1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_JY_HPP
7 #define BOOST_MATH_BESSEL_JY_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/tools/config.hpp>
14 #include <boost/math/special_functions/gamma.hpp>
15 #include <boost/math/special_functions/sign.hpp>
16 #include <boost/math/special_functions/hypot.hpp>
17 #include <boost/math/special_functions/sin_pi.hpp>
18 #include <boost/math/special_functions/cos_pi.hpp>
19 #include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
20 #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
21 #include <boost/math/constants/constants.hpp>
22 #include <boost/math/policies/error_handling.hpp>
23 #include <complex>
24 
25 // Bessel functions of the first and second kind of fractional order
26 
27 namespace boost { namespace math {
28 
29    namespace detail {
30 
31       //
32       // Simultaneous calculation of A&S 9.2.9 and 9.2.10
33       // for use in A&S 9.2.5 and 9.2.6.
34       // This series is quick to evaluate, but divergent unless
35       // x is very large, in fact it's pretty hard to figure out
36       // with any degree of precision when this series actually
37       // *will* converge!!  Consequently, we may just have to
38       // try it and see...
39       //
40       template <class T, class Policy>
hankel_PQ(T v,T x,T * p,T * q,const Policy &)41       bool hankel_PQ(T v, T x, T* p, T* q, const Policy& )
42       {
43          BOOST_MATH_STD_USING
44             T tolerance = 2 * policies::get_epsilon<T, Policy>();
45          *p = 1;
46          *q = 0;
47          T k = 1;
48          T z8 = 8 * x;
49          T sq = 1;
50          T mu = 4 * v * v;
51          T term = 1;
52          bool ok = true;
53          do
54          {
55             term *= (mu - sq * sq) / (k * z8);
56             *q += term;
57             k += 1;
58             sq += 2;
59             T mult = (sq * sq - mu) / (k * z8);
60             ok = fabs(mult) < 0.5f;
61             term *= mult;
62             *p += term;
63             k += 1;
64             sq += 2;
65          }
66          while((fabs(term) > tolerance * *p) && ok);
67          return ok;
68       }
69 
70       // Calculate Y(v, x) and Y(v+1, x) by Temme's method, see
71       // Temme, Journal of Computational Physics, vol 21, 343 (1976)
72       template <typename T, typename Policy>
temme_jy(T v,T x,T * Y,T * Y1,const Policy & pol)73       int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol)
74       {
75          T g, h, p, q, f, coef, sum, sum1, tolerance;
76          T a, d, e, sigma;
77          unsigned long k;
78 
79          BOOST_MATH_STD_USING
80             using namespace boost::math::tools;
81          using namespace boost::math::constants;
82 
83          BOOST_MATH_ASSERT(fabs(v) <= 0.5f);  // precondition for using this routine
84 
85          T gp = boost::math::tgamma1pm1(v, pol);
86          T gm = boost::math::tgamma1pm1(-v, pol);
87          T spv = boost::math::sin_pi(v, pol);
88          T spv2 = boost::math::sin_pi(v/2, pol);
89          T xp = pow(x/2, v);
90 
91          a = log(x / 2);
92          sigma = -a * v;
93          d = abs(sigma) < tools::epsilon<T>() ?
