xfer(lemp->name,in,out,&lineno);
4866 
4867   /* Generate code which execution during each REDUCE action */
4868   i = 0;
4869   for(rp=lemp->rule; rp; rp=rp->next){
4870     i += translate_code(lemp, rp);
4871   }
4872   if( i ){
4873     fprintf(out,"        YYMINORTYPE yylhsminor;\n"); lineno++;
4874   }
4875   /* First output rules other than the default: rule */
4876   for(rp=lemp->rule; rp; rp=rp->next){
4877     struct rule *rp2;               /* Other rules with the same action */
4878     if( rp->codeEmitted ) continue;
4879     if( rp->noCode ){
4880       /* No C code actions, so this will be part of the "default:" rule */
4881       continue;
4882     }
4883     fprintf(out,"      case %d: /* ", rp->iRule);
4884     writeRuleText(out, rp);
4885     fprintf(out, " */\n"); lineno++;
4886     for(rp2=rp->next; rp2; rp2=rp2->next){
4887       if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
4888              && rp2->codeSuffix==rp->codeSuffix ){
4889         fprintf(out,"      case %d: /* ", rp2->iRule);
4890         writeRuleText(out, rp2);
4891         fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
4892         rp2->codeEmitted = 1;
4893       }
4894     }
4895     emit_code(out,rp,lemp,&lineno);
4896     fprintf(out,"        break;\n"); lineno++;
4897     rp->codeEmitted = 1;
4898   }
4899   /* Finally, output the default: rule.  We choose as the default: all
4900   ** empty actions. */
4901   fprintf(out,"      default:\n"); lineno++;
4902   for(rp=lemp->rule; rp; rp=rp->next){
4903     if( rp->codeEmitted ) continue;
4904     assert( rp->noCode );
4905     fprintf(out,"      /* (%d) ", rp->iRule);
4906     writeRuleText(out, rp);
4907     if( rp->neverReduce ){
4908       fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n",
4909               rp->iRule); lineno++;
4910     }else if( rp->doesReduce ){
4911       fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
4912     }else{
4913       fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4914               rp->iRule); lineno++;
4915     }
4916   }
4917   fprintf(out,"        break;\n"); lineno++;
4918   tplt_xfer(lemp->name,in,out,&lineno);
4919 
4920   /* Generate code which executes if a parse fails */
4921   tplt_print(out,lemp,lemp->failure,&lineno);
4922   tplt_xfer(lemp->name,in,out,&lineno);
4923 
4924   /* Generate code which executes when a syntax error occurs */
4925   tplt_print(out,lemp,lemp->error,&lineno);
4926   tplt_xfer(lemp->name,in,out,&lineno);
4927 
4928   /* Generate code which executes when the parser accepts its input */
4929   tplt_print(out,lemp,lemp->accept,&lineno);
4930   tplt_xfer(lemp->name,in,out,&lineno);
4931 
4932   /* Append any addition code the user desires */
4933   tplt_print(out,lemp,lemp->extracode,&lineno);
4934 
4935   acttab_free(pActtab);
4936   fclose(in);
4937   fclose(out);
4938   if( sql ) fclose(sql);
4939   return;
4940 }
4941 
4942 /* Generate a header file for the parser */
ReportHeader(struct lemon * lemp)4943 void ReportHeader(struct lemon *lemp)
4944 {
4945   FILE *out, *in;
4946   const char *prefix;
4947   char line[LINESIZE];
4948   char pattern[LINESIZE];
4949   int i;
4950 
4951   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4952   else                    prefix = "";
4953   in = file_open(lemp,".h","rb");
4954   if( in ){
4955     int nextChar;
4956     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4957       lemon_sprintf(pattern,"#define %s%-30s %3d\n",
4958                     prefix,lemp->symbols[i]->name,i);
4959       if( strcmp(line,pattern) ) break;
4960     }
4961     nextChar = fgetc(in);
4962     fclose(in);
4963     if( i==lemp->nterminal && nextChar==EOF ){
4964       /* No change in the file.  Don't rewrite it. */
4965       return;
4966     }
4967   }
4968   out = file_open(lemp,".h","wb");
4969   if( out ){
4970     for(i=1; i<lemp->nterminal; i++){
4971       fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
4972     }
4973     fclose(out);
4974   }
4975   return;
4976 }
4977 
4978 /* Reduce the size of the action tables, if possible, by making use
4979 ** of defaults.
4980 **
4981 ** In this version, we take the most frequent REDUCE action and make
4982 ** it the default.  Except, there is no default if the wildcard token
4983 ** is a possible look-ahead.
