1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                               C H E C K S                                --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Casing;   use Casing;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Eval_Fat; use Eval_Fat;
32with Exp_Ch11; use Exp_Ch11;
33with Exp_Ch2;  use Exp_Ch2;
34with Exp_Ch4;  use Exp_Ch4;
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
37with Expander; use Expander;
38with Freeze;   use Freeze;
39with Lib;      use Lib;
40with Nlists;   use Nlists;
41with Nmake;    use Nmake;
42with Opt;      use Opt;
43with Output;   use Output;
44with Restrict; use Restrict;
45with Rident;   use Rident;
46with Rtsfind;  use Rtsfind;
47with Sem;      use Sem;
48with Sem_Aux;  use Sem_Aux;
49with Sem_Ch3;  use Sem_Ch3;
50with Sem_Ch8;  use Sem_Ch8;
51with Sem_Disp; use Sem_Disp;
52with Sem_Eval; use Sem_Eval;
53with Sem_Res;  use Sem_Res;
54with Sem_Util; use Sem_Util;
55with Sem_Warn; use Sem_Warn;
56with Sinfo;    use Sinfo;
57with Sinput;   use Sinput;
58with Snames;   use Snames;
59with Sprint;   use Sprint;
60with Stand;    use Stand;
61with Stringt;  use Stringt;
62with Targparm; use Targparm;
63with Tbuild;   use Tbuild;
64with Ttypes;   use Ttypes;
65with Validsw;  use Validsw;
66
67package body Checks is
68
69   --  General note: many of these routines are concerned with generating
70   --  checking code to make sure that constraint error is raised at runtime.
71   --  Clearly this code is only needed if the expander is active, since
72   --  otherwise we will not be generating code or going into the runtime
73   --  execution anyway.
74
75   --  We therefore disconnect most of these checks if the expander is
76   --  inactive. This has the additional benefit that we do not need to
77   --  worry about the tree being messed up by previous errors (since errors
78   --  turn off expansion anyway).
79
80   --  There are a few exceptions to the above rule. For instance routines
81   --  such as Apply_Scalar_Range_Check that do not insert any code can be
82   --  safely called even when the Expander is inactive (but Errors_Detected
83   --  is 0). The benefit of executing this code when expansion is off, is
84   --  the ability to emit constraint error warning for static expressions
85   --  even when we are not generating code.
86
87   --  The above is modified in gnatprove mode to ensure that proper check
88   --  flags are always placed, even if expansion is off.
89
90   -------------------------------------
91   -- Suppression of Redundant Checks --
92   -------------------------------------
93
94   --  This unit implements a limited circuit for removal of redundant
95   --  checks. The processing is based on a tracing of simple sequential
96   --  flow. For any sequence of statements, we save expressions that are
97   --  marked to be checked, and then if the same expression appears later
98   --  with the same check, then under certain circumstances, the second
99   --  check can be suppressed.
100
101   --  Basically, we can suppress the check if we know for certain that
102   --  the previous expression has been elaborated (together with its
103   --  check), and we know that the exception frame is the same, and that
104   --  nothing has happened to change the result of the exception.
105
106   --  Let us examine each of these three conditions in turn to describe
107   --  how we ensure that this condition is met.
108
109   --  First, we need to know for certain that the previous expression has
110   --  been executed. This is done principally by the mechanism of calling
111   --  Conditional_Statements_Begin at the start of any statement sequence
112   --  and Conditional_Statements_End at the end. The End call causes all
113   --  checks remembered since the Begin call to be discarded. This does
114   --  miss a few cases, notably the case of a nested BEGIN-END block with
115   --  no exception handlers. But the important thing is to be conservative.
116   --  The other protection is that all checks are discarded if a label
117   --  is encountered, since then the assumption of sequential execution
118   --  is violated, and we don't know enough about the flow.
119
120   --  Second, we need to know that the exception frame is the same. We
121   --  do this by killing all remembered checks when we enter a new frame.
122   --  Again, that's over-conservative, but generally the cases we can help
123   --  with are pretty local anyway (like the body of a loop for example).
124
125   --  Third, we must be sure to forget any checks which are no longer valid.
126   --  This is done by two mechanisms, first the Kill_Checks_Variable call is
127   --  used to note any changes to local variables. We only attempt to deal
128   --  with checks involving local variables, so we do not need to worry
129   --  about global variables. Second, a call to any non-global procedure
130   --  causes us to abandon all stored checks, since such a all may affect
131   --  the values of any local variables.
132
133   --  The following define the data structures used to deal with remembering
134   --  checks so that redundant checks can be eliminated as described above.
135
136   --  Right now, the only expressions that we deal with are of the form of
137   --  simple local objects (either declared locally, or IN parameters) or
138   --  such objects plus/minus a compile time known constant. We can do
139   --  more later on if it seems worthwhile, but this catches many simple
140   --  cases in practice.
141
142   --  The following record type reflects a single saved check. An entry
143   --  is made in the stack of saved checks if and only if the expression
144   --  has been elaborated with the indicated checks.
145
146   type Saved_Check is record
147      Killed : Boolean;
148      --  Set True if entry is killed by Kill_Checks
149
150      Entity : Entity_Id;
151      --  The entity involved in the expression that is checked
152
153      Offset : Uint;
154      --  A compile time value indicating the result of adding or
155      --  subtracting a compile time value. This value is to be
156      --  added to the value of the Entity. A value of zero is
157      --  used for the case of a simple entity reference.
158
159      Check_Type : Character;
160      --  This is set to 'R' for a range check (in which case Target_Type
161      --  is set to the target type for the range check) or to 'O' for an
162      --  overflow check (in which case Target_Type is set to Empty).
163
164      Target_Type : Entity_Id;
165      --  Used only if Do_Range_Check is set. Records the target type for
166      --  the check. We need this, because a check is a duplicate only if
167      --  it has the same target type (or more accurately one with a
168      --  range that is smaller or equal to the stored target type of a
169      --  saved check).
170   end record;
171
172   --  The following table keeps track of saved checks. Rather than use an
173   --  extensible table, we just use a table of fixed size, and we discard
174   --  any saved checks that do not fit. That's very unlikely to happen and
175   --  this is only an optimization in any case.
176
177   Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178   --  Array of saved checks
179
180   Num_Saved_Checks : Nat := 0;
181   --  Number of saved checks
182
183   --  The following stack keeps track of statement ranges. It is treated
184   --  as a stack. When Conditional_Statements_Begin is called, an entry
185   --  is pushed onto this stack containing the value of Num_Saved_Checks
186   --  at the time of the call. Then when Conditional_Statements_End is
187   --  called, this value is popped off and used to reset Num_Saved_Checks.
188
189   --  Note: again, this is a fixed length stack with a size that should
190   --  always be fine. If the value of the stack pointer goes above the
191   --  limit, then we just forget all saved checks.
192
193   Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194   Saved_Checks_TOS : Nat := 0;
195
196   -----------------------
197   -- Local Subprograms --
198   -----------------------
199
200   procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
201   --  Used to apply arithmetic overflow checks for all cases except operators
202   --  on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
203   --  call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204   --  signed integer arithmetic operator (but not an if or case expression).
205   --  It is also called for types other than signed integers.
206
207   procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208   --  Used to apply arithmetic overflow checks for the case where the overflow
209   --  checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210   --  arithmetic op (which includes the case of if and case expressions). Note
211   --  that Do_Overflow_Check may or may not be set for node Op. In these modes
212   --  we have work to do even if overflow checking is suppressed.
213
214   procedure Apply_Division_Check
215     (N   : Node_Id;
216      Rlo : Uint;
217      Rhi : Uint;
218      ROK : Boolean);
219   --  N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220   --  division checks as required if the Do_Division_Check flag is set.
221   --  Rlo and Rhi give the possible range of the right operand, these values
222   --  can be referenced and trusted only if ROK is set True.
223
224   procedure Apply_Float_Conversion_Check
225     (Ck_Node    : Node_Id;
226      Target_Typ : Entity_Id);
227   --  The checks on a conversion from a floating-point type to an integer
228   --  type are delicate. They have to be performed before conversion, they
229   --  have to raise an exception when the operand is a NaN, and rounding must
230   --  be taken into account to determine the safe bounds of the operand.
231
232   procedure Apply_Selected_Length_Checks
233     (Ck_Node    : Node_Id;
234      Target_Typ : Entity_Id;
235      Source_Typ : Entity_Id;
236      Do_Static  : Boolean);
237   --  This is the subprogram that does all the work for Apply_Length_Check
238   --  and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239   --  described for the above routines. The Do_Static flag indicates that
240   --  only a static check is to be done.
241
242   procedure Apply_Selected_Range_Checks
243     (Ck_Node    : Node_Id;
244      Target_Typ : Entity_Id;
245      Source_Typ : Entity_Id;
246      Do_Static  : Boolean);
247   --  This is the subprogram that does all the work for Apply_Range_Check.
248   --  Expr, Target_Typ and Source_Typ are as described for the above
249   --  routine. The Do_Static flag indicates that only a static check is
250   --  to be done.
251
252   type Check_Type is new Check_Id range Access_Check .. Division_Check;
253   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
254   --  This function is used to see if an access or division by zero check is
255   --  needed. The check is to be applied to a single variable appearing in the
256   --  source, and N is the node for the reference. If N is not of this form,
257   --  True is returned with no further processing. If N is of the right form,
258   --  then further processing determines if the given Check is needed.
259   --
260   --  The particular circuit is to see if we have the case of a check that is
261   --  not needed because it appears in the right operand of a short circuited
262   --  conditional where the left operand guards the check. For example:
263   --
264   --    if Var = 0 or else Q / Var > 12 then
265   --       ...
266   --    end if;
267   --
268   --  In this example, the division check is not required. At the same time
269   --  we can issue warnings for suspicious use of non-short-circuited forms,
270   --  such as:
271   --
272   --    if Var = 0 or Q / Var > 12 then
273   --       ...
274   --    end if;
275
276   procedure Find_Check
277     (Expr        : Node_Id;
278      Check_Type  : Character;
279      Target_Type : Entity_Id;
280      Entry_OK    : out Boolean;
281      Check_Num   : out Nat;
282      Ent         : out Entity_Id;
283      Ofs         : out Uint);
284   --  This routine is used by Enable_Range_Check and Enable_Overflow_Check
285   --  to see if a check is of the form for optimization, and if so, to see
286   --  if it has already been performed. Expr is the expression to check,
287   --  and Check_Type is 'R' for a range check, 'O' for an overflow check.
288   --  Target_Type is the target type for a range check, and Empty for an
289   --  overflow check. If the entry is not of the form for optimization,
290   --  then Entry_OK is set to False, and the remaining out parameters
291   --  are undefined. If the entry is OK, then Ent/Ofs are set to the
292   --  entity and offset from the expression. Check_Num is the number of
293   --  a matching saved entry in Saved_Checks, or zero if no such entry
294   --  is located.
295
296   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
297   --  If a discriminal is used in constraining a prival, Return reference
298   --  to the discriminal of the protected body (which renames the parameter
299   --  of the enclosing protected operation). This clumsy transformation is
300   --  needed because privals are created too late and their actual subtypes
301   --  are not available when analysing the bodies of the protected operations.
302   --  This function is called whenever the bound is an entity and the scope
303   --  indicates a protected operation. If the bound is an in-parameter of
304   --  a protected operation that is not a prival, the function returns the
305   --  bound itself.
306   --  To be cleaned up???
307
308   function Guard_Access
309     (Cond    : Node_Id;
310      Loc     : Source_Ptr;
311      Ck_Node : Node_Id) return Node_Id;
312   --  In the access type case, guard the test with a test to ensure
313   --  that the access value is non-null, since the checks do not
314   --  not apply to null access values.
315
316   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
317   --  Called by Apply_{Length,Range}_Checks to rewrite the tree with the
318   --  Constraint_Error node.
319
320   function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
321   --  Returns True if node N is for an arithmetic operation with signed
322   --  integer operands. This includes unary and binary operators, and also
323   --  if and case expression nodes where the dependent expressions are of
324   --  a signed integer type. These are the kinds of nodes for which special
325   --  handling applies in MINIMIZED or ELIMINATED overflow checking mode.
326
327   function Range_Or_Validity_Checks_Suppressed
328     (Expr : Node_Id) return Boolean;
329   --  Returns True if either range or validity checks or both are suppressed
330   --  for the type of the given expression, or, if the expression is the name
331   --  of an entity, if these checks are suppressed for the entity.
332
333   function Selected_Length_Checks
334     (Ck_Node    : Node_Id;
335      Target_Typ : Entity_Id;
336      Source_Typ : Entity_Id;
337      Warn_Node  : Node_Id) return Check_Result;
338   --  Like Apply_Selected_Length_Checks, except it doesn't modify
339   --  anything, just returns a list of nodes as described in the spec of
340   --  this package for the Range_Check function.
341   --  ??? In fact it does construct the test and insert it into the tree,
342   --  and insert actions in various ways (calling Insert_Action directly
343   --  in particular) so we do not call it in GNATprove mode, contrary to
344   --  Selected_Range_Checks.
345
346   function Selected_Range_Checks
347     (Ck_Node    : Node_Id;
348      Target_Typ : Entity_Id;
349      Source_Typ : Entity_Id;
350      Warn_Node  : Node_Id) return Check_Result;
351   --  Like Apply_Selected_Range_Checks, except it doesn't modify anything,
352   --  just returns a list of nodes as described in the spec of this package
353   --  for the Range_Check function.
354
355   ------------------------------
356   -- Access_Checks_Suppressed --
357   ------------------------------
358
359   function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
360   begin
361      if Present (E) and then Checks_May_Be_Suppressed (E) then
362         return Is_Check_Suppressed (E, Access_Check);
363      else
364         return Scope_Suppress.Suppress (Access_Check);
365      end if;
366   end Access_Checks_Suppressed;
367
368   -------------------------------------
369   -- Accessibility_Checks_Suppressed --
370   -------------------------------------
371
372   function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
373   begin
374      if Present (E) and then Checks_May_Be_Suppressed (E) then
375         return Is_Check_Suppressed (E, Accessibility_Check);
376      else
377         return Scope_Suppress.Suppress (Accessibility_Check);
378      end if;
379   end Accessibility_Checks_Suppressed;
380
381   -----------------------------
382   -- Activate_Division_Check --
383   -----------------------------
384
385   procedure Activate_Division_Check (N : Node_Id) is
386   begin
387      Set_Do_Division_Check (N, True);
388      Possible_Local_Raise (N, Standard_Constraint_Error);
389   end Activate_Division_Check;
390
391   -----------------------------
392   -- Activate_Overflow_Check --
393   -----------------------------
394
395   procedure Activate_Overflow_Check (N : Node_Id) is
396      Typ : constant Entity_Id := Etype (N);
397
398   begin
399      --  Floating-point case. If Etype is not set (this can happen when we
400      --  activate a check on a node that has not yet been analyzed), then
401      --  we assume we do not have a floating-point type (as per our spec).
402
403      if Present (Typ) and then Is_Floating_Point_Type (Typ) then
404
405         --  Ignore call if we have no automatic overflow checks on the target
406         --  and Check_Float_Overflow mode is not set. These are the cases in
407         --  which we expect to generate infinities and NaN's with no check.
408
409         if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
410            return;
411
412         --  Ignore for unary operations ("+", "-", abs) since these can never
413         --  result in overflow for floating-point cases.
414
415         elsif Nkind (N) in N_Unary_Op then
416            return;
417
418         --  Otherwise we will set the flag
419
420         else
421            null;
422         end if;
423
424      --  Discrete case
425
426      else
427         --  Nothing to do for Rem/Mod/Plus (overflow not possible, the check
428         --  for zero-divide is a divide check, not an overflow check).
429
430         if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
431            return;
432         end if;
433      end if;
434
435      --  Fall through for cases where we do set the flag
436
437      Set_Do_Overflow_Check (N, True);
438      Possible_Local_Raise (N, Standard_Constraint_Error);
439   end Activate_Overflow_Check;
440
441   --------------------------
442   -- Activate_Range_Check --
443   --------------------------
444
445   procedure Activate_Range_Check (N : Node_Id) is
446   begin
447      Set_Do_Range_Check (N, True);
448      Possible_Local_Raise (N, Standard_Constraint_Error);
449   end Activate_Range_Check;
450
451   ---------------------------------
452   -- Alignment_Checks_Suppressed --
453   ---------------------------------
454
455   function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
456   begin
457      if Present (E) and then Checks_May_Be_Suppressed (E) then
458         return Is_Check_Suppressed (E, Alignment_Check);
459      else
460         return Scope_Suppress.Suppress (Alignment_Check);
461      end if;
462   end Alignment_Checks_Suppressed;
463
464   ----------------------------------
465   -- Allocation_Checks_Suppressed --
466   ----------------------------------
467
468   --  Note: at the current time there are no calls to this function, because
469   --  the relevant check is in the run-time, so it is not a check that the
470   --  compiler can suppress anyway, but we still have to recognize the check
471   --  name Allocation_Check since it is part of the standard.
472
473   function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
474   begin
475      if Present (E) and then Checks_May_Be_Suppressed (E) then
476         return Is_Check_Suppressed (E, Allocation_Check);
477      else
478         return Scope_Suppress.Suppress (Allocation_Check);
479      end if;
480   end Allocation_Checks_Suppressed;
481
482   -------------------------
483   -- Append_Range_Checks --
484   -------------------------
485
486   procedure Append_Range_Checks
487     (Checks       : Check_Result;
488      Stmts        : List_Id;
489      Suppress_Typ : Entity_Id;
490      Static_Sloc  : Source_Ptr;
491      Flag_Node    : Node_Id)
492   is
493      Checks_On : constant Boolean :=
494                    not Index_Checks_Suppressed (Suppress_Typ)
495                      or else
496                    not Range_Checks_Suppressed (Suppress_Typ);
497
498      Internal_Flag_Node   : constant Node_Id    := Flag_Node;
499      Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
500
501   begin
502      --  For now we just return if Checks_On is false, however this should be
503      --  enhanced to check for an always True value in the condition and to
504      --  generate a compilation warning???
505
506      if not Checks_On then
507         return;
508      end if;
509
510      for J in 1 .. 2 loop
511         exit when No (Checks (J));
512
513         if Nkind (Checks (J)) = N_Raise_Constraint_Error
514           and then Present (Condition (Checks (J)))
515         then
516            if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
517               Append_To (Stmts, Checks (J));
518               Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
519            end if;
520
521         else
522            Append_To
523              (Stmts,
524                Make_Raise_Constraint_Error (Internal_Static_Sloc,
525                  Reason => CE_Range_Check_Failed));
526         end if;
527      end loop;
528   end Append_Range_Checks;
529
530   ------------------------
531   -- Apply_Access_Check --
532   ------------------------
533
534   procedure Apply_Access_Check (N : Node_Id) is
535      P : constant Node_Id := Prefix (N);
536
537   begin
538      --  We do not need checks if we are not generating code (i.e. the
539      --  expander is not active). This is not just an optimization, there
540      --  are cases (e.g. with pragma Debug) where generating the checks
541      --  can cause real trouble).
542
543      if not Expander_Active then
544         return;
545      end if;
546
547      --  No check if short circuiting makes check unnecessary
548
549      if not Check_Needed (P, Access_Check) then
550         return;
551      end if;
552
553      --  No check if accessing the Offset_To_Top component of a dispatch
554      --  table. They are safe by construction.
555
556      if Tagged_Type_Expansion
557        and then Present (Etype (P))
558        and then RTU_Loaded (Ada_Tags)
559        and then RTE_Available (RE_Offset_To_Top_Ptr)
560        and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
561      then
562         return;
563      end if;
564
565      --  Otherwise go ahead and install the check
566
567      Install_Null_Excluding_Check (P);
568   end Apply_Access_Check;
569
570   -------------------------------
571   -- Apply_Accessibility_Check --
572   -------------------------------
573
574   procedure Apply_Accessibility_Check
575     (N           : Node_Id;
576      Typ         : Entity_Id;
577      Insert_Node : Node_Id)
578   is
579      Loc         : constant Source_Ptr := Sloc (N);
580      Param_Ent   : Entity_Id           := Param_Entity (N);
581      Param_Level : Node_Id;
582      Type_Level  : Node_Id;
583
584   begin
585      if Ada_Version >= Ada_2012
586         and then not Present (Param_Ent)
587         and then Is_Entity_Name (N)
588         and then Ekind_In (Entity (N), E_Constant, E_Variable)
589         and then Present (Effective_Extra_Accessibility (Entity (N)))
590      then
591         Param_Ent := Entity (N);
592         while Present (Renamed_Object (Param_Ent)) loop
593
594            --  Renamed_Object must return an Entity_Name here
595            --  because of preceding "Present (E_E_A (...))" test.
596
597            Param_Ent := Entity (Renamed_Object (Param_Ent));
598         end loop;
599      end if;
600
601      if Inside_A_Generic then
602         return;
603
604      --  Only apply the run-time check if the access parameter has an
605      --  associated extra access level parameter and when the level of the
606      --  type is less deep than the level of the access parameter, and
607      --  accessibility checks are not suppressed.
608
609      elsif Present (Param_Ent)
610         and then Present (Extra_Accessibility (Param_Ent))
611         and then UI_Gt (Object_Access_Level (N),
612                         Deepest_Type_Access_Level (Typ))
613         and then not Accessibility_Checks_Suppressed (Param_Ent)
614         and then not Accessibility_Checks_Suppressed (Typ)
615      then
616         Param_Level :=
617           New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
618
619         Type_Level :=
620           Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
621
622         --  Raise Program_Error if the accessibility level of the access
623         --  parameter is deeper than the level of the target access type.
624
625         Insert_Action (Insert_Node,
626           Make_Raise_Program_Error (Loc,
627             Condition =>
628               Make_Op_Gt (Loc,
629                 Left_Opnd  => Param_Level,
630                 Right_Opnd => Type_Level),
631             Reason => PE_Accessibility_Check_Failed));
632
633         Analyze_And_Resolve (N);
634      end if;
635   end Apply_Accessibility_Check;
636
637   --------------------------------
638   -- Apply_Address_Clause_Check --
639   --------------------------------
640
641   procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
642      pragma Assert (Nkind (N) = N_Freeze_Entity);
643
644      AC  : constant Node_Id    := Address_Clause (E);
645      Loc : constant Source_Ptr := Sloc (AC);
646      Typ : constant Entity_Id  := Etype (E);
647
648      Expr : Node_Id;
649      --  Address expression (not necessarily the same as Aexp, for example
650      --  when Aexp is a reference to a constant, in which case Expr gets
651      --  reset to reference the value expression of the constant).
652
653   begin
654      --  See if alignment check needed. Note that we never need a check if the
655      --  maximum alignment is one, since the check will always succeed.
656
657      --  Note: we do not check for checks suppressed here, since that check
658      --  was done in Sem_Ch13 when the address clause was processed. We are
659      --  only called if checks were not suppressed. The reason for this is
660      --  that we have to delay the call to Apply_Alignment_Check till freeze
661      --  time (so that all types etc are elaborated), but we have to check
662      --  the status of check suppressing at the point of the address clause.
663
664      if No (AC)
665        or else not Check_Address_Alignment (AC)
666        or else Maximum_Alignment = 1
667      then
668         return;
669      end if;
670
671      --  Obtain expression from address clause
672
673      Expr := Address_Value (Expression (AC));
674
675      --  See if we know that Expr has an acceptable value at compile time. If
676      --  it hasn't or we don't know, we defer issuing the warning until the
677      --  end of the compilation to take into account back end annotations.
678
679      if Compile_Time_Known_Value (Expr)
680        and then (Known_Alignment (E) or else Known_Alignment (Typ))
681      then
682         declare
683            AL : Uint := Alignment (Typ);
684
685         begin
686            --  The object alignment might be more restrictive than the type
687            --  alignment.
688
689            if Known_Alignment (E) then
690               AL := Alignment (E);
691            end if;
692
693            if Expr_Value (Expr) mod AL = 0 then
694               return;
695            end if;
696         end;
697
698      --  If the expression has the form X'Address, then we can find out if the
699      --  object X has an alignment that is compatible with the object E. If it
700      --  hasn't or we don't know, we defer issuing the warning until the end
701      --  of the compilation to take into account back end annotations.
702
703      elsif Nkind (Expr) = N_Attribute_Reference
704        and then Attribute_Name (Expr) = Name_Address
705        and then
706          Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
707      then
708         return;
709      end if;
710
711      --  Here we do not know if the value is acceptable. Strictly we don't
712      --  have to do anything, since if the alignment is bad, we have an
713      --  erroneous program. However we are allowed to check for erroneous
714      --  conditions and we decide to do this by default if the check is not
715      --  suppressed.
716
717      --  However, don't do the check if elaboration code is unwanted
718
719      if Restriction_Active (No_Elaboration_Code) then
720         return;
721
722      --  Generate a check to raise PE if alignment may be inappropriate
723
724      else
725         --  If the original expression is a non-static constant, use the name
726         --  of the constant itself rather than duplicating its initialization
727         --  expression, which was extracted above.
728
729         --  Note: Expr is empty if the address-clause is applied to in-mode
730         --  actuals (allowed by 13.1(22)).
731
732         if not Present (Expr)
733           or else
734             (Is_Entity_Name (Expression (AC))
735               and then Ekind (Entity (Expression (AC))) = E_Constant
736               and then Nkind (Parent (Entity (Expression (AC)))) =
737                          N_Object_Declaration)
738         then
739            Expr := New_Copy_Tree (Expression (AC));
740         else
741            Remove_Side_Effects (Expr);
742         end if;
743
744         if No (Actions (N)) then
745            Set_Actions (N, New_List);
746         end if;
747
748         Prepend_To (Actions (N),
749           Make_Raise_Program_Error (Loc,
750             Condition =>
751               Make_Op_Ne (Loc,
752                 Left_Opnd  =>
753                   Make_Op_Mod (Loc,
754                     Left_Opnd  =>
755                       Unchecked_Convert_To
756                         (RTE (RE_Integer_Address), Expr),
757                     Right_Opnd =>
758                       Make_Attribute_Reference (Loc,
759                         Prefix         => New_Occurrence_Of (E, Loc),
760                         Attribute_Name => Name_Alignment)),
761                 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
762             Reason    => PE_Misaligned_Address_Value));
763
764         Warning_Msg := No_Error_Msg;
765         Analyze (First (Actions (N)), Suppress => All_Checks);
766
767         --  If the above raise action generated a warning message (for example
768         --  from Warn_On_Non_Local_Exception mode with the active restriction
769         --  No_Exception_Propagation).
770
771         if Warning_Msg /= No_Error_Msg then
772
773            --  If the expression has a known at compile time value, then
774            --  once we know the alignment of the type, we can check if the
775            --  exception will be raised or not, and if not, we don't need
776            --  the warning so we will kill the warning later on.
777
778            if Compile_Time_Known_Value (Expr) then
779               Alignment_Warnings.Append
780                 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
781
782            --  Add explanation of the warning generated by the check
783
784            else
785               Error_Msg_N
786                 ("\address value may be incompatible with alignment of "
787                  & "object?X?", AC);
788            end if;
789         end if;
790
791         return;
792      end if;
793
794   exception
795
796      --  If we have some missing run time component in configurable run time
797      --  mode then just skip the check (it is not required in any case).
798
799      when RE_Not_Available =>
800         return;
801   end Apply_Address_Clause_Check;
802
803   -------------------------------------
804   -- Apply_Arithmetic_Overflow_Check --
805   -------------------------------------
806
807   procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
808   begin
809      --  Use old routine in almost all cases (the only case we are treating
810      --  specially is the case of a signed integer arithmetic op with the
811      --  overflow checking mode set to MINIMIZED or ELIMINATED).
812
813      if Overflow_Check_Mode = Strict
814        or else not Is_Signed_Integer_Arithmetic_Op (N)
815      then
816         Apply_Arithmetic_Overflow_Strict (N);
817
818      --  Otherwise use the new routine for the case of a signed integer
819      --  arithmetic op, with Do_Overflow_Check set to True, and the checking
820      --  mode is MINIMIZED or ELIMINATED.
821
822      else
823         Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
824      end if;
825   end Apply_Arithmetic_Overflow_Check;
826
827   --------------------------------------
828   -- Apply_Arithmetic_Overflow_Strict --
829   --------------------------------------
830
831   --  This routine is called only if the type is an integer type and an
832   --  arithmetic overflow check may be needed for op (add, subtract, or
833   --  multiply). This check is performed if Backend_Overflow_Checks_On_Target
834   --  is not enabled and Do_Overflow_Check is set. In this case we expand the
835   --  operation into a more complex sequence of tests that ensures that
836   --  overflow is properly caught.
837
838   --  This is used in CHECKED modes. It is identical to the code for this
839   --  cases before the big overflow earthquake, thus ensuring that in this
840   --  modes we have compatible behavior (and reliability) to what was there
841   --  before. It is also called for types other than signed integers, and if
842   --  the Do_Overflow_Check flag is off.
843
844   --  Note: we also call this routine if we decide in the MINIMIZED case
845   --  to give up and just generate an overflow check without any fuss.
846
847   procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
848      Loc  : constant Source_Ptr := Sloc (N);
849      Typ  : constant Entity_Id  := Etype (N);
850      Rtyp : constant Entity_Id  := Root_Type (Typ);
851
852   begin
853      --  Nothing to do if Do_Overflow_Check not set or overflow checks
854      --  suppressed.
855
856      if not Do_Overflow_Check (N) then
857         return;
858      end if;
859
860      --  An interesting special case. If the arithmetic operation appears as
861      --  the operand of a type conversion:
862
863      --    type1 (x op y)
864
865      --  and all the following conditions apply:
866
867      --    arithmetic operation is for a signed integer type
868      --    target type type1 is a static integer subtype
869      --    range of x and y are both included in the range of type1
870      --    range of x op y is included in the range of type1
871      --    size of type1 is at least twice the result size of op
872
873      --  then we don't do an overflow check in any case. Instead, we transform
874      --  the operation so that we end up with:
875
876      --    type1 (type1 (x) op type1 (y))
877
878      --  This avoids intermediate overflow before the conversion. It is
879      --  explicitly permitted by RM 3.5.4(24):
880
881      --    For the execution of a predefined operation of a signed integer
882      --    type, the implementation need not raise Constraint_Error if the
883      --    result is outside the base range of the type, so long as the
884      --    correct result is produced.
885
886      --  It's hard to imagine that any programmer counts on the exception
887      --  being raised in this case, and in any case it's wrong coding to
888      --  have this expectation, given the RM permission. Furthermore, other
889      --  Ada compilers do allow such out of range results.
890
891      --  Note that we do this transformation even if overflow checking is
892      --  off, since this is precisely about giving the "right" result and
893      --  avoiding the need for an overflow check.
894
895      --  Note: this circuit is partially redundant with respect to the similar
896      --  processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
897      --  with cases that do not come through here. We still need the following
898      --  processing even with the Exp_Ch4 code in place, since we want to be
899      --  sure not to generate the arithmetic overflow check in these cases
900      --  (Exp_Ch4 would have a hard time removing them once generated).
901
902      if Is_Signed_Integer_Type (Typ)
903        and then Nkind (Parent (N)) = N_Type_Conversion
904      then
905         Conversion_Optimization : declare
906            Target_Type : constant Entity_Id :=
907              Base_Type (Entity (Subtype_Mark (Parent (N))));
908
909            Llo, Lhi : Uint;
910            Rlo, Rhi : Uint;
911            LOK, ROK : Boolean;
912
913            Vlo : Uint;
914            Vhi : Uint;
915            VOK : Boolean;
916
917            Tlo : Uint;
918            Thi : Uint;
919
920         begin
921            if Is_Integer_Type (Target_Type)
922              and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
923            then
924               Tlo := Expr_Value (Type_Low_Bound  (Target_Type));
925               Thi := Expr_Value (Type_High_Bound (Target_Type));
926
927               Determine_Range
928                 (Left_Opnd  (N), LOK, Llo, Lhi, Assume_Valid => True);
929               Determine_Range
930                 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
931
932               if (LOK and ROK)
933                 and then Tlo <= Llo and then Lhi <= Thi
934                 and then Tlo <= Rlo and then Rhi <= Thi
935               then
936                  Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
937
938                  if VOK and then Tlo <= Vlo and then Vhi <= Thi then
939                     Rewrite (Left_Opnd (N),
940                       Make_Type_Conversion (Loc,
941                         Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
942                         Expression   => Relocate_Node (Left_Opnd (N))));
943
944                     Rewrite (Right_Opnd (N),
945                       Make_Type_Conversion (Loc,
946                        Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
947                        Expression   => Relocate_Node (Right_Opnd (N))));
948
949                     --  Rewrite the conversion operand so that the original
950                     --  node is retained, in order to avoid the warning for
951                     --  redundant conversions in Resolve_Type_Conversion.
952
953                     Rewrite (N, Relocate_Node (N));
954
955                     Set_Etype (N, Target_Type);
956
957                     Analyze_And_Resolve (Left_Opnd  (N), Target_Type);
958                     Analyze_And_Resolve (Right_Opnd (N), Target_Type);
959
960                     --  Given that the target type is twice the size of the
961                     --  source type, overflow is now impossible, so we can
962                     --  safely kill the overflow check and return.
963
964                     Set_Do_Overflow_Check (N, False);
965                     return;
966                  end if;
967               end if;
968            end if;
969         end Conversion_Optimization;
970      end if;
971
972      --  Now see if an overflow check is required
973
974      declare
975         Siz   : constant Int := UI_To_Int (Esize (Rtyp));
976         Dsiz  : constant Int := Siz * 2;
977         Opnod : Node_Id;
978         Ctyp  : Entity_Id;
979         Opnd  : Node_Id;
980         Cent  : RE_Id;
981
982      begin
983         --  Skip check if back end does overflow checks, or the overflow flag
984         --  is not set anyway, or we are not doing code expansion, or the
985         --  parent node is a type conversion whose operand is an arithmetic
986         --  operation on signed integers on which the expander can promote
987         --  later the operands to type Integer (see Expand_N_Type_Conversion).
988
989         if Backend_Overflow_Checks_On_Target
990           or else not Do_Overflow_Check (N)
991           or else not Expander_Active
992           or else (Present (Parent (N))
993                     and then Nkind (Parent (N)) = N_Type_Conversion
994                     and then Integer_Promotion_Possible (Parent (N)))
995         then
996            return;
997         end if;
998
999         --  Otherwise, generate the full general code for front end overflow
1000         --  detection, which works by doing arithmetic in a larger type:
1001
1002         --    x op y
1003
1004         --  is expanded into
1005
1006         --    Typ (Checktyp (x) op Checktyp (y));
1007
1008         --  where Typ is the type of the original expression, and Checktyp is
1009         --  an integer type of sufficient length to hold the largest possible
1010         --  result.
1011
1012         --  If the size of check type exceeds the size of Long_Long_Integer,
1013         --  we use a different approach, expanding to:
1014
1015         --    typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1016
1017         --  where xxx is Add, Multiply or Subtract as appropriate
1018
1019         --  Find check type if one exists
1020
1021         if Dsiz <= Standard_Integer_Size then
1022            Ctyp := Standard_Integer;
1023
1024         elsif Dsiz <= Standard_Long_Long_Integer_Size then
1025            Ctyp := Standard_Long_Long_Integer;
1026
1027         --  No check type exists, use runtime call
1028
1029         else
1030            if Nkind (N) = N_Op_Add then
1031               Cent := RE_Add_With_Ovflo_Check;
1032
1033            elsif Nkind (N) = N_Op_Multiply then
1034               Cent := RE_Multiply_With_Ovflo_Check;
1035
1036            else
1037               pragma Assert (Nkind (N) = N_Op_Subtract);
1038               Cent := RE_Subtract_With_Ovflo_Check;
1039            end if;
1040
1041            Rewrite (N,
1042              OK_Convert_To (Typ,
1043                Make_Function_Call (Loc,
1044                  Name => New_Occurrence_Of (RTE (Cent), Loc),
1045                  Parameter_Associations => New_List (
1046                    OK_Convert_To (RTE (RE_Integer_64), Left_Opnd  (N)),
1047                    OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1048
1049            Analyze_And_Resolve (N, Typ);
1050            return;
1051         end if;
1052
1053         --  If we fall through, we have the case where we do the arithmetic
1054         --  in the next higher type and get the check by conversion. In these
1055         --  cases Ctyp is set to the type to be used as the check type.
1056
1057         Opnod := Relocate_Node (N);
1058
1059         Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1060
1061         Analyze (Opnd);
1062         Set_Etype (Opnd, Ctyp);
1063         Set_Analyzed (Opnd, True);
1064         Set_Left_Opnd (Opnod, Opnd);
1065
1066         Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1067
1068         Analyze (Opnd);
1069         Set_Etype (Opnd, Ctyp);
1070         Set_Analyzed (Opnd, True);
1071         Set_Right_Opnd (Opnod, Opnd);
1072
1073         --  The type of the operation changes to the base type of the check
1074         --  type, and we reset the overflow check indication, since clearly no
1075         --  overflow is possible now that we are using a double length type.
1076         --  We also set the Analyzed flag to avoid a recursive attempt to
1077         --  expand the node.
1078
1079         Set_Etype             (Opnod, Base_Type (Ctyp));
1080         Set_Do_Overflow_Check (Opnod, False);
1081         Set_Analyzed          (Opnod, True);
1082
1083         --  Now build the outer conversion
1084
1085         Opnd := OK_Convert_To (Typ, Opnod);
1086         Analyze (Opnd);
1087         Set_Etype (Opnd, Typ);
1088
1089         --  In the discrete type case, we directly generate the range check
1090         --  for the outer operand. This range check will implement the
1091         --  required overflow check.
1092
1093         if Is_Discrete_Type (Typ) then
1094            Rewrite (N, Opnd);
1095            Generate_Range_Check
1096              (Expression (N), Typ, CE_Overflow_Check_Failed);
1097
1098         --  For other types, we enable overflow checking on the conversion,
1099         --  after setting the node as analyzed to prevent recursive attempts
1100         --  to expand the conversion node.
1101
1102         else
1103            Set_Analyzed (Opnd, True);
1104            Enable_Overflow_Check (Opnd);
1105            Rewrite (N, Opnd);
1106         end if;
1107
1108      exception
1109         when RE_Not_Available =>
1110            return;
1111      end;
1112   end Apply_Arithmetic_Overflow_Strict;
1113
1114   ----------------------------------------------------
1115   -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1116   ----------------------------------------------------
1117
1118   procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1119      pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1120
1121      Loc : constant Source_Ptr := Sloc (Op);
1122      P   : constant Node_Id    := Parent (Op);
1123
1124      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1125      --  Operands and results are of this type when we convert
1126
1127      Result_Type : constant Entity_Id := Etype (Op);
1128      --  Original result type
1129
1130      Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1131      pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1132
1133      Lo, Hi : Uint;
1134      --  Ranges of values for result
1135
1136   begin
1137      --  Nothing to do if our parent is one of the following:
1138
1139      --    Another signed integer arithmetic op
1140      --    A membership operation
1141      --    A comparison operation
1142
1143      --  In all these cases, we will process at the higher level (and then
1144      --  this node will be processed during the downwards recursion that
1145      --  is part of the processing in Minimize_Eliminate_Overflows).