94             T(1) : sinh(sigma) / sigma;
95          e = abs(v) < tools::epsilon<T>() ? T(v*pi<T>()*pi<T>() / 2)
96             : T(2 * spv2 * spv2 / v);
97 
98          T g1 = (v == 0) ? T(-euler<T>()) : T((gp - gm) / ((1 + gp) * (1 + gm) * 2 * v));
99          T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2);
100          T vspv = (fabs(v) < tools::epsilon<T>()) ? T(1/constants::pi<T>()) : T(v / spv);
101          f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv;
102 
103          p = vspv / (xp * (1 + gm));
104          q = vspv * xp / (1 + gp);
105 
106          g = f + e * q;
107          h = p;
108          coef = 1;
109          sum = coef * g;
110          sum1 = coef * h;
111 
112          T v2 = v * v;
113          T coef_mult = -x * x / 4;
114 
115          // series summation
116          tolerance = policies::get_epsilon<T, Policy>();
117          for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
118          {
119             f = (k * f + p + q) / (k*k - v2);
120             p /= k - v;
121             q /= k + v;
122             g = f + e * q;
123             h = p - k * g;
124             coef *= coef_mult / k;
125             sum += coef * g;
126             sum1 += coef * h;
127             if (abs(coef * g) < abs(sum) * tolerance)
128             {
129                break;
130             }
131          }
132          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy", k, pol);
133          *Y = -sum;
134          *Y1 = -2 * sum1 / x;
135 
136          return 0;
137       }
138 
139       // Evaluate continued fraction fv = J_(v+1) / J_v, see
140       // Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73
141       template <typename T, typename Policy>
CF1_jy(T v,T x,T * fv,int * sign,const Policy & pol)142       int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol)
143       {
144          T C, D, f, a, b, delta, tiny, tolerance;
145          unsigned long k;
146          int s = 1;
147 
148          BOOST_MATH_STD_USING
149 
150             // |x| <= |v|, CF1_jy converges rapidly
151             // |x| > |v|, CF1_jy needs O(|x|) iterations to converge
152 
153             // modified Lentz's method, see
154             // Lentz, Applied Optics, vol 15, 668 (1976)
155             tolerance = 2 * policies::get_epsilon<T, Policy>();
156          tiny = sqrt(tools::min_value<T>());
157          C = f = tiny;                           // b0 = 0, replace with tiny
158          D = 0;
159          for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++)
160          {
161             a = -1;
162             b = 2 * (v + k) / x;
163             C = b + a / C;
164             D = b + a * D;
165             if (C == 0) { C = tiny; }
166             if (D == 0) { D = tiny; }
167             D = 1 / D;
168             delta = C * D;
169             f *= delta;
170             if (D < 0) { s = -s; }
171             if (abs(delta - 1) < tolerance)
172             { break; }
173          }
174          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy", k / 100, pol);
175          *fv = -f;
176          *sign = s;                              // sign of denominator
177 
178          return 0;
179       }
180       //
181       // This algorithm was originally written by Xiaogang Zhang
182       // using std::complex to perform the complex arithmetic.
183       // However, that turns out to 10x or more slower than using
184       // all real-valued arithmetic, so it's been rewritten using
185       // real values only.
186       //
187       template <typename T, typename Policy>
CF2_jy(T v,T x,T * p,T * q,const Policy & pol)188       int CF2_jy(T v, T x, T* p, T* q, const Policy& pol)
189       {
190          BOOST_MATH_STD_USING
191 
192             T Cr, Ci, Dr, Di, fr, fi, a, br, bi, delta_r, delta_i, temp;
193          T tiny;
194          unsigned long k;
195 
196          // |x| >= |v|, CF2_jy converges rapidly
197          // |x| -> 0, CF2_jy fails to converge
198          BOOST_MATH_ASSERT(fabs(x) > 1);
199 
200          // modified Lentz's method, complex numbers involved, see
201          // Lentz, Applied Optics, vol 15, 668 (1976)
202          T tolerance = 2 * policies::get_epsilon<T, Policy>();
203          tiny = sqrt(tools::min_value<T>());
204          Cr = fr = -0.5f / x;
205          Ci = fi = 1;
206          //Dr = Di = 0;
207          T v2 = v * v;
208          a = (0.25f - v2) / x; // Note complex this one time only!