4984 */
CompressTables(struct lemon * lemp)4985 void CompressTables(struct lemon *lemp)
4986 {
4987   struct state *stp;
4988   struct action *ap, *ap2, *nextap;
4989   struct rule *rp, *rp2, *rbest;
4990   int nbest, n;
4991   int i;
4992   int usesWildcard;
4993 
4994   for(i=0; i<lemp->nstate; i++){
4995     stp = lemp->sorted[i];
4996     nbest = 0;
4997     rbest = 0;
4998     usesWildcard = 0;
4999 
5000     for(ap=stp->ap; ap; ap=ap->next){
5001       if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
5002         usesWildcard = 1;
5003       }
5004       if( ap->type!=REDUCE ) continue;
5005       rp = ap->x.rp;
5006       if( rp->lhsStart ) continue;
5007       if( rp==rbest ) continue;
5008       n = 1;
5009       for(ap2=ap->next; ap2; ap2=ap2->next){
5010         if( ap2->type!=REDUCE ) continue;
5011         rp2 = ap2->x.rp;
5012         if( rp2==rbest ) continue;
5013         if( rp2==rp ) n++;
5014       }
5015       if( n>nbest ){
5016         nbest = n;
5017         rbest = rp;
5018       }
5019     }
5020 
5021     /* Do not make a default if the number of rules to default
5022     ** is not at least 1 or if the wildcard token is a possible
5023     ** lookahead.
5024     */
5025     if( nbest<1 || usesWildcard ) continue;
5026 
5027 
5028     /* Combine matching REDUCE actions into a single default */
5029     for(ap=stp->ap; ap; ap=ap->next){
5030       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
5031     }
5032     assert( ap );
5033     ap->sp = Symbol_new("{default}");
5034     for(ap=ap->next; ap; ap=ap->next){
5035       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
5036     }
5037     stp->ap = Action_sort(stp->ap);
5038 
5039     for(ap=stp->ap; ap; ap=ap->next){
5040       if( ap->type==SHIFT ) break;
5041       if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
5042     }
5043     if( ap==0 ){
5044       stp->autoReduce = 1;
5045       stp->pDfltReduce = rbest;
5046     }
5047   }
5048 
5049   /* Make a second pass over all states and actions.  Convert
5050   ** every action that is a SHIFT to an autoReduce state into
5051   ** a SHIFTREDUCE action.
5052   */
5053   for(i=0; i<lemp->nstate; i++){
5054     stp = lemp->sorted[i];
5055     for(ap=stp->ap; ap; ap=ap->next){
5056       struct state *pNextState;
5057       if( ap->type!=SHIFT ) continue;
5058       pNextState = ap->x.stp;
5059       if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
5060         ap->type = SHIFTREDUCE;
5061         ap->x.rp = pNextState->pDfltReduce;
5062       }
5063     }
5064   }
5065 
5066   /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
5067   ** (meaning that the SHIFTREDUCE will land back in the state where it
5068   ** started) and if there is no C-code associated with the reduce action,
5069   ** then we can go ahead and convert the action to be the same as the
5070   ** action for the RHS of the rule.
5071   */
5072   for(i=0; i<lemp->nstate; i++){
5073     stp = lemp->sorted[i];
5074     for(ap=stp->ap; ap; ap=nextap){
5075       nextap = ap->next;
5076       if( ap->type!=SHIFTREDUCE ) continue;
5077       rp = ap->x.rp;
5078       if( rp->noCode==0 ) continue;
5079       if( rp->nrhs!=1 ) continue;
5080 #if 1
5081       /* Only apply this optimization to non-terminals.  It would be OK to
5082       ** apply it to terminal symbols too, but that makes the parser tables
5083       ** larger. */
5084       if( ap->sp->index<lemp->nterminal ) continue;
5085 #endif
5086       /* If we reach this point, it means the optimization can be applied */
5087       nextap = ap;
5088       for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
5089       assert( ap2!=0 );
5090       ap->spOpt = ap2->sp;
5091       ap->type = ap2->type;
5092       ap->x = ap2->x;
5093     }
5094   }
5095 }
5096 
5097 
5098 /*
5099 ** Compare two states for sorting purposes.  The smaller state is the
5100 ** one with the most non-terminal actions.  If they have the same number
5101 ** of non-terminal actions, then the smaller is the one with the most
5102 ** token actions.