1146
1147      if Is_Signed_Integer_Arithmetic_Op (P)
1148        or else Nkind (P) in N_Membership_Test
1149        or else Nkind (P) in N_Op_Compare
1150
1151        --  This is also true for an alternative in a case expression
1152
1153        or else Nkind (P) = N_Case_Expression_Alternative
1154
1155        --  This is also true for a range operand in a membership test
1156
1157        or else (Nkind (P) = N_Range
1158                  and then Nkind (Parent (P)) in N_Membership_Test)
1159      then
1160         --  If_Expressions and Case_Expressions are treated as arithmetic
1161         --  ops, but if they appear in an assignment or similar contexts
1162         --  there is no overflow check that starts from that parent node,
1163         --  so apply check now.
1164
1165         if Nkind_In (P, N_If_Expression, N_Case_Expression)
1166           and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1167         then
1168            null;
1169         else
1170            return;
1171         end if;
1172      end if;
1173
1174      --  Otherwise, we have a top level arithmetic operation node, and this
1175      --  is where we commence the special processing for MINIMIZED/ELIMINATED
1176      --  modes. This is the case where we tell the machinery not to move into
1177      --  Bignum mode at this top level (of course the top level operation
1178      --  will still be in Bignum mode if either of its operands are of type
1179      --  Bignum).
1180
1181      Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1182
1183      --  That call may but does not necessarily change the result type of Op.
1184      --  It is the job of this routine to undo such changes, so that at the
1185      --  top level, we have the proper type. This "undoing" is a point at
1186      --  which a final overflow check may be applied.
1187
1188      --  If the result type was not fiddled we are all set. We go to base
1189      --  types here because things may have been rewritten to generate the
1190      --  base type of the operand types.
1191
1192      if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1193         return;
1194
1195      --  Bignum case
1196
1197      elsif Is_RTE (Etype (Op), RE_Bignum) then
1198
1199         --  We need a sequence that looks like:
1200
1201         --    Rnn : Result_Type;
1202
1203         --    declare
1204         --       M : Mark_Id := SS_Mark;
1205         --    begin
1206         --       Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1207         --       SS_Release (M);
1208         --    end;
1209
1210         --  This block is inserted (using Insert_Actions), and then the node
1211         --  is replaced with a reference to Rnn.
1212
1213         --  If our parent is a conversion node then there is no point in
1214         --  generating a conversion to Result_Type. Instead, we let the parent
1215         --  handle this. Note that this special case is not just about
1216         --  optimization. Consider
1217
1218         --      A,B,C : Integer;
1219         --      ...
1220         --      X := Long_Long_Integer'Base (A * (B ** C));
1221
1222         --  Now the product may fit in Long_Long_Integer but not in Integer.
1223         --  In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1224         --  overflow exception for this intermediate value.
1225
1226         declare
1227            Blk : constant Node_Id  := Make_Bignum_Block (Loc);
1228            Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1229            RHS : Node_Id;
1230
1231            Rtype : Entity_Id;
1232
1233         begin
1234            RHS := Convert_From_Bignum (Op);
1235
1236            if Nkind (P) /= N_Type_Conversion then
1237               Convert_To_And_Rewrite (Result_Type, RHS);
1238               Rtype := Result_Type;
1239
1240               --  Interesting question, do we need a check on that conversion
1241               --  operation. Answer, not if we know the result is in range.
1242               --  At the moment we are not taking advantage of this. To be
1243               --  looked at later ???
1244
1245            else
1246               Rtype := LLIB;
1247            end if;
1248
1249            Insert_Before
1250              (First (Statements (Handled_Statement_Sequence (Blk))),
1251               Make_Assignment_Statement (Loc,
1252                 Name       => New_Occurrence_Of (Rnn, Loc),
1253                 Expression => RHS));
1254
1255            Insert_Actions (Op, New_List (
1256              Make_Object_Declaration (Loc,
1257                Defining_Identifier => Rnn,
1258                Object_Definition   => New_Occurrence_Of (Rtype, Loc)),
1259              Blk));
1260
1261            Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1262            Analyze_And_Resolve (Op);
1263         end;
1264
1265      --  Here we know the result is Long_Long_Integer'Base, or that it has
1266      --  been rewritten because the parent operation is a conversion. See
1267      --  Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1268
1269      else
1270         pragma Assert
1271           (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1272
1273         --  All we need to do here is to convert the result to the proper
1274         --  result type. As explained above for the Bignum case, we can
1275         --  omit this if our parent is a type conversion.
1276
1277         if Nkind (P) /= N_Type_Conversion then
1278            Convert_To_And_Rewrite (Result_Type, Op);
1279         end if;
1280
1281         Analyze_And_Resolve (Op);
1282      end if;
1283   end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1284
1285   ----------------------------
1286   -- Apply_Constraint_Check --
1287   ----------------------------
1288
1289   procedure Apply_Constraint_Check
1290     (N          : Node_Id;
1291      Typ        : Entity_Id;
1292      No_Sliding : Boolean := False)
1293   is
1294      Desig_Typ : Entity_Id;
1295
1296   begin
1297      --  No checks inside a generic (check the instantiations)
1298
1299      if Inside_A_Generic then
1300         return;
1301      end if;
1302
1303      --  Apply required constraint checks
1304
1305      if Is_Scalar_Type (Typ) then
1306         Apply_Scalar_Range_Check (N, Typ);
1307
1308      elsif Is_Array_Type (Typ) then
1309
1310         --  A useful optimization: an aggregate with only an others clause
1311         --  always has the right bounds.
1312
1313         if Nkind (N) = N_Aggregate
1314           and then No (Expressions (N))
1315           and then Nkind
1316            (First (Choices (First (Component_Associations (N)))))
1317              = N_Others_Choice
1318         then
1319            return;
1320         end if;
1321
1322         if Is_Constrained (Typ) then
1323            Apply_Length_Check (N, Typ);
1324
1325            if No_Sliding then
1326               Apply_Range_Check (N, Typ);
1327            end if;
1328         else
1329            Apply_Range_Check (N, Typ);
1330         end if;
1331
1332      elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1333        and then Has_Discriminants (Base_Type (Typ))
1334        and then Is_Constrained (Typ)
1335      then
1336         Apply_Discriminant_Check (N, Typ);
1337
1338      elsif Is_Access_Type (Typ) then
1339
1340         Desig_Typ := Designated_Type (Typ);
1341
1342         --  No checks necessary if expression statically null
1343
1344         if Known_Null (N) then
1345            if Can_Never_Be_Null (Typ) then
1346               Install_Null_Excluding_Check (N);
1347            end if;
1348
1349         --  No sliding possible on access to arrays
1350
1351         elsif Is_Array_Type (Desig_Typ) then
1352            if Is_Constrained (Desig_Typ) then
1353               Apply_Length_Check (N, Typ);
1354            end if;
1355
1356            Apply_Range_Check (N, Typ);
1357
1358         --  Do not install a discriminant check for a constrained subtype
1359         --  created for an unconstrained nominal type because the subtype
1360         --  has the correct constraints by construction.
1361
1362         elsif Has_Discriminants (Base_Type (Desig_Typ))
1363           and then Is_Constrained (Desig_Typ)
1364           and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1365         then
1366            Apply_Discriminant_Check (N, Typ);
1367         end if;
1368
1369         --  Apply the 2005 Null_Excluding check. Note that we do not apply
1370         --  this check if the constraint node is illegal, as shown by having
1371         --  an error posted. This additional guard prevents cascaded errors
1372         --  and compiler aborts on illegal programs involving Ada 2005 checks.
1373
1374         if Can_Never_Be_Null (Typ)
1375           and then not Can_Never_Be_Null (Etype (N))
1376           and then not Error_Posted (N)
1377         then
1378            Install_Null_Excluding_Check (N);
1379         end if;
1380      end if;
1381   end Apply_Constraint_Check;
1382
1383   ------------------------------
1384   -- Apply_Discriminant_Check --
1385   ------------------------------
1386
1387   procedure Apply_Discriminant_Check
1388     (N   : Node_Id;
1389      Typ : Entity_Id;
1390      Lhs : Node_Id := Empty)
1391   is
1392      Loc       : constant Source_Ptr := Sloc (N);
1393      Do_Access : constant Boolean    := Is_Access_Type (Typ);
1394      S_Typ     : Entity_Id  := Etype (N);
1395      Cond      : Node_Id;
1396      T_Typ     : Entity_Id;
1397
1398      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1399      --  A heap object with an indefinite subtype is constrained by its
1400      --  initial value, and assigning to it requires a constraint_check.
1401      --  The target may be an explicit dereference, or a renaming of one.
1402
1403      function Is_Aliased_Unconstrained_Component return Boolean;
1404      --  It is possible for an aliased component to have a nominal
1405      --  unconstrained subtype (through instantiation). If this is a
1406      --  discriminated component assigned in the expansion of an aggregate
1407      --  in an initialization, the check must be suppressed. This unusual
1408      --  situation requires a predicate of its own.
1409
1410      ----------------------------------
1411      -- Denotes_Explicit_Dereference --
1412      ----------------------------------
1413
1414      function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1415      begin
1416         return
1417           Nkind (Obj) = N_Explicit_Dereference
1418             or else
1419               (Is_Entity_Name (Obj)
1420                 and then Present (Renamed_Object (Entity (Obj)))
1421                 and then Nkind (Renamed_Object (Entity (Obj))) =
1422                                              N_Explicit_Dereference);
1423      end Denotes_Explicit_Dereference;
1424
1425      ----------------------------------------
1426      -- Is_Aliased_Unconstrained_Component --
1427      ----------------------------------------
1428
1429      function Is_Aliased_Unconstrained_Component return Boolean is
1430         Comp : Entity_Id;
1431         Pref : Node_Id;
1432
1433      begin
1434         if Nkind (Lhs) /= N_Selected_Component then
1435            return False;
1436         else
1437            Comp := Entity (Selector_Name (Lhs));
1438            Pref := Prefix (Lhs);
1439         end if;
1440
1441         if Ekind (Comp) /= E_Component
1442           or else not Is_Aliased (Comp)
1443         then
1444            return False;
1445         end if;
1446
1447         return not Comes_From_Source (Pref)
1448           and then In_Instance
1449           and then not Is_Constrained (Etype (Comp));
1450      end Is_Aliased_Unconstrained_Component;
1451
1452   --  Start of processing for Apply_Discriminant_Check
1453
1454   begin
1455      if Do_Access then
1456         T_Typ := Designated_Type (Typ);
1457      else
1458         T_Typ := Typ;
1459      end if;
1460
1461      --  Only apply checks when generating code and discriminant checks are
1462      --  not suppressed. In GNATprove mode, we do not apply the checks, but we
1463      --  still analyze the expression to possibly issue errors on SPARK code
1464      --  when a run-time error can be detected at compile time.
1465
1466      if not GNATprove_Mode then
1467         if not Expander_Active
1468           or else Discriminant_Checks_Suppressed (T_Typ)
1469         then
1470            return;
1471         end if;
1472      end if;
1473
1474      --  No discriminant checks necessary for an access when expression is
1475      --  statically Null. This is not only an optimization, it is fundamental
1476      --  because otherwise discriminant checks may be generated in init procs
1477      --  for types containing an access to a not-yet-frozen record, causing a
1478      --  deadly forward reference.
1479
1480      --  Also, if the expression is of an access type whose designated type is
1481      --  incomplete, then the access value must be null and we suppress the
1482      --  check.
1483
1484      if Known_Null (N) then
1485         return;
1486
1487      elsif Is_Access_Type (S_Typ) then
1488         S_Typ := Designated_Type (S_Typ);
1489
1490         if Ekind (S_Typ) = E_Incomplete_Type then
1491            return;
1492         end if;
1493      end if;
1494
1495      --  If an assignment target is present, then we need to generate the
1496      --  actual subtype if the target is a parameter or aliased object with
1497      --  an unconstrained nominal subtype.
1498
1499      --  Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1500      --  subtype to the parameter and dereference cases, since other aliased
1501      --  objects are unconstrained (unless the nominal subtype is explicitly
1502      --  constrained).
1503
1504      if Present (Lhs)
1505        and then (Present (Param_Entity (Lhs))
1506                   or else (Ada_Version < Ada_2005
1507                             and then not Is_Constrained (T_Typ)
1508                             and then Is_Aliased_View (Lhs)
1509                             and then not Is_Aliased_Unconstrained_Component)
1510                   or else (Ada_Version >= Ada_2005
1511                             and then not Is_Constrained (T_Typ)
1512                             and then Denotes_Explicit_Dereference (Lhs)
1513                             and then Nkind (Original_Node (Lhs)) /=
1514                                        N_Function_Call))
1515      then
1516         T_Typ := Get_Actual_Subtype (Lhs);
1517      end if;
1518
1519      --  Nothing to do if the type is unconstrained (this is the case where
1520      --  the actual subtype in the RM sense of N is unconstrained and no check
1521      --  is required).
1522
1523      if not Is_Constrained (T_Typ) then
1524         return;
1525
1526      --  Ada 2005: nothing to do if the type is one for which there is a
1527      --  partial view that is constrained.
1528
1529      elsif Ada_Version >= Ada_2005
1530        and then Object_Type_Has_Constrained_Partial_View
1531                   (Typ  => Base_Type (T_Typ),
1532                    Scop => Current_Scope)
1533      then
1534         return;
1535      end if;
1536
1537      --  Nothing to do if the type is an Unchecked_Union
1538
1539      if Is_Unchecked_Union (Base_Type (T_Typ)) then
1540         return;
1541      end if;
1542
1543      --  Suppress checks if the subtypes are the same. The check must be
1544      --  preserved in an assignment to a formal, because the constraint is
1545      --  given by the actual.
1546
1547      if Nkind (Original_Node (N)) /= N_Allocator
1548        and then (No (Lhs)
1549                   or else not Is_Entity_Name (Lhs)
1550                   or else No (Param_Entity (Lhs)))
1551      then
1552         if (Etype (N) = Typ
1553              or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1554           and then not Is_Aliased_View (Lhs)
1555         then
1556            return;
1557         end if;
1558
1559      --  We can also eliminate checks on allocators with a subtype mark that
1560      --  coincides with the context type. The context type may be a subtype
1561      --  without a constraint (common case, a generic actual).
1562
1563      elsif Nkind (Original_Node (N)) = N_Allocator
1564        and then Is_Entity_Name (Expression (Original_Node (N)))
1565      then
1566         declare
1567            Alloc_Typ : constant Entity_Id :=
1568              Entity (Expression (Original_Node (N)));
1569
1570         begin
1571            if Alloc_Typ = T_Typ
1572              or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1573                        and then Is_Entity_Name (
1574                          Subtype_Indication (Parent (T_Typ)))
1575                        and then Alloc_Typ = Base_Type (T_Typ))
1576
1577            then
1578               return;
1579            end if;
1580         end;
1581      end if;
1582
1583      --  See if we have a case where the types are both constrained, and all
1584      --  the constraints are constants. In this case, we can do the check
1585      --  successfully at compile time.
1586
1587      --  We skip this check for the case where the node is rewritten as
1588      --  an allocator, because it already carries the context subtype,
1589      --  and extracting the discriminants from the aggregate is messy.
1590
1591      if Is_Constrained (S_Typ)
1592        and then Nkind (Original_Node (N)) /= N_Allocator
1593      then
1594         declare
1595            DconT : Elmt_Id;
1596            Discr : Entity_Id;
1597            DconS : Elmt_Id;
1598            ItemS : Node_Id;
1599            ItemT : Node_Id;
1600
1601         begin
1602            --  S_Typ may not have discriminants in the case where it is a
1603            --  private type completed by a default discriminated type. In that
1604            --  case, we need to get the constraints from the underlying type.
1605            --  If the underlying type is unconstrained (i.e. has no default
1606            --  discriminants) no check is needed.
1607
1608            if Has_Discriminants (S_Typ) then
1609               Discr := First_Discriminant (S_Typ);
1610               DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1611
1612            else
1613               Discr := First_Discriminant (Underlying_Type (S_Typ));
1614               DconS :=
1615                 First_Elmt
1616                   (Discriminant_Constraint (Underlying_Type (S_Typ)));
1617
1618               if No (DconS) then
1619                  return;
1620               end if;
1621
1622               --  A further optimization: if T_Typ is derived from S_Typ
1623               --  without imposing a constraint, no check is needed.
1624
1625               if Nkind (Original_Node (Parent (T_Typ))) =
1626                 N_Full_Type_Declaration
1627               then
1628                  declare
1629                     Type_Def : constant Node_Id :=
1630                       Type_Definition (Original_Node (Parent (T_Typ)));
1631                  begin
1632                     if Nkind (Type_Def) = N_Derived_Type_Definition
1633                       and then Is_Entity_Name (Subtype_Indication (Type_Def))
1634                       and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1635                     then
1636                        return;
1637                     end if;
1638                  end;
1639               end if;
1640            end if;
1641
1642            --  Constraint may appear in full view of type
1643
1644            if Ekind (T_Typ) = E_Private_Subtype
1645              and then Present (Full_View (T_Typ))
1646            then
1647               DconT :=
1648                 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1649            else
1650               DconT :=
1651                 First_Elmt (Discriminant_Constraint (T_Typ));
1652            end if;
1653
1654            while Present (Discr) loop
1655               ItemS := Node (DconS);
1656               ItemT := Node (DconT);
1657
1658               --  For a discriminated component type constrained by the
1659               --  current instance of an enclosing type, there is no
1660               --  applicable discriminant check.
1661
1662               if Nkind (ItemT) = N_Attribute_Reference
1663                 and then Is_Access_Type (Etype (ItemT))
1664                 and then Is_Entity_Name (Prefix (ItemT))
1665                 and then Is_Type (Entity (Prefix (ItemT)))
1666               then
1667                  return;
1668               end if;
1669
1670               --  If the expressions for the discriminants are identical
1671               --  and it is side-effect free (for now just an entity),
1672               --  this may be a shared constraint, e.g. from a subtype
1673               --  without a constraint introduced as a generic actual.
1674               --  Examine other discriminants if any.
1675
1676               if ItemS = ItemT
1677                 and then Is_Entity_Name (ItemS)
1678               then
1679                  null;
1680
1681               elsif not Is_OK_Static_Expression (ItemS)
1682                 or else not Is_OK_Static_Expression (ItemT)
1683               then
1684                  exit;
1685
1686               elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1687                  if Do_Access then   --  needs run-time check.
1688                     exit;
1689                  else
1690                     Apply_Compile_Time_Constraint_Error
1691                       (N, "incorrect value for discriminant&??",
1692                        CE_Discriminant_Check_Failed, Ent => Discr);
1693                     return;
1694                  end if;
1695               end if;
1696
1697               Next_Elmt (DconS);
1698               Next_Elmt (DconT);
1699               Next_Discriminant (Discr);
1700            end loop;
1701
1702            if No (Discr) then
1703               return;
1704            end if;
1705         end;
1706      end if;
1707
1708      --  In GNATprove mode, we do not apply the checks
1709
1710      if GNATprove_Mode then
1711         return;
1712      end if;
1713
1714      --  Here we need a discriminant check. First build the expression
1715      --  for the comparisons of the discriminants:
1716
1717      --    (n.disc1 /= typ.disc1) or else
1718      --    (n.disc2 /= typ.disc2) or else
1719      --     ...
1720      --    (n.discn /= typ.discn)
1721
1722      Cond := Build_Discriminant_Checks (N, T_Typ);
1723
1724      --  If Lhs is set and is a parameter, then the condition is guarded by:
1725      --  lhs'constrained and then (condition built above)
1726
1727      if Present (Param_Entity (Lhs)) then
1728         Cond :=
1729           Make_And_Then (Loc,
1730             Left_Opnd =>
1731               Make_Attribute_Reference (Loc,
1732                 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1733                 Attribute_Name => Name_Constrained),
1734             Right_Opnd => Cond);
1735      end if;
1736
1737      if Do_Access then
1738         Cond := Guard_Access (Cond, Loc, N);
1739      end if;
1740
1741      Insert_Action (N,
1742        Make_Raise_Constraint_Error (Loc,
1743          Condition => Cond,
1744          Reason    => CE_Discriminant_Check_Failed));
1745   end Apply_Discriminant_Check;
1746
1747   -------------------------
1748   -- Apply_Divide_Checks --
1749   -------------------------
1750
1751   procedure Apply_Divide_Checks (N : Node_Id) is
1752      Loc   : constant Source_Ptr := Sloc (N);
1753      Typ   : constant Entity_Id  := Etype (N);
1754      Left  : constant Node_Id    := Left_Opnd (N);
1755      Right : constant Node_Id    := Right_Opnd (N);
1756
1757      Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1758      --  Current overflow checking mode
1759
1760      LLB : Uint;
1761      Llo : Uint;
1762      Lhi : Uint;
1763      LOK : Boolean;
1764      Rlo : Uint;
1765      Rhi : Uint;
1766      ROK : Boolean;
1767
1768      pragma Warnings (Off, Lhi);
1769      --  Don't actually use this value
1770
1771   begin
1772      --  If we are operating in MINIMIZED or ELIMINATED mode, and we are
1773      --  operating on signed integer types, then the only thing this routine
1774      --  does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1775      --  procedure will (possibly later on during recursive downward calls),
1776      --  ensure that any needed overflow/division checks are properly applied.
1777
1778      if Mode in Minimized_Or_Eliminated
1779        and then Is_Signed_Integer_Type (Typ)
1780      then
1781         Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1782         return;
1783      end if;
1784
1785      --  Proceed here in SUPPRESSED or CHECKED modes
1786
1787      if Expander_Active
1788        and then not Backend_Divide_Checks_On_Target
1789        and then Check_Needed (Right, Division_Check)
1790      then
1791         Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1792
1793         --  Deal with division check
1794
1795         if Do_Division_Check (N)
1796           and then not Division_Checks_Suppressed (Typ)
1797         then
1798            Apply_Division_Check (N, Rlo, Rhi, ROK);
1799         end if;
1800
1801         --  Deal with overflow check
1802
1803         if Do_Overflow_Check (N)
1804           and then not Overflow_Checks_Suppressed (Etype (N))
1805         then
1806            Set_Do_Overflow_Check (N, False);
1807
1808            --  Test for extremely annoying case of xxx'First divided by -1
1809            --  for division of signed integer types (only overflow case).
1810
1811            if Nkind (N) = N_Op_Divide
1812              and then Is_Signed_Integer_Type (Typ)
1813            then
1814               Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1815               LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1816
1817               if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1818                     and then
1819                  ((not LOK) or else (Llo = LLB))
1820               then
1821                  --  Ensure that expressions are not evaluated twice (once
1822                  --  for their runtime checks and once for their regular
1823                  --  computation).
1824
1825                  Force_Evaluation (Left, Mode => Strict);
1826                  Force_Evaluation (Right, Mode => Strict);
1827
1828                  Insert_Action (N,
1829                    Make_Raise_Constraint_Error (Loc,
1830                      Condition =>
1831                        Make_And_Then (Loc,
1832                          Left_Opnd  =>
1833                            Make_Op_Eq (Loc,
1834                              Left_Opnd  =>
1835                                Duplicate_Subexpr_Move_Checks (Left),
1836                              Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1837
1838                          Right_Opnd =>
1839                            Make_Op_Eq (Loc,
1840                              Left_Opnd  => Duplicate_Subexpr (Right),
1841                              Right_Opnd => Make_Integer_Literal (Loc, -1))),
1842
1843                      Reason => CE_Overflow_Check_Failed));
1844               end if;
1845            end if;
1846         end if;
1847      end if;
1848   end Apply_Divide_Checks;
1849
1850   --------------------------
1851   -- Apply_Division_Check --
1852   --------------------------
1853
1854   procedure Apply_Division_Check
1855     (N   : Node_Id;
1856      Rlo : Uint;
1857      Rhi : Uint;
1858      ROK : Boolean)
1859   is
1860      pragma Assert (Do_Division_Check (N));
1861
1862      Loc   : constant Source_Ptr := Sloc (N);
1863      Right : constant Node_Id    := Right_Opnd (N);
1864
1865   begin
1866      if Expander_Active
1867        and then not Backend_Divide_Checks_On_Target
1868        and then Check_Needed (Right, Division_Check)
1869      then
1870         --  See if division by zero possible, and if so generate test. This
1871         --  part of the test is not controlled by the -gnato switch, since
1872         --  it is a Division_Check and not an Overflow_Check.
1873
1874         if Do_Division_Check (N) then
1875            Set_Do_Division_Check (N, False);
1876
1877            if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1878               Insert_Action (N,
1879                 Make_Raise_Constraint_Error (Loc,
1880                   Condition =>
1881                     Make_Op_Eq (Loc,
1882                       Left_Opnd  => Duplicate_Subexpr_Move_Checks (Right),
1883                       Right_Opnd => Make_Integer_Literal (Loc, 0)),
1884                   Reason => CE_Divide_By_Zero));
1885            end if;
1886         end if;
1887      end if;
1888   end Apply_Division_Check;
1889
1890   ----------------------------------
1891   -- Apply_Float_Conversion_Check --
1892   ----------------------------------
1893
1894   --  Let F and I be the source and target types of the conversion. The RM
1895   --  specifies that a floating-point value X is rounded to the nearest
1896   --  integer, with halfway cases being rounded away from zero. The rounded
1897   --  value of X is checked against I'Range.
1898
1899   --  The catch in the above paragraph is that there is no good way to know
1900   --  whether the round-to-integer operation resulted in overflow. A remedy is
1901   --  to perform a range check in the floating-point domain instead, however:
1902
1903   --      (1)  The bounds may not be known at compile time
1904   --      (2)  The check must take into account rounding or truncation.
1905   --      (3)  The range of type I may not be exactly representable in F.
1906   --      (4)  For the rounding case, The end-points I'First - 0.5 and
1907   --           I'Last + 0.5 may or may not be in range, depending on the
1908   --           sign of  I'First and I'Last.
1909   --      (5)  X may be a NaN, which will fail any comparison
1910
1911   --  The following steps correctly convert X with rounding:
1912
1913   --      (1) If either I'First or I'Last is not known at compile time, use
1914   --          I'Base instead of I in the next three steps and perform a
1915   --          regular range check against I'Range after conversion.
1916   --      (2) If I'First - 0.5 is representable in F then let Lo be that
1917   --          value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1918   --          F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1919   --          In other words, take one of the closest floating-point numbers
1920   --          (which is an integer value) to I'First, and see if it is in
1921   --          range or not.
1922   --      (3) If I'Last + 0.5 is representable in F then let Hi be that value
1923   --          and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1924   --          F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1925   --      (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1926   --                     or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1927
1928   --  For the truncating case, replace steps (2) and (3) as follows:
1929   --      (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1930   --          be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1931   --          Lo_OK be True.
1932   --      (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1933   --          be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1934   --          Hi_OK be True.
1935
1936   procedure Apply_Float_Conversion_Check
1937     (Ck_Node    : Node_Id;
1938      Target_Typ : Entity_Id)
1939   is
1940      LB          : constant Node_Id    := Type_Low_Bound (Target_Typ);
1941      HB          : constant Node_Id    := Type_High_Bound (Target_Typ);
1942      Loc         : constant Source_Ptr := Sloc (Ck_Node);
1943      Expr_Type   : constant Entity_Id  := Base_Type (Etype (Ck_Node));
1944      Target_Base : constant Entity_Id  :=
1945        Implementation_Base_Type (Target_Typ);
1946
1947      Par : constant Node_Id := Parent (Ck_Node);
1948      pragma Assert (Nkind (Par) = N_Type_Conversion);
1949      --  Parent of check node, must be a type conversion
1950
1951      Truncate  : constant Boolean := Float_Truncate (Par);
1952      Max_Bound : constant Uint :=
1953        UI_Expon
1954          (Machine_Radix_Value (Expr_Type),
1955           Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1956
1957      --  Largest bound, so bound plus or minus half is a machine number of F
1958
1959      Ifirst, Ilast : Uint;
1960      --  Bounds of integer type
1961
1962      Lo, Hi : Ureal;
1963      --  Bounds to check in floating-point domain
1964
1965      Lo_OK, Hi_OK : Boolean;
1966      --  True iff Lo resp. Hi belongs to I'Range
1967
1968      Lo_Chk, Hi_Chk : Node_Id;
1969      --  Expressions that are False iff check fails
1970
1971      Reason : RT_Exception_Code;
1972
1973   begin
1974      --  We do not need checks if we are not generating code (i.e. the full
1975      --  expander is not active). In SPARK mode, we specifically don't want
1976      --  the frontend to expand these checks, which are dealt with directly
1977      --  in the formal verification backend.
1978
1979      if not Expander_Active then
1980         return;
1981      end if;
1982
1983      if not Compile_Time_Known_Value (LB)
1984          or not Compile_Time_Known_Value (HB)
1985      then
1986         declare
1987            --  First check that the value falls in the range of the base type,
1988            --  to prevent overflow during conversion and then perform a
1989            --  regular range check against the (dynamic) bounds.
1990
1991            pragma Assert (Target_Base /= Target_Typ);
1992
1993            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
1994
1995         begin
1996            Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1997            Set_Etype (Temp, Target_Base);
1998
1999            Insert_Action (Parent (Par),
2000              Make_Object_Declaration (Loc,
2001                Defining_Identifier => Temp,
2002                Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2003                Expression => New_Copy_Tree (Par)),
2004                Suppress => All_Checks);
2005
2006            Insert_Action (Par,
2007              Make_Raise_Constraint_Error (Loc,
2008                Condition =>
2009                  Make_Not_In (Loc,
2010                    Left_Opnd  => New_Occurrence_Of (Temp, Loc),
2011                    Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2012                Reason => CE_Range_Check_Failed));
2013            Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2014
2015            return;
2016         end;
2017      end if;
2018
2019      --  Get the (static) bounds of the target type
2020
2021      Ifirst := Expr_Value (LB);
2022      Ilast  := Expr_Value (HB);
2023
2024      --  A simple optimization: if the expression is a universal literal,
2025      --  we can do the comparison with the bounds and the conversion to
2026      --  an integer type statically. The range checks are unchanged.
2027
2028      if Nkind (Ck_Node) = N_Real_Literal
2029        and then Etype (Ck_Node) = Universal_Real
2030        and then Is_Integer_Type (Target_Typ)
2031        and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2032      then
2033         declare
2034            Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2035
2036         begin
2037            if Int_Val <= Ilast and then Int_Val >= Ifirst then
2038
2039               --  Conversion is safe
2040
2041               Rewrite (Parent (Ck_Node),
2042                 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2043               Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2044               return;
2045            end if;
2046         end;
2047      end if;
2048
2049      --  Check against lower bound
2050
2051      if Truncate and then Ifirst > 0 then
2052         Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2053         Lo_OK := False;
2054
2055      elsif Truncate then
2056         Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2057         Lo_OK := True;
2058
2059      elsif abs (Ifirst) < Max_Bound then
2060         Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2061         Lo_OK := (Ifirst > 0);
2062
2063      else
2064         Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2065         Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2066      end if;
2067
2068      if Lo_OK then
2069
2070         --  Lo_Chk := (X >= Lo)
2071
2072         Lo_Chk := Make_Op_Ge (Loc,
2073                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2074                     Right_Opnd => Make_Real_Literal (Loc, Lo));
2075
2076      else
2077         --  Lo_Chk := (X > Lo)
2078
2079         Lo_Chk := Make_Op_Gt (Loc,
2080                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2081                     Right_Opnd => Make_Real_Literal (Loc, Lo));
2082      end if;
2083
2084      --  Check against higher bound
2085
2086      if Truncate and then Ilast < 0 then
2087         Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2088         Hi_OK := False;
2089
2090      elsif Truncate then
2091         Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2092         Hi_OK := True;
2093
2094      elsif abs (Ilast) < Max_Bound then
2095         Hi := UR_From_Uint (Ilast) + Ureal_Half;
2096         Hi_OK := (Ilast < 0);
2097      else
2098         Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2099         Hi_OK := (Hi <= UR_From_Uint (Ilast));
2100      end if;
2101
2102      if Hi_OK then
2103
2104         --  Hi_Chk := (X <= Hi)
2105
2106         Hi_Chk := Make_Op_Le (Loc,
2107                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2108                     Right_Opnd => Make_Real_Literal (Loc, Hi));
2109
2110      else
2111         --  Hi_Chk := (X < Hi)
2112
2113         Hi_Chk := Make_Op_Lt (Loc,
2114                     Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2115                     Right_Opnd => Make_Real_Literal (Loc, Hi));
2116      end if;
2117
2118      --  If the bounds of the target type are the same as those of the base
2119      --  type, the check is an overflow check as a range check is not
2120      --  performed in these cases.
2121
2122      if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2123        and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2124      then
2125         Reason := CE_Overflow_Check_Failed;
2126      else
2127         Reason := CE_Range_Check_Failed;
2128      end if;
2129
2130      --  Raise CE if either conditions does not hold
2131
2132      Insert_Action (Ck_Node,
2133        Make_Raise_Constraint_Error (Loc,
2134          Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2135          Reason    => Reason));
2136   end Apply_Float_Conversion_Check;
2137
2138   ------------------------
2139   -- Apply_Length_Check --
2140   ------------------------
2141
2142   procedure Apply_Length_Check
2143     (Ck_Node    : Node_Id;
2144      Target_Typ : Entity_Id;
2145      Source_Typ : Entity_Id := Empty)
2146   is
2147   begin
2148      Apply_Selected_Length_Checks
2149        (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2150   end Apply_Length_Check;
2151
2152   -------------------------------------
2153   -- Apply_Parameter_Aliasing_Checks --
2154   -------------------------------------
2155
2156   procedure Apply_Parameter_Aliasing_Checks
2157     (Call : Node_Id;
2158      Subp : Entity_Id)
2159   is
2160      Loc : constant Source_Ptr := Sloc (Call);
2161
2162      function May_Cause_Aliasing
2163        (Formal_1 : Entity_Id;
2164         Formal_2 : Entity_Id) return Boolean;
2165      --  Determine whether two formal parameters can alias each other
2166      --  depending on their modes.
2167
2168      function Original_Actual (N : Node_Id) return Node_Id;
2169      --  The expander may replace an actual with a temporary for the sake of
2170      --  side effect removal. The temporary may hide a potential aliasing as
2171      --  it does not share the address of the actual. This routine attempts
2172      --  to retrieve the original actual.
2173
2174      procedure Overlap_Check
2175        (Actual_1 : Node_Id;
2176         Actual_2 : Node_Id;
2177         Formal_1 : Entity_Id;
2178         Formal_2 : Entity_Id;
2179         Check    : in out Node_Id);
2180      --  Create a check to determine whether Actual_1 overlaps with Actual_2.
2181      --  If detailed exception messages are enabled, the check is augmented to
2182      --  provide information about the names of the corresponding formals. See
2183      --  the body for details. Actual_1 and Actual_2 denote the two actuals to
2184      --  be tested. Formal_1 and Formal_2 denote the corresponding formals.
2185      --  Check contains all and-ed simple tests generated so far or remains
2186      --  unchanged in the case of detailed exception messaged.
2187
2188      ------------------------
2189      -- May_Cause_Aliasing --
2190      ------------------------
2191
2192      function May_Cause_Aliasing
2193        (Formal_1 : Entity_Id;
2194         Formal_2 : Entity_Id) return Boolean
2195      is
2196      begin
2197         --  The following combination cannot lead to aliasing
2198
2199         --     Formal 1    Formal 2
2200         --     IN          IN
2201
2202         if Ekind (Formal_1) = E_In_Parameter
2203              and then
2204            Ekind (Formal_2) = E_In_Parameter
2205         then
2206            return False;
2207
2208         --  The following combinations may lead to aliasing
2209
2210         --     Formal 1    Formal 2
2211         --     IN          OUT
2212         --     IN          IN OUT
2213         --     OUT         IN
2214         --     OUT         IN OUT
2215         --     OUT         OUT
2216
2217         else
2218            return True;
2219         end if;
2220      end May_Cause_Aliasing;
2221
2222      ---------------------
2223      -- Original_Actual --
2224      ---------------------
2225
2226      function Original_Actual (N : Node_Id) return Node_Id is
2227      begin
2228         if Nkind (N) = N_Type_Conversion then
2229            return Expression (N);
2230
2231         --  The expander created a temporary to capture the result of a type
2232         --  conversion where the expression is the real actual.
2233
2234         elsif Nkind (N) = N_Identifier
2235           and then Present (Original_Node (N))
2236           and then Nkind (Original_Node (N)) = N_Type_Conversion
2237         then
2238            return Expression (Original_Node (N));
2239         end if;
2240
2241         return N;
2242      end Original_Actual;
2243
2244      -------------------
2245      -- Overlap_Check --
2246      -------------------
2247
2248      procedure Overlap_Check
2249        (Actual_1 : Node_Id;
2250         Actual_2 : Node_Id;
2251         Formal_1 : Entity_Id;
2252         Formal_2 : Entity_Id;
2253         Check    : in out Node_Id)
2254      is
2255         Cond      : Node_Id;
2256         ID_Casing : constant Casing_Type :=
2257                       Identifier_Casing (Source_Index (Current_Sem_Unit));
2258
2259      begin
2260         --  Generate:
2261         --    Actual_1'Overlaps_Storage (Actual_2)
2262
2263         Cond :=
2264           Make_Attribute_Reference (Loc,
2265             Prefix         => New_Copy_Tree (Original_Actual (Actual_1)),
2266             Attribute_Name => Name_Overlaps_Storage,
2267             Expressions    =>
2268               New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2269
2270         --  Generate the following check when detailed exception messages are
2271         --  enabled:
2272
2273         --    if Actual_1'Overlaps_Storage (Actual_2) then
2274         --       raise Program_Error with <detailed message>;
2275         --    end if;
2276
2277         if Exception_Extra_Info then
2278            Start_String;
2279
2280            --  Do not generate location information for internal calls
2281
2282            if Comes_From_Source (Call) then
2283               Store_String_Chars (Build_Location_String (Loc));
2284               Store_String_Char (' ');
2285            end if;
2286
2287            Store_String_Chars ("aliased parameters, actuals for """);
2288
2289            Get_Name_String (Chars (Formal_1));
2290            Set_Casing (ID_Casing);
2291            Store_String_Chars (Name_Buffer (1 .. Name_Len));
2292
2293            Store_String_Chars (""" and """);
2294
2295            Get_Name_String (Chars (Formal_2));
2296            Set_Casing (ID_Casing);
2297            Store_String_Chars (Name_Buffer (1 .. Name_Len));
2298
2299            Store_String_Chars (""" overlap");
2300
2301            Insert_Action (Call,
2302              Make_If_Statement (Loc,
2303                Condition       => Cond,
2304                Then_Statements => New_List (
2305                  Make_Raise_Statement (Loc,
2306                    Name       =>
2307                      New_Occurrence_Of (Standard_Program_Error, Loc),
2308                    Expression => Make_String_Literal (Loc, End_String)))));
2309
2310         --  Create a sequence of overlapping checks by and-ing them all
2311         --  together.