209          br = 2 * x;
210          bi = 2;
211          temp = Cr * Cr + 1;
212          Ci = bi + a * Cr / temp;
213          Cr = br + a / temp;
214          Dr = br;
215          Di = bi;
216          if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
217          if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
218          temp = Dr * Dr + Di * Di;
219          Dr = Dr / temp;
220          Di = -Di / temp;
221          delta_r = Cr * Dr - Ci * Di;
222          delta_i = Ci * Dr + Cr * Di;
223          temp = fr;
224          fr = temp * delta_r - fi * delta_i;
225          fi = temp * delta_i + fi * delta_r;
226          for (k = 2; k < policies::get_max_series_iterations<Policy>(); k++)
227          {
228             a = k - 0.5f;
229             a *= a;
230             a -= v2;
231             bi += 2;
232             temp = Cr * Cr + Ci * Ci;
233             Cr = br + a * Cr / temp;
234             Ci = bi - a * Ci / temp;
235             Dr = br + a * Dr;
236             Di = bi + a * Di;
237             if (fabs(Cr) + fabs(Ci) < tiny) { Cr = tiny; }
238             if (fabs(Dr) + fabs(Di) < tiny) { Dr = tiny; }
239             temp = Dr * Dr + Di * Di;
240             Dr = Dr / temp;
241             Di = -Di / temp;
242             delta_r = Cr * Dr - Ci * Di;
243             delta_i = Ci * Dr + Cr * Di;
244             temp = fr;
245             fr = temp * delta_r - fi * delta_i;
246             fi = temp * delta_i + fi * delta_r;
247             if (fabs(delta_r - 1) + fabs(delta_i) < tolerance)
248                break;
249          }
250          policies::check_series_iterations<T>("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy", k, pol);
251          *p = fr;
252          *q = fi;
253 
254          return 0;
255       }
256 
257       static const int need_j = 1;
258       static const int need_y = 2;
259 
260       // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see
261       // Barnett et al, Computer Physics Communications, vol 8, 377 (1974)
262       template <typename T, typename Policy>
bessel_jy(T v,T x,T * J,T * Y,int kind,const Policy & pol)263       int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol)
264       {
265          BOOST_MATH_ASSERT(x >= 0);
266 
267          T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu;
268          T W, p, q, gamma, current, prev, next;
269          bool reflect = false;
270          unsigned n, k;
271          int s;
272          int org_kind = kind;
273          T cp = 0;
274          T sp = 0;
275 
276          static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)";
277 
278          BOOST_MATH_STD_USING
279             using namespace boost::math::tools;
280          using namespace boost::math::constants;
281 
282          if (v < 0)
283          {
284             reflect = true;
285             v = -v;                             // v is non-negative from here
286          }
287          if (v > static_cast<T>((std::numeric_limits<int>::max)()))
288          {
289             *J = *Y = policies::raise_evaluation_error<T>(function, "Order of Bessel function is too large to evaluate: got %1%", v, pol);
290             return 1;
291          }
292          n = iround(v, pol);
293          u = v - n;                              // -1/2 <= u < 1/2
294 
295          if(reflect)
296          {
297             T z = (u + n % 2);
298             cp = boost::math::cos_pi(z, pol);
299             sp = boost::math::sin_pi(z, pol);
300             if(u != 0)
301                kind = need_j|need_y;               // need both for reflection formula
302          }
303 
304          if(x == 0)
305          {
306             if(v == 0)
307                *J = 1;
308             else if((u == 0) || !reflect)
309                *J = 0;
310             else if(kind & need_j)
311                *J = policies::raise_domain_error<T>(function, "Value of Bessel J_v(x) is complex-infinity at %1%", x, pol); // complex infinity
312             else
313                *J = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using J.
314 
315             if((kind & need_y) == 0)
316                *Y = std::numeric_limits<T>::quiet_NaN();  // any value will do, not using Y.
317             else if(v == 0)
318                *Y = -policies::raise_overflow_error<T>(function, 0, pol);
319             else
320                *Y = policies::raise_domain_error<T>(function, "Value of Bessel Y_v(x) is complex-infinity at %1%", x, pol); // complex infinity
321             return 1;
322          }
323 
324          // x is positive until reflection
325          W = T(2) / (x * pi<T>());               // Wronskian
326          T Yv_scale = 1;
327          if(((kind & need_y) == 0) && ((x < 1) || (v > x * x / 4) || (x < 5)))
328          {
329             //
330             // This series will actually converge rapidly for all small
331             // x - say up to x < 20 - but the first few terms are large
332             // and divergent which leads to large errors :-(
333             //
334             Jv = bessel_j_small_z_series(v, x, pol);
335             Yv = std::numeric_limits<T>::quiet_NaN();
336          }
337          else if((x < 1) && (u != 0) && (log(policies::get_epsilon<T, Policy>() / 2) > v * log((x/2) * (x/2) / v)))
338          {
339             // Evaluate using series representations.
340             // This is particularly important for x << v as in this
341             // area temme_jy may be slow to converge, if it converges at all.
342             // Requires x is not an integer.
343             if(kind&need_j)
344                Jv = bessel_j_small_z_series(v, x, pol);
345             else
346                Jv = std::numeric_limits<T>::quiet_NaN();
347             if((org_kind&need_y && (!reflect || (cp != 0)))
348                || (org_kind & need_j && (reflect && (sp != 0))))
349             {
350                // Only calculate if we need it, and if the reflection formula will actually use it:
351                Yv = bessel_y_small_z_series(v, x, &Yv_scale, pol);
352             }
353             else
354                Yv = std::numeric_limits<T>::quiet_NaN();
355          }
356          else if((u == 0) && (x < policies::get_epsilon<T, Policy>()))
357          {
358             // Truncated series evaluation for small x and v an integer,
359             // much quicker in this area than temme_jy below.