5103 */
stateResortCompare(const void * a,const void * b)5104 static int stateResortCompare(const void *a, const void *b){
5105   const struct state *pA = *(const struct state**)a;
5106   const struct state *pB = *(const struct state**)b;
5107   int n;
5108 
5109   n = pB->nNtAct - pA->nNtAct;
5110   if( n==0 ){
5111     n = pB->nTknAct - pA->nTknAct;
5112     if( n==0 ){
5113       n = pB->statenum - pA->statenum;
5114     }
5115   }
5116   assert( n!=0 );
5117   return n;
5118 }
5119 
5120 
5121 /*
5122 ** Renumber and resort states so that states with fewer choices
5123 ** occur at the end.  Except, keep state 0 as the first state.
5124 */
ResortStates(struct lemon * lemp)5125 void ResortStates(struct lemon *lemp)
5126 {
5127   int i;
5128   struct state *stp;
5129   struct action *ap;
5130 
5131   for(i=0; i<lemp->nstate; i++){
5132     stp = lemp->sorted[i];
5133     stp->nTknAct = stp->nNtAct = 0;
5134     stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
5135     stp->iTknOfst = NO_OFFSET;
5136     stp->iNtOfst = NO_OFFSET;
5137     for(ap=stp->ap; ap; ap=ap->next){
5138       int iAction = compute_action(lemp,ap);
5139       if( iAction>=0 ){
5140         if( ap->sp->index<lemp->nterminal ){
5141           stp->nTknAct++;
5142         }else if( ap->sp->index<lemp->nsymbol ){
5143           stp->nNtAct++;
5144         }else{
5145           assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
5146           stp->iDfltReduce = iAction;
5147         }
5148       }
5149     }
5150   }
5151   qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
5152         stateResortCompare);
5153   for(i=0; i<lemp->nstate; i++){
5154     lemp->sorted[i]->statenum = i;
5155   }
5156   lemp->nxstate = lemp->nstate;
5157   while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
5158     lemp->nxstate--;
5159   }
5160 }
5161 
5162 
5163 /***************** From the file "set.c" ************************************/
5164 /*
5165 ** Set manipulation routines for the LEMON parser generator.
5166 */
5167 
5168 static int size = 0;
5169 
5170 /* Set the set size */
SetSize(int n)5171 void SetSize(int n)
5172 {
5173   size = n+1;
5174 }
5175 
5176 /* Allocate a new set */
SetNew(void)5177 char *SetNew(void){
5178   char *s;
5179   s = (char*)calloc( size, 1);
5180   if( s==0 ){
5181     memory_error();
5182   }
5183   return s;
5184 }
5185 
5186 /* Deallocate a set */
SetFree(char * s)5187 void SetFree(char *s)
5188 {
5189   free(s);
5190 }
5191 
5192 /* Add a new element to the set.  Return TRUE if the element was added
5193 ** and FALSE if it was already there. */
SetAdd(char * s,int e)5194 int SetAdd(char *s, int e)
5195 {
5196   int rv;
5197   assert( e>=0 && e<size );
5198   rv = s[e];
5199   s[e] = 1;
5200   return !rv;
5201 }
5202 
5203 /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
SetUnion(char * s1,char * s2)5204 int SetUnion(char *s1, char *s2)
5205 {
5206   int i, progress;
5207   progress = 0;
5208   for(i=0; i<size; i++){
5209     if( s2[i]==0 ) continue;
5210     if( s1[i]==0 ){
5211       progress = 1;
5212       s1[i] = 1;
5213     }
5214   }
5215   return progress;
5216 }
5217 /********************** From the file "table.c" ****************************/
5218 /*
5219 ** All code in this file has been automatically generated
5220 ** from a specification in the file
5221 **              "table.q"
5222 ** by the associative array code building program "aagen".
5223 ** Do not edit this file!  Instead, edit the specification
5224 ** file, then rerun aagen.
5225 */
5226 /*
5227 ** Code for processing tables in the LEMON parser generator.
5228 */
5229 
strhash(const char * x)5230 PRIVATE unsigned strhash(const char *x)
5231 {
5232   unsigned h = 0;
5233   while( *x ) h = h*13 + *(x++);
5234   return h;
5235 }
5236 
5237 /* Works like strdup, sort of.  Save a string in malloced memory, but
5238 ** keep strings in a table so that the same string is not in more
5239 ** than one place.