2312
2313         else
2314            if No (Check) then
2315               Check := Cond;
2316            else
2317               Check :=
2318                 Make_And_Then (Loc,
2319                   Left_Opnd  => Check,
2320                   Right_Opnd => Cond);
2321            end if;
2322         end if;
2323      end Overlap_Check;
2324
2325      --  Local variables
2326
2327      Actual_1   : Node_Id;
2328      Actual_2   : Node_Id;
2329      Check      : Node_Id;
2330      Formal_1   : Entity_Id;
2331      Formal_2   : Entity_Id;
2332      Orig_Act_1 : Node_Id;
2333      Orig_Act_2 : Node_Id;
2334
2335   --  Start of processing for Apply_Parameter_Aliasing_Checks
2336
2337   begin
2338      Check := Empty;
2339
2340      Actual_1 := First_Actual (Call);
2341      Formal_1 := First_Formal (Subp);
2342      while Present (Actual_1) and then Present (Formal_1) loop
2343         Orig_Act_1 := Original_Actual (Actual_1);
2344
2345         --  Ensure that the actual is an object that is not passed by value.
2346         --  Elementary types are always passed by value, therefore actuals of
2347         --  such types cannot lead to aliasing. An aggregate is an object in
2348         --  Ada 2012, but an actual that is an aggregate cannot overlap with
2349         --  another actual. A type that is By_Reference (such as an array of
2350         --  controlled types) is not subject to the check because any update
2351         --  will be done in place and a subsequent read will always see the
2352         --  correct value, see RM 6.2 (12/3).
2353
2354         if Nkind (Orig_Act_1) = N_Aggregate
2355           or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2356                     and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2357         then
2358            null;
2359
2360         elsif Is_Object_Reference (Orig_Act_1)
2361           and then not Is_Elementary_Type (Etype (Orig_Act_1))
2362           and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2363         then
2364            Actual_2 := Next_Actual (Actual_1);
2365            Formal_2 := Next_Formal (Formal_1);
2366            while Present (Actual_2) and then Present (Formal_2) loop
2367               Orig_Act_2 := Original_Actual (Actual_2);
2368
2369               --  The other actual we are testing against must also denote
2370               --  a non pass-by-value object. Generate the check only when
2371               --  the mode of the two formals may lead to aliasing.
2372
2373               if Is_Object_Reference (Orig_Act_2)
2374                 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2375                 and then May_Cause_Aliasing (Formal_1, Formal_2)
2376               then
2377                  Remove_Side_Effects (Actual_1);
2378                  Remove_Side_Effects (Actual_2);
2379
2380                  Overlap_Check
2381                    (Actual_1 => Actual_1,
2382                     Actual_2 => Actual_2,
2383                     Formal_1 => Formal_1,
2384                     Formal_2 => Formal_2,
2385                     Check    => Check);
2386               end if;
2387
2388               Next_Actual (Actual_2);
2389               Next_Formal (Formal_2);
2390            end loop;
2391         end if;
2392
2393         Next_Actual (Actual_1);
2394         Next_Formal (Formal_1);
2395      end loop;
2396
2397      --  Place a simple check right before the call
2398
2399      if Present (Check) and then not Exception_Extra_Info then
2400         Insert_Action (Call,
2401           Make_Raise_Program_Error (Loc,
2402             Condition => Check,
2403             Reason    => PE_Aliased_Parameters));
2404      end if;
2405   end Apply_Parameter_Aliasing_Checks;
2406
2407   -------------------------------------
2408   -- Apply_Parameter_Validity_Checks --
2409   -------------------------------------
2410
2411   procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2412      Subp_Decl : Node_Id;
2413
2414      procedure Add_Validity_Check
2415        (Formal     : Entity_Id;
2416         Prag_Nam   : Name_Id;
2417         For_Result : Boolean := False);
2418      --  Add a single 'Valid[_Scalar] check which verifies the initialization
2419      --  of Formal. Prag_Nam denotes the pre or post condition pragma name.
2420      --  Set flag For_Result when to verify the result of a function.
2421
2422      ------------------------
2423      -- Add_Validity_Check --
2424      ------------------------
2425
2426      procedure Add_Validity_Check
2427        (Formal     : Entity_Id;
2428         Prag_Nam   : Name_Id;
2429         For_Result : Boolean := False)
2430      is
2431         procedure Build_Pre_Post_Condition (Expr : Node_Id);
2432         --  Create a pre/postcondition pragma that tests expression Expr
2433
2434         ------------------------------
2435         -- Build_Pre_Post_Condition --
2436         ------------------------------
2437
2438         procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2439            Loc   : constant Source_Ptr := Sloc (Subp);
2440            Decls : List_Id;
2441            Prag  : Node_Id;
2442
2443         begin
2444            Prag :=
2445              Make_Pragma (Loc,
2446                Chars                        => Prag_Nam,
2447                Pragma_Argument_Associations => New_List (
2448                  Make_Pragma_Argument_Association (Loc,
2449                    Chars      => Name_Check,
2450                    Expression => Expr)));
2451
2452            --  Add a message unless exception messages are suppressed
2453
2454            if not Exception_Locations_Suppressed then
2455               Append_To (Pragma_Argument_Associations (Prag),
2456                 Make_Pragma_Argument_Association (Loc,
2457                   Chars      => Name_Message,
2458                   Expression =>
2459                     Make_String_Literal (Loc,
2460                       Strval => "failed "
2461                                 & Get_Name_String (Prag_Nam)
2462                                 & " from "
2463                                 & Build_Location_String (Loc))));
2464            end if;
2465
2466            --  Insert the pragma in the tree
2467
2468            if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2469               Add_Global_Declaration (Prag);
2470               Analyze (Prag);
2471
2472            --  PPC pragmas associated with subprogram bodies must be inserted
2473            --  in the declarative part of the body.
2474
2475            elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2476               Decls := Declarations (Subp_Decl);
2477
2478               if No (Decls) then
2479                  Decls := New_List;
2480                  Set_Declarations (Subp_Decl, Decls);
2481               end if;
2482
2483               Prepend_To (Decls, Prag);
2484               Analyze (Prag);
2485
2486            --  For subprogram declarations insert the PPC pragma right after
2487            --  the declarative node.
2488
2489            else
2490               Insert_After_And_Analyze (Subp_Decl, Prag);
2491            end if;
2492         end Build_Pre_Post_Condition;
2493
2494         --  Local variables
2495
2496         Loc   : constant Source_Ptr := Sloc (Subp);
2497         Typ   : constant Entity_Id  := Etype (Formal);
2498         Check : Node_Id;
2499         Nam   : Name_Id;
2500
2501      --  Start of processing for Add_Validity_Check
2502
2503      begin
2504         --  For scalars, generate 'Valid test
2505
2506         if Is_Scalar_Type (Typ) then
2507            Nam := Name_Valid;
2508
2509         --  For any non-scalar with scalar parts, generate 'Valid_Scalars test
2510
2511         elsif Scalar_Part_Present (Typ) then
2512            Nam := Name_Valid_Scalars;
2513
2514         --  No test needed for other cases (no scalars to test)
2515
2516         else
2517            return;
2518         end if;
2519
2520         --  Step 1: Create the expression to verify the validity of the
2521         --  context.
2522
2523         Check := New_Occurrence_Of (Formal, Loc);
2524
2525         --  When processing a function result, use 'Result. Generate
2526         --    Context'Result
2527
2528         if For_Result then
2529            Check :=
2530              Make_Attribute_Reference (Loc,
2531                Prefix         => Check,
2532                Attribute_Name => Name_Result);
2533         end if;
2534
2535         --  Generate:
2536         --    Context['Result]'Valid[_Scalars]
2537
2538         Check :=
2539           Make_Attribute_Reference (Loc,
2540             Prefix         => Check,
2541             Attribute_Name => Nam);
2542
2543         --  Step 2: Create a pre or post condition pragma
2544
2545         Build_Pre_Post_Condition (Check);
2546      end Add_Validity_Check;
2547
2548      --  Local variables
2549
2550      Formal    : Entity_Id;
2551      Subp_Spec : Node_Id;
2552
2553   --  Start of processing for Apply_Parameter_Validity_Checks
2554
2555   begin
2556      --  Extract the subprogram specification and declaration nodes
2557
2558      Subp_Spec := Parent (Subp);
2559
2560      if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2561         Subp_Spec := Parent (Subp_Spec);
2562      end if;
2563
2564      Subp_Decl := Parent (Subp_Spec);
2565
2566      if not Comes_From_Source (Subp)
2567
2568         --  Do not process formal subprograms because the corresponding actual
2569         --  will receive the proper checks when the instance is analyzed.
2570
2571        or else Is_Formal_Subprogram (Subp)
2572
2573        --  Do not process imported subprograms since pre and postconditions
2574        --  are never verified on routines coming from a different language.
2575
2576        or else Is_Imported (Subp)
2577        or else Is_Intrinsic_Subprogram (Subp)
2578
2579        --  The PPC pragmas generated by this routine do not correspond to
2580        --  source aspects, therefore they cannot be applied to abstract
2581        --  subprograms.
2582
2583        or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2584
2585        --  Do not consider subprogram renaminds because the renamed entity
2586        --  already has the proper PPC pragmas.
2587
2588        or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2589
2590        --  Do not process null procedures because there is no benefit of
2591        --  adding the checks to a no action routine.
2592
2593        or else (Nkind (Subp_Spec) = N_Procedure_Specification
2594                  and then Null_Present (Subp_Spec))
2595      then
2596         return;
2597      end if;
2598
2599      --  Inspect all the formals applying aliasing and scalar initialization
2600      --  checks where applicable.
2601
2602      Formal := First_Formal (Subp);
2603      while Present (Formal) loop
2604
2605         --  Generate the following scalar initialization checks for each
2606         --  formal parameter:
2607
2608         --    mode IN     - Pre       => Formal'Valid[_Scalars]
2609         --    mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2610         --    mode    OUT -      Post => Formal'Valid[_Scalars]
2611
2612         if Check_Validity_Of_Parameters then
2613            if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2614               Add_Validity_Check (Formal, Name_Precondition, False);
2615            end if;
2616
2617            if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2618               Add_Validity_Check (Formal, Name_Postcondition, False);
2619            end if;
2620         end if;
2621
2622         Next_Formal (Formal);
2623      end loop;
2624
2625      --  Generate following scalar initialization check for function result:
2626
2627      --    Post => Subp'Result'Valid[_Scalars]
2628
2629      if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2630         Add_Validity_Check (Subp, Name_Postcondition, True);
2631      end if;
2632   end Apply_Parameter_Validity_Checks;
2633
2634   ---------------------------
2635   -- Apply_Predicate_Check --
2636   ---------------------------
2637
2638   procedure Apply_Predicate_Check
2639     (N   : Node_Id;
2640      Typ : Entity_Id;
2641      Fun : Entity_Id := Empty)
2642   is
2643      S : Entity_Id;
2644
2645   begin
2646      if Predicate_Checks_Suppressed (Empty) then
2647         return;
2648
2649      elsif Predicates_Ignored (Typ) then
2650         return;
2651
2652      elsif Present (Predicate_Function (Typ)) then
2653         S := Current_Scope;
2654         while Present (S) and then not Is_Subprogram (S) loop
2655            S := Scope (S);
2656         end loop;
2657
2658         --  A predicate check does not apply within internally generated
2659         --  subprograms, such as TSS functions.
2660
2661         if Within_Internal_Subprogram then
2662            return;
2663
2664         --  If the check appears within the predicate function itself, it
2665         --  means that the user specified a check whose formal is the
2666         --  predicated subtype itself, rather than some covering type. This
2667         --  is likely to be a common error, and thus deserves a warning.
2668
2669         elsif Present (S) and then S = Predicate_Function (Typ) then
2670            Error_Msg_NE
2671              ("predicate check includes a call to& that requires a "
2672               & "predicate check??", Parent (N), Fun);
2673            Error_Msg_N
2674              ("\this will result in infinite recursion??", Parent (N));
2675
2676            if Is_First_Subtype (Typ) then
2677               Error_Msg_NE
2678                 ("\use an explicit subtype of& to carry the predicate",
2679                  Parent (N), Typ);
2680            end if;
2681
2682            Insert_Action (N,
2683              Make_Raise_Storage_Error (Sloc (N),
2684                Reason => SE_Infinite_Recursion));
2685
2686         --  Here for normal case of predicate active
2687
2688         else
2689            --  If the type has a static predicate and the expression is known
2690            --  at compile time, see if the expression satisfies the predicate.
2691
2692            Check_Expression_Against_Static_Predicate (N, Typ);
2693
2694            if not Expander_Active then
2695               return;
2696            end if;
2697
2698            --  For an entity of the type, generate a call to the predicate
2699            --  function, unless its type is an actual subtype, which is not
2700            --  visible outside of the enclosing subprogram.
2701
2702            if Is_Entity_Name (N)
2703              and then not Is_Actual_Subtype (Typ)
2704            then
2705               Insert_Action (N,
2706                 Make_Predicate_Check
2707                   (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2708
2709            --  If the expression is not an entity it may have side effects,
2710            --  and the following call will create an object declaration for
2711            --  it. We disable checks during its analysis, to prevent an
2712            --  infinite recursion.
2713
2714            --  If the prefix is an aggregate in an assignment, apply the
2715            --  check to the LHS after assignment, rather than create a
2716            --  redundant temporary. This is only necessary in rare cases
2717            --  of array types (including strings) initialized with an
2718            --  aggregate with an "others" clause, either coming from source
2719            --  or generated by an Initialize_Scalars pragma.
2720
2721            elsif Nkind (N) = N_Aggregate
2722              and then Nkind (Parent (N)) = N_Assignment_Statement
2723            then
2724               Insert_Action_After (Parent (N),
2725                 Make_Predicate_Check
2726                   (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2727
2728            else
2729               Insert_Action (N,
2730                 Make_Predicate_Check
2731                   (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2732            end if;
2733         end if;
2734      end if;
2735   end Apply_Predicate_Check;
2736
2737   -----------------------
2738   -- Apply_Range_Check --
2739   -----------------------
2740
2741   procedure Apply_Range_Check
2742     (Ck_Node    : Node_Id;
2743      Target_Typ : Entity_Id;
2744      Source_Typ : Entity_Id := Empty)
2745   is
2746   begin
2747      Apply_Selected_Range_Checks
2748        (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2749   end Apply_Range_Check;
2750
2751   ------------------------------
2752   -- Apply_Scalar_Range_Check --
2753   ------------------------------
2754
2755   --  Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2756   --  off if it is already set on.
2757
2758   procedure Apply_Scalar_Range_Check
2759     (Expr       : Node_Id;
2760      Target_Typ : Entity_Id;
2761      Source_Typ : Entity_Id := Empty;
2762      Fixed_Int  : Boolean   := False)
2763   is
2764      Parnt   : constant Node_Id := Parent (Expr);
2765      S_Typ   : Entity_Id;
2766      Arr     : Node_Id   := Empty;  -- initialize to prevent warning
2767      Arr_Typ : Entity_Id := Empty;  -- initialize to prevent warning
2768
2769      Is_Subscr_Ref : Boolean;
2770      --  Set true if Expr is a subscript
2771
2772      Is_Unconstrained_Subscr_Ref : Boolean;
2773      --  Set true if Expr is a subscript of an unconstrained array. In this
2774      --  case we do not attempt to do an analysis of the value against the
2775      --  range of the subscript, since we don't know the actual subtype.
2776
2777      Int_Real : Boolean;
2778      --  Set to True if Expr should be regarded as a real value even though
2779      --  the type of Expr might be discrete.
2780
2781      procedure Bad_Value (Warn : Boolean := False);
2782      --  Procedure called if value is determined to be out of range. Warn is
2783      --  True to force a warning instead of an error, even when SPARK_Mode is
2784      --  On.
2785
2786      ---------------
2787      -- Bad_Value --
2788      ---------------
2789
2790      procedure Bad_Value (Warn : Boolean := False) is
2791      begin
2792         Apply_Compile_Time_Constraint_Error
2793           (Expr, "value not in range of}??", CE_Range_Check_Failed,
2794            Ent  => Target_Typ,
2795            Typ  => Target_Typ,
2796            Warn => Warn);
2797      end Bad_Value;
2798
2799   --  Start of processing for Apply_Scalar_Range_Check
2800
2801   begin
2802      --  Return if check obviously not needed
2803
2804      if
2805         --  Not needed inside generic
2806
2807         Inside_A_Generic
2808
2809         --  Not needed if previous error
2810
2811         or else Target_Typ = Any_Type
2812         or else Nkind (Expr) = N_Error
2813
2814         --  Not needed for non-scalar type
2815
2816         or else not Is_Scalar_Type (Target_Typ)
2817
2818         --  Not needed if we know node raises CE already
2819
2820         or else Raises_Constraint_Error (Expr)
2821      then
2822         return;
2823      end if;
2824
2825      --  Now, see if checks are suppressed
2826
2827      Is_Subscr_Ref :=
2828        Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2829
2830      if Is_Subscr_Ref then
2831         Arr := Prefix (Parnt);
2832         Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2833
2834         if Is_Access_Type (Arr_Typ) then
2835            Arr_Typ := Designated_Type (Arr_Typ);
2836         end if;
2837      end if;
2838
2839      if not Do_Range_Check (Expr) then
2840
2841         --  Subscript reference. Check for Index_Checks suppressed
2842
2843         if Is_Subscr_Ref then
2844
2845            --  Check array type and its base type
2846
2847            if Index_Checks_Suppressed (Arr_Typ)
2848              or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2849            then
2850               return;
2851
2852            --  Check array itself if it is an entity name
2853
2854            elsif Is_Entity_Name (Arr)
2855              and then Index_Checks_Suppressed (Entity (Arr))
2856            then
2857               return;
2858
2859            --  Check expression itself if it is an entity name
2860
2861            elsif Is_Entity_Name (Expr)
2862              and then Index_Checks_Suppressed (Entity (Expr))
2863            then
2864               return;
2865            end if;
2866
2867         --  All other cases, check for Range_Checks suppressed
2868
2869         else
2870            --  Check target type and its base type
2871
2872            if Range_Checks_Suppressed (Target_Typ)
2873              or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2874            then
2875               return;
2876
2877            --  Check expression itself if it is an entity name
2878
2879            elsif Is_Entity_Name (Expr)
2880              and then Range_Checks_Suppressed (Entity (Expr))
2881            then
2882               return;
2883
2884            --  If Expr is part of an assignment statement, then check left
2885            --  side of assignment if it is an entity name.
2886
2887            elsif Nkind (Parnt) = N_Assignment_Statement
2888              and then Is_Entity_Name (Name (Parnt))
2889              and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2890            then
2891               return;
2892            end if;
2893         end if;
2894      end if;
2895
2896      --  Do not set range checks if they are killed
2897
2898      if Nkind (Expr) = N_Unchecked_Type_Conversion
2899        and then Kill_Range_Check (Expr)
2900      then
2901         return;
2902      end if;
2903
2904      --  Do not set range checks for any values from System.Scalar_Values
2905      --  since the whole idea of such values is to avoid checking them.
2906
2907      if Is_Entity_Name (Expr)
2908        and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2909      then
2910         return;
2911      end if;
2912
2913      --  Now see if we need a check
2914
2915      if No (Source_Typ) then
2916         S_Typ := Etype (Expr);
2917      else
2918         S_Typ := Source_Typ;
2919      end if;
2920
2921      if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2922         return;
2923      end if;
2924
2925      Is_Unconstrained_Subscr_Ref :=
2926        Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2927
2928      --  Special checks for floating-point type
2929
2930      if Is_Floating_Point_Type (S_Typ) then
2931
2932         --  Always do a range check if the source type includes infinities and
2933         --  the target type does not include infinities. We do not do this if
2934         --  range checks are killed.
2935         --  If the expression is a literal and the bounds of the type are
2936         --  static constants it may be possible to optimize the check.
2937
2938         if Has_Infinities (S_Typ)
2939           and then not Has_Infinities (Target_Typ)
2940         then
2941            --  If the expression is a literal and the bounds of the type are
2942            --  static constants it may be possible to optimize the check.
2943
2944            if Nkind (Expr) = N_Real_Literal then
2945               declare
2946                  Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);
2947                  Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2948
2949               begin
2950                  if Compile_Time_Known_Value (Tlo)
2951                    and then Compile_Time_Known_Value (Thi)
2952                    and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2953                    and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2954                  then
2955                     return;
2956                  else
2957                     Enable_Range_Check (Expr);
2958                  end if;
2959               end;
2960
2961            else
2962               Enable_Range_Check (Expr);
2963            end if;
2964         end if;
2965      end if;
2966
2967      --  Return if we know expression is definitely in the range of the target
2968      --  type as determined by Determine_Range. Right now we only do this for
2969      --  discrete types, and not fixed-point or floating-point types.
2970
2971      --  The additional less-precise tests below catch these cases
2972
2973      --  In GNATprove_Mode, also deal with the case of a conversion from
2974      --  floating-point to integer. It is only possible because analysis
2975      --  in GNATprove rules out the possibility of a NaN or infinite value.
2976
2977      --  Note: skip this if we are given a source_typ, since the point of
2978      --  supplying a Source_Typ is to stop us looking at the expression.
2979      --  We could sharpen this test to be out parameters only ???
2980
2981      if Is_Discrete_Type (Target_Typ)
2982        and then (Is_Discrete_Type (Etype (Expr))
2983                   or else (GNATprove_Mode
2984                             and then Is_Floating_Point_Type (Etype (Expr))))
2985        and then not Is_Unconstrained_Subscr_Ref
2986        and then No (Source_Typ)
2987      then
2988         declare
2989            Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2990            Tlo : constant Node_Id := Type_Low_Bound  (Target_Typ);
2991
2992         begin
2993            if Compile_Time_Known_Value (Tlo)
2994              and then Compile_Time_Known_Value (Thi)
2995            then
2996               declare
2997                  OK  : Boolean := False;  -- initialize to prevent warning
2998                  Hiv : constant Uint := Expr_Value (Thi);
2999                  Lov : constant Uint := Expr_Value (Tlo);
3000                  Hi  : Uint := No_Uint;
3001                  Lo  : Uint := No_Uint;
3002
3003               begin
3004                  --  If range is null, we for sure have a constraint error (we
3005                  --  don't even need to look at the value involved, since all
3006                  --  possible values will raise CE).
3007
3008                  if Lov > Hiv then
3009
3010                     --  When SPARK_Mode is On, force a warning instead of
3011                     --  an error in that case, as this likely corresponds
3012                     --  to deactivated code.
3013
3014                     Bad_Value (Warn => SPARK_Mode = On);
3015
3016                     --  In GNATprove mode, we enable the range check so that
3017                     --  GNATprove will issue a message if it cannot be proved.
3018
3019                     if GNATprove_Mode then
3020                        Enable_Range_Check (Expr);
3021                     end if;
3022
3023                     return;
3024                  end if;
3025
3026                  --  Otherwise determine range of value
3027
3028                  if Is_Discrete_Type (Etype (Expr)) then
3029                     Determine_Range
3030                       (Expr, OK, Lo, Hi, Assume_Valid => True);
3031
3032                  --  When converting a float to an integer type, determine the
3033                  --  range in real first, and then convert the bounds using
3034                  --  UR_To_Uint which correctly rounds away from zero when
3035                  --  half way between two integers, as required by normal
3036                  --  Ada 95 rounding semantics. It is only possible because
3037                  --  analysis in GNATprove rules out the possibility of a NaN
3038                  --  or infinite value.
3039
3040                  elsif GNATprove_Mode
3041                    and then Is_Floating_Point_Type (Etype (Expr))
3042                  then
3043                     declare
3044                        Hir : Ureal;
3045                        Lor : Ureal;
3046
3047                     begin
3048                        Determine_Range_R
3049                          (Expr, OK, Lor, Hir, Assume_Valid => True);
3050
3051                        if OK then
3052                           Lo := UR_To_Uint (Lor);
3053                           Hi := UR_To_Uint (Hir);
3054                        end if;
3055                     end;
3056                  end if;
3057
3058                  if OK then
3059
3060                     --  If definitely in range, all OK
3061
3062                     if Lo >= Lov and then Hi <= Hiv then
3063                        return;
3064
3065                     --  If definitely not in range, warn
3066
3067                     elsif Lov > Hi or else Hiv < Lo then
3068                        Bad_Value;
3069                        return;
3070
3071                     --  Otherwise we don't know
3072
3073                     else
3074                        null;
3075                     end if;
3076                  end if;
3077               end;
3078            end if;
3079         end;
3080      end if;
3081
3082      Int_Real :=
3083        Is_Floating_Point_Type (S_Typ)
3084          or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3085
3086      --  Check if we can determine at compile time whether Expr is in the
3087      --  range of the target type. Note that if S_Typ is within the bounds
3088      --  of Target_Typ then this must be the case. This check is meaningful
3089      --  only if this is not a conversion between integer and real types.
3090
3091      if not Is_Unconstrained_Subscr_Ref
3092        and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3093        and then
3094          (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3095
3096             --  Also check if the expression itself is in the range of the
3097             --  target type if it is a known at compile time value. We skip
3098             --  this test if S_Typ is set since for OUT and IN OUT parameters
3099             --  the Expr itself is not relevant to the checking.
3100
3101             or else
3102               (No (Source_Typ)
3103                  and then Is_In_Range (Expr, Target_Typ,
3104                                        Assume_Valid => True,
3105                                        Fixed_Int    => Fixed_Int,
3106                                        Int_Real     => Int_Real)))
3107      then
3108         return;
3109
3110      elsif Is_Out_Of_Range (Expr, Target_Typ,
3111                             Assume_Valid => True,
3112                             Fixed_Int    => Fixed_Int,
3113                             Int_Real     => Int_Real)
3114      then
3115         Bad_Value;
3116         return;
3117
3118      --  Floating-point case
3119      --  In the floating-point case, we only do range checks if the type is
3120      --  constrained. We definitely do NOT want range checks for unconstrained
3121      --  types, since we want to have infinities, except when
3122      --  Check_Float_Overflow is set.
3123
3124      elsif Is_Floating_Point_Type (S_Typ) then
3125         if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3126            Enable_Range_Check (Expr);
3127         end if;
3128
3129      --  For all other cases we enable a range check unconditionally
3130
3131      else
3132         Enable_Range_Check (Expr);
3133         return;
3134      end if;
3135   end Apply_Scalar_Range_Check;
3136
3137   ----------------------------------
3138   -- Apply_Selected_Length_Checks --
3139   ----------------------------------
3140
3141   procedure Apply_Selected_Length_Checks
3142     (Ck_Node    : Node_Id;
3143      Target_Typ : Entity_Id;
3144      Source_Typ : Entity_Id;
3145      Do_Static  : Boolean)
3146   is
3147      Checks_On : constant Boolean :=
3148                    not Index_Checks_Suppressed (Target_Typ)
3149                      or else
3150                    not Length_Checks_Suppressed (Target_Typ);
3151
3152      Loc : constant Source_Ptr := Sloc (Ck_Node);
3153
3154      Cond     : Node_Id;
3155      R_Cno    : Node_Id;
3156      R_Result : Check_Result;
3157
3158   begin
3159      --  Only apply checks when generating code
3160
3161      --  Note: this means that we lose some useful warnings if the expander
3162      --  is not active.
3163
3164      if not Expander_Active then
3165         return;
3166      end if;
3167
3168      R_Result :=
3169        Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3170
3171      for J in 1 .. 2 loop
3172         R_Cno := R_Result (J);
3173         exit when No (R_Cno);
3174
3175         --  A length check may mention an Itype which is attached to a
3176         --  subsequent node. At the top level in a package this can cause
3177         --  an order-of-elaboration problem, so we make sure that the itype
3178         --  is referenced now.
3179
3180         if Ekind (Current_Scope) = E_Package
3181           and then Is_Compilation_Unit (Current_Scope)
3182         then
3183            Ensure_Defined (Target_Typ, Ck_Node);
3184
3185            if Present (Source_Typ) then
3186               Ensure_Defined (Source_Typ, Ck_Node);
3187
3188            elsif Is_Itype (Etype (Ck_Node)) then
3189               Ensure_Defined (Etype (Ck_Node), Ck_Node);
3190            end if;
3191         end if;
3192
3193         --  If the item is a conditional raise of constraint error, then have
3194         --  a look at what check is being performed and ???
3195
3196         if Nkind (R_Cno) = N_Raise_Constraint_Error
3197           and then Present (Condition (R_Cno))
3198         then
3199            Cond := Condition (R_Cno);
3200
3201            --  Case where node does not now have a dynamic check
3202
3203            if not Has_Dynamic_Length_Check (Ck_Node) then
3204
3205               --  If checks are on, just insert the check
3206
3207               if Checks_On then
3208                  Insert_Action (Ck_Node, R_Cno);
3209
3210                  if not Do_Static then
3211                     Set_Has_Dynamic_Length_Check (Ck_Node);
3212                  end if;
3213
3214               --  If checks are off, then analyze the length check after
3215               --  temporarily attaching it to the tree in case the relevant
3216               --  condition can be evaluated at compile time. We still want a
3217               --  compile time warning in this case.
3218
3219               else
3220                  Set_Parent (R_Cno, Ck_Node);
3221                  Analyze (R_Cno);
3222               end if;
3223            end if;
3224
3225            --  Output a warning if the condition is known to be True
3226
3227            if Is_Entity_Name (Cond)
3228              and then Entity (Cond) = Standard_True
3229            then
3230               Apply_Compile_Time_Constraint_Error
3231                 (Ck_Node, "wrong length for array of}??",
3232                  CE_Length_Check_Failed,
3233                  Ent => Target_Typ,
3234                  Typ => Target_Typ);
3235
3236            --  If we were only doing a static check, or if checks are not
3237            --  on, then we want to delete the check, since it is not needed.
3238            --  We do this by replacing the if statement by a null statement
3239
3240            elsif Do_Static or else not Checks_On then
3241               Remove_Warning_Messages (R_Cno);
3242               Rewrite (R_Cno, Make_Null_Statement (Loc));
3243            end if;
3244
3245         else
3246            Install_Static_Check (R_Cno, Loc);
3247         end if;
3248      end loop;
3249   end Apply_Selected_Length_Checks;
3250
3251   ---------------------------------
3252   -- Apply_Selected_Range_Checks --
3253   ---------------------------------
3254
3255   procedure Apply_Selected_Range_Checks
3256     (Ck_Node    : Node_Id;
3257      Target_Typ : Entity_Id;
3258      Source_Typ : Entity_Id;
3259      Do_Static  : Boolean)
3260   is
3261      Checks_On : constant Boolean :=
3262                    not Index_Checks_Suppressed (Target_Typ)
3263                      or else
3264                    not Range_Checks_Suppressed (Target_Typ);
3265
3266      Loc : constant Source_Ptr := Sloc (Ck_Node);
3267
3268      Cond     : Node_Id;
3269      R_Cno    : Node_Id;
3270      R_Result : Check_Result;
3271
3272   begin
3273      --  Only apply checks when generating code. In GNATprove mode, we do not
3274      --  apply the checks, but we still call Selected_Range_Checks to possibly
3275      --  issue errors on SPARK code when a run-time error can be detected at
3276      --  compile time.
3277
3278      if not GNATprove_Mode then
3279         if not Expander_Active or not Checks_On then
3280            return;
3281         end if;
3282      end if;
3283
3284      R_Result :=
3285        Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3286
3287      if GNATprove_Mode then
3288         return;
3289      end if;
3290
3291      for J in 1 .. 2 loop
3292         R_Cno := R_Result (J);
3293         exit when No (R_Cno);
3294
3295         --  The range check requires runtime evaluation. Depending on what its
3296         --  triggering condition is, the check may be converted into a compile
3297         --  time constraint check.
3298
3299         if Nkind (R_Cno) = N_Raise_Constraint_Error
3300           and then Present (Condition (R_Cno))
3301         then
3302            Cond := Condition (R_Cno);
3303
3304            --  Insert the range check before the related context. Note that
3305            --  this action analyses the triggering condition.
3306
3307            Insert_Action (Ck_Node, R_Cno);
3308
3309            --  This old code doesn't make sense, why is the context flagged as
3310            --  requiring dynamic range checks now in the middle of generating
3311            --  them ???
3312
3313            if not Do_Static then
3314               Set_Has_Dynamic_Range_Check (Ck_Node);
3315            end if;
3316
3317            --  The triggering condition evaluates to True, the range check
3318            --  can be converted into a compile time constraint check.
3319
3320            if Is_Entity_Name (Cond)
3321              and then Entity (Cond) = Standard_True
3322            then
3323               --  Since an N_Range is technically not an expression, we have
3324               --  to set one of the bounds to C_E and then just flag the
3325               --  N_Range. The warning message will point to the lower bound
3326               --  and complain about a range, which seems OK.
3327
3328               if Nkind (Ck_Node) = N_Range then
3329                  Apply_Compile_Time_Constraint_Error
3330                    (Low_Bound (Ck_Node),
3331                     "static range out of bounds of}??",
3332                     CE_Range_Check_Failed,
3333                     Ent => Target_Typ,
3334                     Typ => Target_Typ);
3335
3336                  Set_Raises_Constraint_Error (Ck_Node);
3337
3338               else
3339                  Apply_Compile_Time_Constraint_Error
3340                    (Ck_Node,
3341                     "static value out of range of}??",
3342                     CE_Range_Check_Failed,
3343                     Ent => Target_Typ,
3344                     Typ => Target_Typ);
3345               end if;
3346
3347            --  If we were only doing a static check, or if checks are not
3348            --  on, then we want to delete the check, since it is not needed.
3349            --  We do this by replacing the if statement by a null statement
3350
3351            elsif Do_Static then
3352               Remove_Warning_Messages (R_Cno);
3353               Rewrite (R_Cno, Make_Null_Statement (Loc));
3354            end if;
3355
3356         --  The range check raises Constraint_Error explicitly
3357
3358         else
3359            Install_Static_Check (R_Cno, Loc);
3360         end if;
3361      end loop;
3362   end Apply_Selected_Range_Checks;
3363
3364   -------------------------------
3365   -- Apply_Static_Length_Check --
3366   -------------------------------
3367
3368   procedure Apply_Static_Length_Check
3369     (Expr       : Node_Id;
3370      Target_Typ : Entity_Id;
3371      Source_Typ : Entity_Id := Empty)
3372   is
3373   begin
3374      Apply_Selected_Length_Checks
3375        (Expr, Target_Typ, Source_Typ, Do_Static => True);
3376   end Apply_Static_Length_Check;
3377
3378   -------------------------------------
3379   -- Apply_Subscript_Validity_Checks --
3380   -------------------------------------
3381
3382   procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3383      Sub : Node_Id;
3384
3385   begin
3386      pragma Assert (Nkind (Expr) = N_Indexed_Component);
3387
3388      --  Loop through subscripts
3389
3390      Sub := First (Expressions (Expr));
3391      while Present (Sub) loop
3392
3393         --  Check one subscript. Note that we do not worry about enumeration
3394         --  type with holes, since we will convert the value to a Pos value
3395         --  for the subscript, and that convert will do the necessary validity
3396         --  check.
3397
3398         Ensure_Valid (Sub, Holes_OK => True);
3399
3400         --  Move to next subscript
3401
3402         Sub := Next (Sub);
3403      end loop;
3404   end Apply_Subscript_Validity_Checks;
3405
3406   ----------------------------------
3407   -- Apply_Type_Conversion_Checks --
3408   ----------------------------------
3409
3410   procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3411      Target_Type : constant Entity_Id := Etype (N);
3412      Target_Base : constant Entity_Id := Base_Type (Target_Type);
3413      Expr        : constant Node_Id   := Expression (N);
3414
3415      Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3416      --  Note: if Etype (Expr) is a private type without discriminants, its
3417      --  full view might have discriminants with defaults, so we need the
3418      --  full view here to retrieve the constraints.
3419
3420   begin
3421      if Inside_A_Generic then
3422         return;
3423
3424      --  Skip these checks if serious errors detected, there are some nasty
3425      --  situations of incomplete trees that blow things up.
3426
3427      elsif Serious_Errors_Detected > 0 then
3428         return;
3429
3430      --  Never generate discriminant checks for Unchecked_Union types
3431
3432      elsif Present (Expr_Type)
3433        and then Is_Unchecked_Union (Expr_Type)
3434      then
3435         return;
3436
3437      --  Scalar type conversions of the form Target_Type (Expr) require a
3438      --  range check if we cannot be sure that Expr is in the base type of
3439      --  Target_Typ and also that Expr is in the range of Target_Typ. These
3440      --  are not quite the same condition from an implementation point of
3441      --  view, but clearly the second includes the first.
3442
3443      elsif Is_Scalar_Type (Target_Type) then
3444         declare
3445            Conv_OK  : constant Boolean := Conversion_OK (N);
3446            --  If the Conversion_OK flag on the type conversion is set and no
3447            --  floating-point type is involved in the type conversion then
3448            --  fixed-point values must be read as integral values.
3449
3450            Float_To_Int : constant Boolean :=
3451              Is_Floating_Point_Type (Expr_Type)
3452              and then Is_Integer_Type (Target_Type);
3453
3454         begin
3455            if not Overflow_Checks_Suppressed (Target_Base)
3456              and then not Overflow_Checks_Suppressed (Target_Type)
3457              and then not
3458                In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3459              and then not Float_To_Int
3460            then
3461               --  A small optimization: the attribute 'Pos applied to an
3462               --  enumeration type has a known range, even though its type is
3463               --  Universal_Integer. So in numeric conversions it is usually
3464               --  within range of the target integer type. Use the static
3465               --  bounds of the base types to check. Disable this optimization
3466               --  in case of a generic formal discrete type, because we don't
3467               --  necessarily know the upper bound yet.
3468
3469               if Nkind (Expr) = N_Attribute_Reference
3470                 and then Attribute_Name (Expr) = Name_Pos
3471                 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3472                 and then not Is_Generic_Type (Etype (Prefix (Expr)))
3473                 and then Is_Integer_Type (Target_Type)
3474               then
3475                  declare
3476                     Enum_T : constant Entity_Id :=
3477                                Root_Type (Etype (Prefix (Expr)));
3478                     Int_T  : constant Entity_Id := Base_Type (Target_Type);
3479                     Last_I : constant Uint      :=
3480                                Intval (High_Bound (Scalar_Range (Int_T)));
3481                     Last_E : Uint;
3482
3483                  begin
3484                     --  Character types have no explicit literals, so we use
3485                     --  the known number of characters in the type.