360             if(kind&need_j)
361                Jv = bessel_j_small_z_series(v, x, pol);
362             else
363                Jv = std::numeric_limits<T>::quiet_NaN();
364             if((org_kind&need_y && (!reflect || (cp != 0)))
365                || (org_kind & need_j && (reflect && (sp != 0))))
366             {
367                // Only calculate if we need it, and if the reflection formula will actually use it:
368                Yv = bessel_yn_small_z(n, x, &Yv_scale, pol);
369             }
370             else
371                Yv = std::numeric_limits<T>::quiet_NaN();
372          }
373          else if(asymptotic_bessel_large_x_limit(v, x))
374          {
375             if(kind&need_y)
376             {
377                Yv = asymptotic_bessel_y_large_x_2(v, x, pol);
378             }
379             else
380                Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
381             if(kind&need_j)
382             {
383                Jv = asymptotic_bessel_j_large_x_2(v, x, pol);
384             }
385             else
386                Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
387          }
388          else if((x > 8) && hankel_PQ(v, x, &p, &q, pol))
389          {
390             //
391             // Hankel approximation: note that this method works best when x
392             // is large, but in that case we end up calculating sines and cosines
393             // of large values, with horrendous resulting accuracy.  It is fast though
394             // when it works....
395             //
396             // Normally we calculate sin/cos(chi) where:
397             //
398             // chi = x - fmod(T(v / 2 + 0.25f), T(2)) * boost::math::constants::pi<T>();
399             //
400             // But this introduces large errors, so use sin/cos addition formulae to
401             // improve accuracy:
402             //
403             T mod_v = fmod(T(v / 2 + 0.25f), T(2));
404             T sx = sin(x);
405             T cx = cos(x);
406             T sv = boost::math::sin_pi(mod_v, pol);
407             T cv = boost::math::cos_pi(mod_v, pol);
408 
409             T sc = sx * cv - sv * cx; // == sin(chi);
410             T cc = cx * cv + sx * sv; // == cos(chi);
411             T chi = boost::math::constants::root_two<T>() / (boost::math::constants::root_pi<T>() * sqrt(x)); //sqrt(2 / (boost::math::constants::pi<T>() * x));
412             Yv = chi * (p * sc + q * cc);
413             Jv = chi * (p * cc - q * sc);
414          }
415          else if (x <= 2)                           // x in (0, 2]
416          {
417             if(temme_jy(u, x, &Yu, &Yu1, pol))             // Temme series
418             {
419                // domain error:
420                *J = *Y = Yu;
421                return 1;
422             }
423             prev = Yu;
424             current = Yu1;
425             T scale = 1;
426             policies::check_series_iterations<T>(function, n, pol);
427             for (k = 1; k <= n; k++)            // forward recurrence for Y
428             {
429                T fact = 2 * (u + k) / x;
430                if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
431                {
432                   scale /= current;
433                   prev /= current;
434                   current = 1;
435                }
436                next = fact * current - prev;
437                prev = current;
438                current = next;
439             }
440             Yv = prev;
441             Yv1 = current;
442             if(kind&need_j)
443             {
444                CF1_jy(v, x, &fv, &s, pol);                 // continued fraction CF1_jy
445                Jv = scale * W / (Yv * fv - Yv1);           // Wronskian relation
446             }
447             else
448                Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
449             Yv_scale = scale;
450          }
451          else                                    // x in (2, \infty)
452          {
453             // Get Y(u, x):
454 
455             T ratio;
456             CF1_jy(v, x, &fv, &s, pol);
457             // tiny initial value to prevent overflow
458             T init = sqrt(tools::min_value<T>());
459             BOOST_MATH_INSTRUMENT_VARIABLE(init);
460             prev = fv * s * init;
461             current = s * init;
462             if(v < max_factorial<T>::value)
463             {
464                policies::check_series_iterations<T>(function, n, pol);
465                for (k = n; k > 0; k--)             // backward recurrence for J
466                {
467                   next = 2 * (u + k) * current / x - prev;
468                   prev = current;
469                   current = next;
470                }
471                ratio = (s * init) / current;     // scaling ratio