5240 */
Strsafe(const char * y)5241 const char *Strsafe(const char *y)
5242 {
5243   const char *z;
5244   char *cpy;
5245 
5246   if( y==0 ) return 0;
5247   z = Strsafe_find(y);
5248   if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
5249     lemon_strcpy(cpy,y);
5250     z = cpy;
5251     Strsafe_insert(z);
5252   }
5253   MemoryCheck(z);
5254   return z;
5255 }
5256 
5257 /* There is one instance of the following structure for each
5258 ** associative array of type "x1".
5259 */
5260 struct s_x1 {
5261   int size;               /* The number of available slots. */
5262                           /*   Must be a power of 2 greater than or */
5263                           /*   equal to 1 */
5264   int count;              /* Number of currently slots filled */
5265   struct s_x1node *tbl;  /* The data stored here */
5266   struct s_x1node **ht;  /* Hash table for lookups */
5267 };
5268 
5269 /* There is one instance of this structure for every data element
5270 ** in an associative array of type "x1".
5271 */
5272 typedef struct s_x1node {
5273   const char *data;        /* The data */
5274   struct s_x1node *next;   /* Next entry with the same hash */
5275   struct s_x1node **from;  /* Previous link */
5276 } x1node;
5277 
5278 /* There is only one instance of the array, which is the following */
5279 static struct s_x1 *x1a;
5280 
5281 /* Allocate a new associative array */
Strsafe_init(void)5282 void Strsafe_init(void){
5283   if( x1a ) return;
5284   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
5285   if( x1a ){
5286     x1a->size = 1024;
5287     x1a->count = 0;
5288     x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
5289     if( x1a->tbl==0 ){
5290       free(x1a);
5291       x1a = 0;
5292     }else{
5293       int i;
5294       x1a->ht = (x1node**)&(x1a->tbl[1024]);
5295       for(i=0; i<1024; i++) x1a->ht[i] = 0;
5296     }
5297   }
5298 }
5299 /* Insert a new record into the array.  Return TRUE if successful.
5300 ** Prior data with the same key is NOT overwritten */
Strsafe_insert(const char * data)5301 int Strsafe_insert(const char *data)
5302 {
5303   x1node *np;
5304   unsigned h;
5305   unsigned ph;
5306 
5307   if( x1a==0 ) return 0;
5308   ph = strhash(data);
5309   h = ph & (x1a->size-1);
5310   np = x1a->ht[h];
5311   while( np ){
5312     if( strcmp(np->data,data)==0 ){
5313       /* An existing entry with the same key is found. */
5314       /* Fail because overwrite is not allows. */
5315       return 0;
5316     }
5317     np = np->next;
5318   }
5319   if( x1a->count>=x1a->size ){
5320     /* Need to make the hash table bigger */
5321     int i,arrSize;
5322     struct s_x1 array;
5323     array.size = arrSize = x1a->size*2;
5324     array.count = x1a->count;
5325     array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
5326     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5327     array.ht = (x1node**)&(array.tbl[arrSize]);
5328     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5329     for(i=0; i<x1a->count; i++){
5330       x1node *oldnp, *newnp;
5331       oldnp = &(x1a->tbl[i]);
5332       h = strhash(oldnp->data) & (arrSize-1);
5333       newnp = &(array.tbl[i]);
5334       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5335       newnp->next = array.ht[h];
5336       newnp->data = oldnp->data;
5337       newnp->from = &(array.ht[h]);
5338       array.ht[h] = newnp;
5339     }
5340     free(x1a->tbl);
5341     *x1a = array;
5342   }
5343   /* Insert the new data */
5344   h = ph & (x1a->size-1);
5345   np = &(x1a->tbl[x1a->count++]);
5346   np->data = data;
5347   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
5348   np->next = x1a->ht[h];
5349   x1a->ht[h] = np;
5350   np->from = &(x1a->ht[h]);
5351   return 1;
5352 }
5353 
5354 /* Return a pointer to data assigned to the given key.  Return NULL
5355 ** if no such key. */
Strsafe_find(const char * key)5356 const char *Strsafe_find(const char *key)
5357 {
5358   unsigned h;
5359   x1node *np;
5360 
5361   if( x1a==0 ) return 0;
5362   h = strhash(key) & (x1a->size-1);
5363   np = x1a->ht[h];
5364   while( np ){
5365     if( strcmp(np->data,key)==0 ) break;
5366     np = np->next;
5367   }
5368   return np ? np->data : 0;
5369 }
5370 
5371 /* Return a pointer to the (terminal or nonterminal) symbol "x".
5372 ** Create a new symbol if this is the first time "x" has been seen.