3486
3487                     if Root_Type (Enum_T) = Standard_Character then
3488                        Last_E := UI_From_Int (255);
3489
3490                     elsif Enum_T = Standard_Wide_Character
3491                       or else Enum_T = Standard_Wide_Wide_Character
3492                     then
3493                        Last_E := UI_From_Int (65535);
3494
3495                     else
3496                        Last_E :=
3497                          Enumeration_Pos
3498                            (Entity (High_Bound (Scalar_Range (Enum_T))));
3499                     end if;
3500
3501                     if Last_E <= Last_I then
3502                        null;
3503
3504                     else
3505                        Activate_Overflow_Check (N);
3506                     end if;
3507                  end;
3508
3509               else
3510                  Activate_Overflow_Check (N);
3511               end if;
3512            end if;
3513
3514            if not Range_Checks_Suppressed (Target_Type)
3515              and then not Range_Checks_Suppressed (Expr_Type)
3516            then
3517               if Float_To_Int
3518                 and then not GNATprove_Mode
3519               then
3520                  Apply_Float_Conversion_Check (Expr, Target_Type);
3521               else
3522                  Apply_Scalar_Range_Check
3523                    (Expr, Target_Type, Fixed_Int => Conv_OK);
3524
3525                  --  If the target type has predicates, we need to indicate
3526                  --  the need for a check, even if Determine_Range finds that
3527                  --  the value is within bounds. This may be the case e.g for
3528                  --  a division with a constant denominator.
3529
3530                  if Has_Predicates (Target_Type) then
3531                     Enable_Range_Check (Expr);
3532                  end if;
3533               end if;
3534            end if;
3535         end;
3536
3537      elsif Comes_From_Source (N)
3538        and then not Discriminant_Checks_Suppressed (Target_Type)
3539        and then Is_Record_Type (Target_Type)
3540        and then Is_Derived_Type (Target_Type)
3541        and then not Is_Tagged_Type (Target_Type)
3542        and then not Is_Constrained (Target_Type)
3543        and then Present (Stored_Constraint (Target_Type))
3544      then
3545         --  An unconstrained derived type may have inherited discriminant.
3546         --  Build an actual discriminant constraint list using the stored
3547         --  constraint, to verify that the expression of the parent type
3548         --  satisfies the constraints imposed by the (unconstrained) derived
3549         --  type. This applies to value conversions, not to view conversions
3550         --  of tagged types.
3551
3552         declare
3553            Loc         : constant Source_Ptr := Sloc (N);
3554            Cond        : Node_Id;
3555            Constraint  : Elmt_Id;
3556            Discr_Value : Node_Id;
3557            Discr       : Entity_Id;
3558
3559            New_Constraints : constant Elist_Id := New_Elmt_List;
3560            Old_Constraints : constant Elist_Id :=
3561              Discriminant_Constraint (Expr_Type);
3562
3563         begin
3564            Constraint := First_Elmt (Stored_Constraint (Target_Type));
3565            while Present (Constraint) loop
3566               Discr_Value := Node (Constraint);
3567
3568               if Is_Entity_Name (Discr_Value)
3569                 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3570               then
3571                  Discr := Corresponding_Discriminant (Entity (Discr_Value));
3572
3573                  if Present (Discr)
3574                    and then Scope (Discr) = Base_Type (Expr_Type)
3575                  then
3576                     --  Parent is constrained by new discriminant. Obtain
3577                     --  Value of original discriminant in expression. If the
3578                     --  new discriminant has been used to constrain more than
3579                     --  one of the stored discriminants, this will provide the
3580                     --  required consistency check.
3581
3582                     Append_Elmt
3583                       (Make_Selected_Component (Loc,
3584                          Prefix        =>
3585                            Duplicate_Subexpr_No_Checks
3586                              (Expr, Name_Req => True),
3587                          Selector_Name =>
3588                            Make_Identifier (Loc, Chars (Discr))),
3589                        New_Constraints);
3590
3591                  else
3592                     --  Discriminant of more remote ancestor ???
3593
3594                     return;
3595                  end if;
3596
3597               --  Derived type definition has an explicit value for this
3598               --  stored discriminant.
3599
3600               else
3601                  Append_Elmt
3602                    (Duplicate_Subexpr_No_Checks (Discr_Value),
3603                     New_Constraints);
3604               end if;
3605
3606               Next_Elmt (Constraint);
3607            end loop;
3608
3609            --  Use the unconstrained expression type to retrieve the
3610            --  discriminants of the parent, and apply momentarily the
3611            --  discriminant constraint synthesized above.
3612
3613            Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3614            Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3615            Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3616
3617            Insert_Action (N,
3618              Make_Raise_Constraint_Error (Loc,
3619                Condition => Cond,
3620                Reason    => CE_Discriminant_Check_Failed));
3621         end;
3622
3623      --  For arrays, checks are set now, but conversions are applied during
3624      --  expansion, to take into accounts changes of representation. The
3625      --  checks become range checks on the base type or length checks on the
3626      --  subtype, depending on whether the target type is unconstrained or
3627      --  constrained. Note that the range check is put on the expression of a
3628      --  type conversion, while the length check is put on the type conversion
3629      --  itself.
3630
3631      elsif Is_Array_Type (Target_Type) then
3632         if Is_Constrained (Target_Type) then
3633            Set_Do_Length_Check (N);
3634         else
3635            Set_Do_Range_Check (Expr);
3636         end if;
3637      end if;
3638   end Apply_Type_Conversion_Checks;
3639
3640   ----------------------------------------------
3641   -- Apply_Universal_Integer_Attribute_Checks --
3642   ----------------------------------------------
3643
3644   procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3645      Loc : constant Source_Ptr := Sloc (N);
3646      Typ : constant Entity_Id  := Etype (N);
3647
3648   begin
3649      if Inside_A_Generic then
3650         return;
3651
3652      --  Nothing to do if checks are suppressed
3653
3654      elsif Range_Checks_Suppressed (Typ)
3655        and then Overflow_Checks_Suppressed (Typ)
3656      then
3657         return;
3658
3659      --  Nothing to do if the attribute does not come from source. The
3660      --  internal attributes we generate of this type do not need checks,
3661      --  and furthermore the attempt to check them causes some circular
3662      --  elaboration orders when dealing with packed types.
3663
3664      elsif not Comes_From_Source (N) then
3665         return;
3666
3667      --  If the prefix is a selected component that depends on a discriminant
3668      --  the check may improperly expose a discriminant instead of using
3669      --  the bounds of the object itself. Set the type of the attribute to
3670      --  the base type of the context, so that a check will be imposed when
3671      --  needed (e.g. if the node appears as an index).
3672
3673      elsif Nkind (Prefix (N)) = N_Selected_Component
3674        and then Ekind (Typ) = E_Signed_Integer_Subtype
3675        and then Depends_On_Discriminant (Scalar_Range (Typ))
3676      then
3677         Set_Etype (N, Base_Type (Typ));
3678
3679      --  Otherwise, replace the attribute node with a type conversion node
3680      --  whose expression is the attribute, retyped to universal integer, and
3681      --  whose subtype mark is the target type. The call to analyze this
3682      --  conversion will set range and overflow checks as required for proper
3683      --  detection of an out of range value.
3684
3685      else
3686         Set_Etype    (N, Universal_Integer);
3687         Set_Analyzed (N, True);
3688
3689         Rewrite (N,
3690           Make_Type_Conversion (Loc,
3691             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3692             Expression   => Relocate_Node (N)));
3693
3694         Analyze_And_Resolve (N, Typ);
3695         return;
3696      end if;
3697   end Apply_Universal_Integer_Attribute_Checks;
3698
3699   -------------------------------------
3700   -- Atomic_Synchronization_Disabled --
3701   -------------------------------------
3702
3703   --  Note: internally Disable/Enable_Atomic_Synchronization is implemented
3704   --  using a bogus check called Atomic_Synchronization. This is to make it
3705   --  more convenient to get exactly the same semantics as [Un]Suppress.
3706
3707   function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3708   begin
3709      --  If debug flag d.e is set, always return False, i.e. all atomic sync
3710      --  looks enabled, since it is never disabled.
3711
3712      if Debug_Flag_Dot_E then
3713         return False;
3714
3715      --  If debug flag d.d is set then always return True, i.e. all atomic
3716      --  sync looks disabled, since it always tests True.
3717
3718      elsif Debug_Flag_Dot_D then
3719         return True;
3720
3721      --  If entity present, then check result for that entity
3722
3723      elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3724         return Is_Check_Suppressed (E, Atomic_Synchronization);
3725
3726      --  Otherwise result depends on current scope setting
3727
3728      else
3729         return Scope_Suppress.Suppress (Atomic_Synchronization);
3730      end if;
3731   end Atomic_Synchronization_Disabled;
3732
3733   -------------------------------
3734   -- Build_Discriminant_Checks --
3735   -------------------------------
3736
3737   function Build_Discriminant_Checks
3738     (N     : Node_Id;
3739      T_Typ : Entity_Id) return Node_Id
3740   is
3741      Loc      : constant Source_Ptr := Sloc (N);
3742      Cond     : Node_Id;
3743      Disc     : Elmt_Id;
3744      Disc_Ent : Entity_Id;
3745      Dref     : Node_Id;
3746      Dval     : Node_Id;
3747
3748      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3749
3750      ----------------------------------
3751      -- Aggregate_Discriminant_Value --
3752      ----------------------------------
3753
3754      function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3755         Assoc : Node_Id;
3756
3757      begin
3758         --  The aggregate has been normalized with named associations. We use
3759         --  the Chars field to locate the discriminant to take into account
3760         --  discriminants in derived types, which carry the same name as those
3761         --  in the parent.
3762
3763         Assoc := First (Component_Associations (N));
3764         while Present (Assoc) loop
3765            if Chars (First (Choices (Assoc))) = Chars (Disc) then
3766               return Expression (Assoc);
3767            else
3768               Next (Assoc);
3769            end if;
3770         end loop;
3771
3772         --  Discriminant must have been found in the loop above
3773
3774         raise Program_Error;
3775      end Aggregate_Discriminant_Val;
3776
3777   --  Start of processing for Build_Discriminant_Checks
3778
3779   begin
3780      --  Loop through discriminants evolving the condition
3781
3782      Cond := Empty;
3783      Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3784
3785      --  For a fully private type, use the discriminants of the parent type
3786
3787      if Is_Private_Type (T_Typ)
3788        and then No (Full_View (T_Typ))
3789      then
3790         Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3791      else
3792         Disc_Ent := First_Discriminant (T_Typ);
3793      end if;
3794
3795      while Present (Disc) loop
3796         Dval := Node (Disc);
3797
3798         if Nkind (Dval) = N_Identifier
3799           and then Ekind (Entity (Dval)) = E_Discriminant
3800         then
3801            Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3802         else
3803            Dval := Duplicate_Subexpr_No_Checks (Dval);
3804         end if;
3805
3806         --  If we have an Unchecked_Union node, we can infer the discriminants
3807         --  of the node.
3808
3809         if Is_Unchecked_Union (Base_Type (T_Typ)) then
3810            Dref := New_Copy (
3811              Get_Discriminant_Value (
3812                First_Discriminant (T_Typ),
3813                T_Typ,
3814                Stored_Constraint (T_Typ)));
3815
3816         elsif Nkind (N) = N_Aggregate then
3817            Dref :=
3818               Duplicate_Subexpr_No_Checks
3819                 (Aggregate_Discriminant_Val (Disc_Ent));
3820
3821         else
3822            Dref :=
3823              Make_Selected_Component (Loc,
3824                Prefix        =>
3825                  Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3826                Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3827
3828            Set_Is_In_Discriminant_Check (Dref);
3829         end if;
3830
3831         Evolve_Or_Else (Cond,
3832           Make_Op_Ne (Loc,
3833             Left_Opnd  => Dref,
3834             Right_Opnd => Dval));
3835
3836         Next_Elmt (Disc);
3837         Next_Discriminant (Disc_Ent);
3838      end loop;
3839
3840      return Cond;
3841   end Build_Discriminant_Checks;
3842
3843   ------------------
3844   -- Check_Needed --
3845   ------------------
3846
3847   function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3848      N : Node_Id;
3849      P : Node_Id;
3850      K : Node_Kind;
3851      L : Node_Id;
3852      R : Node_Id;
3853
3854      function Left_Expression (Op : Node_Id) return Node_Id;
3855      --  Return the relevant expression from the left operand of the given
3856      --  short circuit form: this is LO itself, except if LO is a qualified
3857      --  expression, a type conversion, or an expression with actions, in
3858      --  which case this is Left_Expression (Expression (LO)).
3859
3860      ---------------------
3861      -- Left_Expression --
3862      ---------------------
3863
3864      function Left_Expression (Op : Node_Id) return Node_Id is
3865         LE : Node_Id := Left_Opnd (Op);
3866      begin
3867         while Nkind_In (LE, N_Qualified_Expression,
3868                             N_Type_Conversion,
3869                             N_Expression_With_Actions)
3870         loop
3871            LE := Expression (LE);
3872         end loop;
3873
3874         return LE;
3875      end Left_Expression;
3876
3877   --  Start of processing for Check_Needed
3878
3879   begin
3880      --  Always check if not simple entity
3881
3882      if Nkind (Nod) not in N_Has_Entity
3883        or else not Comes_From_Source (Nod)
3884      then
3885         return True;
3886      end if;
3887
3888      --  Look up tree for short circuit
3889
3890      N := Nod;
3891      loop
3892         P := Parent (N);
3893         K := Nkind (P);
3894
3895         --  Done if out of subexpression (note that we allow generated stuff
3896         --  such as itype declarations in this context, to keep the loop going
3897         --  since we may well have generated such stuff in complex situations.
3898         --  Also done if no parent (probably an error condition, but no point
3899         --  in behaving nasty if we find it).
3900
3901         if No (P)
3902           or else (K not in N_Subexpr and then Comes_From_Source (P))
3903         then
3904            return True;
3905
3906         --  Or/Or Else case, where test is part of the right operand, or is
3907         --  part of one of the actions associated with the right operand, and
3908         --  the left operand is an equality test.
3909
3910         elsif K = N_Op_Or then
3911            exit when N = Right_Opnd (P)
3912              and then Nkind (Left_Expression (P)) = N_Op_Eq;
3913
3914         elsif K = N_Or_Else then
3915            exit when (N = Right_Opnd (P)
3916                        or else
3917                          (Is_List_Member (N)
3918                             and then List_Containing (N) = Actions (P)))
3919              and then Nkind (Left_Expression (P)) = N_Op_Eq;
3920
3921         --  Similar test for the And/And then case, where the left operand
3922         --  is an inequality test.
3923
3924         elsif K = N_Op_And then
3925            exit when N = Right_Opnd (P)
3926              and then Nkind (Left_Expression (P)) = N_Op_Ne;
3927
3928         elsif K = N_And_Then then
3929            exit when (N = Right_Opnd (P)
3930                        or else
3931                          (Is_List_Member (N)
3932                            and then List_Containing (N) = Actions (P)))
3933              and then Nkind (Left_Expression (P)) = N_Op_Ne;
3934         end if;
3935
3936         N := P;
3937      end loop;
3938
3939      --  If we fall through the loop, then we have a conditional with an
3940      --  appropriate test as its left operand, so look further.
3941
3942      L := Left_Expression (P);
3943
3944      --  L is an "=" or "/=" operator: extract its operands
3945
3946      R := Right_Opnd (L);
3947      L := Left_Opnd (L);
3948
3949      --  Left operand of test must match original variable
3950
3951      if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3952         return True;
3953      end if;
3954
3955      --  Right operand of test must be key value (zero or null)
3956
3957      case Check is
3958         when Access_Check =>
3959            if not Known_Null (R) then
3960               return True;
3961            end if;
3962
3963         when Division_Check =>
3964            if not Compile_Time_Known_Value (R)
3965              or else Expr_Value (R) /= Uint_0
3966            then
3967               return True;
3968            end if;
3969
3970         when others =>
3971            raise Program_Error;
3972      end case;
3973
3974      --  Here we have the optimizable case, warn if not short-circuited
3975
3976      if K = N_Op_And or else K = N_Op_Or then
3977         Error_Msg_Warn := SPARK_Mode /= On;
3978
3979         case Check is
3980            when Access_Check =>
3981               if GNATprove_Mode then
3982                  Error_Msg_N
3983                    ("Constraint_Error might have been raised (access check)",
3984                     Parent (Nod));
3985               else
3986                  Error_Msg_N
3987                    ("Constraint_Error may be raised (access check)??",
3988                     Parent (Nod));
3989               end if;
3990
3991            when Division_Check =>
3992               if GNATprove_Mode then
3993                  Error_Msg_N
3994                    ("Constraint_Error might have been raised (zero divide)",
3995                     Parent (Nod));
3996               else
3997                  Error_Msg_N
3998                    ("Constraint_Error may be raised (zero divide)??",
3999                     Parent (Nod));
4000               end if;
4001
4002            when others =>
4003               raise Program_Error;
4004         end case;
4005
4006         if K = N_Op_And then
4007            Error_Msg_N -- CODEFIX
4008              ("use `AND THEN` instead of AND??", P);
4009         else
4010            Error_Msg_N -- CODEFIX
4011              ("use `OR ELSE` instead of OR??", P);
4012         end if;
4013
4014         --  If not short-circuited, we need the check
4015
4016         return True;
4017
4018      --  If short-circuited, we can omit the check
4019
4020      else
4021         return False;
4022      end if;
4023   end Check_Needed;
4024
4025   -----------------------------------
4026   -- Check_Valid_Lvalue_Subscripts --
4027   -----------------------------------
4028
4029   procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4030   begin
4031      --  Skip this if range checks are suppressed
4032
4033      if Range_Checks_Suppressed (Etype (Expr)) then
4034         return;
4035
4036      --  Only do this check for expressions that come from source. We assume
4037      --  that expander generated assignments explicitly include any necessary
4038      --  checks. Note that this is not just an optimization, it avoids
4039      --  infinite recursions.
4040
4041      elsif not Comes_From_Source (Expr) then
4042         return;
4043
4044      --  For a selected component, check the prefix
4045
4046      elsif Nkind (Expr) = N_Selected_Component then
4047         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4048         return;
4049
4050      --  Case of indexed component
4051
4052      elsif Nkind (Expr) = N_Indexed_Component then
4053         Apply_Subscript_Validity_Checks (Expr);
4054
4055         --  Prefix may itself be or contain an indexed component, and these
4056         --  subscripts need checking as well.
4057
4058         Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4059      end if;
4060   end Check_Valid_Lvalue_Subscripts;
4061
4062   ----------------------------------
4063   -- Null_Exclusion_Static_Checks --
4064   ----------------------------------
4065
4066   procedure Null_Exclusion_Static_Checks
4067     (N          : Node_Id;
4068      Comp       : Node_Id := Empty;
4069      Array_Comp : Boolean := False)
4070   is
4071      Has_Null  : constant Boolean   := Has_Null_Exclusion (N);
4072      Kind      : constant Node_Kind := Nkind (N);
4073      Error_Nod : Node_Id;
4074      Expr      : Node_Id;
4075      Typ       : Entity_Id;
4076
4077   begin
4078      pragma Assert
4079        (Nkind_In (Kind, N_Component_Declaration,
4080                         N_Discriminant_Specification,
4081                         N_Function_Specification,
4082                         N_Object_Declaration,
4083                         N_Parameter_Specification));
4084
4085      if Kind = N_Function_Specification then
4086         Typ := Etype (Defining_Entity (N));
4087      else
4088         Typ := Etype (Defining_Identifier (N));
4089      end if;
4090
4091      case Kind is
4092         when N_Component_Declaration =>
4093            if Present (Access_Definition (Component_Definition (N))) then
4094               Error_Nod := Component_Definition (N);
4095            else
4096               Error_Nod := Subtype_Indication (Component_Definition (N));
4097            end if;
4098
4099         when N_Discriminant_Specification =>
4100            Error_Nod := Discriminant_Type (N);
4101
4102         when N_Function_Specification =>
4103            Error_Nod := Result_Definition (N);
4104
4105         when N_Object_Declaration =>
4106            Error_Nod := Object_Definition (N);
4107
4108         when N_Parameter_Specification =>
4109            Error_Nod := Parameter_Type (N);
4110
4111         when others =>
4112            raise Program_Error;
4113      end case;
4114
4115      if Has_Null then
4116
4117         --  Enforce legality rule 3.10 (13): A null exclusion can only be
4118         --  applied to an access [sub]type.
4119
4120         if not Is_Access_Type (Typ) then
4121            Error_Msg_N
4122              ("`NOT NULL` allowed only for an access type", Error_Nod);
4123
4124         --  Enforce legality rule RM 3.10(14/1): A null exclusion can only
4125         --  be applied to a [sub]type that does not exclude null already.
4126
4127         elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4128            Error_Msg_NE
4129              ("`NOT NULL` not allowed (& already excludes null)",
4130               Error_Nod, Typ);
4131         end if;
4132      end if;
4133
4134      --  Check that null-excluding objects are always initialized, except for
4135      --  deferred constants, for which the expression will appear in the full
4136      --  declaration.
4137
4138      if Kind = N_Object_Declaration
4139        and then No (Expression (N))
4140        and then not Constant_Present (N)
4141        and then not No_Initialization (N)
4142      then
4143         if Present (Comp) then
4144
4145            --  Specialize the warning message to indicate that we are dealing
4146            --  with an uninitialized composite object that has a defaulted
4147            --  null-excluding component.
4148
4149            Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4150            Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4151
4152            Discard_Node
4153              (Compile_Time_Constraint_Error
4154                 (N      => N,
4155                  Msg    =>
4156                    "(Ada 2005) null-excluding component % of object % must "
4157                    & "be initialized??",
4158                  Ent => Defining_Identifier (Comp)));
4159
4160         --  This is a case of an array with null-excluding components, so
4161         --  indicate that in the warning.
4162
4163         elsif Array_Comp then
4164            Discard_Node
4165              (Compile_Time_Constraint_Error
4166                 (N      => N,
4167                  Msg    =>
4168                    "(Ada 2005) null-excluding array components must "
4169                    & "be initialized??",
4170                  Ent => Defining_Identifier (N)));
4171
4172         --  Normal case of object of a null-excluding access type
4173
4174         else
4175            --  Add an expression that assigns null. This node is needed by
4176            --  Apply_Compile_Time_Constraint_Error, which will replace this
4177            --  with a Constraint_Error node.
4178
4179            Set_Expression (N, Make_Null (Sloc (N)));
4180            Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4181
4182            Apply_Compile_Time_Constraint_Error
4183              (N      => Expression (N),
4184               Msg    =>
4185                 "(Ada 2005) null-excluding objects must be initialized??",
4186               Reason => CE_Null_Not_Allowed);
4187         end if;
4188      end if;
4189
4190      --  Check that a null-excluding component, formal or object is not being
4191      --  assigned a null value. Otherwise generate a warning message and
4192      --  replace Expression (N) by an N_Constraint_Error node.
4193
4194      if Kind /= N_Function_Specification then
4195         Expr := Expression (N);
4196
4197         if Present (Expr) and then Known_Null (Expr) then
4198            case Kind is
4199               when N_Component_Declaration
4200                  | N_Discriminant_Specification
4201               =>
4202                  Apply_Compile_Time_Constraint_Error
4203                    (N      => Expr,
4204                     Msg    =>
4205                       "(Ada 2005) null not allowed in null-excluding "
4206                       & "components??",
4207                     Reason => CE_Null_Not_Allowed);
4208
4209               when N_Object_Declaration =>
4210                  Apply_Compile_Time_Constraint_Error
4211                    (N      => Expr,
4212                     Msg    =>
4213                       "(Ada 2005) null not allowed in null-excluding "
4214                       & "objects??",
4215                     Reason => CE_Null_Not_Allowed);
4216
4217               when N_Parameter_Specification =>
4218                  Apply_Compile_Time_Constraint_Error
4219                    (N      => Expr,
4220                     Msg    =>
4221                       "(Ada 2005) null not allowed in null-excluding "
4222                       & "formals??",
4223                     Reason => CE_Null_Not_Allowed);
4224
4225               when others =>
4226                  null;
4227            end case;
4228         end if;
4229      end if;
4230   end Null_Exclusion_Static_Checks;
4231
4232   ----------------------------------
4233   -- Conditional_Statements_Begin --
4234   ----------------------------------
4235
4236   procedure Conditional_Statements_Begin is
4237   begin
4238      Saved_Checks_TOS := Saved_Checks_TOS + 1;
4239
4240      --  If stack overflows, kill all checks, that way we know to simply reset
4241      --  the number of saved checks to zero on return. This should never occur
4242      --  in practice.
4243
4244      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4245         Kill_All_Checks;
4246
4247      --  In the normal case, we just make a new stack entry saving the current
4248      --  number of saved checks for a later restore.
4249
4250      else
4251         Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4252
4253         if Debug_Flag_CC then
4254            w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4255               Num_Saved_Checks);
4256         end if;
4257      end if;
4258   end Conditional_Statements_Begin;
4259
4260   --------------------------------
4261   -- Conditional_Statements_End --
4262   --------------------------------
4263
4264   procedure Conditional_Statements_End is
4265   begin
4266      pragma Assert (Saved_Checks_TOS > 0);
4267
4268      --  If the saved checks stack overflowed, then we killed all checks, so
4269      --  setting the number of saved checks back to zero is correct. This
4270      --  should never occur in practice.
4271
4272      if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4273         Num_Saved_Checks := 0;
4274
4275      --  In the normal case, restore the number of saved checks from the top
4276      --  stack entry.
4277
4278      else
4279         Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4280
4281         if Debug_Flag_CC then
4282            w ("Conditional_Statements_End: Num_Saved_Checks = ",
4283               Num_Saved_Checks);
4284         end if;
4285      end if;
4286
4287      Saved_Checks_TOS := Saved_Checks_TOS - 1;
4288   end Conditional_Statements_End;
4289
4290   -------------------------
4291   -- Convert_From_Bignum --
4292   -------------------------
4293
4294   function Convert_From_Bignum (N : Node_Id) return Node_Id is
4295      Loc : constant Source_Ptr := Sloc (N);
4296
4297   begin
4298      pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4299
4300      --  Construct call From Bignum
4301
4302      return
4303        Make_Function_Call (Loc,
4304          Name                   =>
4305            New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4306          Parameter_Associations => New_List (Relocate_Node (N)));
4307   end Convert_From_Bignum;
4308
4309   -----------------------
4310   -- Convert_To_Bignum --
4311   -----------------------
4312
4313   function Convert_To_Bignum (N : Node_Id) return Node_Id is
4314      Loc : constant Source_Ptr := Sloc (N);
4315
4316   begin
4317      --  Nothing to do if Bignum already except call Relocate_Node
4318
4319      if Is_RTE (Etype (N), RE_Bignum) then
4320         return Relocate_Node (N);
4321
4322      --  Otherwise construct call to To_Bignum, converting the operand to the
4323      --  required Long_Long_Integer form.
4324
4325      else
4326         pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4327         return
4328           Make_Function_Call (Loc,
4329             Name                   =>
4330               New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4331             Parameter_Associations => New_List (
4332               Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4333      end if;
4334   end Convert_To_Bignum;
4335
4336   ---------------------
4337   -- Determine_Range --
4338   ---------------------
4339
4340   Cache_Size : constant := 2 ** 10;
4341   type Cache_Index is range 0 .. Cache_Size - 1;
4342   --  Determine size of below cache (power of 2 is more efficient)
4343
4344   Determine_Range_Cache_N    : array (Cache_Index) of Node_Id;
4345   Determine_Range_Cache_V    : array (Cache_Index) of Boolean;
4346   Determine_Range_Cache_Lo   : array (Cache_Index) of Uint;
4347   Determine_Range_Cache_Hi   : array (Cache_Index) of Uint;
4348   Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4349   Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4350   --  The above arrays are used to implement a small direct cache for
4351   --  Determine_Range and Determine_Range_R calls. Because of the way these
4352   --  subprograms recursively traces subexpressions, and because overflow
4353   --  checking calls the routine on the way up the tree, a quadratic behavior
4354   --  can otherwise be encountered in large expressions. The cache entry for
4355   --  node N is stored in the (N mod Cache_Size) entry, and can be validated
4356   --  by checking the actual node value stored there. The Range_Cache_V array
4357   --  records the setting of Assume_Valid for the cache entry.
4358
4359   procedure Determine_Range
4360     (N            : Node_Id;
4361      OK           : out Boolean;
4362      Lo           : out Uint;
4363      Hi           : out Uint;
4364      Assume_Valid : Boolean := False)
4365   is
4366      Typ : Entity_Id := Etype (N);
4367      --  Type to use, may get reset to base type for possibly invalid entity
4368
4369      Lo_Left : Uint;
4370      Hi_Left : Uint;
4371      --  Lo and Hi bounds of left operand
4372
4373      Lo_Right : Uint := No_Uint;
4374      Hi_Right : Uint := No_Uint;
4375      --  Lo and Hi bounds of right (or only) operand
4376
4377      Bound : Node_Id;
4378      --  Temp variable used to hold a bound node
4379
4380      Hbound : Uint;
4381      --  High bound of base type of expression
4382
4383      Lor : Uint;
4384      Hir : Uint;
4385      --  Refined values for low and high bounds, after tightening
4386
4387      OK1 : Boolean;
4388      --  Used in lower level calls to indicate if call succeeded
4389
4390      Cindex : Cache_Index;
4391      --  Used to search cache
4392
4393      Btyp : Entity_Id;
4394      --  Base type
4395
4396      function OK_Operands return Boolean;
4397      --  Used for binary operators. Determines the ranges of the left and
4398      --  right operands, and if they are both OK, returns True, and puts
4399      --  the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4400
4401      -----------------
4402      -- OK_Operands --
4403      -----------------
4404
4405      function OK_Operands return Boolean is
4406      begin
4407         Determine_Range
4408           (Left_Opnd  (N), OK1, Lo_Left,  Hi_Left, Assume_Valid);
4409
4410         if not OK1 then
4411            return False;
4412         end if;
4413
4414         Determine_Range
4415           (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4416         return OK1;
4417      end OK_Operands;
4418
4419   --  Start of processing for Determine_Range
4420
4421   begin
4422      --  Prevent junk warnings by initializing range variables
4423
4424      Lo  := No_Uint;
4425      Hi  := No_Uint;
4426      Lor := No_Uint;
4427      Hir := No_Uint;
4428
4429      --  For temporary constants internally generated to remove side effects
4430      --  we must use the corresponding expression to determine the range of
4431      --  the expression. But note that the expander can also generate
4432      --  constants in other cases, including deferred constants.
4433
4434      if Is_Entity_Name (N)
4435        and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4436        and then Ekind (Entity (N)) = E_Constant
4437        and then Is_Internal_Name (Chars (Entity (N)))
4438      then
4439         if Present (Expression (Parent (Entity (N)))) then
4440            Determine_Range
4441              (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4442
4443         elsif Present (Full_View (Entity (N))) then
4444            Determine_Range
4445              (Expression (Parent (Full_View (Entity (N)))),
4446               OK, Lo, Hi, Assume_Valid);
4447
4448         else
4449            OK := False;
4450         end if;
4451         return;
4452      end if;
4453
4454      --  If type is not defined, we can't determine its range
4455
4456      if No (Typ)
4457
4458        --  We don't deal with anything except discrete types
4459
4460        or else not Is_Discrete_Type (Typ)
4461
4462        --  Ignore type for which an error has been posted, since range in
4463        --  this case may well be a bogosity deriving from the error. Also
4464        --  ignore if error posted on the reference node.
4465
4466        or else Error_Posted (N) or else Error_Posted (Typ)
4467      then
4468         OK := False;
4469         return;
4470      end if;
4471
4472      --  For all other cases, we can determine the range
4473
4474      OK := True;
4475
4476      --  If value is compile time known, then the possible range is the one
4477      --  value that we know this expression definitely has.
4478
4479      if Compile_Time_Known_Value (N) then
4480         Lo := Expr_Value (N);
4481         Hi := Lo;
4482         return;
4483      end if;
4484
4485      --  Return if already in the cache
4486
4487      Cindex := Cache_Index (N mod Cache_Size);
4488
4489      if Determine_Range_Cache_N (Cindex) = N
4490           and then
4491         Determine_Range_Cache_V (Cindex) = Assume_Valid
4492      then
4493         Lo := Determine_Range_Cache_Lo (Cindex);
4494         Hi := Determine_Range_Cache_Hi (Cindex);
4495         return;
4496      end if;
4497
4498      --  Otherwise, start by finding the bounds of the type of the expression,
4499      --  the value cannot be outside this range (if it is, then we have an
4500      --  overflow situation, which is a separate check, we are talking here
4501      --  only about the expression value).
4502
4503      --  First a check, never try to find the bounds of a generic type, since
4504      --  these bounds are always junk values, and it is only valid to look at
4505      --  the bounds in an instance.
4506
4507      if Is_Generic_Type (Typ) then
4508         OK := False;
4509         return;
4510      end if;
4511
4512      --  First step, change to use base type unless we know the value is valid
4513
4514      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4515        or else Assume_No_Invalid_Values
4516        or else Assume_Valid
4517      then
4518         null;
4519      else
4520         Typ := Underlying_Type (Base_Type (Typ));
4521      end if;
4522
4523      --  Retrieve the base type. Handle the case where the base type is a
4524      --  private enumeration type.
4525
4526      Btyp := Base_Type (Typ);
4527
4528      if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4529         Btyp := Full_View (Btyp);
4530      end if;
4531
4532      --  We use the actual bound unless it is dynamic, in which case use the
4533      --  corresponding base type bound if possible. If we can't get a bound
4534      --  then we figure we can't determine the range (a peculiar case, that
4535      --  perhaps cannot happen, but there is no point in bombing in this
4536      --  optimization circuit.
4537
4538      --  First the low bound
4539
4540      Bound := Type_Low_Bound (Typ);
4541
4542      if Compile_Time_Known_Value (Bound) then
4543         Lo := Expr_Value (Bound);
4544
4545      elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4546         Lo := Expr_Value (Type_Low_Bound (Btyp));
4547
4548      else
4549         OK := False;
4550         return;
4551      end if;
4552
4553      --  Now the high bound
4554
4555      Bound := Type_High_Bound (Typ);
4556
4557      --  We need the high bound of the base type later on, and this should
4558      --  always be compile time known. Again, it is not clear that this
4559      --  can ever be false, but no point in bombing.
4560
4561      if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4562         Hbound := Expr_Value (Type_High_Bound (Btyp));
4563         Hi := Hbound;
4564
4565      else
4566         OK := False;
4567         return;
4568      end if;
4569
4570      --  If we have a static subtype, then that may have a tighter bound so
4571      --  use the upper bound of the subtype instead in this case.
4572
4573      if Compile_Time_Known_Value (Bound) then
4574         Hi := Expr_Value (Bound);
4575      end if;
4576
4577      --  We may be able to refine this value in certain situations. If any
4578      --  refinement is possible, then Lor and Hir are set to possibly tighter
4579      --  bounds, and OK1 is set to True.
4580
4581      case Nkind (N) is
4582
4583         --  For unary plus, result is limited by range of operand
4584
4585         when N_Op_Plus =>
4586            Determine_Range
4587              (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4588
4589         --  For unary minus, determine range of operand, and negate it
4590
4591         when N_Op_Minus =>
4592            Determine_Range
4593              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4594
4595            if OK1 then
4596               Lor := -Hi_Right;
4597               Hir := -Lo_Right;
4598            end if;
4599
4600         --  For binary addition, get range of each operand and do the
4601         --  addition to get the result range.
4602
4603         when N_Op_Add =>
4604            if OK_Operands then
4605               Lor := Lo_Left + Lo_Right;
4606               Hir := Hi_Left + Hi_Right;
4607            end if;
4608
4609         --  Division is tricky. The only case we consider is where the right
4610         --  operand is a positive constant, and in this case we simply divide
4611         --  the bounds of the left operand
4612
4613         when N_Op_Divide =>
4614            if OK_Operands then
4615               if Lo_Right = Hi_Right
4616                 and then Lo_Right > 0
4617               then
4618                  Lor := Lo_Left / Lo_Right;
4619                  Hir := Hi_Left / Lo_Right;
4620               else
4621                  OK1 := False;
4622               end if;
4623            end if;
4624
4625         --  For binary subtraction, get range of each operand and do the worst
4626         --  case subtraction to get the result range.
4627
4628         when N_Op_Subtract =>
4629            if OK_Operands then
4630               Lor := Lo_Left - Hi_Right;
4631               Hir := Hi_Left - Lo_Right;
4632            end if;
4633
4634         --  For MOD, if right operand is a positive constant, then result must
4635         --  be in the allowable range of mod results.
4636
4637         when N_Op_Mod =>
4638            if OK_Operands then
4639               if Lo_Right = Hi_Right
4640                 and then Lo_Right /= 0
4641               then
4642                  if Lo_Right > 0 then
4643                     Lor := Uint_0;
4644                     Hir := Lo_Right - 1;
4645
4646                  else -- Lo_Right < 0
4647                     Lor := Lo_Right + 1;
4648                     Hir := Uint_0;
4649                  end if;
4650
4651               else
4652                  OK1 := False;
4653               end if;
4654            end if;
4655
4656         --  For REM, if right operand is a positive constant, then result must
4657         --  be in the allowable range of mod results.
4658
4659         when N_Op_Rem =>
4660            if OK_Operands then
4661               if Lo_Right = Hi_Right and then Lo_Right /= 0 then
4662                  declare
4663                     Dval : constant Uint := (abs Lo_Right) - 1;
4664
4665                  begin
4666                     --  The sign of the result depends on the sign of the
4667                     --  dividend (but not on the sign of the divisor, hence
4668                     --  the abs operation above).
4669
4670                     if Lo_Left < 0 then
4671                        Lor := -Dval;
4672                     else
4673                        Lor := Uint_0;
4674                     end if;
4675
4676                     if Hi_Left < 0 then
4677                        Hir := Uint_0;
4678                     else
4679                        Hir := Dval;
4680                     end if;
4681                  end;
4682
4683               else
4684                  OK1 := False;
4685               end if;
4686            end if;
4687
4688         --  Attribute reference cases
4689
4690         when N_Attribute_Reference =>
4691            case Attribute_Name (N) is
4692
4693               --  For Pos/Val attributes, we can refine the range using the
4694               --  possible range of values of the attribute expression.
4695
4696               when Name_Pos
4697                  | Name_Val
4698               =>
4699                  Determine_Range
4700                    (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4701
4702               --  For Length attribute, use the bounds of the corresponding
4703               --  index type to refine the range.
4704
4705               when Name_Length =>
4706                  declare
4707                     Atyp : Entity_Id := Etype (Prefix (N));
4708                     Inum : Nat;
4709                     Indx : Node_Id;
4710
4711                     LL, LU : Uint;
4712                     UL, UU : Uint;
4713
4714                  begin
4715                     if Is_Access_Type (Atyp) then
4716                        Atyp := Designated_Type (Atyp);
4717                     end if;
4718
4719                     --  For string literal, we know exact value
4720
4721                     if Ekind (Atyp) = E_String_Literal_Subtype then
4722                        OK := True;
4723                        Lo := String_Literal_Length (Atyp);
4724                        Hi := String_Literal_Length (Atyp);
4725                        return;
4726                     end if;
4727
4728                     --  Otherwise check for expression given
4729
4730                     if No (Expressions (N)) then
4731                        Inum := 1;
4732                     else
4733                        Inum :=
4734                          UI_To_Int (Expr_Value (First (Expressions (N))));
4735                     end if;
4736
4737                     Indx := First_Index (Atyp);
4738                     for J in 2 .. Inum loop
4739                        Indx := Next_Index (Indx);
4740                     end loop;
4741
4742                     --  If the index type is a formal type or derived from
4743                     --  one, the bounds are not static.