472                // can also call CF1_jy() to get fu, not much difference in precision
473                fu = prev / current;
474             }
475             else
476             {
477                //
478                // When v is large we may get overflow in this calculation
479                // leading to NaN's and other nasty surprises:
480                //
481                policies::check_series_iterations<T>(function, n, pol);
482                bool over = false;
483                for (k = n; k > 0; k--)             // backward recurrence for J
484                {
485                   T t = 2 * (u + k) / x;
486                   if((t > 1) && (tools::max_value<T>() / t < current))
487                   {
488                      over = true;
489                      break;
490                   }
491                   next = t * current - prev;
492                   prev = current;
493                   current = next;
494                }
495                if(!over)
496                {
497                   ratio = (s * init) / current;     // scaling ratio
498                   // can also call CF1_jy() to get fu, not much difference in precision
499                   fu = prev / current;
500                }
501                else
502                {
503                   ratio = 0;
504                   fu = 1;
505                }
506             }
507             CF2_jy(u, x, &p, &q, pol);                  // continued fraction CF2_jy
508             T t = u / x - fu;                   // t = J'/J
509             gamma = (p - t) / q;
510             //
511             // We can't allow gamma to cancel out to zero completely as it messes up
512             // the subsequent logic.  So pretend that one bit didn't cancel out
513             // and set to a suitably small value.  The only test case we've been able to
514             // find for this, is when v = 8.5 and x = 4*PI.
515             //
516             if(gamma == 0)
517             {
518                gamma = u * tools::epsilon<T>() / x;
519             }
520             BOOST_MATH_INSTRUMENT_VARIABLE(current);
521             BOOST_MATH_INSTRUMENT_VARIABLE(W);
522             BOOST_MATH_INSTRUMENT_VARIABLE(q);
523             BOOST_MATH_INSTRUMENT_VARIABLE(gamma);
524             BOOST_MATH_INSTRUMENT_VARIABLE(p);
525             BOOST_MATH_INSTRUMENT_VARIABLE(t);
526             Ju = sign(current) * sqrt(W / (q + gamma * (p - t)));
527             BOOST_MATH_INSTRUMENT_VARIABLE(Ju);
528 
529             Jv = Ju * ratio;                    // normalization
530 
531             Yu = gamma * Ju;
532             Yu1 = Yu * (u/x - p - q/gamma);
533 
534             if(kind&need_y)
535             {
536                // compute Y:
537                prev = Yu;
538                current = Yu1;
539                policies::check_series_iterations<T>(function, n, pol);
540                for (k = 1; k <= n; k++)            // forward recurrence for Y
541                {
542                   T fact = 2 * (u + k) / x;
543                   if((tools::max_value<T>() - fabs(prev)) / fact < fabs(current))
544                   {
545                      prev /= current;
546                      Yv_scale /= current;
547                      current = 1;
548                   }
549                   next = fact * current - prev;
550                   prev = current;
551                   current = next;
552                }
553                Yv = prev;
554             }
555             else
556                Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
557          }
558 
559          if (reflect)
560          {
561             if((sp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(sp * Yv)))
562                *J = org_kind & need_j ? T(-sign(sp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
563             else
564                *J = cp * Jv - (sp == 0 ? T(0) : T((sp * Yv) / Yv_scale));     // reflection formula
565             if((cp != 0) && (tools::max_value<T>() * fabs(Yv_scale) < fabs(cp * Yv)))
566                *Y = org_kind & need_y ? T(-sign(cp) * sign(Yv) * (Yv_scale != 0 ? sign(Yv_scale) : 1) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
567             else
568                *Y = (sp != 0 ? sp * Jv : T(0)) + (cp == 0 ? T(0) : T((cp * Yv) / Yv_scale));
569          }
570          else
571          {
572             *J = Jv;
573             if(tools::max_value<T>() * fabs(Yv_scale) < fabs(Yv))
574                *Y = org_kind & need_y ? T(sign(Yv) * sign(Yv_scale) * policies::raise_overflow_error<T>(function, 0, pol)) : T(0);
575             else
576                *Y = Yv / Yv_scale;
577          }
578 
579          return 0;
580       }
581 
582    } // namespace detail
583 
584 }} // namespaces
585 
586 #endif // BOOST_MATH_BESSEL_JY_HPP
587