5373 */
Symbol_new(const char * x)5374 struct symbol *Symbol_new(const char *x)
5375 {
5376   struct symbol *sp;
5377 
5378   sp = Symbol_find(x);
5379   if( sp==0 ){
5380     sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
5381     MemoryCheck(sp);
5382     sp->name = Strsafe(x);
5383     sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
5384     sp->rule = 0;
5385     sp->fallback = 0;
5386     sp->prec = -1;
5387     sp->assoc = UNK;
5388     sp->firstset = 0;
5389     sp->lambda = LEMON_FALSE;
5390     sp->destructor = 0;
5391     sp->destLineno = 0;
5392     sp->datatype = 0;
5393     sp->useCnt = 0;
5394     Symbol_insert(sp,sp->name);
5395   }
5396   sp->useCnt++;
5397   return sp;
5398 }
5399 
5400 /* Compare two symbols for sorting purposes.  Return negative,
5401 ** zero, or positive if a is less then, equal to, or greater
5402 ** than b.
5403 **
5404 ** Symbols that begin with upper case letters (terminals or tokens)
5405 ** must sort before symbols that begin with lower case letters
5406 ** (non-terminals).  And MULTITERMINAL symbols (created using the
5407 ** %token_class directive) must sort at the very end. Other than
5408 ** that, the order does not matter.
5409 **
5410 ** We find experimentally that leaving the symbols in their original
5411 ** order (the order they appeared in the grammar file) gives the
5412 ** smallest parser tables in SQLite.
5413 */
Symbolcmpp(const void * _a,const void * _b)5414 int Symbolcmpp(const void *_a, const void *_b)
5415 {
5416   const struct symbol *a = *(const struct symbol **) _a;
5417   const struct symbol *b = *(const struct symbol **) _b;
5418   int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
5419   int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
5420   return i1==i2 ? a->index - b->index : i1 - i2;
5421 }
5422 
5423 /* There is one instance of the following structure for each
5424 ** associative array of type "x2".
5425 */
5426 struct s_x2 {
5427   int size;               /* The number of available slots. */
5428                           /*   Must be a power of 2 greater than or */
5429                           /*   equal to 1 */
5430   int count;              /* Number of currently slots filled */
5431   struct s_x2node *tbl;  /* The data stored here */
5432   struct s_x2node **ht;  /* Hash table for lookups */
5433 };
5434 
5435 /* There is one instance of this structure for every data element
5436 ** in an associative array of type "x2".
5437 */
5438 typedef struct s_x2node {
5439   struct symbol *data;     /* The data */
5440   const char *key;         /* The key */
5441   struct s_x2node *next;   /* Next entry with the same hash */
5442   struct s_x2node **from;  /* Previous link */
5443 } x2node;
5444 
5445 /* There is only one instance of the array, which is the following */
5446 static struct s_x2 *x2a;
5447 
5448 /* Allocate a new associative array */
Symbol_init(void)5449 void Symbol_init(void){
5450   if( x2a ) return;
5451   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
5452   if( x2a ){
5453     x2a->size = 128;
5454     x2a->count = 0;
5455     x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
5456     if( x2a->tbl==0 ){
5457       free(x2a);
5458       x2a = 0;
5459     }else{
5460       int i;
5461       x2a->ht = (x2node**)&(x2a->tbl[128]);
5462       for(i=0; i<128; i++) x2a->ht[i] = 0;
5463     }
5464   }
5465 }
5466 /* Insert a new record into the array.  Return TRUE if successful.