4744
4745                     if Is_Generic_Type (Root_Type (Etype (Indx))) then
4746                        OK := False;
4747                        return;
4748                     end if;
4749
4750                     Determine_Range
4751                       (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4752                        Assume_Valid);
4753
4754                     if OK1 then
4755                        Determine_Range
4756                          (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4757                           Assume_Valid);
4758
4759                        if OK1 then
4760
4761                           --  The maximum value for Length is the biggest
4762                           --  possible gap between the values of the bounds.
4763                           --  But of course, this value cannot be negative.
4764
4765                           Hir := UI_Max (Uint_0, UU - LL + 1);
4766
4767                           --  For constrained arrays, the minimum value for
4768                           --  Length is taken from the actual value of the
4769                           --  bounds, since the index will be exactly of this
4770                           --  subtype.
4771
4772                           if Is_Constrained (Atyp) then
4773                              Lor := UI_Max (Uint_0, UL - LU + 1);
4774
4775                           --  For an unconstrained array, the minimum value
4776                           --  for length is always zero.
4777
4778                           else
4779                              Lor := Uint_0;
4780                           end if;
4781                        end if;
4782                     end if;
4783                  end;
4784
4785               --  No special handling for other attributes
4786               --  Probably more opportunities exist here???
4787
4788               when others =>
4789                  OK1 := False;
4790
4791            end case;
4792
4793         when N_Type_Conversion =>
4794
4795            --  For type conversion from one discrete type to another, we can
4796            --  refine the range using the converted value.
4797
4798            if Is_Discrete_Type (Etype (Expression (N))) then
4799               Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4800
4801            --  When converting a float to an integer type, determine the range
4802            --  in real first, and then convert the bounds using UR_To_Uint
4803            --  which correctly rounds away from zero when half way between two
4804            --  integers, as required by normal Ada 95 rounding semantics. It
4805            --  is only possible because analysis in GNATprove rules out the
4806            --  possibility of a NaN or infinite value.
4807
4808            elsif GNATprove_Mode
4809              and then Is_Floating_Point_Type (Etype (Expression (N)))
4810            then
4811               declare
4812                  Lor_Real, Hir_Real : Ureal;
4813               begin
4814                  Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4815                                     Assume_Valid);
4816
4817                  if OK1 then
4818                     Lor := UR_To_Uint (Lor_Real);
4819                     Hir := UR_To_Uint (Hir_Real);
4820                  end if;
4821               end;
4822
4823            else
4824               OK1 := False;
4825            end if;
4826
4827         --  Nothing special to do for all other expression kinds
4828
4829         when others =>
4830            OK1 := False;
4831            Lor := No_Uint;
4832            Hir := No_Uint;
4833      end case;
4834
4835      --  At this stage, if OK1 is true, then we know that the actual result of
4836      --  the computed expression is in the range Lor .. Hir. We can use this
4837      --  to restrict the possible range of results.
4838
4839      if OK1 then
4840
4841         --  If the refined value of the low bound is greater than the type
4842         --  low bound, then reset it to the more restrictive value. However,
4843         --  we do NOT do this for the case of a modular type where the
4844         --  possible upper bound on the value is above the base type high
4845         --  bound, because that means the result could wrap.
4846
4847         if Lor > Lo
4848           and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4849         then
4850            Lo := Lor;
4851         end if;
4852
4853         --  Similarly, if the refined value of the high bound is less than the
4854         --  value so far, then reset it to the more restrictive value. Again,
4855         --  we do not do this if the refined low bound is negative for a
4856         --  modular type, since this would wrap.
4857
4858         if Hir < Hi
4859           and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4860         then
4861            Hi := Hir;
4862         end if;
4863      end if;
4864
4865      --  Set cache entry for future call and we are all done
4866
4867      Determine_Range_Cache_N  (Cindex) := N;
4868      Determine_Range_Cache_V  (Cindex) := Assume_Valid;
4869      Determine_Range_Cache_Lo (Cindex) := Lo;
4870      Determine_Range_Cache_Hi (Cindex) := Hi;
4871      return;
4872
4873   --  If any exception occurs, it means that we have some bug in the compiler,
4874   --  possibly triggered by a previous error, or by some unforeseen peculiar
4875   --  occurrence. However, this is only an optimization attempt, so there is
4876   --  really no point in crashing the compiler. Instead we just decide, too
4877   --  bad, we can't figure out a range in this case after all.
4878
4879   exception
4880      when others =>
4881
4882         --  Debug flag K disables this behavior (useful for debugging)
4883
4884         if Debug_Flag_K then
4885            raise;
4886         else
4887            OK := False;
4888            Lo := No_Uint;
4889            Hi := No_Uint;
4890            return;
4891         end if;
4892   end Determine_Range;
4893
4894   -----------------------
4895   -- Determine_Range_R --
4896   -----------------------
4897
4898   procedure Determine_Range_R
4899     (N            : Node_Id;
4900      OK           : out Boolean;
4901      Lo           : out Ureal;
4902      Hi           : out Ureal;
4903      Assume_Valid : Boolean := False)
4904   is
4905      Typ : Entity_Id := Etype (N);
4906      --  Type to use, may get reset to base type for possibly invalid entity
4907
4908      Lo_Left : Ureal;
4909      Hi_Left : Ureal;
4910      --  Lo and Hi bounds of left operand
4911
4912      Lo_Right : Ureal := No_Ureal;
4913      Hi_Right : Ureal := No_Ureal;
4914      --  Lo and Hi bounds of right (or only) operand
4915
4916      Bound : Node_Id;
4917      --  Temp variable used to hold a bound node
4918
4919      Hbound : Ureal;
4920      --  High bound of base type of expression
4921
4922      Lor : Ureal;
4923      Hir : Ureal;
4924      --  Refined values for low and high bounds, after tightening
4925
4926      OK1 : Boolean;
4927      --  Used in lower level calls to indicate if call succeeded
4928
4929      Cindex : Cache_Index;
4930      --  Used to search cache
4931
4932      Btyp : Entity_Id;
4933      --  Base type
4934
4935      function OK_Operands return Boolean;
4936      --  Used for binary operators. Determines the ranges of the left and
4937      --  right operands, and if they are both OK, returns True, and puts
4938      --  the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4939
4940      function Round_Machine (B : Ureal) return Ureal;
4941      --  B is a real bound. Round it using mode Round_Even.
4942
4943      -----------------
4944      -- OK_Operands --
4945      -----------------
4946
4947      function OK_Operands return Boolean is
4948      begin
4949         Determine_Range_R
4950           (Left_Opnd  (N), OK1, Lo_Left,  Hi_Left, Assume_Valid);
4951
4952         if not OK1 then
4953            return False;
4954         end if;
4955
4956         Determine_Range_R
4957           (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4958         return OK1;
4959      end OK_Operands;
4960
4961      -------------------
4962      -- Round_Machine --
4963      -------------------
4964
4965      function Round_Machine (B : Ureal) return Ureal is
4966      begin
4967         return Machine (Typ, B, Round_Even, N);
4968      end Round_Machine;
4969
4970   --  Start of processing for Determine_Range_R
4971
4972   begin
4973      --  Prevent junk warnings by initializing range variables
4974
4975      Lo  := No_Ureal;
4976      Hi  := No_Ureal;
4977      Lor := No_Ureal;
4978      Hir := No_Ureal;
4979
4980      --  For temporary constants internally generated to remove side effects
4981      --  we must use the corresponding expression to determine the range of
4982      --  the expression. But note that the expander can also generate
4983      --  constants in other cases, including deferred constants.
4984
4985      if Is_Entity_Name (N)
4986        and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4987        and then Ekind (Entity (N)) = E_Constant
4988        and then Is_Internal_Name (Chars (Entity (N)))
4989      then
4990         if Present (Expression (Parent (Entity (N)))) then
4991            Determine_Range_R
4992              (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4993
4994         elsif Present (Full_View (Entity (N))) then
4995            Determine_Range_R
4996              (Expression (Parent (Full_View (Entity (N)))),
4997               OK, Lo, Hi, Assume_Valid);
4998
4999         else
5000            OK := False;
5001         end if;
5002
5003         return;
5004      end if;
5005
5006      --  If type is not defined, we can't determine its range
5007
5008      if No (Typ)
5009
5010        --  We don't deal with anything except IEEE floating-point types
5011
5012        or else not Is_Floating_Point_Type (Typ)
5013        or else Float_Rep (Typ) /= IEEE_Binary
5014
5015        --  Ignore type for which an error has been posted, since range in
5016        --  this case may well be a bogosity deriving from the error. Also
5017        --  ignore if error posted on the reference node.
5018
5019        or else Error_Posted (N) or else Error_Posted (Typ)
5020      then
5021         OK := False;
5022         return;
5023      end if;
5024
5025      --  For all other cases, we can determine the range
5026
5027      OK := True;
5028
5029      --  If value is compile time known, then the possible range is the one
5030      --  value that we know this expression definitely has.
5031
5032      if Compile_Time_Known_Value (N) then
5033         Lo := Expr_Value_R (N);
5034         Hi := Lo;
5035         return;
5036      end if;
5037
5038      --  Return if already in the cache
5039
5040      Cindex := Cache_Index (N mod Cache_Size);
5041
5042      if Determine_Range_Cache_N (Cindex) = N
5043           and then
5044         Determine_Range_Cache_V (Cindex) = Assume_Valid
5045      then
5046         Lo := Determine_Range_Cache_Lo_R (Cindex);
5047         Hi := Determine_Range_Cache_Hi_R (Cindex);
5048         return;
5049      end if;
5050
5051      --  Otherwise, start by finding the bounds of the type of the expression,
5052      --  the value cannot be outside this range (if it is, then we have an
5053      --  overflow situation, which is a separate check, we are talking here
5054      --  only about the expression value).
5055
5056      --  First a check, never try to find the bounds of a generic type, since
5057      --  these bounds are always junk values, and it is only valid to look at
5058      --  the bounds in an instance.
5059
5060      if Is_Generic_Type (Typ) then
5061         OK := False;
5062         return;
5063      end if;
5064
5065      --  First step, change to use base type unless we know the value is valid
5066
5067      if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5068        or else Assume_No_Invalid_Values
5069        or else Assume_Valid
5070      then
5071         null;
5072      else
5073         Typ := Underlying_Type (Base_Type (Typ));
5074      end if;
5075
5076      --  Retrieve the base type. Handle the case where the base type is a
5077      --  private type.
5078
5079      Btyp := Base_Type (Typ);
5080
5081      if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5082         Btyp := Full_View (Btyp);
5083      end if;
5084
5085      --  We use the actual bound unless it is dynamic, in which case use the
5086      --  corresponding base type bound if possible. If we can't get a bound
5087      --  then we figure we can't determine the range (a peculiar case, that
5088      --  perhaps cannot happen, but there is no point in bombing in this
5089      --  optimization circuit).
5090
5091      --  First the low bound
5092
5093      Bound := Type_Low_Bound (Typ);
5094
5095      if Compile_Time_Known_Value (Bound) then
5096         Lo := Expr_Value_R (Bound);
5097
5098      elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5099         Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5100
5101      else
5102         OK := False;
5103         return;
5104      end if;
5105
5106      --  Now the high bound
5107
5108      Bound := Type_High_Bound (Typ);
5109
5110      --  We need the high bound of the base type later on, and this should
5111      --  always be compile time known. Again, it is not clear that this
5112      --  can ever be false, but no point in bombing.
5113
5114      if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5115         Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5116         Hi := Hbound;
5117
5118      else
5119         OK := False;
5120         return;
5121      end if;
5122
5123      --  If we have a static subtype, then that may have a tighter bound so
5124      --  use the upper bound of the subtype instead in this case.
5125
5126      if Compile_Time_Known_Value (Bound) then
5127         Hi := Expr_Value_R (Bound);
5128      end if;
5129
5130      --  We may be able to refine this value in certain situations. If any
5131      --  refinement is possible, then Lor and Hir are set to possibly tighter
5132      --  bounds, and OK1 is set to True.
5133
5134      case Nkind (N) is
5135
5136         --  For unary plus, result is limited by range of operand
5137
5138         when N_Op_Plus =>
5139            Determine_Range_R
5140              (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5141
5142         --  For unary minus, determine range of operand, and negate it
5143
5144         when N_Op_Minus =>
5145            Determine_Range_R
5146              (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5147
5148            if OK1 then
5149               Lor := -Hi_Right;
5150               Hir := -Lo_Right;
5151            end if;
5152
5153         --  For binary addition, get range of each operand and do the
5154         --  addition to get the result range.
5155
5156         when N_Op_Add =>
5157            if OK_Operands then
5158               Lor := Round_Machine (Lo_Left + Lo_Right);
5159               Hir := Round_Machine (Hi_Left + Hi_Right);
5160            end if;
5161
5162         --  For binary subtraction, get range of each operand and do the worst
5163         --  case subtraction to get the result range.
5164
5165         when N_Op_Subtract =>
5166            if OK_Operands then
5167               Lor := Round_Machine (Lo_Left - Hi_Right);
5168               Hir := Round_Machine (Hi_Left - Lo_Right);
5169            end if;
5170
5171         --  For multiplication, get range of each operand and do the
5172         --  four multiplications to get the result range.
5173
5174         when N_Op_Multiply =>
5175            if OK_Operands then
5176               declare
5177                  M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5178                  M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5179                  M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5180                  M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5181
5182               begin
5183                  Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5184                  Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5185               end;
5186            end if;
5187
5188         --  For division, consider separately the cases where the right
5189         --  operand is positive or negative. Otherwise, the right operand
5190         --  can be arbitrarily close to zero, so the result is likely to
5191         --  be unbounded in one direction, do not attempt to compute it.
5192
5193         when N_Op_Divide =>
5194            if OK_Operands then
5195
5196               --  Right operand is positive
5197
5198               if Lo_Right > Ureal_0 then
5199
5200                  --  If the low bound of the left operand is negative, obtain
5201                  --  the overall low bound by dividing it by the smallest
5202                  --  value of the right operand, and otherwise by the largest
5203                  --  value of the right operand.
5204
5205                  if Lo_Left < Ureal_0 then
5206                     Lor := Round_Machine (Lo_Left / Lo_Right);
5207                  else
5208                     Lor := Round_Machine (Lo_Left / Hi_Right);
5209                  end if;
5210
5211                  --  If the high bound of the left operand is negative, obtain
5212                  --  the overall high bound by dividing it by the largest
5213                  --  value of the right operand, and otherwise by the
5214                  --  smallest value of the right operand.
5215
5216                  if Hi_Left < Ureal_0 then
5217                     Hir := Round_Machine (Hi_Left / Hi_Right);
5218                  else
5219                     Hir := Round_Machine (Hi_Left / Lo_Right);
5220                  end if;
5221
5222               --  Right operand is negative
5223
5224               elsif Hi_Right < Ureal_0 then
5225
5226                  --  If the low bound of the left operand is negative, obtain
5227                  --  the overall low bound by dividing it by the largest
5228                  --  value of the right operand, and otherwise by the smallest
5229                  --  value of the right operand.
5230
5231                  if Lo_Left < Ureal_0 then
5232                     Lor := Round_Machine (Lo_Left / Hi_Right);
5233                  else
5234                     Lor := Round_Machine (Lo_Left / Lo_Right);
5235                  end if;
5236
5237                  --  If the high bound of the left operand is negative, obtain
5238                  --  the overall high bound by dividing it by the smallest
5239                  --  value of the right operand, and otherwise by the
5240                  --  largest value of the right operand.
5241
5242                  if Hi_Left < Ureal_0 then
5243                     Hir := Round_Machine (Hi_Left / Lo_Right);
5244                  else
5245                     Hir := Round_Machine (Hi_Left / Hi_Right);
5246                  end if;
5247
5248               else
5249                  OK1 := False;
5250               end if;
5251            end if;
5252
5253         when N_Type_Conversion =>
5254
5255            --  For type conversion from one floating-point type to another, we
5256            --  can refine the range using the converted value.
5257
5258            if Is_Floating_Point_Type (Etype (Expression (N))) then
5259               Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5260
5261            --  When converting an integer to a floating-point type, determine
5262            --  the range in integer first, and then convert the bounds.
5263
5264            elsif Is_Discrete_Type (Etype (Expression (N))) then
5265               declare
5266                  Hir_Int : Uint;
5267                  Lor_Int : Uint;
5268
5269               begin
5270                  Determine_Range
5271                    (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5272
5273                  if OK1 then
5274                     Lor := Round_Machine (UR_From_Uint (Lor_Int));
5275                     Hir := Round_Machine (UR_From_Uint (Hir_Int));
5276                  end if;
5277               end;
5278
5279            else
5280               OK1 := False;
5281            end if;
5282
5283         --  Nothing special to do for all other expression kinds
5284
5285         when others =>
5286            OK1 := False;
5287            Lor := No_Ureal;
5288            Hir := No_Ureal;
5289      end case;
5290
5291      --  At this stage, if OK1 is true, then we know that the actual result of
5292      --  the computed expression is in the range Lor .. Hir. We can use this
5293      --  to restrict the possible range of results.
5294
5295      if OK1 then
5296
5297         --  If the refined value of the low bound is greater than the type
5298         --  low bound, then reset it to the more restrictive value.
5299
5300         if Lor > Lo then
5301            Lo := Lor;
5302         end if;
5303
5304         --  Similarly, if the refined value of the high bound is less than the
5305         --  value so far, then reset it to the more restrictive value.
5306
5307         if Hir < Hi then
5308            Hi := Hir;
5309         end if;
5310      end if;
5311
5312      --  Set cache entry for future call and we are all done
5313
5314      Determine_Range_Cache_N    (Cindex) := N;
5315      Determine_Range_Cache_V    (Cindex) := Assume_Valid;
5316      Determine_Range_Cache_Lo_R (Cindex) := Lo;
5317      Determine_Range_Cache_Hi_R (Cindex) := Hi;
5318      return;
5319
5320   --  If any exception occurs, it means that we have some bug in the compiler,
5321   --  possibly triggered by a previous error, or by some unforeseen peculiar
5322   --  occurrence. However, this is only an optimization attempt, so there is
5323   --  really no point in crashing the compiler. Instead we just decide, too
5324   --  bad, we can't figure out a range in this case after all.
5325
5326   exception
5327      when others =>
5328
5329         --  Debug flag K disables this behavior (useful for debugging)
5330
5331         if Debug_Flag_K then
5332            raise;
5333         else
5334            OK := False;
5335            Lo := No_Ureal;
5336            Hi := No_Ureal;
5337            return;
5338         end if;
5339   end Determine_Range_R;
5340
5341   ------------------------------------
5342   -- Discriminant_Checks_Suppressed --
5343   ------------------------------------
5344
5345   function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5346   begin
5347      if Present (E) then
5348         if Is_Unchecked_Union (E) then
5349            return True;
5350         elsif Checks_May_Be_Suppressed (E) then
5351            return Is_Check_Suppressed (E, Discriminant_Check);
5352         end if;
5353      end if;
5354
5355      return Scope_Suppress.Suppress (Discriminant_Check);
5356   end Discriminant_Checks_Suppressed;
5357
5358   --------------------------------
5359   -- Division_Checks_Suppressed --
5360   --------------------------------
5361
5362   function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5363   begin
5364      if Present (E) and then Checks_May_Be_Suppressed (E) then
5365         return Is_Check_Suppressed (E, Division_Check);
5366      else
5367         return Scope_Suppress.Suppress (Division_Check);
5368      end if;
5369   end Division_Checks_Suppressed;
5370
5371   --------------------------------------
5372   -- Duplicated_Tag_Checks_Suppressed --
5373   --------------------------------------
5374
5375   function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5376   begin
5377      if Present (E) and then Checks_May_Be_Suppressed (E) then
5378         return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5379      else
5380         return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5381      end if;
5382   end Duplicated_Tag_Checks_Suppressed;
5383
5384   -----------------------------------
5385   -- Elaboration_Checks_Suppressed --
5386   -----------------------------------
5387
5388   function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5389   begin
5390      --  The complication in this routine is that if we are in the dynamic
5391      --  model of elaboration, we also check All_Checks, since All_Checks
5392      --  does not set Elaboration_Check explicitly.
5393
5394      if Present (E) then
5395         if Kill_Elaboration_Checks (E) then
5396            return True;
5397
5398         elsif Checks_May_Be_Suppressed (E) then
5399            if Is_Check_Suppressed (E, Elaboration_Check) then
5400               return True;
5401
5402            elsif Dynamic_Elaboration_Checks then
5403               return Is_Check_Suppressed (E, All_Checks);
5404
5405            else
5406               return False;
5407            end if;
5408         end if;
5409      end if;
5410
5411      if Scope_Suppress.Suppress (Elaboration_Check) then
5412         return True;
5413
5414      elsif Dynamic_Elaboration_Checks then
5415         return Scope_Suppress.Suppress (All_Checks);
5416
5417      else
5418         return False;
5419      end if;
5420   end Elaboration_Checks_Suppressed;
5421
5422   ---------------------------
5423   -- Enable_Overflow_Check --
5424   ---------------------------
5425
5426   procedure Enable_Overflow_Check (N : Node_Id) is
5427      Typ  : constant Entity_Id          := Base_Type (Etype (N));
5428      Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5429      Chk  : Nat;
5430      OK   : Boolean;
5431      Ent  : Entity_Id;
5432      Ofs  : Uint;
5433      Lo   : Uint;
5434      Hi   : Uint;
5435
5436      Do_Ovflow_Check : Boolean;
5437
5438   begin
5439      if Debug_Flag_CC then
5440         w ("Enable_Overflow_Check for node ", Int (N));
5441         Write_Str ("  Source location = ");
5442         wl (Sloc (N));
5443         pg (Union_Id (N));
5444      end if;
5445
5446      --  No check if overflow checks suppressed for type of node
5447
5448      if Overflow_Checks_Suppressed (Etype (N)) then
5449         return;
5450
5451      --  Nothing to do for unsigned integer types, which do not overflow
5452
5453      elsif Is_Modular_Integer_Type (Typ) then
5454         return;
5455      end if;
5456
5457      --  This is the point at which processing for STRICT mode diverges
5458      --  from processing for MINIMIZED/ELIMINATED modes. This divergence is
5459      --  probably more extreme that it needs to be, but what is going on here
5460      --  is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5461      --  to leave the processing for STRICT mode untouched. There were
5462      --  two reasons for this. First it avoided any incompatible change of
5463      --  behavior. Second, it guaranteed that STRICT mode continued to be
5464      --  legacy reliable.
5465
5466      --  The big difference is that in STRICT mode there is a fair amount of
5467      --  circuitry to try to avoid setting the Do_Overflow_Check flag if we
5468      --  know that no check is needed. We skip all that in the two new modes,
5469      --  since really overflow checking happens over a whole subtree, and we
5470      --  do the corresponding optimizations later on when applying the checks.
5471
5472      if Mode in Minimized_Or_Eliminated then
5473         if not (Overflow_Checks_Suppressed (Etype (N)))
5474           and then not (Is_Entity_Name (N)
5475                          and then Overflow_Checks_Suppressed (Entity (N)))
5476         then
5477            Activate_Overflow_Check (N);
5478         end if;
5479
5480         if Debug_Flag_CC then
5481            w ("Minimized/Eliminated mode");
5482         end if;
5483
5484         return;
5485      end if;
5486
5487      --  Remainder of processing is for STRICT case, and is unchanged from
5488      --  earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5489
5490      --  Nothing to do if the range of the result is known OK. We skip this
5491      --  for conversions, since the caller already did the check, and in any
5492      --  case the condition for deleting the check for a type conversion is
5493      --  different.
5494
5495      if Nkind (N) /= N_Type_Conversion then
5496         Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5497
5498         --  Note in the test below that we assume that the range is not OK
5499         --  if a bound of the range is equal to that of the type. That's not
5500         --  quite accurate but we do this for the following reasons:
5501
5502         --   a) The way that Determine_Range works, it will typically report
5503         --      the bounds of the value as being equal to the bounds of the
5504         --      type, because it either can't tell anything more precise, or
5505         --      does not think it is worth the effort to be more precise.
5506
5507         --   b) It is very unusual to have a situation in which this would
5508         --      generate an unnecessary overflow check (an example would be
5509         --      a subtype with a range 0 .. Integer'Last - 1 to which the
5510         --      literal value one is added).
5511
5512         --   c) The alternative is a lot of special casing in this routine
5513         --      which would partially duplicate Determine_Range processing.
5514
5515         if OK then
5516            Do_Ovflow_Check := True;
5517
5518            --  Note that the following checks are quite deliberately > and <
5519            --  rather than >= and <= as explained above.
5520
5521            if  Lo > Expr_Value (Type_Low_Bound  (Typ))
5522                  and then
5523                Hi < Expr_Value (Type_High_Bound (Typ))
5524            then
5525               Do_Ovflow_Check := False;
5526
5527            --  Despite the comments above, it is worth dealing specially with
5528            --  division specially. The only case where integer division can
5529            --  overflow is (largest negative number) / (-1). So we will do
5530            --  an extra range analysis to see if this is possible.
5531
5532            elsif Nkind (N) = N_Op_Divide then
5533               Determine_Range
5534                 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5535
5536               if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5537                  Do_Ovflow_Check := False;
5538
5539               else
5540                  Determine_Range
5541                    (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5542
5543                  if OK and then (Lo > Uint_Minus_1
5544                                    or else
5545                                  Hi < Uint_Minus_1)
5546                  then
5547                     Do_Ovflow_Check := False;
5548                  end if;
5549               end if;
5550            end if;
5551
5552            --  If no overflow check required, we are done
5553
5554            if not Do_Ovflow_Check then
5555               if Debug_Flag_CC then
5556                  w ("No overflow check required");
5557               end if;
5558
5559               return;
5560            end if;
5561         end if;
5562      end if;
5563
5564      --  If not in optimizing mode, set flag and we are done. We are also done
5565      --  (and just set the flag) if the type is not a discrete type, since it
5566      --  is not worth the effort to eliminate checks for other than discrete
5567      --  types. In addition, we take this same path if we have stored the
5568      --  maximum number of checks possible already (a very unlikely situation,
5569      --  but we do not want to blow up).
5570
5571      if Optimization_Level = 0
5572        or else not Is_Discrete_Type (Etype (N))
5573        or else Num_Saved_Checks = Saved_Checks'Last
5574      then
5575         Activate_Overflow_Check (N);
5576
5577         if Debug_Flag_CC then
5578            w ("Optimization off");
5579         end if;
5580
5581         return;
5582      end if;
5583
5584      --  Otherwise evaluate and check the expression
5585
5586      Find_Check
5587        (Expr        => N,
5588         Check_Type  => 'O',
5589         Target_Type => Empty,
5590         Entry_OK    => OK,
5591         Check_Num   => Chk,
5592         Ent         => Ent,
5593         Ofs         => Ofs);
5594
5595      if Debug_Flag_CC then
5596         w ("Called Find_Check");
5597         w ("  OK = ", OK);
5598
5599         if OK then
5600            w ("  Check_Num = ", Chk);
5601            w ("  Ent       = ", Int (Ent));
5602            Write_Str ("  Ofs       = ");
5603            pid (Ofs);
5604         end if;
5605      end if;
5606
5607      --  If check is not of form to optimize, then set flag and we are done
5608
5609      if not OK then
5610         Activate_Overflow_Check (N);
5611         return;
5612      end if;
5613
5614      --  If check is already performed, then return without setting flag
5615
5616      if Chk /= 0 then
5617         if Debug_Flag_CC then
5618            w ("Check suppressed!");
5619         end if;
5620
5621         return;
5622      end if;
5623
5624      --  Here we will make a new entry for the new check
5625
5626      Activate_Overflow_Check (N);
5627      Num_Saved_Checks := Num_Saved_Checks + 1;
5628      Saved_Checks (Num_Saved_Checks) :=
5629        (Killed      => False,
5630         Entity      => Ent,
5631         Offset      => Ofs,
5632         Check_Type  => 'O',
5633         Target_Type => Empty);
5634
5635      if Debug_Flag_CC then
5636         w ("Make new entry, check number = ", Num_Saved_Checks);
5637         w ("  Entity = ", Int (Ent));
5638         Write_Str ("  Offset = ");
5639         pid (Ofs);
5640         w ("  Check_Type = O");
5641         w ("  Target_Type = Empty");
5642      end if;
5643
5644   --  If we get an exception, then something went wrong, probably because of
5645   --  an error in the structure of the tree due to an incorrect program. Or
5646   --  it may be a bug in the optimization circuit. In either case the safest
5647   --  thing is simply to set the check flag unconditionally.
5648
5649   exception
5650      when others =>
5651         Activate_Overflow_Check (N);
5652
5653         if Debug_Flag_CC then
5654            w ("  exception occurred, overflow flag set");
5655         end if;
5656
5657         return;
5658   end Enable_Overflow_Check;
5659
5660   ------------------------
5661   -- Enable_Range_Check --
5662   ------------------------
5663
5664   procedure Enable_Range_Check (N : Node_Id) is
5665      Chk  : Nat;
5666      OK   : Boolean;
5667      Ent  : Entity_Id;
5668      Ofs  : Uint;
5669      Ttyp : Entity_Id;
5670      P    : Node_Id;
5671
5672   begin
5673      --  Return if unchecked type conversion with range check killed. In this
5674      --  case we never set the flag (that's what Kill_Range_Check is about).
5675
5676      if Nkind (N) = N_Unchecked_Type_Conversion
5677        and then Kill_Range_Check (N)
5678      then
5679         return;
5680      end if;
5681
5682      --  Do not set range check flag if parent is assignment statement or
5683      --  object declaration with Suppress_Assignment_Checks flag set
5684
5685      if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5686        and then Suppress_Assignment_Checks (Parent (N))
5687      then
5688         return;
5689      end if;
5690
5691      --  Check for various cases where we should suppress the range check
5692
5693      --  No check if range checks suppressed for type of node
5694
5695      if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5696         return;
5697
5698      --  No check if node is an entity name, and range checks are suppressed
5699      --  for this entity, or for the type of this entity.
5700
5701      elsif Is_Entity_Name (N)
5702        and then (Range_Checks_Suppressed (Entity (N))
5703                   or else Range_Checks_Suppressed (Etype (Entity (N))))
5704      then
5705         return;
5706
5707      --  No checks if index of array, and index checks are suppressed for
5708      --  the array object or the type of the array.
5709
5710      elsif Nkind (Parent (N)) = N_Indexed_Component then
5711         declare
5712            Pref : constant Node_Id := Prefix (Parent (N));
5713         begin
5714            if Is_Entity_Name (Pref)
5715              and then Index_Checks_Suppressed (Entity (Pref))
5716            then
5717               return;
5718            elsif Index_Checks_Suppressed (Etype (Pref)) then
5719               return;
5720            end if;
5721         end;
5722      end if;
5723
5724      --  Debug trace output
5725
5726      if Debug_Flag_CC then
5727         w ("Enable_Range_Check for node ", Int (N));
5728         Write_Str ("  Source location = ");
5729         wl (Sloc (N));
5730         pg (Union_Id (N));
5731      end if;
5732
5733      --  If not in optimizing mode, set flag and we are done. We are also done
5734      --  (and just set the flag) if the type is not a discrete type, since it
5735      --  is not worth the effort to eliminate checks for other than discrete
5736      --  types. In addition, we take this same path if we have stored the
5737      --  maximum number of checks possible already (a very unlikely situation,
5738      --  but we do not want to blow up).
5739
5740      if Optimization_Level = 0
5741        or else No (Etype (N))
5742        or else not Is_Discrete_Type (Etype (N))
5743        or else Num_Saved_Checks = Saved_Checks'Last
5744      then
5745         Activate_Range_Check (N);
5746
5747         if Debug_Flag_CC then
5748            w ("Optimization off");
5749         end if;
5750
5751         return;
5752      end if;
5753
5754      --  Otherwise find out the target type
5755
5756      P := Parent (N);
5757
5758      --  For assignment, use left side subtype
5759
5760      if Nkind (P) = N_Assignment_Statement
5761        and then Expression (P) = N
5762      then
5763         Ttyp := Etype (Name (P));
5764
5765      --  For indexed component, use subscript subtype
5766
5767      elsif Nkind (P) = N_Indexed_Component then
5768         declare
5769            Atyp : Entity_Id;
5770            Indx : Node_Id;
5771            Subs : Node_Id;
5772
5773         begin
5774            Atyp := Etype (Prefix (P));
5775
5776            if Is_Access_Type (Atyp) then
5777               Atyp := Designated_Type (Atyp);
5778
5779               --  If the prefix is an access to an unconstrained array,
5780               --  perform check unconditionally: it depends on the bounds of
5781               --  an object and we cannot currently recognize whether the test
5782               --  may be redundant.
5783
5784               if not Is_Constrained (Atyp) then
5785                  Activate_Range_Check (N);
5786                  return;
5787               end if;
5788
5789            --  Ditto if prefix is simply an unconstrained array. We used
5790            --  to think this case was OK, if the prefix was not an explicit
5791            --  dereference, but we have now seen a case where this is not
5792            --  true, so it is safer to just suppress the optimization in this
5793            --  case. The back end is getting better at eliminating redundant
5794            --  checks in any case, so the loss won't be important.
5795
5796            elsif Is_Array_Type (Atyp)
5797              and then not Is_Constrained (Atyp)
5798            then
5799               Activate_Range_Check (N);
5800               return;
5801            end if;
5802
5803            Indx := First_Index (Atyp);
5804            Subs := First (Expressions (P));
5805            loop
5806               if Subs = N then
5807                  Ttyp := Etype (Indx);
5808                  exit;
5809               end if;
5810
5811               Next_Index (Indx);
5812               Next (Subs);
5813            end loop;
5814         end;
5815
5816      --  For now, ignore all other cases, they are not so interesting
5817
5818      else
5819         if Debug_Flag_CC then
5820            w ("  target type not found, flag set");
5821         end if;
5822
5823         Activate_Range_Check (N);
5824         return;
5825      end if;
5826
5827      --  Evaluate and check the expression
5828
5829      Find_Check
5830        (Expr        => N,
5831         Check_Type  => 'R',
5832         Target_Type => Ttyp,
5833         Entry_OK    => OK,
5834         Check_Num   => Chk,
5835         Ent         => Ent,
5836         Ofs         => Ofs);
5837
5838      if Debug_Flag_CC then
5839         w ("Called Find_Check");
5840         w ("Target_Typ = ", Int (Ttyp));
5841         w ("  OK = ", OK);
5842
5843         if OK then
5844            w ("  Check_Num = ", Chk);
5845            w ("  Ent       = ", Int (Ent));
5846            Write_Str ("  Ofs       = ");
5847            pid (Ofs);
5848         end if;
5849      end if;
5850
5851      --  If check is not of form to optimize, then set flag and we are done
5852
5853      if not OK then
5854         if Debug_Flag_CC then
5855            w ("  expression not of optimizable type, flag set");
5856         end if;
5857
5858         Activate_Range_Check (N);
5859         return;
5860      end if;
5861
5862      --  If check is already performed, then return without setting flag
5863
5864      if Chk /= 0 then
5865         if Debug_Flag_CC then
5866            w ("Check suppressed!");
5867         end if;
5868
5869         return;
5870      end if;
5871
5872      --  Here we will make a new entry for the new check
5873
5874      Activate_Range_Check (N);
5875      Num_Saved_Checks := Num_Saved_Checks + 1;
5876      Saved_Checks (Num_Saved_Checks) :=
5877        (Killed      => False,
5878         Entity      => Ent,
5879         Offset      => Ofs,
5880         Check_Type  => 'R',
5881         Target_Type => Ttyp);
5882
5883      if Debug_Flag_CC then
5884         w ("Make new entry, check number = ", Num_Saved_Checks);
5885         w ("  Entity = ", Int (Ent));
5886         Write_Str ("  Offset = ");
5887         pid (Ofs);
5888         w ("  Check_Type = R");
5889         w ("  Target_Type = ", Int (Ttyp));
5890         pg (Union_Id (Ttyp));
5891      end if;
5892
5893   --  If we get an exception, then something went wrong, probably because of
5894   --  an error in the structure of the tree due to an incorrect program. Or
5895   --  it may be a bug in the optimization circuit. In either case the safest
5896   --  thing is simply to set the check flag unconditionally.
5897
5898   exception
5899      when others =>
5900         Activate_Range_Check (N);
5901
5902         if Debug_Flag_CC then
5903            w ("  exception occurred, range flag set");
5904         end if;
5905
5906         return;
5907   end Enable_Range_Check;
5908
5909   ------------------
5910   -- Ensure_Valid --
5911   ------------------
5912
5913   procedure Ensure_Valid
5914     (Expr          : Node_Id;
5915      Holes_OK      : Boolean   := False;
5916      Related_Id    : Entity_Id := Empty;
5917      Is_Low_Bound  : Boolean   := False;
5918      Is_High_Bound : Boolean   := False)
5919   is
5920      Typ : constant Entity_Id  := Etype (Expr);
5921
5922   begin
5923      --  Ignore call if we are not doing any validity checking
5924
5925      if not Validity_Checks_On then
5926         return;
5927
5928      --  Ignore call if range or validity checks suppressed on entity or type
5929
5930      elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5931         return;
5932
5933      --  No check required if expression is from the expander, we assume the
5934      --  expander will generate whatever checks are needed. Note that this is
5935      --  not just an optimization, it avoids infinite recursions.
5936
5937      --  Unchecked conversions must be checked, unless they are initialized
5938      --  scalar values, as in a component assignment in an init proc.
5939
5940      --  In addition, we force a check if Force_Validity_Checks is set
5941
5942      elsif not Comes_From_Source (Expr)
5943        and then not
5944          (Nkind (Expr) = N_Identifier
5945            and then Present (Renamed_Object (Entity (Expr)))
5946            and then Comes_From_Source (Renamed_Object (Entity (Expr))))
5947        and then not Force_Validity_Checks
5948        and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5949                    or else Kill_Range_Check (Expr))
5950      then
5951         return;
5952
5953      --  No check required if expression is known to have valid value
5954
5955      elsif Expr_Known_Valid (Expr) then
5956         return;
5957
5958      --  No check needed within a generated predicate function. Validity
5959      --  of input value will have been checked earlier.
5960
5961      elsif Ekind (Current_Scope) = E_Function
5962        and then Is_Predicate_Function (Current_Scope)
5963      then
5964         return;
5965
5966      --  Ignore case of enumeration with holes where the flag is set not to
5967      --  worry about holes, since no special validity check is needed
5968
5969      elsif Is_Enumeration_Type (Typ)
5970        and then Has_Non_Standard_Rep (Typ)
5971        and then Holes_OK
5972      then
5973         return;
5974
5975      --  No check required on the left-hand side of an assignment
5976
5977      elsif Nkind (Parent (Expr)) = N_Assignment_Statement
5978        and then Expr = Name (Parent (Expr))
5979      then
5980         return;
5981
5982      --  No check on a universal real constant. The context will eventually
5983      --  convert it to a machine number for some target type, or report an
5984      --  illegality.