5467 ** Prior data with the same key is NOT overwritten */
Symbol_insert(struct symbol * data,const char * key)5468 int Symbol_insert(struct symbol *data, const char *key)
5469 {
5470   x2node *np;
5471   unsigned h;
5472   unsigned ph;
5473 
5474   if( x2a==0 ) return 0;
5475   ph = strhash(key);
5476   h = ph & (x2a->size-1);
5477   np = x2a->ht[h];
5478   while( np ){
5479     if( strcmp(np->key,key)==0 ){
5480       /* An existing entry with the same key is found. */
5481       /* Fail because overwrite is not allows. */
5482       return 0;
5483     }
5484     np = np->next;
5485   }
5486   if( x2a->count>=x2a->size ){
5487     /* Need to make the hash table bigger */
5488     int i,arrSize;
5489     struct s_x2 array;
5490     array.size = arrSize = x2a->size*2;
5491     array.count = x2a->count;
5492     array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
5493     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5494     array.ht = (x2node**)&(array.tbl[arrSize]);
5495     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5496     for(i=0; i<x2a->count; i++){
5497       x2node *oldnp, *newnp;
5498       oldnp = &(x2a->tbl[i]);
5499       h = strhash(oldnp->key) & (arrSize-1);
5500       newnp = &(array.tbl[i]);
5501       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5502       newnp->next = array.ht[h];
5503       newnp->key = oldnp->key;
5504       newnp->data = oldnp->data;
5505       newnp->from = &(array.ht[h]);
5506       array.ht[h] = newnp;
5507     }
5508     free(x2a->tbl);
5509     *x2a = array;
5510   }
5511   /* Insert the new data */
5512   h = ph & (x2a->size-1);
5513   np = &(x2a->tbl[x2a->count++]);
5514   np->key = key;
5515   np->data = data;
5516   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
5517   np->next = x2a->ht[h];
5518   x2a->ht[h] = np;
5519   np->from = &(x2a->ht[h]);
5520   return 1;
5521 }
5522 
5523 /* Return a pointer to data assigned to the given key.  Return NULL
5524 ** if no such key. */
Symbol_find(const char * key)5525 struct symbol *Symbol_find(const char *key)
5526 {
5527   unsigned h;
5528   x2node *np;
5529 
5530   if( x2a==0 ) return 0;
5531   h = strhash(key) & (x2a->size-1);
5532   np = x2a->ht[h];
5533   while( np ){
5534     if( strcmp(np->key,key)==0 ) break;
5535     np = np->next;
5536   }
5537   return np ? np->data : 0;
5538 }
5539 
5540 /* Return the n-th data.  Return NULL if n is out of range. */
Symbol_Nth(int n)5541 struct symbol *Symbol_Nth(int n)
5542 {
5543   struct symbol *data;
5544   if( x2a && n>0 && n<=x2a->count ){
5545     data = x2a->tbl[n-1].data;
5546   }else{
5547     data = 0;
5548   }
5549   return data;
5550 }
5551 
5552 /* Return the size of the array */
Symbol_count()5553 int Symbol_count()
5554 {
5555   return x2a ? x2a->count : 0;
5556 }
5557 
5558 /* Return an array of pointers to all data in the table.
5559 ** The array is obtained from malloc.  Return NULL if memory allocation
5560 ** problems, or if the array is empty. */
Symbol_arrayof()5561 struct symbol **Symbol_arrayof()
5562 {
5563   struct symbol **array;
5564   int i,arrSize;
5565   if( x2a==0 ) return 0;
5566   arrSize = x2a->count;
5567   array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
5568   if( array ){
5569     for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
5570   }
5571   return array;
5572 }
5573 
5574 /* Compare two configurations */
Configcmp(const char * _a,const char * _b)5575 int Configcmp(const char *_a,const char *_b)
5576 {
5577   const struct config *a = (struct config *) _a;
5578   const struct config *b = (struct config *) _b;
5579   int x;
5580   x = a->rp->index - b->rp->index;
5581   if( x==0 ) x = a->dot - b->dot;
5582   return x;
5583 }
5584 
5585 /* Compare two states */
statecmp(struct config * a,struct config * b)5586 PRIVATE int statecmp(struct config *a, struct config *b)
5587 {
5588   int rc;
5589   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
5590     rc = a->rp->index - b->rp->index;
5591     if( rc==0 ) rc = a->dot - b->dot;
5592   }
5593   if( rc==0 ){
5594     if( a ) rc = 1;
5595     if( b ) rc = -1;
5596   }
5597   return rc;
5598 }
5599 
5600 /* Hash a state */
statehash(struct config * a)5601 PRIVATE unsigned statehash(struct config *a)
5602 {
5603   unsigned h=0;
5604   while( a ){
5605     h = h*571 + a->rp->index*37 + a->dot;
5606     a = a->bp;
5607   }
5608   return h;
5609 }
5610 
5611 /* Allocate a new state structure */
State_new()5612 struct state *State_new()
5613 {
5614   struct state *newstate;
5615   newstate = (struct state *)calloc(1, sizeof(struct state) );
5616   MemoryCheck(newstate);
5617   return newstate;
5618 }
5619 
5620 /* There is one instance of the following structure for each
5621 ** associative array of type "x3".
5622 */
5623 struct s_x3 {
5624   int size;               /* The number of available slots. */
5625                           /*   Must be a power of 2 greater than or */
5626                           /*   equal to 1 */
5627   int count;              /* Number of currently slots filled */
5628   struct s_x3node *tbl;  /* The data stored here */
5629   struct s_x3node **ht;  /* Hash table for lookups */
5630 };
5631 
5632 /* There is one instance of this structure for every data element
5633 ** in an associative array of type "x3".
5634 */
5635 typedef struct s_x3node {
5636   struct state *data;                  /* The data */
5637   struct config *key;                   /* The key */
5638   struct s_x3node *next;   /* Next entry with the same hash */
5639   struct s_x3node **from;  /* Previous link */
5640 } x3node;
5641 
5642 /* There is only one instance of the array, which is the following */
5643 static struct s_x3 *x3a;
5644 
5645 /* Allocate a new associative array */
State_init(void)5646 void State_init(void){
5647   if( x3a ) return;
5648   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
5649   if( x3a ){
5650     x3a->size = 128;
5651     x3a->count = 0;
5652     x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
5653     if( x3a->tbl==0 ){
5654       free(x3a);
5655       x3a = 0;
5656     }else{
5657       int i;
5658       x3a->ht = (x3node**)&(x3a->tbl[128]);
5659       for(i=0; i<128; i++) x3a->ht[i] = 0;
5660     }
5661   }
5662 }
5663 /* Insert a new record into the array.  Return TRUE if successful.
5664 ** Prior data with the same key is NOT overwritten */
State_insert(struct state * data,struct config * key)5665 int State_insert(struct state *data, struct config *key)
5666 {
5667   x3node *np;
5668   unsigned h;
5669   unsigned ph;
5670 
5671   if( x3a==0 ) return 0;
5672   ph = statehash(key);
5673   h = ph & (x3a->size-1);
5674   np = x3a->ht[h];
5675   while( np ){
5676     if( statecmp(np->key,key)==0 ){
5677       /* An existing entry with the same key is found. */
5678       /* Fail because overwrite is not allows. */
5679       return 0;
5680     }
5681     np = np->next;
5682   }
5683   if( x3a->count>=x3a->size ){
5684     /* Need to make the hash table bigger */
5685     int i,arrSize;
5686     struct s_x3 array;
5687     array.size = arrSize = x3a->size*2;
5688     array.count = x3a->count;
5689     array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
5690     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5691     array.ht = (x3node**)&(array.tbl[arrSize]);
5692     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5693     for(i=0; i<x3a->count; i++){
5694       x3node *oldnp, *newnp;
5695       oldnp = &(x3a->tbl[i]);
5696       h = statehash(oldnp->key) & (arrSize-1);
5697       newnp = &(array.tbl[i]);
5698       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5699       newnp->next = array.ht[h];
5700       newnp->key = oldnp->key;
5701       newnp->data = oldnp->data;
5702       newnp->from = &(array.ht[h]);
5703       array.ht[h] = newnp;
5704     }
5705     free(x3a->tbl);
5706     *x3a = array;
5707   }
5708   /* Insert the new data */
5709   h = ph & (x3a->size-1);
5710   np = &(x3a->tbl[x3a->count++]);
5711   np->key = key;
5712   np->data = data;
5713   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
5714   np->next = x3a->ht[h];
5715   x3a->ht[h] = np;
5716   np->from = &(x3a->ht[h]);
5717   return 1;
5718 }
5719 
5720 /* Return a pointer to data assigned to the given key.  Return NULL
5721 ** if no such key. */
State_find(struct config * key)5722 struct state *State_find(struct config *key)
5723 {
5724   unsigned h;
5725   x3node *np;
5726 
5727   if( x3a==0 ) return 0;
5728   h = statehash(key) & (x3a->size-1);
5729   np = x3a->ht[h];
5730   while( np ){
5731     if( statecmp(np->key,key)==0 ) break;
5732     np = np->next;
5733   }
5734   return np ? np->data : 0;
5735 }
5736 
5737 /* Return an array of pointers to all data in the table.
5738 ** The array is obtained from malloc.  Return NULL if memory allocation
5739 ** problems, or if the array is empty. */
State_arrayof(void)5740 struct state **State_arrayof(void)
5741 {
5742   struct state **array;
5743   int i,arrSize;
5744   if( x3a==0 ) return 0;
5745   arrSize = x3a->count;
5746   array = (struct state **)calloc(arrSize, sizeof(struct state *));
5747   if( array ){
5748     for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
5749   }
5750   return array;
5751 }
5752 
5753 /* Hash a configuration */
confighash(struct config * a)5754 PRIVATE unsigned confighash(struct config *a)
5755 {
5756   unsigned h=0;
5757   h = h*571 + a->rp->index*37 + a->dot;
5758   return h;
5759 }
5760 
5761 /* There is one instance of the following structure for each
5762 ** associative array of type "x4".