5985
5986      elsif Nkind (Expr) = N_Real_Literal
5987        and then Etype (Expr) = Universal_Real
5988      then
5989         return;
5990
5991      --  If the expression denotes a component of a packed boolean array,
5992      --  no possible check applies. We ignore the old ACATS chestnuts that
5993      --  involve Boolean range True..True.
5994
5995      --  Note: validity checks are generated for expressions that yield a
5996      --  scalar type, when it is possible to create a value that is outside of
5997      --  the type. If this is a one-bit boolean no such value exists. This is
5998      --  an optimization, and it also prevents compiler blowing up during the
5999      --  elaboration of improperly expanded packed array references.
6000
6001      elsif Nkind (Expr) = N_Indexed_Component
6002        and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6003        and then Root_Type (Etype (Expr)) = Standard_Boolean
6004      then
6005         return;
6006
6007      --  For an expression with actions, we want to insert the validity check
6008      --  on the final Expression.
6009
6010      elsif Nkind (Expr) = N_Expression_With_Actions then
6011         Ensure_Valid (Expression (Expr));
6012         return;
6013
6014      --  An annoying special case. If this is an out parameter of a scalar
6015      --  type, then the value is not going to be accessed, therefore it is
6016      --  inappropriate to do any validity check at the call site.
6017
6018      else
6019         --  Only need to worry about scalar types
6020
6021         if Is_Scalar_Type (Typ) then
6022            declare
6023               P : Node_Id;
6024               N : Node_Id;
6025               E : Entity_Id;
6026               F : Entity_Id;
6027               A : Node_Id;
6028               L : List_Id;
6029
6030            begin
6031               --  Find actual argument (which may be a parameter association)
6032               --  and the parent of the actual argument (the call statement)
6033
6034               N := Expr;
6035               P := Parent (Expr);
6036
6037               if Nkind (P) = N_Parameter_Association then
6038                  N := P;
6039                  P := Parent (N);
6040               end if;
6041
6042               --  Only need to worry if we are argument of a procedure call
6043               --  since functions don't have out parameters. If this is an
6044               --  indirect or dispatching call, get signature from the
6045               --  subprogram type.
6046
6047               if Nkind (P) = N_Procedure_Call_Statement then
6048                  L := Parameter_Associations (P);
6049
6050                  if Is_Entity_Name (Name (P)) then
6051                     E := Entity (Name (P));
6052                  else
6053                     pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
6054                     E := Etype (Name (P));
6055                  end if;
6056
6057                  --  Only need to worry if there are indeed actuals, and if
6058                  --  this could be a procedure call, otherwise we cannot get a
6059                  --  match (either we are not an argument, or the mode of the
6060                  --  formal is not OUT). This test also filters out the
6061                  --  generic case.
6062
6063                  if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6064
6065                     --  This is the loop through parameters, looking for an
6066                     --  OUT parameter for which we are the argument.
6067
6068                     F := First_Formal (E);
6069                     A := First (L);
6070                     while Present (F) loop
6071                        if Ekind (F) = E_Out_Parameter and then A = N then
6072                           return;
6073                        end if;
6074
6075                        Next_Formal (F);
6076                        Next (A);
6077                     end loop;
6078                  end if;
6079               end if;
6080            end;
6081         end if;
6082      end if;
6083
6084      --  If this is a boolean expression, only its elementary operands need
6085      --  checking: if they are valid, a boolean or short-circuit operation
6086      --  with them will be valid as well.
6087
6088      if Base_Type (Typ) = Standard_Boolean
6089        and then
6090         (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6091      then
6092         return;
6093      end if;
6094
6095      --  If we fall through, a validity check is required
6096
6097      Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6098
6099      if Is_Entity_Name (Expr)
6100        and then Safe_To_Capture_Value (Expr, Entity (Expr))
6101      then
6102         Set_Is_Known_Valid (Entity (Expr));
6103      end if;
6104   end Ensure_Valid;
6105
6106   ----------------------
6107   -- Expr_Known_Valid --
6108   ----------------------
6109
6110   function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6111      Typ : constant Entity_Id := Etype (Expr);
6112
6113   begin
6114      --  Non-scalar types are always considered valid, since they never give
6115      --  rise to the issues of erroneous or bounded error behavior that are
6116      --  the concern. In formal reference manual terms the notion of validity
6117      --  only applies to scalar types. Note that even when packed arrays are
6118      --  represented using modular types, they are still arrays semantically,
6119      --  so they are also always valid (in particular, the unused bits can be
6120      --  random rubbish without affecting the validity of the array value).
6121
6122      if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6123         return True;
6124
6125      --  If no validity checking, then everything is considered valid
6126
6127      elsif not Validity_Checks_On then
6128         return True;
6129
6130      --  Floating-point types are considered valid unless floating-point
6131      --  validity checks have been specifically turned on.
6132
6133      elsif Is_Floating_Point_Type (Typ)
6134        and then not Validity_Check_Floating_Point
6135      then
6136         return True;
6137
6138      --  If the expression is the value of an object that is known to be
6139      --  valid, then clearly the expression value itself is valid.
6140
6141      elsif Is_Entity_Name (Expr)
6142        and then Is_Known_Valid (Entity (Expr))
6143
6144        --  Exclude volatile variables
6145
6146        and then not Treat_As_Volatile (Entity (Expr))
6147      then
6148         return True;
6149
6150      --  References to discriminants are always considered valid. The value
6151      --  of a discriminant gets checked when the object is built. Within the
6152      --  record, we consider it valid, and it is important to do so, since
6153      --  otherwise we can try to generate bogus validity checks which
6154      --  reference discriminants out of scope. Discriminants of concurrent
6155      --  types are excluded for the same reason.
6156
6157      elsif Is_Entity_Name (Expr)
6158        and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6159      then
6160         return True;
6161
6162      --  If the type is one for which all values are known valid, then we are
6163      --  sure that the value is valid except in the slightly odd case where
6164      --  the expression is a reference to a variable whose size has been
6165      --  explicitly set to a value greater than the object size.
6166
6167      elsif Is_Known_Valid (Typ) then
6168         if Is_Entity_Name (Expr)
6169           and then Ekind (Entity (Expr)) = E_Variable
6170           and then Esize (Entity (Expr)) > Esize (Typ)
6171         then
6172            return False;
6173         else
6174            return True;
6175         end if;
6176
6177      --  Integer and character literals always have valid values, where
6178      --  appropriate these will be range checked in any case.
6179
6180      elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
6181         return True;
6182
6183      --  If we have a type conversion or a qualification of a known valid
6184      --  value, then the result will always be valid.
6185
6186      elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
6187         return Expr_Known_Valid (Expression (Expr));
6188
6189      --  Case of expression is a non-floating-point operator. In this case we
6190      --  can assume the result is valid the generated code for the operator
6191      --  will include whatever checks are needed (e.g. range checks) to ensure
6192      --  validity. This assumption does not hold for the floating-point case,
6193      --  since floating-point operators can generate Infinite or NaN results
6194      --  which are considered invalid.
6195
6196      --  Historical note: in older versions, the exemption of floating-point
6197      --  types from this assumption was done only in cases where the parent
6198      --  was an assignment, function call or parameter association. Presumably
6199      --  the idea was that in other contexts, the result would be checked
6200      --  elsewhere, but this list of cases was missing tests (at least the
6201      --  N_Object_Declaration case, as shown by a reported missing validity
6202      --  check), and it is not clear why function calls but not procedure
6203      --  calls were tested for. It really seems more accurate and much
6204      --  safer to recognize that expressions which are the result of a
6205      --  floating-point operator can never be assumed to be valid.
6206
6207      elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6208         return True;
6209
6210      --  The result of a membership test is always valid, since it is true or
6211      --  false, there are no other possibilities.
6212
6213      elsif Nkind (Expr) in N_Membership_Test then
6214         return True;
6215
6216      --  For all other cases, we do not know the expression is valid
6217
6218      else
6219         return False;
6220      end if;
6221   end Expr_Known_Valid;
6222
6223   ----------------
6224   -- Find_Check --
6225   ----------------
6226
6227   procedure Find_Check
6228     (Expr        : Node_Id;
6229      Check_Type  : Character;
6230      Target_Type : Entity_Id;
6231      Entry_OK    : out Boolean;
6232      Check_Num   : out Nat;
6233      Ent         : out Entity_Id;
6234      Ofs         : out Uint)
6235   is
6236      function Within_Range_Of
6237        (Target_Type : Entity_Id;
6238         Check_Type  : Entity_Id) return Boolean;
6239      --  Given a requirement for checking a range against Target_Type, and
6240      --  and a range Check_Type against which a check has already been made,
6241      --  determines if the check against check type is sufficient to ensure
6242      --  that no check against Target_Type is required.
6243
6244      ---------------------
6245      -- Within_Range_Of --
6246      ---------------------
6247
6248      function Within_Range_Of
6249        (Target_Type : Entity_Id;
6250         Check_Type  : Entity_Id) return Boolean
6251      is
6252      begin
6253         if Target_Type = Check_Type then
6254            return True;
6255
6256         else
6257            declare
6258               Tlo : constant Node_Id := Type_Low_Bound  (Target_Type);
6259               Thi : constant Node_Id := Type_High_Bound (Target_Type);
6260               Clo : constant Node_Id := Type_Low_Bound  (Check_Type);
6261               Chi : constant Node_Id := Type_High_Bound (Check_Type);
6262
6263            begin
6264               if (Tlo = Clo
6265                     or else (Compile_Time_Known_Value (Tlo)
6266                                and then
6267                              Compile_Time_Known_Value (Clo)
6268                                and then
6269                              Expr_Value (Clo) >= Expr_Value (Tlo)))
6270                 and then
6271                  (Thi = Chi
6272                     or else (Compile_Time_Known_Value (Thi)
6273                                and then
6274                              Compile_Time_Known_Value (Chi)
6275                                and then
6276                              Expr_Value (Chi) <= Expr_Value (Clo)))
6277               then
6278                  return True;
6279               else
6280                  return False;
6281               end if;
6282            end;
6283         end if;
6284      end Within_Range_Of;
6285
6286   --  Start of processing for Find_Check
6287
6288   begin
6289      --  Establish default, in case no entry is found
6290
6291      Check_Num := 0;
6292
6293      --  Case of expression is simple entity reference
6294
6295      if Is_Entity_Name (Expr) then
6296         Ent := Entity (Expr);
6297         Ofs := Uint_0;
6298
6299      --  Case of expression is entity + known constant
6300
6301      elsif Nkind (Expr) = N_Op_Add
6302        and then Compile_Time_Known_Value (Right_Opnd (Expr))
6303        and then Is_Entity_Name (Left_Opnd (Expr))
6304      then
6305         Ent := Entity (Left_Opnd (Expr));
6306         Ofs := Expr_Value (Right_Opnd (Expr));
6307
6308      --  Case of expression is entity - known constant
6309
6310      elsif Nkind (Expr) = N_Op_Subtract
6311        and then Compile_Time_Known_Value (Right_Opnd (Expr))
6312        and then Is_Entity_Name (Left_Opnd (Expr))
6313      then
6314         Ent := Entity (Left_Opnd (Expr));
6315         Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6316
6317      --  Any other expression is not of the right form
6318
6319      else
6320         Ent := Empty;
6321         Ofs := Uint_0;
6322         Entry_OK := False;
6323         return;
6324      end if;
6325
6326      --  Come here with expression of appropriate form, check if entity is an
6327      --  appropriate one for our purposes.
6328
6329      if (Ekind (Ent) = E_Variable
6330            or else Is_Constant_Object (Ent))
6331        and then not Is_Library_Level_Entity (Ent)
6332      then
6333         Entry_OK := True;
6334      else
6335         Entry_OK := False;
6336         return;
6337      end if;
6338
6339      --  See if there is matching check already
6340
6341      for J in reverse 1 .. Num_Saved_Checks loop
6342         declare
6343            SC : Saved_Check renames Saved_Checks (J);
6344         begin
6345            if SC.Killed = False
6346              and then SC.Entity = Ent
6347              and then SC.Offset = Ofs
6348              and then SC.Check_Type = Check_Type
6349              and then Within_Range_Of (Target_Type, SC.Target_Type)
6350            then
6351               Check_Num := J;
6352               return;
6353            end if;
6354         end;
6355      end loop;
6356
6357      --  If we fall through entry was not found
6358
6359      return;
6360   end Find_Check;
6361
6362   ---------------------------------
6363   -- Generate_Discriminant_Check --
6364   ---------------------------------
6365
6366   --  Note: the code for this procedure is derived from the
6367   --  Emit_Discriminant_Check Routine in trans.c.
6368
6369   procedure Generate_Discriminant_Check (N : Node_Id) is
6370      Loc  : constant Source_Ptr := Sloc (N);
6371      Pref : constant Node_Id    := Prefix (N);
6372      Sel  : constant Node_Id    := Selector_Name (N);
6373
6374      Orig_Comp : constant Entity_Id :=
6375        Original_Record_Component (Entity (Sel));
6376      --  The original component to be checked
6377
6378      Discr_Fct : constant Entity_Id :=
6379        Discriminant_Checking_Func (Orig_Comp);
6380      --  The discriminant checking function
6381
6382      Discr : Entity_Id;
6383      --  One discriminant to be checked in the type
6384
6385      Real_Discr : Entity_Id;
6386      --  Actual discriminant in the call
6387
6388      Pref_Type : Entity_Id;
6389      --  Type of relevant prefix (ignoring private/access stuff)
6390
6391      Args : List_Id;
6392      --  List of arguments for function call
6393
6394      Formal : Entity_Id;
6395      --  Keep track of the formal corresponding to the actual we build for
6396      --  each discriminant, in order to be able to perform the necessary type
6397      --  conversions.
6398
6399      Scomp : Node_Id;
6400      --  Selected component reference for checking function argument
6401
6402   begin
6403      Pref_Type := Etype (Pref);
6404
6405      --  Force evaluation of the prefix, so that it does not get evaluated
6406      --  twice (once for the check, once for the actual reference). Such a
6407      --  double evaluation is always a potential source of inefficiency, and
6408      --  is functionally incorrect in the volatile case, or when the prefix
6409      --  may have side effects. A nonvolatile entity or a component of a
6410      --  nonvolatile entity requires no evaluation.
6411
6412      if Is_Entity_Name (Pref) then
6413         if Treat_As_Volatile (Entity (Pref)) then
6414            Force_Evaluation (Pref, Name_Req => True);
6415         end if;
6416
6417      elsif Treat_As_Volatile (Etype (Pref)) then
6418         Force_Evaluation (Pref, Name_Req => True);
6419
6420      elsif Nkind (Pref) = N_Selected_Component
6421        and then Is_Entity_Name (Prefix (Pref))
6422      then
6423         null;
6424
6425      else
6426         Force_Evaluation (Pref, Name_Req => True);
6427      end if;
6428
6429      --  For a tagged type, use the scope of the original component to
6430      --  obtain the type, because ???
6431
6432      if Is_Tagged_Type (Scope (Orig_Comp)) then
6433         Pref_Type := Scope (Orig_Comp);
6434
6435      --  For an untagged derived type, use the discriminants of the parent
6436      --  which have been renamed in the derivation, possibly by a one-to-many
6437      --  discriminant constraint. For untagged type, initially get the Etype
6438      --  of the prefix
6439
6440      else
6441         if Is_Derived_Type (Pref_Type)
6442           and then Number_Discriminants (Pref_Type) /=
6443                    Number_Discriminants (Etype (Base_Type (Pref_Type)))
6444         then
6445            Pref_Type := Etype (Base_Type (Pref_Type));
6446         end if;
6447      end if;
6448
6449      --  We definitely should have a checking function, This routine should
6450      --  not be called if no discriminant checking function is present.
6451
6452      pragma Assert (Present (Discr_Fct));
6453
6454      --  Create the list of the actual parameters for the call. This list
6455      --  is the list of the discriminant fields of the record expression to
6456      --  be discriminant checked.
6457
6458      Args   := New_List;
6459      Formal := First_Formal (Discr_Fct);
6460      Discr  := First_Discriminant (Pref_Type);
6461      while Present (Discr) loop
6462
6463         --  If we have a corresponding discriminant field, and a parent
6464         --  subtype is present, then we want to use the corresponding
6465         --  discriminant since this is the one with the useful value.
6466
6467         if Present (Corresponding_Discriminant (Discr))
6468           and then Ekind (Pref_Type) = E_Record_Type
6469           and then Present (Parent_Subtype (Pref_Type))
6470         then
6471            Real_Discr := Corresponding_Discriminant (Discr);
6472         else
6473            Real_Discr := Discr;
6474         end if;
6475
6476         --  Construct the reference to the discriminant
6477
6478         Scomp :=
6479           Make_Selected_Component (Loc,
6480             Prefix =>
6481               Unchecked_Convert_To (Pref_Type,
6482                 Duplicate_Subexpr (Pref)),
6483             Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6484
6485         --  Manually analyze and resolve this selected component. We really
6486         --  want it just as it appears above, and do not want the expander
6487         --  playing discriminal games etc with this reference. Then we append
6488         --  the argument to the list we are gathering.
6489
6490         Set_Etype (Scomp, Etype (Real_Discr));
6491         Set_Analyzed (Scomp, True);
6492         Append_To (Args, Convert_To (Etype (Formal), Scomp));
6493
6494         Next_Formal_With_Extras (Formal);
6495         Next_Discriminant (Discr);
6496      end loop;
6497
6498      --  Now build and insert the call
6499
6500      Insert_Action (N,
6501        Make_Raise_Constraint_Error (Loc,
6502          Condition =>
6503            Make_Function_Call (Loc,
6504              Name                   => New_Occurrence_Of (Discr_Fct, Loc),
6505              Parameter_Associations => Args),
6506          Reason => CE_Discriminant_Check_Failed));
6507   end Generate_Discriminant_Check;
6508
6509   ---------------------------
6510   -- Generate_Index_Checks --
6511   ---------------------------
6512
6513   procedure Generate_Index_Checks (N : Node_Id) is
6514
6515      function Entity_Of_Prefix return Entity_Id;
6516      --  Returns the entity of the prefix of N (or Empty if not found)
6517
6518      ----------------------
6519      -- Entity_Of_Prefix --
6520      ----------------------
6521
6522      function Entity_Of_Prefix return Entity_Id is
6523         P : Node_Id;
6524
6525      begin
6526         P := Prefix (N);
6527         while not Is_Entity_Name (P) loop
6528            if not Nkind_In (P, N_Selected_Component,
6529                                N_Indexed_Component)
6530            then
6531               return Empty;
6532            end if;
6533
6534            P := Prefix (P);
6535         end loop;
6536
6537         return Entity (P);
6538      end Entity_Of_Prefix;
6539
6540      --  Local variables
6541
6542      Loc   : constant Source_Ptr := Sloc (N);
6543      A     : constant Node_Id    := Prefix (N);
6544      A_Ent : constant Entity_Id  := Entity_Of_Prefix;
6545      Sub   : Node_Id;
6546
6547   --  Start of processing for Generate_Index_Checks
6548
6549   begin
6550      --  Ignore call if the prefix is not an array since we have a serious
6551      --  error in the sources. Ignore it also if index checks are suppressed
6552      --  for array object or type.
6553
6554      if not Is_Array_Type (Etype (A))
6555        or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6556        or else Index_Checks_Suppressed (Etype (A))
6557      then
6558         return;
6559
6560      --  The indexed component we are dealing with contains 'Loop_Entry in its
6561      --  prefix. This case arises when analysis has determined that constructs
6562      --  such as
6563
6564      --     Prefix'Loop_Entry (Expr)
6565      --     Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6566
6567      --  require rewriting for error detection purposes. A side effect of this
6568      --  action is the generation of index checks that mention 'Loop_Entry.
6569      --  Delay the generation of the check until 'Loop_Entry has been properly
6570      --  expanded. This is done in Expand_Loop_Entry_Attributes.
6571
6572      elsif Nkind (Prefix (N)) = N_Attribute_Reference
6573        and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6574      then
6575         return;
6576      end if;
6577
6578      --  Generate a raise of constraint error with the appropriate reason and
6579      --  a condition of the form:
6580
6581      --    Base_Type (Sub) not in Array'Range (Subscript)
6582
6583      --  Note that the reason we generate the conversion to the base type here
6584      --  is that we definitely want the range check to take place, even if it
6585      --  looks like the subtype is OK. Optimization considerations that allow
6586      --  us to omit the check have already been taken into account in the
6587      --  setting of the Do_Range_Check flag earlier on.
6588
6589      Sub := First (Expressions (N));
6590
6591      --  Handle string literals
6592
6593      if Ekind (Etype (A)) = E_String_Literal_Subtype then
6594         if Do_Range_Check (Sub) then
6595            Set_Do_Range_Check (Sub, False);
6596
6597            --  For string literals we obtain the bounds of the string from the
6598            --  associated subtype.
6599
6600            Insert_Action (N,
6601              Make_Raise_Constraint_Error (Loc,
6602                Condition =>
6603                   Make_Not_In (Loc,
6604                     Left_Opnd  =>
6605                       Convert_To (Base_Type (Etype (Sub)),
6606                         Duplicate_Subexpr_Move_Checks (Sub)),
6607                     Right_Opnd =>
6608                       Make_Attribute_Reference (Loc,
6609                         Prefix         => New_Occurrence_Of (Etype (A), Loc),
6610                         Attribute_Name => Name_Range)),
6611                Reason => CE_Index_Check_Failed));
6612         end if;
6613
6614      --  General case
6615
6616      else
6617         declare
6618            A_Idx   : Node_Id := Empty;
6619            A_Range : Node_Id;
6620            Ind     : Nat;
6621            Num     : List_Id;
6622            Range_N : Node_Id;
6623
6624         begin
6625            A_Idx := First_Index (Etype (A));
6626            Ind   := 1;
6627            while Present (Sub) loop
6628               if Do_Range_Check (Sub) then
6629                  Set_Do_Range_Check (Sub, False);
6630
6631                  --  Force evaluation except for the case of a simple name of
6632                  --  a nonvolatile entity.
6633
6634                  if not Is_Entity_Name (Sub)
6635                    or else Treat_As_Volatile (Entity (Sub))
6636                  then
6637                     Force_Evaluation (Sub);
6638                  end if;
6639
6640                  if Nkind (A_Idx) = N_Range then
6641                     A_Range := A_Idx;
6642
6643                  elsif Nkind (A_Idx) = N_Identifier
6644                    or else Nkind (A_Idx) = N_Expanded_Name
6645                  then
6646                     A_Range := Scalar_Range (Entity (A_Idx));
6647
6648                  else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6649                     A_Range := Range_Expression (Constraint (A_Idx));
6650                  end if;
6651
6652                  --  For array objects with constant bounds we can generate
6653                  --  the index check using the bounds of the type of the index
6654
6655                  if Present (A_Ent)
6656                    and then Ekind (A_Ent) = E_Variable
6657                    and then Is_Constant_Bound (Low_Bound (A_Range))
6658                    and then Is_Constant_Bound (High_Bound (A_Range))
6659                  then
6660                     Range_N :=
6661                       Make_Attribute_Reference (Loc,
6662                         Prefix         =>
6663                           New_Occurrence_Of (Etype (A_Idx), Loc),
6664                         Attribute_Name => Name_Range);
6665
6666                  --  For arrays with non-constant bounds we cannot generate
6667                  --  the index check using the bounds of the type of the index
6668                  --  since it may reference discriminants of some enclosing
6669                  --  type. We obtain the bounds directly from the prefix
6670                  --  object.
6671
6672                  else
6673                     if Ind = 1 then
6674                        Num := No_List;
6675                     else
6676                        Num := New_List (Make_Integer_Literal (Loc, Ind));
6677                     end if;
6678
6679                     Range_N :=
6680                       Make_Attribute_Reference (Loc,
6681                         Prefix =>
6682                           Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6683                         Attribute_Name => Name_Range,
6684                         Expressions    => Num);
6685                  end if;
6686
6687                  Insert_Action (N,
6688                    Make_Raise_Constraint_Error (Loc,
6689                      Condition =>
6690                         Make_Not_In (Loc,
6691                           Left_Opnd  =>
6692                             Convert_To (Base_Type (Etype (Sub)),
6693                               Duplicate_Subexpr_Move_Checks (Sub)),
6694                           Right_Opnd => Range_N),
6695                      Reason => CE_Index_Check_Failed));
6696               end if;
6697
6698               A_Idx := Next_Index (A_Idx);
6699               Ind := Ind + 1;
6700               Next (Sub);
6701            end loop;
6702         end;
6703      end if;
6704   end Generate_Index_Checks;
6705
6706   --------------------------
6707   -- Generate_Range_Check --
6708   --------------------------
6709
6710   procedure Generate_Range_Check
6711     (N           : Node_Id;
6712      Target_Type : Entity_Id;
6713      Reason      : RT_Exception_Code)
6714   is
6715      Loc              : constant Source_Ptr := Sloc (N);
6716      Source_Type      : constant Entity_Id  := Etype (N);
6717      Source_Base_Type : constant Entity_Id  := Base_Type (Source_Type);
6718      Target_Base_Type : constant Entity_Id  := Base_Type (Target_Type);
6719
6720      procedure Convert_And_Check_Range;
6721      --  Convert the conversion operand to the target base type and save in
6722      --  a temporary. Then check the converted value against the range of the
6723      --  target subtype.
6724
6725      -----------------------------
6726      -- Convert_And_Check_Range --
6727      -----------------------------
6728
6729      procedure Convert_And_Check_Range is
6730         Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6731
6732      begin
6733         --  We make a temporary to hold the value of the converted value
6734         --  (converted to the base type), and then do the test against this
6735         --  temporary. The conversion itself is replaced by an occurrence of
6736         --  Tnn and followed by the explicit range check. Note that checks
6737         --  are suppressed for this code, since we don't want a recursive
6738         --  range check popping up.
6739
6740         --     Tnn : constant Target_Base_Type := Target_Base_Type (N);
6741         --     [constraint_error when Tnn not in Target_Type]
6742
6743         Insert_Actions (N, New_List (
6744           Make_Object_Declaration (Loc,
6745             Defining_Identifier => Tnn,
6746             Object_Definition   => New_Occurrence_Of (Target_Base_Type, Loc),
6747             Constant_Present    => True,
6748             Expression          =>
6749               Make_Type_Conversion (Loc,
6750                 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6751                 Expression   => Duplicate_Subexpr (N))),
6752
6753           Make_Raise_Constraint_Error (Loc,
6754             Condition =>
6755               Make_Not_In (Loc,
6756                 Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
6757                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6758             Reason => Reason)),
6759           Suppress => All_Checks);
6760
6761         Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6762
6763         --  Set the type of N, because the declaration for Tnn might not
6764         --  be analyzed yet, as is the case if N appears within a record
6765         --  declaration, as a discriminant constraint or expression.
6766
6767         Set_Etype (N, Target_Base_Type);
6768      end Convert_And_Check_Range;
6769
6770   --  Start of processing for Generate_Range_Check
6771
6772   begin
6773      --  First special case, if the source type is already within the range
6774      --  of the target type, then no check is needed (probably we should have
6775      --  stopped Do_Range_Check from being set in the first place, but better
6776      --  late than never in preventing junk code and junk flag settings.
6777
6778      if In_Subrange_Of (Source_Type, Target_Type)
6779
6780        --  We do NOT apply this if the source node is a literal, since in this
6781        --  case the literal has already been labeled as having the subtype of
6782        --  the target.
6783
6784        and then not
6785          (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6786             or else
6787               (Is_Entity_Name (N)
6788                 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6789      then
6790         Set_Do_Range_Check (N, False);
6791         return;
6792      end if;
6793
6794      --  Here a check is needed. If the expander is not active, or if we are
6795      --  in GNATProve mode, then simply set the Do_Range_Check flag and we
6796      --  are done. In both these cases, we just want to see the range check
6797      --  flag set, we do not want to generate the explicit range check code.
6798
6799      if GNATprove_Mode or else not Expander_Active then
6800         Set_Do_Range_Check (N, True);
6801         return;
6802      end if;
6803
6804      --  Here we will generate an explicit range check, so we don't want to
6805      --  set the Do_Range check flag, since the range check is taken care of
6806      --  by the code we will generate.
6807
6808      Set_Do_Range_Check (N, False);
6809
6810      --  Force evaluation of the node, so that it does not get evaluated twice
6811      --  (once for the check, once for the actual reference). Such a double
6812      --  evaluation is always a potential source of inefficiency, and is
6813      --  functionally incorrect in the volatile case.
6814
6815      --  We skip the evaluation of attribute references because, after these
6816      --  runtime checks are generated, the expander may need to rewrite this
6817      --  node (for example, see Attribute_Max_Size_In_Storage_Elements in
6818      --  Expand_N_Attribute_Reference).
6819
6820      if Nkind (N) /= N_Attribute_Reference
6821        and then (not Is_Entity_Name (N)
6822                   or else Treat_As_Volatile (Entity (N)))
6823      then
6824         Force_Evaluation (N, Mode => Strict);
6825      end if;
6826
6827      --  The easiest case is when Source_Base_Type and Target_Base_Type are
6828      --  the same since in this case we can simply do a direct check of the
6829      --  value of N against the bounds of Target_Type.
6830
6831      --    [constraint_error when N not in Target_Type]
6832
6833      --  Note: this is by far the most common case, for example all cases of
6834      --  checks on the RHS of assignments are in this category, but not all
6835      --  cases are like this. Notably conversions can involve two types.
6836
6837      if Source_Base_Type = Target_Base_Type then
6838
6839         --  Insert the explicit range check. Note that we suppress checks for
6840         --  this code, since we don't want a recursive range check popping up.
6841
6842         Insert_Action (N,
6843           Make_Raise_Constraint_Error (Loc,
6844             Condition =>
6845               Make_Not_In (Loc,
6846                 Left_Opnd  => Duplicate_Subexpr (N),
6847                 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6848             Reason => Reason),
6849           Suppress => All_Checks);
6850
6851      --  Next test for the case where the target type is within the bounds
6852      --  of the base type of the source type, since in this case we can
6853      --  simply convert these bounds to the base type of T to do the test.
6854
6855      --    [constraint_error when N not in
6856      --       Source_Base_Type (Target_Type'First)
6857      --         ..
6858      --       Source_Base_Type(Target_Type'Last))]
6859
6860      --  The conversions will always work and need no check
6861
6862      --  Unchecked_Convert_To is used instead of Convert_To to handle the case
6863      --  of converting from an enumeration value to an integer type, such as
6864      --  occurs for the case of generating a range check on Enum'Val(Exp)
6865      --  (which used to be handled by gigi). This is OK, since the conversion
6866      --  itself does not require a check.
6867
6868      elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6869
6870         --  Insert the explicit range check. Note that we suppress checks for
6871         --  this code, since we don't want a recursive range check popping up.
6872
6873         if Is_Discrete_Type (Source_Base_Type)
6874              and then
6875            Is_Discrete_Type (Target_Base_Type)
6876         then
6877            Insert_Action (N,
6878              Make_Raise_Constraint_Error (Loc,
6879                Condition =>
6880                  Make_Not_In (Loc,
6881                    Left_Opnd  => Duplicate_Subexpr (N),
6882
6883                    Right_Opnd =>
6884                      Make_Range (Loc,
6885                        Low_Bound  =>
6886                          Unchecked_Convert_To (Source_Base_Type,
6887                            Make_Attribute_Reference (Loc,
6888                              Prefix         =>
6889                                New_Occurrence_Of (Target_Type, Loc),
6890                              Attribute_Name => Name_First)),
6891
6892                        High_Bound =>
6893                          Unchecked_Convert_To (Source_Base_Type,
6894                            Make_Attribute_Reference (Loc,
6895                              Prefix         =>
6896                                New_Occurrence_Of (Target_Type, Loc),
6897                              Attribute_Name => Name_Last)))),
6898                Reason    => Reason),
6899              Suppress => All_Checks);
6900
6901         --  For conversions involving at least one type that is not discrete,
6902         --  first convert to target type and then generate the range check.
6903         --  This avoids problems with values that are close to a bound of the
6904         --  target type that would fail a range check when done in a larger
6905         --  source type before converting but would pass if converted with
6906         --  rounding and then checked (such as in float-to-float conversions).
6907
6908         else
6909            Convert_And_Check_Range;
6910         end if;
6911
6912      --  Note that at this stage we now that the Target_Base_Type is not in
6913      --  the range of the Source_Base_Type (since even the Target_Type itself
6914      --  is not in this range). It could still be the case that Source_Type is
6915      --  in range of the target base type since we have not checked that case.
6916
6917      --  If that is the case, we can freely convert the source to the target,
6918      --  and then test the target result against the bounds.
6919
6920      elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
6921         Convert_And_Check_Range;
6922
6923      --  At this stage, we know that we have two scalar types, which are
6924      --  directly convertible, and where neither scalar type has a base
6925      --  range that is in the range of the other scalar type.
6926
6927      --  The only way this can happen is with a signed and unsigned type.
6928      --  So test for these two cases:
6929
6930      else
6931         --  Case of the source is unsigned and the target is signed
6932
6933         if Is_Unsigned_Type (Source_Base_Type)
6934           and then not Is_Unsigned_Type (Target_Base_Type)
6935         then
6936            --  If the source is unsigned and the target is signed, then we
6937            --  know that the source is not shorter than the target (otherwise
6938            --  the source base type would be in the target base type range).
6939
6940            --  In other words, the unsigned type is either the same size as
6941            --  the target, or it is larger. It cannot be smaller.
6942
6943            pragma Assert
6944              (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
6945
6946            --  We only need to check the low bound if the low bound of the
6947            --  target type is non-negative. If the low bound of the target
6948            --  type is negative, then we know that we will fit fine.
6949
6950            --  If the high bound of the target type is negative, then we
6951            --  know we have a constraint error, since we can't possibly
6952            --  have a negative source.
6953
6954            --  With these two checks out of the way, we can do the check
6955            --  using the source type safely
6956
6957            --  This is definitely the most annoying case.
6958
6959            --    [constraint_error
6960            --       when (Target_Type'First >= 0
6961            --               and then
6962            --                 N < Source_Base_Type (Target_Type'First))
6963            --         or else Target_Type'Last < 0
6964            --         or else N > Source_Base_Type (Target_Type'Last)];
6965
6966            --  We turn off all checks since we know that the conversions
6967            --  will work fine, given the guards for negative values.
6968
6969            Insert_Action (N,
6970              Make_Raise_Constraint_Error (Loc,
6971                Condition =>
6972                  Make_Or_Else (Loc,
6973                    Make_Or_Else (Loc,
6974                      Left_Opnd =>
6975                        Make_And_Then (Loc,
6976                          Left_Opnd => Make_Op_Ge (Loc,
6977                            Left_Opnd =>
6978                              Make_Attribute_Reference (Loc,
6979                                Prefix =>
6980                                  New_Occurrence_Of (Target_Type, Loc),
6981                                Attribute_Name => Name_First),
6982                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6983
6984                          Right_Opnd =>
6985                            Make_Op_Lt (Loc,
6986                              Left_Opnd => Duplicate_Subexpr (N),
6987                              Right_Opnd =>
6988                                Convert_To (Source_Base_Type,
6989                                  Make_Attribute_Reference (Loc,
6990                                    Prefix =>
6991                                      New_Occurrence_Of (Target_Type, Loc),
6992                                    Attribute_Name => Name_First)))),
6993
6994                      Right_Opnd =>
6995                        Make_Op_Lt (Loc,
6996                          Left_Opnd =>
6997                            Make_Attribute_Reference (Loc,
6998                              Prefix => New_Occurrence_Of (Target_Type, Loc),
6999                              Attribute_Name => Name_Last),
7000                            Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7001
7002                    Right_Opnd =>
7003                      Make_Op_Gt (Loc,
7004                        Left_Opnd => Duplicate_Subexpr (N),
7005                        Right_Opnd =>
7006                          Convert_To (Source_Base_Type,
7007                            Make_Attribute_Reference (Loc,
7008                              Prefix => New_Occurrence_Of (Target_Type, Loc),
7009                              Attribute_Name => Name_Last)))),
7010
7011                Reason => Reason),
7012              Suppress  => All_Checks);
7013
7014         --  Only remaining possibility is that the source is signed and
7015         --  the target is unsigned.
7016
7017         else
7018            pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
7019                            and then Is_Unsigned_Type (Target_Base_Type));
7020
7021            --  If the source is signed and the target is unsigned, then we
7022            --  know that the target is not shorter than the source (otherwise
7023            --  the target base type would be in the source base type range).
7024
7025            --  In other words, the unsigned type is either the same size as
7026            --  the target, or it is larger. It cannot be smaller.
7027
7028            --  Clearly we have an error if the source value is negative since
7029            --  no unsigned type can have negative values. If the source type
7030            --  is non-negative, then the check can be done using the target
7031            --  type.
7032
7033            --    Tnn : constant Target_Base_Type (N) := Target_Type;
7034
7035            --    [constraint_error
7036            --       when N < 0 or else Tnn not in Target_Type];
7037
7038            --  We turn off all checks for the conversion of N to the target
7039            --  base type, since we generate the explicit check to ensure that
7040            --  the value is non-negative
7041
7042            declare
7043               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7044
7045            begin
7046               Insert_Actions (N, New_List (
7047                 Make_Object_Declaration (Loc,
7048                   Defining_Identifier => Tnn,
7049                   Object_Definition   =>
7050                     New_Occurrence_Of (Target_Base_Type, Loc),
7051                   Constant_Present    => True,
7052                   Expression          =>
7053                     Make_Unchecked_Type_Conversion (Loc,
7054                       Subtype_Mark =>
7055                         New_Occurrence_Of (Target_Base_Type, Loc),
7056                       Expression   => Duplicate_Subexpr (N))),
7057
7058                 Make_Raise_Constraint_Error (Loc,
7059                   Condition =>
7060                     Make_Or_Else (Loc,
7061                       Left_Opnd =>
7062                         Make_Op_Lt (Loc,
7063                           Left_Opnd  => Duplicate_Subexpr (N),
7064                           Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7065
7066                       Right_Opnd =>
7067                         Make_Not_In (Loc,
7068                           Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
7069                           Right_Opnd =>
7070                             New_Occurrence_Of (Target_Type, Loc))),
7071
7072                   Reason     => Reason)),
7073                 Suppress => All_Checks);
7074
7075               --  Set the Etype explicitly, because Insert_Actions may have
7076               --  placed the declaration in the freeze list for an enclosing
7077               --  construct, and thus it is not analyzed yet.
7078
7079               Set_Etype (Tnn, Target_Base_Type);
7080               Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7081            end;
7082         end if;
7083      end if;
7084   end Generate_Range_Check;
7085
7086   ------------------
7087   -- Get_Check_Id --
7088   ------------------
7089
7090   function Get_Check_Id (N : Name_Id) return Check_Id is
7091   begin
7092      --  For standard check name, we can do a direct computation
7093
7094      if N in First_Check_Name .. Last_Check_Name then
7095         return Check_Id (N - (First_Check_Name - 1));
7096
7097      --  For non-standard names added by pragma Check_Name, search table
7098
7099      else
7100         for J in All_Checks + 1 .. Check_Names.Last loop
7101            if Check_Names.Table (J) = N then
7102               return J;
7103            end if;
7104         end loop;
7105      end if;
7106
7107      --  No matching name found
7108
7109      return No_Check_Id;
7110   end Get_Check_Id;
7111
7112   ---------------------
7113   -- Get_Discriminal --
7114   ---------------------
7115
7116   function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7117      Loc : constant Source_Ptr := Sloc (E);
7118      D   : Entity_Id;
7119      Sc  : Entity_Id;
7120
7121   begin
7122      --  The bound can be a bona fide parameter of a protected operation,
7123      --  rather than a prival encoded as an in-parameter.