5763 */
5764 struct s_x4 {
5765   int size;               /* The number of available slots. */
5766                           /*   Must be a power of 2 greater than or */
5767                           /*   equal to 1 */
5768   int count;              /* Number of currently slots filled */
5769   struct s_x4node *tbl;  /* The data stored here */
5770   struct s_x4node **ht;  /* Hash table for lookups */
5771 };
5772 
5773 /* There is one instance of this structure for every data element
5774 ** in an associative array of type "x4".
5775 */
5776 typedef struct s_x4node {
5777   struct config *data;                  /* The data */
5778   struct s_x4node *next;   /* Next entry with the same hash */
5779   struct s_x4node **from;  /* Previous link */
5780 } x4node;
5781 
5782 /* There is only one instance of the array, which is the following */
5783 static struct s_x4 *x4a;
5784 
5785 /* Allocate a new associative array */
Configtable_init(void)5786 void Configtable_init(void){
5787   if( x4a ) return;
5788   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
5789   if( x4a ){
5790     x4a->size = 64;
5791     x4a->count = 0;
5792     x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
5793     if( x4a->tbl==0 ){
5794       free(x4a);
5795       x4a = 0;
5796     }else{
5797       int i;
5798       x4a->ht = (x4node**)&(x4a->tbl[64]);
5799       for(i=0; i<64; i++) x4a->ht[i] = 0;
5800     }
5801   }
5802 }
5803 /* Insert a new record into the array.  Return TRUE if successful.
5804 ** Prior data with the same key is NOT overwritten */
Configtable_insert(struct config * data)5805 int Configtable_insert(struct config *data)
5806 {
5807   x4node *np;
5808   unsigned h;
5809   unsigned ph;
5810 
5811   if( x4a==0 ) return 0;
5812   ph = confighash(data);
5813   h = ph & (x4a->size-1);
5814   np = x4a->ht[h];
5815   while( np ){
5816     if( Configcmp((const char *) np->data,(const char *) data)==0 ){
5817       /* An existing entry with the same key is found. */
5818       /* Fail because overwrite is not allows. */
5819       return 0;
5820     }
5821     np = np->next;
5822   }
5823   if( x4a->count>=x4a->size ){
5824     /* Need to make the hash table bigger */
5825     int i,arrSize;
5826     struct s_x4 array;
5827     array.size = arrSize = x4a->size*2;
5828     array.count = x4a->count;
5829     array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
5830     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
5831     array.ht = (x4node**)&(array.tbl[arrSize]);
5832     for(i=0; i<arrSize; i++) array.ht[i] = 0;
5833     for(i=0; i<x4a->count; i++){
5834       x4node *oldnp, *newnp;
5835       oldnp = &(x4a->tbl[i]);
5836       h = confighash(oldnp->data) & (arrSize-1);
5837       newnp = &(array.tbl[i]);
5838       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5839       newnp->next = array.ht[h];
5840       newnp->data = oldnp->data;
5841       newnp->from = &(array.ht[h]);
5842       array.ht[h] = newnp;
5843     }
5844     free(x4a->tbl);
5845     *x4a = array;
5846   }
5847   /* Insert the new data */
5848   h = ph & (x4a->size-1);
5849   np = &(x4a->tbl[x4a->count++]);
5850   np->data = data;
5851   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
5852   np->next = x4a->ht[h];
5853   x4a->ht[h] = np;
5854   np->from = &(x4a->ht[h]);
5855   return 1;
5856 }
5857 
5858 /* Return a pointer to data assigned to the given key.  Return NULL
5859 ** if no such key. */
Configtable_find(struct config * key)5860 struct config *Configtable_find(struct config *key)
5861 {
5862   int h;
5863   x4node *np;
5864 
5865   if( x4a==0 ) return 0;
5866   h = confighash(key) & (x4a->size-1);
5867   np = x4a->ht[h];
5868   while( np ){
5869     if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
5870     np = np->next;
5871   }
5872   return np ? np->data : 0;
5873 }
5874 
5875 /* Remove all data from the table.  Pass each data to the function "f"
5876 ** as it is removed.  ("f" may be null to avoid this step.) */
Configtable_clear(int (* f)(struct config *))5877 void Configtable_clear(int(*f)(struct config *))
5878 {
5879   int i;
5880   if( x4a==0 || x4a->count==0 ) return;
5881   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
5882   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
5883   x4a->count = 0;
5884   return;
5885 }
5886