7124
7125      if No (Discriminal_Link (Entity (Bound))) then
7126         return Bound;
7127      end if;
7128
7129      --  Climb the scope stack looking for an enclosing protected type. If
7130      --  we run out of scopes, return the bound itself.
7131
7132      Sc := Scope (E);
7133      while Present (Sc) loop
7134         if Sc = Standard_Standard then
7135            return Bound;
7136         elsif Ekind (Sc) = E_Protected_Type then
7137            exit;
7138         end if;
7139
7140         Sc := Scope (Sc);
7141      end loop;
7142
7143      D := First_Discriminant (Sc);
7144      while Present (D) loop
7145         if Chars (D) = Chars (Bound) then
7146            return New_Occurrence_Of (Discriminal (D), Loc);
7147         end if;
7148
7149         Next_Discriminant (D);
7150      end loop;
7151
7152      return Bound;
7153   end Get_Discriminal;
7154
7155   ----------------------
7156   -- Get_Range_Checks --
7157   ----------------------
7158
7159   function Get_Range_Checks
7160     (Ck_Node    : Node_Id;
7161      Target_Typ : Entity_Id;
7162      Source_Typ : Entity_Id := Empty;
7163      Warn_Node  : Node_Id   := Empty) return Check_Result
7164   is
7165   begin
7166      return
7167        Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
7168   end Get_Range_Checks;
7169
7170   ------------------
7171   -- Guard_Access --
7172   ------------------
7173
7174   function Guard_Access
7175     (Cond    : Node_Id;
7176      Loc     : Source_Ptr;
7177      Ck_Node : Node_Id) return Node_Id
7178   is
7179   begin
7180      if Nkind (Cond) = N_Or_Else then
7181         Set_Paren_Count (Cond, 1);
7182      end if;
7183
7184      if Nkind (Ck_Node) = N_Allocator then
7185         return Cond;
7186
7187      else
7188         return
7189           Make_And_Then (Loc,
7190             Left_Opnd =>
7191               Make_Op_Ne (Loc,
7192                 Left_Opnd  => Duplicate_Subexpr_No_Checks (Ck_Node),
7193                 Right_Opnd => Make_Null (Loc)),
7194             Right_Opnd => Cond);
7195      end if;
7196   end Guard_Access;
7197
7198   -----------------------------
7199   -- Index_Checks_Suppressed --
7200   -----------------------------
7201
7202   function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7203   begin
7204      if Present (E) and then Checks_May_Be_Suppressed (E) then
7205         return Is_Check_Suppressed (E, Index_Check);
7206      else
7207         return Scope_Suppress.Suppress (Index_Check);
7208      end if;
7209   end Index_Checks_Suppressed;
7210
7211   ----------------
7212   -- Initialize --
7213   ----------------
7214
7215   procedure Initialize is
7216   begin
7217      for J in Determine_Range_Cache_N'Range loop
7218         Determine_Range_Cache_N (J) := Empty;
7219      end loop;
7220
7221      Check_Names.Init;
7222
7223      for J in Int range 1 .. All_Checks loop
7224         Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7225      end loop;
7226   end Initialize;
7227
7228   -------------------------
7229   -- Insert_Range_Checks --
7230   -------------------------
7231
7232   procedure Insert_Range_Checks
7233     (Checks       : Check_Result;
7234      Node         : Node_Id;
7235      Suppress_Typ : Entity_Id;
7236      Static_Sloc  : Source_Ptr := No_Location;
7237      Flag_Node    : Node_Id    := Empty;
7238      Do_Before    : Boolean    := False)
7239   is
7240      Checks_On  : constant Boolean :=
7241                     not Index_Checks_Suppressed (Suppress_Typ)
7242                       or else
7243                     not Range_Checks_Suppressed (Suppress_Typ);
7244
7245      Check_Node           : Node_Id;
7246      Internal_Flag_Node   : Node_Id    := Flag_Node;
7247      Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7248
7249   begin
7250      --  For now we just return if Checks_On is false, however this should be
7251      --  enhanced to check for an always True value in the condition and to
7252      --  generate a compilation warning???
7253
7254      if not Expander_Active or not Checks_On then
7255         return;
7256      end if;
7257
7258      if Static_Sloc = No_Location then
7259         Internal_Static_Sloc := Sloc (Node);
7260      end if;
7261
7262      if No (Flag_Node) then
7263         Internal_Flag_Node := Node;
7264      end if;
7265
7266      for J in 1 .. 2 loop
7267         exit when No (Checks (J));
7268
7269         if Nkind (Checks (J)) = N_Raise_Constraint_Error
7270           and then Present (Condition (Checks (J)))
7271         then
7272            if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7273               Check_Node := Checks (J);
7274               Mark_Rewrite_Insertion (Check_Node);
7275
7276               if Do_Before then
7277                  Insert_Before_And_Analyze (Node, Check_Node);
7278               else
7279                  Insert_After_And_Analyze (Node, Check_Node);
7280               end if;
7281
7282               Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7283            end if;
7284
7285         else
7286            Check_Node :=
7287              Make_Raise_Constraint_Error (Internal_Static_Sloc,
7288                Reason => CE_Range_Check_Failed);
7289            Mark_Rewrite_Insertion (Check_Node);
7290
7291            if Do_Before then
7292               Insert_Before_And_Analyze (Node, Check_Node);
7293            else
7294               Insert_After_And_Analyze (Node, Check_Node);
7295            end if;
7296         end if;
7297      end loop;
7298   end Insert_Range_Checks;
7299
7300   ------------------------
7301   -- Insert_Valid_Check --
7302   ------------------------
7303
7304   procedure Insert_Valid_Check
7305     (Expr          : Node_Id;
7306      Related_Id    : Entity_Id := Empty;
7307      Is_Low_Bound  : Boolean   := False;
7308      Is_High_Bound : Boolean   := False)
7309   is
7310      Loc : constant Source_Ptr := Sloc (Expr);
7311      Typ : constant Entity_Id  := Etype (Expr);
7312      Exp : Node_Id;
7313
7314   begin
7315      --  Do not insert if checks off, or if not checking validity or if
7316      --  expression is known to be valid.
7317
7318      if not Validity_Checks_On
7319        or else Range_Or_Validity_Checks_Suppressed (Expr)
7320        or else Expr_Known_Valid (Expr)
7321      then
7322         return;
7323
7324      --  Do not insert checks within a predicate function. This will arise
7325      --  if the current unit and the predicate function are being compiled
7326      --  with validity checks enabled.
7327
7328      elsif Present (Predicate_Function (Typ))
7329        and then Current_Scope = Predicate_Function (Typ)
7330      then
7331         return;
7332
7333      --  If the expression is a packed component of a modular type of the
7334      --  right size, the data is always valid.
7335
7336      elsif Nkind (Expr) = N_Selected_Component
7337        and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7338        and then Is_Modular_Integer_Type (Typ)
7339        and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7340      then
7341         return;
7342
7343      --  Do not generate a validity check when inside a generic unit as this
7344      --  is an expansion activity.
7345
7346      elsif Inside_A_Generic then
7347         return;
7348      end if;
7349
7350      --  If we have a checked conversion, then validity check applies to
7351      --  the expression inside the conversion, not the result, since if
7352      --  the expression inside is valid, then so is the conversion result.
7353
7354      Exp := Expr;
7355      while Nkind (Exp) = N_Type_Conversion loop
7356         Exp := Expression (Exp);
7357      end loop;
7358
7359      --  Do not generate a check for a variable which already validates the
7360      --  value of an assignable object.
7361
7362      if Is_Validation_Variable_Reference (Exp) then
7363         return;
7364      end if;
7365
7366      declare
7367         CE     : Node_Id;
7368         PV     : Node_Id;
7369         Var_Id : Entity_Id;
7370
7371      begin
7372         --  If the expression denotes an assignable object, capture its value
7373         --  in a variable and replace the original expression by the variable.
7374         --  This approach has several effects:
7375
7376         --    1) The evaluation of the object results in only one read in the
7377         --       case where the object is atomic or volatile.
7378
7379         --         Var ... := Object;  --  read
7380
7381         --    2) The captured value is the one verified by attribute 'Valid.
7382         --       As a result the object is not evaluated again, which would
7383         --       result in an unwanted read in the case where the object is
7384         --       atomic or volatile.
7385
7386         --         if not Var'Valid then     --  OK, no read of Object
7387
7388         --         if not Object'Valid then  --  Wrong, extra read of Object
7389
7390         --    3) The captured value replaces the original object reference.
7391         --       As a result the object is not evaluated again, in the same
7392         --       vein as 2).
7393
7394         --         ... Var ...     --  OK, no read of Object
7395
7396         --         ... Object ...  --  Wrong, extra read of Object
7397
7398         --    4) The use of a variable to capture the value of the object
7399         --       allows the propagation of any changes back to the original
7400         --       object.
7401
7402         --         procedure Call (Val : in out ...);
7403
7404         --         Var : ... := Object;   --  read Object
7405         --         if not Var'Valid then  --  validity check
7406         --         Call (Var);            --  modify Var
7407         --         Object := Var;         --  update Object
7408
7409         if Is_Variable (Exp) then
7410            Var_Id := Make_Temporary (Loc, 'T', Exp);
7411
7412            --  Because we could be dealing with a transient scope which would
7413            --  cause our object declaration to remain unanalyzed we must do
7414            --  some manual decoration.
7415
7416            Set_Ekind (Var_Id, E_Variable);
7417            Set_Etype (Var_Id, Typ);
7418
7419            Insert_Action (Exp,
7420              Make_Object_Declaration (Loc,
7421                Defining_Identifier => Var_Id,
7422                Object_Definition   => New_Occurrence_Of (Typ, Loc),
7423                Expression          => New_Copy_Tree (Exp)),
7424              Suppress => Validity_Check);
7425
7426            Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
7427            Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7428            PV := New_Occurrence_Of (Var_Id, Loc);
7429
7430            --  Copy the Do_Range_Check flag over to the new Exp, so it doesn't
7431            --  get lost. Floating point types are handled elsewhere.
7432
7433            if not Is_Floating_Point_Type (Typ) then
7434               Set_Do_Range_Check (Exp, Do_Range_Check (Original_Node (Exp)));
7435            end if;
7436
7437         --  Otherwise the expression does not denote a variable. Force its
7438         --  evaluation by capturing its value in a constant. Generate:
7439
7440         --    Temp : constant ... := Exp;
7441
7442         else
7443            Force_Evaluation
7444              (Exp           => Exp,
7445               Related_Id    => Related_Id,
7446               Is_Low_Bound  => Is_Low_Bound,
7447               Is_High_Bound => Is_High_Bound);
7448
7449            PV := New_Copy_Tree (Exp);
7450         end if;
7451
7452         --  A rather specialized test. If PV is an analyzed expression which
7453         --  is an indexed component of a packed array that has not been
7454         --  properly expanded, turn off its Analyzed flag to make sure it
7455         --  gets properly reexpanded. If the prefix is an access value,
7456         --  the dereference will be added later.
7457
7458         --  The reason this arises is that Duplicate_Subexpr_No_Checks did
7459         --  an analyze with the old parent pointer. This may point e.g. to
7460         --  a subprogram call, which deactivates this expansion.
7461
7462         if Analyzed (PV)
7463           and then Nkind (PV) = N_Indexed_Component
7464           and then Is_Array_Type (Etype (Prefix (PV)))
7465           and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7466         then
7467            Set_Analyzed (PV, False);
7468         end if;
7469
7470         --  Build the raise CE node to check for validity. We build a type
7471         --  qualification for the prefix, since it may not be of the form of
7472         --  a name, and we don't care in this context!
7473
7474         CE :=
7475           Make_Raise_Constraint_Error (Loc,
7476             Condition =>
7477               Make_Op_Not (Loc,
7478                 Right_Opnd =>
7479                   Make_Attribute_Reference (Loc,
7480                     Prefix         => PV,
7481                     Attribute_Name => Name_Valid)),
7482             Reason    => CE_Invalid_Data);
7483
7484         --  Insert the validity check. Note that we do this with validity
7485         --  checks turned off, to avoid recursion, we do not want validity
7486         --  checks on the validity checking code itself.
7487
7488         Insert_Action (Expr, CE, Suppress => Validity_Check);
7489
7490         --  If the expression is a reference to an element of a bit-packed
7491         --  array, then it is rewritten as a renaming declaration. If the
7492         --  expression is an actual in a call, it has not been expanded,
7493         --  waiting for the proper point at which to do it. The same happens
7494         --  with renamings, so that we have to force the expansion now. This
7495         --  non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7496         --  and exp_ch6.adb.
7497
7498         if Is_Entity_Name (Exp)
7499           and then Nkind (Parent (Entity (Exp))) =
7500                                                 N_Object_Renaming_Declaration
7501         then
7502            declare
7503               Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7504            begin
7505               if Nkind (Old_Exp) = N_Indexed_Component
7506                 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7507               then
7508                  Expand_Packed_Element_Reference (Old_Exp);
7509               end if;
7510            end;
7511         end if;
7512      end;
7513   end Insert_Valid_Check;
7514
7515   -------------------------------------
7516   -- Is_Signed_Integer_Arithmetic_Op --
7517   -------------------------------------
7518
7519   function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7520   begin
7521      case Nkind (N) is
7522         when N_Op_Abs
7523            | N_Op_Add
7524            | N_Op_Divide
7525            | N_Op_Expon
7526            | N_Op_Minus
7527            | N_Op_Mod
7528            | N_Op_Multiply
7529            | N_Op_Plus
7530            | N_Op_Rem
7531            | N_Op_Subtract
7532         =>
7533            return Is_Signed_Integer_Type (Etype (N));
7534
7535         when N_Case_Expression
7536            | N_If_Expression
7537         =>
7538            return Is_Signed_Integer_Type (Etype (N));
7539
7540         when others =>
7541            return False;
7542      end case;
7543   end Is_Signed_Integer_Arithmetic_Op;
7544
7545   ----------------------------------
7546   -- Install_Null_Excluding_Check --
7547   ----------------------------------
7548
7549   procedure Install_Null_Excluding_Check (N : Node_Id) is
7550      Loc : constant Source_Ptr := Sloc (Parent (N));
7551      Typ : constant Entity_Id  := Etype (N);
7552
7553      function Safe_To_Capture_In_Parameter_Value return Boolean;
7554      --  Determines if it is safe to capture Known_Non_Null status for an
7555      --  the entity referenced by node N. The caller ensures that N is indeed
7556      --  an entity name. It is safe to capture the non-null status for an IN
7557      --  parameter when the reference occurs within a declaration that is sure
7558      --  to be executed as part of the declarative region.
7559
7560      procedure Mark_Non_Null;
7561      --  After installation of check, if the node in question is an entity
7562      --  name, then mark this entity as non-null if possible.
7563
7564      function Safe_To_Capture_In_Parameter_Value return Boolean is
7565         E     : constant Entity_Id := Entity (N);
7566         S     : constant Entity_Id := Current_Scope;
7567         S_Par : Node_Id;
7568
7569      begin
7570         if Ekind (E) /= E_In_Parameter then
7571            return False;
7572         end if;
7573
7574         --  Two initial context checks. We must be inside a subprogram body
7575         --  with declarations and reference must not appear in nested scopes.
7576
7577         if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7578           or else Scope (E) /= S
7579         then
7580            return False;
7581         end if;
7582
7583         S_Par := Parent (Parent (S));
7584
7585         if Nkind (S_Par) /= N_Subprogram_Body
7586           or else No (Declarations (S_Par))
7587         then
7588            return False;
7589         end if;
7590
7591         declare
7592            N_Decl : Node_Id;
7593            P      : Node_Id;
7594
7595         begin
7596            --  Retrieve the declaration node of N (if any). Note that N
7597            --  may be a part of a complex initialization expression.
7598
7599            P := Parent (N);
7600            N_Decl := Empty;
7601            while Present (P) loop
7602
7603               --  If we have a short circuit form, and we are within the right
7604               --  hand expression, we return false, since the right hand side
7605               --  is not guaranteed to be elaborated.
7606
7607               if Nkind (P) in N_Short_Circuit
7608                 and then N = Right_Opnd (P)
7609               then
7610                  return False;
7611               end if;
7612
7613               --  Similarly, if we are in an if expression and not part of the
7614               --  condition, then we return False, since neither the THEN or
7615               --  ELSE dependent expressions will always be elaborated.
7616
7617               if Nkind (P) = N_If_Expression
7618                 and then N /= First (Expressions (P))
7619               then
7620                  return False;
7621               end if;
7622
7623               --  If within a case expression, and not part of the expression,
7624               --  then return False, since a particular dependent expression
7625               --  may not always be elaborated
7626
7627               if Nkind (P) = N_Case_Expression
7628                 and then N /= Expression (P)
7629               then
7630                  return False;
7631               end if;
7632
7633               --  While traversing the parent chain, if node N belongs to a
7634               --  statement, then it may never appear in a declarative region.
7635
7636               if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7637                 or else Nkind (P) = N_Procedure_Call_Statement
7638               then
7639                  return False;
7640               end if;
7641
7642               --  If we are at a declaration, record it and exit
7643
7644               if Nkind (P) in N_Declaration
7645                 and then Nkind (P) not in N_Subprogram_Specification
7646               then
7647                  N_Decl := P;
7648                  exit;
7649               end if;
7650
7651               P := Parent (P);
7652            end loop;
7653
7654            if No (N_Decl) then
7655               return False;
7656            end if;
7657
7658            return List_Containing (N_Decl) = Declarations (S_Par);
7659         end;
7660      end Safe_To_Capture_In_Parameter_Value;
7661
7662      -------------------
7663      -- Mark_Non_Null --
7664      -------------------
7665
7666      procedure Mark_Non_Null is
7667      begin
7668         --  Only case of interest is if node N is an entity name
7669
7670         if Is_Entity_Name (N) then
7671
7672            --  For sure, we want to clear an indication that this is known to
7673            --  be null, since if we get past this check, it definitely is not.
7674
7675            Set_Is_Known_Null (Entity (N), False);
7676
7677            --  We can mark the entity as known to be non-null if either it is
7678            --  safe to capture the value, or in the case of an IN parameter,
7679            --  which is a constant, if the check we just installed is in the
7680            --  declarative region of the subprogram body. In this latter case,
7681            --  a check is decisive for the rest of the body if the expression
7682            --  is sure to be elaborated, since we know we have to elaborate
7683            --  all declarations before executing the body.
7684
7685            --  Couldn't this always be part of Safe_To_Capture_Value ???
7686
7687            if Safe_To_Capture_Value (N, Entity (N))
7688              or else Safe_To_Capture_In_Parameter_Value
7689            then
7690               Set_Is_Known_Non_Null (Entity (N));
7691            end if;
7692         end if;
7693      end Mark_Non_Null;
7694
7695   --  Start of processing for Install_Null_Excluding_Check
7696
7697   begin
7698      pragma Assert (Is_Access_Type (Typ));
7699
7700      --  No check inside a generic, check will be emitted in instance
7701
7702      if Inside_A_Generic then
7703         return;
7704      end if;
7705
7706      --  No check needed if known to be non-null
7707
7708      if Known_Non_Null (N) then
7709         return;
7710      end if;
7711
7712      --  If known to be null, here is where we generate a compile time check
7713
7714      if Known_Null (N) then
7715
7716         --  Avoid generating warning message inside init procs. In SPARK mode
7717         --  we can go ahead and call Apply_Compile_Time_Constraint_Error
7718         --  since it will be turned into an error in any case.
7719
7720         if (not Inside_Init_Proc or else SPARK_Mode = On)
7721
7722           --  Do not emit the warning within a conditional expression,
7723           --  where the expression might not be evaluated, and the warning
7724           --  appear as extraneous noise.
7725
7726           and then not Within_Case_Or_If_Expression (N)
7727         then
7728            Apply_Compile_Time_Constraint_Error
7729              (N, "null value not allowed here??", CE_Access_Check_Failed);
7730
7731         --  Remaining cases, where we silently insert the raise
7732
7733         else
7734            Insert_Action (N,
7735              Make_Raise_Constraint_Error (Loc,
7736                Reason => CE_Access_Check_Failed));
7737         end if;
7738
7739         Mark_Non_Null;
7740         return;
7741      end if;
7742
7743      --  If entity is never assigned, for sure a warning is appropriate
7744
7745      if Is_Entity_Name (N) then
7746         Check_Unset_Reference (N);
7747      end if;
7748
7749      --  No check needed if checks are suppressed on the range. Note that we
7750      --  don't set Is_Known_Non_Null in this case (we could legitimately do
7751      --  so, since the program is erroneous, but we don't like to casually
7752      --  propagate such conclusions from erroneosity).
7753
7754      if Access_Checks_Suppressed (Typ) then
7755         return;
7756      end if;
7757
7758      --  No check needed for access to concurrent record types generated by
7759      --  the expander. This is not just an optimization (though it does indeed
7760      --  remove junk checks). It also avoids generation of junk warnings.
7761
7762      if Nkind (N) in N_Has_Chars
7763        and then Chars (N) = Name_uObject
7764        and then Is_Concurrent_Record_Type
7765                   (Directly_Designated_Type (Etype (N)))
7766      then
7767         return;
7768      end if;
7769
7770      --  No check needed in interface thunks since the runtime check is
7771      --  already performed at the caller side.
7772
7773      if Is_Thunk (Current_Scope) then
7774         return;
7775      end if;
7776
7777      --  No check needed for the Get_Current_Excep.all.all idiom generated by
7778      --  the expander within exception handlers, since we know that the value
7779      --  can never be null.
7780
7781      --  Is this really the right way to do this? Normally we generate such
7782      --  code in the expander with checks off, and that's how we suppress this
7783      --  kind of junk check ???
7784
7785      if Nkind (N) = N_Function_Call
7786        and then Nkind (Name (N)) = N_Explicit_Dereference
7787        and then Nkind (Prefix (Name (N))) = N_Identifier
7788        and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7789      then
7790         return;
7791      end if;
7792
7793      --  Otherwise install access check
7794
7795      Insert_Action (N,
7796        Make_Raise_Constraint_Error (Loc,
7797          Condition =>
7798            Make_Op_Eq (Loc,
7799              Left_Opnd  => Duplicate_Subexpr_Move_Checks (N),
7800              Right_Opnd => Make_Null (Loc)),
7801          Reason => CE_Access_Check_Failed));
7802
7803      Mark_Non_Null;
7804   end Install_Null_Excluding_Check;
7805
7806   -----------------------------------------
7807   -- Install_Primitive_Elaboration_Check --
7808   -----------------------------------------
7809
7810   procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7811      function Within_Compilation_Unit_Instance
7812        (Subp_Id : Entity_Id) return Boolean;
7813      --  Determine whether subprogram Subp_Id appears within an instance which
7814      --  acts as a compilation unit.
7815
7816      --------------------------------------
7817      -- Within_Compilation_Unit_Instance --
7818      --------------------------------------
7819
7820      function Within_Compilation_Unit_Instance
7821        (Subp_Id : Entity_Id) return Boolean
7822      is
7823         Pack : Entity_Id;
7824
7825      begin
7826         --  Examine the scope chain looking for a compilation-unit-level
7827         --  instance.
7828
7829         Pack := Scope (Subp_Id);
7830         while Present (Pack) and then Pack /= Standard_Standard loop
7831            if Ekind (Pack) = E_Package
7832              and then Is_Generic_Instance (Pack)
7833              and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
7834                         N_Compilation_Unit
7835            then
7836               return True;
7837            end if;
7838
7839            Pack := Scope (Pack);
7840         end loop;
7841
7842         return False;
7843      end Within_Compilation_Unit_Instance;
7844
7845      --  Local declarations
7846
7847      Context   : constant Node_Id    := Parent (Subp_Body);
7848      Loc       : constant Source_Ptr := Sloc (Subp_Body);
7849      Subp_Id   : constant Entity_Id  := Unique_Defining_Entity (Subp_Body);
7850      Subp_Decl : constant Node_Id    := Unit_Declaration_Node (Subp_Id);
7851
7852      Decls    : List_Id;
7853      Flag_Id  : Entity_Id;
7854      Set_Ins  : Node_Id;
7855      Set_Stmt : Node_Id;
7856      Tag_Typ  : Entity_Id;
7857
7858   --  Start of processing for Install_Primitive_Elaboration_Check
7859
7860   begin
7861      --  Do not generate an elaboration check in compilation modes where
7862      --  expansion is not desirable.
7863
7864      if ASIS_Mode or GNATprove_Mode then
7865         return;
7866
7867      --  Do not generate an elaboration check if all checks have been
7868      --  suppressed.
7869
7870      elsif Suppress_Checks then
7871         return;
7872
7873      --  Do not generate an elaboration check if the related subprogram is
7874      --  not subjected to accessibility checks.
7875
7876      elsif Elaboration_Checks_Suppressed (Subp_Id) then
7877         return;
7878
7879      --  Do not generate an elaboration check if such code is not desirable
7880
7881      elsif Restriction_Active (No_Elaboration_Code) then
7882         return;
7883
7884      --  Do not consider subprograms which act as compilation units, because
7885      --  they cannot be the target of a dispatching call.
7886
7887      elsif Nkind (Context) = N_Compilation_Unit then
7888         return;
7889
7890      --  Do not consider anything other than nonabstract library-level source
7891      --  primitives.
7892
7893      elsif not
7894        (Comes_From_Source (Subp_Id)
7895          and then Is_Library_Level_Entity (Subp_Id)
7896          and then Is_Primitive (Subp_Id)
7897          and then not Is_Abstract_Subprogram (Subp_Id))
7898      then
7899         return;
7900
7901      --  Do not consider inlined primitives, because once the body is inlined
7902      --  the reference to the elaboration flag will be out of place and will
7903      --  result in an undefined symbol.
7904
7905      elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
7906         return;
7907
7908      --  Do not generate a duplicate elaboration check. This happens only in
7909      --  the case of primitives completed by an expression function, as the
7910      --  corresponding body is apparently analyzed and expanded twice.
7911
7912      elsif Analyzed (Subp_Body) then
7913         return;
7914
7915      --  Do not consider primitives which occur within an instance that acts
7916      --  as a compilation unit. Such an instance defines its spec and body out
7917      --  of order (body is first) within the tree, which causes the reference
7918      --  to the elaboration flag to appear as an undefined symbol.
7919
7920      elsif Within_Compilation_Unit_Instance (Subp_Id) then
7921         return;
7922      end if;
7923
7924      Tag_Typ := Find_Dispatching_Type (Subp_Id);
7925
7926      --  Only tagged primitives may be the target of a dispatching call
7927
7928      if No (Tag_Typ) then
7929         return;
7930
7931      --  Do not consider finalization-related primitives, because they may
7932      --  need to be called while elaboration is taking place.
7933
7934      elsif Is_Controlled (Tag_Typ)
7935        and then Nam_In (Chars (Subp_Id), Name_Adjust,
7936                                          Name_Finalize,
7937                                          Name_Initialize)
7938      then
7939         return;
7940      end if;
7941
7942      --  Create the declaration of the elaboration flag. The name carries a
7943      --  unique counter in case of name overloading.
7944
7945      Flag_Id :=
7946        Make_Defining_Identifier (Loc,
7947          Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
7948      Set_Is_Frozen (Flag_Id);
7949
7950      --  Insert the declaration of the elaboration flag in front of the
7951      --  primitive spec and analyze it in the proper context.
7952
7953      Push_Scope (Scope (Subp_Id));
7954
7955      --  Generate:
7956      --    E : Boolean := False;
7957
7958      Insert_Action (Subp_Decl,
7959        Make_Object_Declaration (Loc,
7960          Defining_Identifier => Flag_Id,
7961          Object_Definition   => New_Occurrence_Of (Standard_Boolean, Loc),
7962          Expression          => New_Occurrence_Of (Standard_False, Loc)));
7963      Pop_Scope;
7964
7965      --  Prevent the compiler from optimizing the elaboration check by killing
7966      --  the current value of the flag and the associated assignment.
7967
7968      Set_Current_Value   (Flag_Id, Empty);
7969      Set_Last_Assignment (Flag_Id, Empty);
7970
7971      --  Add a check at the top of the body declarations to ensure that the
7972      --  elaboration flag has been set.
7973
7974      Decls := Declarations (Subp_Body);
7975
7976      if No (Decls) then
7977         Decls := New_List;
7978         Set_Declarations (Subp_Body, Decls);
7979      end if;
7980
7981      --  Generate:
7982      --    if not F then
7983      --       raise Program_Error with "access before elaboration";
7984      --    end if;
7985
7986      Prepend_To (Decls,
7987        Make_Raise_Program_Error (Loc,
7988          Condition =>
7989            Make_Op_Not (Loc,
7990              Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
7991          Reason    => PE_Access_Before_Elaboration));
7992
7993      Analyze (First (Decls));
7994
7995      --  Set the elaboration flag once the body has been elaborated. Insert
7996      --  the statement after the subprogram stub when the primitive body is
7997      --  a subunit.
7998
7999      if Nkind (Context) = N_Subunit then
8000         Set_Ins := Corresponding_Stub (Context);
8001      else
8002         Set_Ins := Subp_Body;
8003      end if;
8004
8005      --  Generate:
8006      --    E := True;
8007
8008      Set_Stmt :=
8009        Make_Assignment_Statement (Loc,
8010          Name       => New_Occurrence_Of (Flag_Id, Loc),
8011          Expression => New_Occurrence_Of (Standard_True, Loc));
8012
8013      --  Mark the assignment statement as elaboration code. This allows the
8014      --  early call region mechanism (see Sem_Elab) to properly ignore such
8015      --  assignments even though they are non-preelaborable code.
8016
8017      Set_Is_Elaboration_Code (Set_Stmt);
8018
8019      Insert_After_And_Analyze (Set_Ins, Set_Stmt);
8020   end Install_Primitive_Elaboration_Check;
8021
8022   --------------------------
8023   -- Install_Static_Check --
8024   --------------------------
8025
8026   procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
8027      Stat : constant Boolean   := Is_OK_Static_Expression (R_Cno);
8028      Typ  : constant Entity_Id := Etype (R_Cno);
8029
8030   begin
8031      Rewrite (R_Cno,
8032        Make_Raise_Constraint_Error (Loc,
8033          Reason => CE_Range_Check_Failed));
8034      Set_Analyzed (R_Cno);
8035      Set_Etype (R_Cno, Typ);
8036      Set_Raises_Constraint_Error (R_Cno);
8037      Set_Is_Static_Expression (R_Cno, Stat);
8038
8039      --  Now deal with possible local raise handling
8040
8041      Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8042   end Install_Static_Check;
8043
8044   -------------------------
8045   -- Is_Check_Suppressed --
8046   -------------------------
8047
8048   function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8049      Ptr : Suppress_Stack_Entry_Ptr;
8050
8051   begin
8052      --  First search the local entity suppress stack. We search this from the
8053      --  top of the stack down so that we get the innermost entry that applies
8054      --  to this case if there are nested entries.
8055
8056      Ptr := Local_Suppress_Stack_Top;
8057      while Ptr /= null loop
8058         if (Ptr.Entity = Empty or else Ptr.Entity = E)
8059           and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8060         then
8061            return Ptr.Suppress;
8062         end if;
8063
8064         Ptr := Ptr.Prev;
8065      end loop;
8066
8067      --  Now search the global entity suppress table for a matching entry.
8068      --  We also search this from the top down so that if there are multiple
8069      --  pragmas for the same entity, the last one applies (not clear what
8070      --  or whether the RM specifies this handling, but it seems reasonable).
8071
8072      Ptr := Global_Suppress_Stack_Top;
8073      while Ptr /= null loop
8074         if (Ptr.Entity = Empty or else Ptr.Entity = E)
8075           and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8076         then
8077            return Ptr.Suppress;
8078         end if;
8079
8080         Ptr := Ptr.Prev;
8081      end loop;
8082
8083      --  If we did not find a matching entry, then use the normal scope
8084      --  suppress value after all (actually this will be the global setting
8085      --  since it clearly was not overridden at any point). For a predefined
8086      --  check, we test the specific flag. For a user defined check, we check
8087      --  the All_Checks flag. The Overflow flag requires special handling to
8088      --  deal with the General vs Assertion case.
8089
8090      if C = Overflow_Check then
8091         return Overflow_Checks_Suppressed (Empty);
8092
8093      elsif C in Predefined_Check_Id then
8094         return Scope_Suppress.Suppress (C);
8095
8096      else
8097         return Scope_Suppress.Suppress (All_Checks);
8098      end if;
8099   end Is_Check_Suppressed;
8100
8101   ---------------------
8102   -- Kill_All_Checks --
8103   ---------------------
8104
8105   procedure Kill_All_Checks is
8106   begin
8107      if Debug_Flag_CC then
8108         w ("Kill_All_Checks");
8109      end if;
8110
8111      --  We reset the number of saved checks to zero, and also modify all
8112      --  stack entries for statement ranges to indicate that the number of
8113      --  checks at each level is now zero.
8114
8115      Num_Saved_Checks := 0;
8116
8117      --  Note: the Int'Min here avoids any possibility of J being out of
8118      --  range when called from e.g. Conditional_Statements_Begin.
8119
8120      for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8121         Saved_Checks_Stack (J) := 0;
8122      end loop;
8123   end Kill_All_Checks;
8124
8125   -----------------
8126   -- Kill_Checks --
8127   -----------------
8128
8129   procedure Kill_Checks (V : Entity_Id) is
8130   begin
8131      if Debug_Flag_CC then
8132         w ("Kill_Checks for entity", Int (V));
8133      end if;
8134
8135      for J in 1 .. Num_Saved_Checks loop
8136         if Saved_Checks (J).Entity = V then
8137            if Debug_Flag_CC then
8138               w ("   Checks killed for saved check ", J);
8139            end if;
8140
8141            Saved_Checks (J).Killed := True;
8142         end if;
8143      end loop;
8144   end Kill_Checks;
8145
8146   ------------------------------
8147   -- Length_Checks_Suppressed --
8148   ------------------------------
8149
8150   function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8151   begin
8152      if Present (E) and then Checks_May_Be_Suppressed (E) then
8153         return Is_Check_Suppressed (E, Length_Check);
8154      else
8155         return Scope_Suppress.Suppress (Length_Check);
8156      end if;
8157   end Length_Checks_Suppressed;
8158
8159   -----------------------
8160   -- Make_Bignum_Block --
8161   -----------------------
8162
8163   function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8164      M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8165   begin
8166      return
8167        Make_Block_Statement (Loc,
8168          Declarations               =>
8169            New_List (Build_SS_Mark_Call (Loc, M)),
8170          Handled_Statement_Sequence =>
8171            Make_Handled_Sequence_Of_Statements (Loc,
8172              Statements => New_List (Build_SS_Release_Call (Loc, M))));
8173   end Make_Bignum_Block;
8174
8175   ----------------------------------
8176   -- Minimize_Eliminate_Overflows --
8177   ----------------------------------
8178
8179   --  This is a recursive routine that is called at the top of an expression
8180   --  tree to properly process overflow checking for a whole subtree by making
8181   --  recursive calls to process operands. This processing may involve the use
8182   --  of bignum or long long integer arithmetic, which will change the types
8183   --  of operands and results. That's why we can't do this bottom up (since
8184   --  it would interfere with semantic analysis).
8185
8186   --  What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8187   --  the operator expansion routines, as well as the expansion routines for
8188   --  if/case expression, do nothing (for the moment) except call the routine
8189   --  to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8190   --  routine does nothing for non top-level nodes, so at the point where the
8191   --  call is made for the top level node, the entire expression subtree has
8192   --  not been expanded, or processed for overflow. All that has to happen as
8193   --  a result of the top level call to this routine.
8194
8195   --  As noted above, the overflow processing works by making recursive calls
8196   --  for the operands, and figuring out what to do, based on the processing
8197   --  of these operands (e.g. if a bignum operand appears, the parent op has
8198   --  to be done in bignum mode), and the determined ranges of the operands.
8199
8200   --  After possible rewriting of a constituent subexpression node, a call is
8201   --  made to either reexpand the node (if nothing has changed) or reanalyze
8202   --  the node (if it has been modified by the overflow check processing). The
8203   --  Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8204   --  a recursive call into the whole overflow apparatus, an important rule
8205   --  for this call is that the overflow handling mode must be temporarily set
8206   --  to STRICT.
8207
8208   procedure Minimize_Eliminate_Overflows
8209     (N         : Node_Id;
8210      Lo        : out Uint;
8211      Hi        : out Uint;
8212      Top_Level : Boolean)
8213   is
8214      Rtyp : constant Entity_Id := Etype (N);
8215      pragma Assert (Is_Signed_Integer_Type (Rtyp));
8216      --  Result type, must be a signed integer type
8217
8218      Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8219      pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8220
8221      Loc : constant Source_Ptr := Sloc (N);
8222
8223      Rlo, Rhi : Uint;
8224      --  Ranges of values for right operand (operator case)
8225
8226      Llo : Uint := No_Uint;  -- initialize to prevent warning
8227      Lhi : Uint := No_Uint;  -- initialize to prevent warning
8228      --  Ranges of values for left operand (operator case)
8229
8230      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8231      --  Operands and results are of this type when we convert
8232
8233      LLLo : constant Uint := Intval (Type_Low_Bound  (LLIB));
8234      LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8235      --  Bounds of Long_Long_Integer
8236
8237      Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8238      --  Indicates binary operator case
8239
8240      OK : Boolean;
8241      --  Used in call to Determine_Range
8242
8243      Bignum_Operands : Boolean;
8244      --  Set True if one or more operands is already of type Bignum, meaning
8245      --  that for sure (regardless of Top_Level setting) we are committed to
8246      --  doing the operation in Bignum mode (or in the case of a case or if
8247      --  expression, converting all the dependent expressions to Bignum).
8248
8249      Long_Long_Integer_Operands : Boolean;
8250      --  Set True if one or more operands is already of type Long_Long_Integer
8251      --  which means that if the result is known to be in the result type
8252      --  range, then we must convert such operands back to the result type.
8253
8254      procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8255      --  This is called when we have modified the node and we therefore need
8256      --  to reanalyze it. It is important that we reset the mode to STRICT for
8257      --  this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8258      --  we would reenter this routine recursively which would not be good.
8259      --  The argument Suppress is set True if we also want to suppress
8260      --  overflow checking for the reexpansion (this is set when we know
8261      --  overflow is not possible). Typ is the type for the reanalysis.
8262
8263      procedure Reexpand (Suppress : Boolean := False);
8264      --  This is like Reanalyze, but does not do the Analyze step, it only
8265      --  does a reexpansion. We do this reexpansion in STRICT mode, so that
8266      --  instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8267      --  follow the normal expansion path (e.g. converting A**4 to A**2**2).
8268      --  Note that skipping reanalysis is not just an optimization, testing
8269      --  has showed up several complex cases in which reanalyzing an already
8270      --  analyzed node causes incorrect behavior.
8271
8272      function In_Result_Range return Boolean;
8273      --  Returns True iff Lo .. Hi are within range of the result type
8274
8275      procedure Max (A : in out Uint; B : Uint);
8276      --  If A is No_Uint, sets A to B, else to UI_Max (A, B)
8277
8278      procedure Min (A : in out Uint; B : Uint);
8279      --  If A is No_Uint, sets A to B, else to UI_Min (A, B)
8280
8281      ---------------------
8282      -- In_Result_Range --
8283      ---------------------
8284
8285      function In_Result_Range return Boolean is
8286      begin
8287         if Lo = No_Uint or else Hi = No_Uint then
8288            return False;
8289
8290         elsif Is_OK_Static_Subtype (Etype (N)) then
8291            return Lo >= Expr_Value (Type_Low_Bound  (Rtyp))
8292                     and then
8293                   Hi <= Expr_Value (Type_High_Bound (Rtyp));
8294
8295         else
8296            return Lo >= Expr_Value (Type_Low_Bound  (Base_Type (Rtyp)))
8297                     and then
8298                   Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8299         end if;
8300      end In_Result_Range;
8301
8302      ---------
8303      -- Max --
8304      ---------
8305
8306      procedure Max (A : in out Uint; B : Uint) is
8307      begin
8308         if A = No_Uint or else B > A then
8309            A := B;
8310         end if;
8311      end Max;
8312
8313      ---------
8314      -- Min --
8315      ---------
8316
8317      procedure Min (A : in out Uint; B : Uint) is
8318      begin
8319         if A = No_Uint or else B < A then
8320            A := B;
8321         end if;
8322      end Min;
8323
8324      ---------------
8325      -- Reanalyze --
8326      ---------------
8327
8328      procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
8329         Svg : constant Overflow_Mode_Type :=
8330                 Scope_Suppress.Overflow_Mode_General;
8331         Sva : constant Overflow_Mode_Type :=
8332                 Scope_Suppress.Overflow_Mode_Assertions;
8333         Svo : constant Boolean             :=
8334                 Scope_Suppress.Suppress (Overflow_Check);
8335
8336      begin
8337         Scope_Suppress.Overflow_Mode_General    := Strict;
8338         Scope_Suppress.Overflow_Mode_Assertions := Strict;
8339
8340         if Suppress then
8341            Scope_Suppress.Suppress (Overflow_Check) := True;
8342         end if;
8343
8344         Analyze_And_Resolve (N, Typ);
8345
8346         Scope_Suppress.Suppress (Overflow_Check) := Svo;
8347         Scope_Suppress.Overflow_Mode_General     := Svg;
8348         Scope_Suppress.Overflow_Mode_Assertions  := Sva;
8349      end Reanalyze;
8350
8351      --------------
8352      -- Reexpand --
8353      --------------
8354
8355      procedure Reexpand (Suppress : Boolean := False) is
8356         Svg : constant Overflow_Mode_Type :=
8357                 Scope_Suppress.Overflow_Mode_General;
8358         Sva : constant Overflow_Mode_Type :=
8359                 Scope_Suppress.Overflow_Mode_Assertions;
8360         Svo : constant Boolean             :=
8361                 Scope_Suppress.Suppress (Overflow_Check);
8362
8363      begin
8364         Scope_Suppress.Overflow_Mode_General    := Strict;
8365         Scope_Suppress.Overflow_Mode_Assertions := Strict;
8366         Set_Analyzed (N, False);
8367
8368         if Suppress then
8369            Scope_Suppress.Suppress (Overflow_Check) := True;
8370         end if;
8371
8372         Expand (N);
8373
8374         Scope_Suppress.Suppress (Overflow_Check) := Svo;
8375         Scope_Suppress.Overflow_Mode_General     := Svg;
8376         Scope_Suppress.Overflow_Mode_Assertions  := Sva;
8377      end Reexpand;
8378
8379   --  Start of processing for Minimize_Eliminate_Overflows
8380
8381   begin
8382      --  Case where we do not have a signed integer arithmetic operation
8383
8384      if not Is_Signed_Integer_Arithmetic_Op (N) then
8385
8386         --  Use the normal Determine_Range routine to get the range. We
8387         --  don't require operands to be valid, invalid values may result in
8388         --  rubbish results where the result has not been properly checked for
8389         --  overflow, that's fine.
8390
8391         Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8392
8393         --  If Determine_Range did not work (can this in fact happen? Not
8394         --  clear but might as well protect), use type bounds.
8395
8396         if not OK then
8397            Lo := Intval (Type_Low_Bound  (Base_Type (Etype (N))));
8398            Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8399         end if;
8400
8401         --  If we don't have a binary operator, all we have to do is to set
8402         --  the Hi/Lo range, so we are done.
8403
8404         return;
8405
8406      --  Processing for if expression
8407
8408      elsif Nkind (N) = N_If_Expression then
8409         declare
8410            Then_DE : constant Node_Id := Next (First (Expressions (N)));
8411            Else_DE : constant Node_Id := Next (Then_DE);
8412
8413         begin
8414            Bignum_Operands := False;
8415
8416            Minimize_Eliminate_Overflows
8417              (Then_DE, Lo, Hi, Top_Level => False);
8418
8419            if Lo = No_Uint then
8420               Bignum_Operands := True;
8421            end if;
8422
8423            Minimize_Eliminate_Overflows
8424              (Else_DE, Rlo, Rhi, Top_Level => False);
8425
8426            if Rlo = No_Uint then
8427               Bignum_Operands := True;
8428            else
8429               Long_Long_Integer_Operands :=
8430                 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8431
8432               Min (Lo, Rlo);
8433               Max (Hi, Rhi);
8434            end if;
8435
8436            --  If at least one of our operands is now Bignum, we must rebuild
8437            --  the if expression to use Bignum operands. We will analyze the
8438            --  rebuilt if expression with overflow checks off, since once we
8439            --  are in bignum mode, we are all done with overflow checks.
8440
8441            if Bignum_Operands then
8442               Rewrite (N,
8443                 Make_If_Expression (Loc,
8444                   Expressions => New_List (
8445                     Remove_Head (Expressions (N)),
8446                     Convert_To_Bignum (Then_DE),
8447                     Convert_To_Bignum (Else_DE)),
8448                   Is_Elsif    => Is_Elsif (N)));
8449
8450               Reanalyze (RTE (RE_Bignum), Suppress => True);
8451
8452            --  If we have no Long_Long_Integer operands, then we are in result
8453            --  range, since it means that none of our operands felt the need
8454            --  to worry about overflow (otherwise it would have already been
8455            --  converted to long long integer or bignum). We reexpand to
8456            --  complete the expansion of the if expression (but we do not
8457            --  need to reanalyze).
8458
8459            elsif not Long_Long_Integer_Operands then
8460               Set_Do_Overflow_Check (N, False);
8461               Reexpand;
8462
8463            --  Otherwise convert us to long long integer mode. Note that we
8464            --  don't need any further overflow checking at this level.
8465
8466            else
8467               Convert_To_And_Rewrite (LLIB, Then_DE);
8468               Convert_To_And_Rewrite (LLIB, Else_DE);
8469               Set_Etype (N, LLIB);
8470
8471               --  Now reanalyze with overflow checks off
8472
8473               Set_Do_Overflow_Check (N, False);
8474               Reanalyze (LLIB, Suppress => True);
8475            end if;
8476         end;
8477
8478         return;
8479
8480      --  Here for case expression
8481
8482      elsif Nkind (N) = N_Case_Expression then
8483         Bignum_Operands := False;
8484         Long_Long_Integer_Operands := False;
8485
8486         declare
8487            Alt : Node_Id;
8488
8489         begin
8490            --  Loop through expressions applying recursive call
8491
8492            Alt := First (Alternatives (N));
8493            while Present (Alt) loop
8494               declare
8495                  Aexp : constant Node_Id := Expression (Alt);
8496
8497               begin
8498                  Minimize_Eliminate_Overflows
8499                    (Aexp, Lo, Hi, Top_Level => False);
8500
8501                  if Lo = No_Uint then
8502                     Bignum_Operands := True;
8503                  elsif Etype (Aexp) = LLIB then
8504                     Long_Long_Integer_Operands := True;
8505                  end if;
8506               end;
8507
8508               Next (Alt);
8509            end loop;
8510
8511            --  If we have no bignum or long long integer operands, it means
8512            --  that none of our dependent expressions could raise overflow.
8513            --  In this case, we simply return with no changes except for
8514            --  resetting the overflow flag, since we are done with overflow
8515            --  checks for this node. We will reexpand to get the needed
8516            --  expansion for the case expression, but we do not need to
8517            --  reanalyze, since nothing has changed.
8518
8519            if not (Bignum_Operands or Long_Long_Integer_Operands) then
8520               Set_Do_Overflow_Check (N, False);
8521               Reexpand (Suppress => True);
8522
8523            --  Otherwise we are going to rebuild the case expression using
8524            --  either bignum or long long integer operands throughout.
8525
8526            else
8527               declare
8528                  Rtype    : Entity_Id;
8529                  pragma Warnings (Off, Rtype);
8530                  New_Alts : List_Id;
8531                  New_Exp  : Node_Id;
8532
8533               begin
8534                  New_Alts := New_List;
8535                  Alt := First (Alternatives (N));
8536                  while Present (Alt) loop
8537                     if Bignum_Operands then
8538                        New_Exp := Convert_To_Bignum (Expression (Alt));
8539                        Rtype   := RTE (RE_Bignum);
8540                     else
8541                        New_Exp := Convert_To (LLIB, Expression (Alt));
8542                        Rtype   := LLIB;
8543                     end if;
8544
8545                     Append_To (New_Alts,
8546                       Make_Case_Expression_Alternative (Sloc (Alt),
8547                         Actions          => No_List,
8548                         Discrete_Choices => Discrete_Choices (Alt),
8549                         Expression       => New_Exp));
8550
8551                     Next (Alt);
8552                  end loop;
8553
8554                  Rewrite (N,
8555                    Make_Case_Expression (Loc,
8556                      Expression   => Expression (N),
8557                      Alternatives => New_Alts));
8558
8559                  Reanalyze (Rtype, Suppress => True);
8560               end;
8561            end if;
8562         end;
8563
8564         return;
8565      end if;
8566
8567      --  If we have an arithmetic operator we make recursive calls on the
8568      --  operands to get the ranges (and to properly process the subtree
8569      --  that lies below us).
8570
8571      Minimize_Eliminate_Overflows
8572        (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8573
8574      if Binary then
8575         Minimize_Eliminate_Overflows
8576           (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8577      end if;
8578
8579      --  Record if we have Long_Long_Integer operands
8580
8581      Long_Long_Integer_Operands :=
8582        Etype (Right_Opnd (N)) = LLIB
8583          or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8584
8585      --  If either operand is a bignum, then result will be a bignum and we
8586      --  don't need to do any range analysis. As previously discussed we could
8587      --  do range analysis in such cases, but it could mean working with giant
8588      --  numbers at compile time for very little gain (the number of cases
8589      --  in which we could slip back from bignum mode is small).
8590
8591      if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8592         Lo := No_Uint;
8593         Hi := No_Uint;
8594         Bignum_Operands := True;
8595
8596      --  Otherwise compute result range
8597
8598      else
8599         Bignum_Operands := False;
8600
8601         case Nkind (N) is
8602
8603            --  Absolute value
8604
8605            when N_Op_Abs =>
8606               Lo := Uint_0;
8607               Hi := UI_Max (abs Rlo, abs Rhi);
8608
8609            --  Addition
8610
8611            when N_Op_Add =>
8612               Lo := Llo + Rlo;
8613               Hi := Lhi + Rhi;
8614
8615            --  Division
8616
8617            when N_Op_Divide =>
8618
8619               --  If the right operand can only be zero, set 0..0
8620
8621               if Rlo = 0 and then Rhi = 0 then
8622                  Lo := Uint_0;
8623                  Hi := Uint_0;
8624
8625               --  Possible bounds of division must come from dividing end
8626               --  values of the input ranges (four possibilities), provided
8627               --  zero is not included in the possible values of the right
8628               --  operand.
8629
8630               --  Otherwise, we just consider two intervals of values for
8631               --  the right operand: the interval of negative values (up to
8632               --  -1) and the interval of positive values (starting at 1).
8633               --  Since division by 1 is the identity, and division by -1
8634               --  is negation, we get all possible bounds of division in that
8635               --  case by considering:
8636               --    - all values from the division of end values of input
8637               --      ranges;
8638               --    - the end values of the left operand;
8639               --    - the negation of the end values of the left operand.
8640
8641               else
8642                  declare
8643                     Mrk : constant Uintp.Save_Mark := Mark;
8644                     --  Mark so we can release the RR and Ev values
8645
8646                     Ev1 : Uint;
8647                     Ev2 : Uint;
8648                     Ev3 : Uint;
8649                     Ev4 : Uint;
8650
8651                  begin
8652                     --  Discard extreme values of zero for the divisor, since
8653                     --  they will simply result in an exception in any case.
8654
8655                     if Rlo = 0 then
8656                        Rlo := Uint_1;
8657                     elsif Rhi = 0 then
8658                        Rhi := -Uint_1;
8659                     end if;
8660
8661                     --  Compute possible bounds coming from dividing end
8662                     --  values of the input ranges.
8663
8664                     Ev1 := Llo / Rlo;
8665                     Ev2 := Llo / Rhi;
8666                     Ev3 := Lhi / Rlo;
8667                     Ev4 := Lhi / Rhi;
8668
8669                     Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8670                     Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8671
8672                     --  If the right operand can be both negative or positive,
8673                     --  include the end values of the left operand in the
8674                     --  extreme values, as well as their negation.
8675
8676                     if Rlo < 0 and then Rhi > 0 then
8677                        Ev1 := Llo;
8678                        Ev2 := -Llo;
8679                        Ev3 := Lhi;
8680                        Ev4 := -Lhi;
8681
8682                        Min (Lo,
8683                             UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8684                        Max (Hi,
8685                             UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8686                     end if;
8687
8688                     --  Release the RR and Ev values
8689
8690                     Release_And_Save (Mrk, Lo, Hi);
8691                  end;
8692               end if;
8693
8694            --  Exponentiation
8695
8696            when N_Op_Expon =>
8697
8698               --  Discard negative values for the exponent, since they will
8699               --  simply result in an exception in any case.
8700
8701               if Rhi < 0 then
8702                  Rhi := Uint_0;
8703               elsif Rlo < 0 then
8704                  Rlo := Uint_0;
8705               end if;
8706
8707               --  Estimate number of bits in result before we go computing
8708               --  giant useless bounds. Basically the number of bits in the
8709               --  result is the number of bits in the base multiplied by the
8710               --  value of the exponent. If this is big enough that the result
8711               --  definitely won't fit in Long_Long_Integer, switch to bignum
8712               --  mode immediately, and avoid computing giant bounds.
8713
8714               --  The comparison here is approximate, but conservative, it
8715               --  only clicks on cases that are sure to exceed the bounds.
8716
8717               if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8718                  Lo := No_Uint;
8719                  Hi := No_Uint;
8720
8721               --  If right operand is zero then result is 1
8722
8723               elsif Rhi = 0 then
8724                  Lo := Uint_1;
8725                  Hi := Uint_1;
8726
8727               else
8728                  --  High bound comes either from exponentiation of largest
8729                  --  positive value to largest exponent value, or from
8730                  --  the exponentiation of most negative value to an
8731                  --  even exponent.
8732
8733                  declare
8734                     Hi1, Hi2 : Uint;
8735
8736                  begin
8737                     if Lhi > 0 then
8738                        Hi1 := Lhi ** Rhi;
8739                     else
8740                        Hi1 := Uint_0;
8741                     end if;
8742
8743                     if Llo < 0 then
8744                        if Rhi mod 2 = 0 then
8745                           Hi2 := Llo ** Rhi;
8746                        else
8747                           Hi2 := Llo ** (Rhi - 1);
8748                        end if;
8749                     else
8750                        Hi2 := Uint_0;
8751                     end if;
8752
8753                     Hi := UI_Max (Hi1, Hi2);
8754                  end;
8755
8756                  --  Result can only be negative if base can be negative
8757
8758                  if Llo < 0 then
8759                     if Rhi mod 2 = 0 then
8760                        Lo := Llo ** (Rhi - 1);
8761                     else
8762                        Lo := Llo ** Rhi;
8763                     end if;
8764
8765                  --  Otherwise low bound is minimum ** minimum
8766
8767                  else
8768                     Lo := Llo ** Rlo;
8769                  end if;
8770               end if;
8771
8772            --  Negation
8773
8774            when N_Op_Minus =>
8775               Lo := -Rhi;
8776               Hi := -Rlo;
8777
8778            --  Mod
8779
8780            when N_Op_Mod =>
8781               declare
8782                  Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8783                  --  This is the maximum absolute value of the result
8784
8785               begin
8786                  Lo := Uint_0;
8787                  Hi := Uint_0;
8788
8789                  --  The result depends only on the sign and magnitude of
8790                  --  the right operand, it does not depend on the sign or
8791                  --  magnitude of the left operand.
8792
8793                  if Rlo < 0 then
8794                     Lo := -Maxabs;
8795                  end if;
8796
8797                  if Rhi > 0 then
8798                     Hi := Maxabs;
8799                  end if;
8800               end;
8801
8802            --  Multiplication
8803
8804            when N_Op_Multiply =>
8805
8806               --  Possible bounds of multiplication must come from multiplying
8807               --  end values of the input ranges (four possibilities).
8808
8809               declare
8810                  Mrk : constant Uintp.Save_Mark := Mark;
8811                  --  Mark so we can release the Ev values
8812
8813                  Ev1 : constant Uint := Llo * Rlo;
8814                  Ev2 : constant Uint := Llo * Rhi;
8815                  Ev3 : constant Uint := Lhi * Rlo;
8816                  Ev4 : constant Uint := Lhi * Rhi;
8817
8818               begin
8819                  Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8820                  Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8821
8822                  --  Release the Ev values
8823
8824                  Release_And_Save (Mrk, Lo, Hi);
8825               end;
8826
8827            --  Plus operator (affirmation)
8828
8829            when N_Op_Plus =>
8830               Lo := Rlo;
8831               Hi := Rhi;
8832
8833            --  Remainder
8834
8835            when N_Op_Rem =>
8836               declare
8837                  Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8838                  --  This is the maximum absolute value of the result. Note
8839                  --  that the result range does not depend on the sign of the
8840                  --  right operand.
8841
8842               begin
8843                  Lo := Uint_0;
8844                  Hi := Uint_0;
8845
8846                  --  Case of left operand negative, which results in a range
8847                  --  of -Maxabs .. 0 for those negative values. If there are
8848                  --  no negative values then Lo value of result is always 0.
8849
8850                  if Llo < 0 then
8851                     Lo := -Maxabs;
8852                  end if;
8853
8854                  --  Case of left operand positive
8855
8856                  if Lhi > 0 then
8857                     Hi := Maxabs;
8858                  end if;
8859               end;
8860
8861            --  Subtract
8862
8863            when N_Op_Subtract =>
8864               Lo := Llo - Rhi;
8865               Hi := Lhi - Rlo;
8866
8867            --  Nothing else should be possible
8868
8869            when others =>
8870               raise Program_Error;
8871         end case;
8872      end if;
8873
8874      --  Here for the case where we have not rewritten anything (no bignum
8875      --  operands or long long integer operands), and we know the result.
8876      --  If we know we are in the result range, and we do not have Bignum
8877      --  operands or Long_Long_Integer operands, we can just reexpand with
8878      --  overflow checks turned off (since we know we cannot have overflow).
8879      --  As always the reexpansion is required to complete expansion of the
8880      --  operator, but we do not need to reanalyze, and we prevent recursion
8881      --  by suppressing the check.
8882
8883      if not (Bignum_Operands or Long_Long_Integer_Operands)
8884        and then In_Result_Range
8885      then
8886         Set_Do_Overflow_Check (N, False);
8887         Reexpand (Suppress => True);
8888         return;
8889
8890      --  Here we know that we are not in the result range, and in the general
8891      --  case we will move into either the Bignum or Long_Long_Integer domain
8892      --  to compute the result. However, there is one exception. If we are
8893      --  at the top level, and we do not have Bignum or Long_Long_Integer
8894      --  operands, we will have to immediately convert the result back to
8895      --  the result type, so there is no point in Bignum/Long_Long_Integer
8896      --  fiddling.
8897
8898      elsif Top_Level
8899        and then not (Bignum_Operands or Long_Long_Integer_Operands)
8900
8901        --  One further refinement. If we are at the top level, but our parent
8902        --  is a type conversion, then go into bignum or long long integer node
8903        --  since the result will be converted to that type directly without
8904        --  going through the result type, and we may avoid an overflow. This
8905        --  is the case for example of Long_Long_Integer (A ** 4), where A is
8906        --  of type Integer, and the result A ** 4 fits in Long_Long_Integer
8907        --  but does not fit in Integer.
8908
8909        and then Nkind (Parent (N)) /= N_Type_Conversion
8910      then
8911         --  Here keep original types, but we need to complete analysis
8912
8913         --  One subtlety. We can't just go ahead and do an analyze operation
8914         --  here because it will cause recursion into the whole MINIMIZED/
8915         --  ELIMINATED overflow processing which is not what we want. Here
8916         --  we are at the top level, and we need a check against the result
8917         --  mode (i.e. we want to use STRICT mode). So do exactly that.
8918         --  Also, we have not modified the node, so this is a case where
8919         --  we need to reexpand, but not reanalyze.
8920
8921         Reexpand;
8922         return;
8923
8924      --  Cases where we do the operation in Bignum mode. This happens either
8925      --  because one of our operands is in Bignum mode already, or because
8926      --  the computed bounds are outside the bounds of Long_Long_Integer,
8927      --  which in some cases can be indicated by Hi and Lo being No_Uint.
8928
8929      --  Note: we could do better here and in some cases switch back from
8930      --  Bignum mode to normal mode, e.g. big mod 2 must be in the range
8931      --  0 .. 1, but the cases are rare and it is not worth the effort.
8932      --  Failing to do this switching back is only an efficiency issue.
8933
8934      elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
8935
8936         --  OK, we are definitely outside the range of Long_Long_Integer. The
8937         --  question is whether to move to Bignum mode, or stay in the domain
8938         --  of Long_Long_Integer, signalling that an overflow check is needed.
8939
8940         --  Obviously in MINIMIZED mode we stay with LLI, since we are not in
8941         --  the Bignum business. In ELIMINATED mode, we will normally move
8942         --  into Bignum mode, but there is an exception if neither of our
8943         --  operands is Bignum now, and we are at the top level (Top_Level
8944         --  set True). In this case, there is no point in moving into Bignum
8945         --  mode to prevent overflow if the caller will immediately convert
8946         --  the Bignum value back to LLI with an overflow check. It's more
8947         --  efficient to stay in LLI mode with an overflow check (if needed)
8948
8949         if Check_Mode = Minimized
8950           or else (Top_Level and not Bignum_Operands)
8951         then
8952            if Do_Overflow_Check (N) then
8953               Enable_Overflow_Check (N);
8954            end if;
8955
8956            --  The result now has to be in Long_Long_Integer mode, so adjust
8957            --  the possible range to reflect this. Note these calls also
8958            --  change No_Uint values from the top level case to LLI bounds.
8959
8960            Max (Lo, LLLo);
8961            Min (Hi, LLHi);
8962
8963         --  Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8964
8965         else
8966            pragma Assert (Check_Mode = Eliminated);
8967
8968            declare
8969               Fent : Entity_Id;
8970               Args : List_Id;
8971
8972            begin
8973               case Nkind (N) is
8974                  when N_Op_Abs =>
8975                     Fent := RTE (RE_Big_Abs);
8976
8977                  when N_Op_Add =>
8978                     Fent := RTE (RE_Big_Add);
8979
8980                  when N_Op_Divide =>
8981                     Fent := RTE (RE_Big_Div);
8982
8983                  when N_Op_Expon =>
8984                     Fent := RTE (RE_Big_Exp);
8985
8986                  when N_Op_Minus =>
8987                     Fent := RTE (RE_Big_Neg);
8988
8989                  when N_Op_Mod =>
8990                     Fent := RTE (RE_Big_Mod);
8991
8992                  when N_Op_Multiply =>
8993                     Fent := RTE (RE_Big_Mul);
8994
8995                  when N_Op_Rem =>
8996                     Fent := RTE (RE_Big_Rem);
8997
8998                  when N_Op_Subtract =>
8999                     Fent := RTE (RE_Big_Sub);
9000
9001                  --  Anything else is an internal error, this includes the
9002                  --  N_Op_Plus case, since how can plus cause the result
9003                  --  to be out of range if the operand is in range?
9004
9005                  when others =>
9006                     raise Program_Error;
9007               end case;
9008
9009               --  Construct argument list for Bignum call, converting our
9010               --  operands to Bignum form if they are not already there.
9011
9012               Args := New_List;
9013
9014               if Binary then
9015                  Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9016               end if;
9017
9018               Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9019
9020               --  Now rewrite the arithmetic operator with a call to the
9021               --  corresponding bignum function.
9022
9023               Rewrite (N,
9024                 Make_Function_Call (Loc,
9025                   Name                   => New_Occurrence_Of (Fent, Loc),
9026                   Parameter_Associations => Args));
9027               Reanalyze (RTE (RE_Bignum), Suppress => True);
9028
9029               --  Indicate result is Bignum mode
9030
9031               Lo := No_Uint;
9032               Hi := No_Uint;
9033               return;
9034            end;
9035         end if;
9036
9037      --  Otherwise we are in range of Long_Long_Integer, so no overflow
9038      --  check is required, at least not yet.
9039
9040      else
9041         Set_Do_Overflow_Check (N, False);
9042      end if;
9043
9044      --  Here we are not in Bignum territory, but we may have long long
9045      --  integer operands that need special handling. First a special check:
9046      --  If an exponentiation operator exponent is of type Long_Long_Integer,
9047      --  it means we converted it to prevent overflow, but exponentiation
9048      --  requires a Natural right operand, so convert it back to Natural.
9049      --  This conversion may raise an exception which is fine.
9050
9051      if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9052         Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9053      end if;
9054
9055      --  Here we will do the operation in Long_Long_Integer. We do this even
9056      --  if we know an overflow check is required, better to do this in long
9057      --  long integer mode, since we are less likely to overflow.
9058
9059      --  Convert right or only operand to Long_Long_Integer, except that
9060      --  we do not touch the exponentiation right operand.
9061
9062      if Nkind (N) /= N_Op_Expon then
9063         Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9064      end if;
9065
9066      --  Convert left operand to Long_Long_Integer for binary case
9067
9068      if Binary then
9069         Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9070      end if;
9071
9072      --  Reset node to unanalyzed
9073
9074      Set_Analyzed (N, False);
9075      Set_Etype (N, Empty);
9076      Set_Entity (N, Empty);
9077
9078      --  Now analyze this new node. This reanalysis will complete processing
9079      --  for the node. In particular we will complete the expansion of an
9080      --  exponentiation operator (e.g. changing A ** 2 to A * A), and also
9081      --  we will complete any division checks (since we have not changed the
9082      --  setting of the Do_Division_Check flag).
9083
9084      --  We do this reanalysis in STRICT mode to avoid recursion into the
9085      --  MINIMIZED/ELIMINATED handling, since we are now done with that.
9086
9087      declare
9088         SG : constant Overflow_Mode_Type :=
9089                Scope_Suppress.Overflow_Mode_General;
9090         SA : constant Overflow_Mode_Type :=
9091                Scope_Suppress.Overflow_Mode_Assertions;
9092
9093      begin
9094         Scope_Suppress.Overflow_Mode_General    := Strict;
9095         Scope_Suppress.Overflow_Mode_Assertions := Strict;
9096
9097         if not Do_Overflow_Check (N) then
9098            Reanalyze (LLIB, Suppress => True);
9099         else
9100            Reanalyze (LLIB);
9101         end if;
9102
9103         Scope_Suppress.Overflow_Mode_General    := SG;
9104         Scope_Suppress.Overflow_Mode_Assertions := SA;
9105      end;
9106   end Minimize_Eliminate_Overflows;
9107
9108   -------------------------
9109   -- Overflow_Check_Mode --
9110   -------------------------
9111
9112   function Overflow_Check_Mode return Overflow_Mode_Type is
9113   begin
9114      if In_Assertion_Expr = 0 then
9115         return Scope_Suppress.Overflow_Mode_General;
9116      else
9117         return Scope_Suppress.Overflow_Mode_Assertions;
9118      end if;
9119   end Overflow_Check_Mode;
9120
9121   --------------------------------
9122   -- Overflow_Checks_Suppressed --
9123   --------------------------------
9124
9125   function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9126   begin
9127      if Present (E) and then Checks_May_Be_Suppressed (E) then
9128         return Is_Check_Suppressed (E, Overflow_Check);
9129      else
9130         return Scope_Suppress.Suppress (Overflow_Check);
9131      end if;
9132   end Overflow_Checks_Suppressed;
9133
9134   ---------------------------------
9135   -- Predicate_Checks_Suppressed --
9136   ---------------------------------
9137
9138   function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9139   begin
9140      if Present (E) and then Checks_May_Be_Suppressed (E) then
9141         return Is_Check_Suppressed (E, Predicate_Check);
9142      else
9143         return Scope_Suppress.Suppress (Predicate_Check);
9144      end if;
9145   end Predicate_Checks_Suppressed;
9146
9147   -----------------------------
9148   -- Range_Checks_Suppressed --
9149   -----------------------------
9150
9151   function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9152   begin
9153      if Present (E) then
9154         if Kill_Range_Checks (E) then
9155            return True;
9156
9157         elsif Checks_May_Be_Suppressed (E) then
9158            return Is_Check_Suppressed (E, Range_Check);
9159         end if;
9160      end if;
9161
9162      return Scope_Suppress.Suppress (Range_Check);
9163   end Range_Checks_Suppressed;
9164
9165   -----------------------------------------
9166   -- Range_Or_Validity_Checks_Suppressed --
9167   -----------------------------------------
9168
9169   --  Note: the coding would be simpler here if we simply made appropriate
9170   --  calls to Range/Validity_Checks_Suppressed, but that would result in
9171   --  duplicated checks which we prefer to avoid.
9172
9173   function Range_Or_Validity_Checks_Suppressed
9174     (Expr : Node_Id) return Boolean
9175   is
9176   begin
9177      --  Immediate return if scope checks suppressed for either check
9178
9179      if Scope_Suppress.Suppress (Range_Check)
9180           or
9181         Scope_Suppress.Suppress (Validity_Check)
9182      then
9183         return True;
9184      end if;
9185
9186      --  If no expression, that's odd, decide that checks are suppressed,
9187      --  since we don't want anyone trying to do checks in this case, which
9188      --  is most likely the result of some other error.
9189
9190      if No (Expr) then
9191         return True;
9192      end if;
9193
9194      --  Expression is present, so perform suppress checks on type
9195
9196      declare
9197         Typ : constant Entity_Id := Etype (Expr);
9198      begin
9199         if Checks_May_Be_Suppressed (Typ)
9200           and then (Is_Check_Suppressed (Typ, Range_Check)
9201                       or else
9202                     Is_Check_Suppressed (Typ, Validity_Check))
9203         then
9204            return True;
9205         end if;
9206      end;
9207
9208      --  If expression is an entity name, perform checks on this entity
9209
9210      if Is_Entity_Name (Expr) then
9211         declare
9212            Ent : constant Entity_Id := Entity (Expr);
9213         begin
9214            if Checks_May_Be_Suppressed (Ent) then
9215               return Is_Check_Suppressed (Ent, Range_Check)
9216                 or else Is_Check_Suppressed (Ent, Validity_Check);
9217            end if;
9218         end;
9219      end if;
9220
9221      --  If we fall through, no checks suppressed
9222
9223      return False;
9224   end Range_Or_Validity_Checks_Suppressed;
9225
9226   -------------------
9227   -- Remove_Checks --
9228   -------------------
9229
9230   procedure Remove_Checks (Expr : Node_Id) is
9231      function Process (N : Node_Id) return Traverse_Result;
9232      --  Process a single node during the traversal
9233
9234      procedure Traverse is new Traverse_Proc (Process);
9235      --  The traversal procedure itself
9236
9237      -------------
9238      -- Process --
9239      -------------
9240
9241      function Process (N : Node_Id) return Traverse_Result is
9242      begin
9243         if Nkind (N) not in N_Subexpr then
9244            return Skip;
9245         end if;
9246
9247         Set_Do_Range_Check (N, False);
9248
9249         case Nkind (N) is
9250            when N_And_Then =>
9251               Traverse (Left_Opnd (N));
9252               return Skip;
9253
9254            when N_Attribute_Reference =>
9255               Set_Do_Overflow_Check (N, False);
9256
9257            when N_Function_Call =>
9258               Set_Do_Tag_Check (N, False);
9259
9260            when N_Op =>
9261               Set_Do_Overflow_Check (N, False);
9262
9263               case Nkind (N) is
9264                  when N_Op_Divide =>
9265                     Set_Do_Division_Check (N, False);
9266
9267                  when N_Op_And =>
9268                     Set_Do_Length_Check (N, False);
9269
9270                  when N_Op_Mod =>
9271                     Set_Do_Division_Check (N, False);
9272
9273                  when N_Op_Or =>
9274                     Set_Do_Length_Check (N, False);
9275
9276                  when N_Op_Rem =>
9277                     Set_Do_Division_Check (N, False);
9278
9279                  when N_Op_Xor =>
9280                     Set_Do_Length_Check (N, False);
9281
9282                  when others =>
9283                     null;
9284               end case;
9285
9286            when N_Or_Else =>
9287               Traverse (Left_Opnd (N));
9288               return Skip;
9289
9290            when N_Selected_Component =>
9291               Set_Do_Discriminant_Check (N, False);
9292
9293            when N_Type_Conversion =>
9294               Set_Do_Length_Check   (N, False);
9295               Set_Do_Tag_Check      (N, False);
9296               Set_Do_Overflow_Check (N, False);
9297
9298            when others =>
9299               null;
9300         end case;
9301
9302         return OK;
9303      end Process;
9304
9305   --  Start of processing for Remove_Checks
9306
9307   begin
9308      Traverse (Expr);
9309   end Remove_Checks;
9310
9311   ----------------------------
9312   -- Selected_Length_Checks --
9313   ----------------------------
9314
9315   function Selected_Length_Checks
9316     (Ck_Node    : Node_Id;
9317      Target_Typ : Entity_Id;
9318      Source_Typ : Entity_Id;
9319      Warn_Node  : Node_Id) return Check_Result
9320   is
9321      Loc         : constant Source_Ptr := Sloc (Ck_Node);
9322      S_Typ       : Entity_Id;
9323      T_Typ       : Entity_Id;
9324      Expr_Actual : Node_Id;
9325      Exptyp      : Entity_Id;
9326      Cond        : Node_Id := Empty;
9327      Do_Access   : Boolean := False;
9328      Wnode       : Node_Id := Warn_Node;
9329      Ret_Result  : Check_Result := (Empty, Empty);
9330      Num_Checks  : Natural := 0;
9331
9332      procedure Add_Check (N : Node_Id);
9333      --  Adds the action given to Ret_Result if N is non-Empty
9334
9335      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9336      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9337      --  Comments required ???
9338
9339      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9340      --  True for equal literals and for nodes that denote the same constant
9341      --  entity, even if its value is not a static constant. This includes the
9342      --  case of a discriminal reference within an init proc. Removes some
9343      --  obviously superfluous checks.
9344
9345      function Length_E_Cond
9346        (Exptyp : Entity_Id;
9347         Typ    : Entity_Id;
9348         Indx   : Nat) return Node_Id;
9349      --  Returns expression to compute:
9350      --    Typ'Length /= Exptyp'Length
9351
9352      function Length_N_Cond
9353        (Expr : Node_Id;
9354         Typ  : Entity_Id;
9355         Indx : Nat) return Node_Id;
9356      --  Returns expression to compute:
9357      --    Typ'Length /= Expr'Length
9358
9359      ---------------
9360      -- Add_Check --
9361      ---------------
9362
9363      procedure Add_Check (N : Node_Id) is
9364      begin
9365         if Present (N) then
9366
9367            --  For now, ignore attempt to place more than two checks ???
9368            --  This is really worrisome, are we really discarding checks ???
9369
9370            if Num_Checks = 2 then
9371               return;
9372            end if;
9373
9374            pragma Assert (Num_Checks <= 1);
9375            Num_Checks := Num_Checks + 1;
9376            Ret_Result (Num_Checks) := N;
9377         end if;
9378      end Add_Check;
9379
9380      ------------------
9381      -- Get_E_Length --
9382      ------------------
9383
9384      function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9385         SE : constant Entity_Id := Scope (E);
9386         N  : Node_Id;
9387         E1 : Entity_Id := E;
9388
9389      begin
9390         if Ekind (Scope (E)) = E_Record_Type
9391           and then Has_Discriminants (Scope (E))
9392         then
9393            N := Build_Discriminal_Subtype_Of_Component (E);
9394
9395            if Present (N) then
9396               Insert_Action (Ck_Node, N);
9397               E1 := Defining_Identifier (N);
9398            end if;
9399         end if;
9400
9401         if Ekind (E1) = E_String_Literal_Subtype then
9402            return
9403              Make_Integer_Literal (Loc,
9404                Intval => String_Literal_Length (E1));
9405
9406         elsif SE /= Standard_Standard
9407           and then Ekind (Scope (SE)) = E_Protected_Type
9408           and then Has_Discriminants (Scope (SE))
9409           and then Has_Completion (Scope (SE))
9410           and then not Inside_Init_Proc
9411         then
9412            --  If the type whose length is needed is a private component
9413            --  constrained by a discriminant, we must expand the 'Length
9414            --  attribute into an explicit computation, using the discriminal
9415            --  of the current protected operation. This is because the actual
9416            --  type of the prival is constructed after the protected opera-
9417            --  tion has been fully expanded.
9418
9419            declare
9420               Indx_Type : Node_Id;
9421               Lo        : Node_Id;
9422               Hi        : Node_Id;
9423               Do_Expand : Boolean := False;
9424
9425            begin
9426               Indx_Type := First_Index (E);
9427
9428               for J in 1 .. Indx - 1 loop
9429                  Next_Index (Indx_Type);
9430               end loop;
9431
9432               Get_Index_Bounds (Indx_Type, Lo, Hi);
9433
9434               if Nkind (Lo) = N_Identifier
9435                 and then Ekind (Entity (Lo)) = E_In_Parameter
9436               then
9437                  Lo := Get_Discriminal (E, Lo);
9438                  Do_Expand := True;
9439               end if;
9440
9441               if Nkind (Hi) = N_Identifier
9442                 and then Ekind (Entity (Hi)) = E_In_Parameter
9443               then
9444                  Hi := Get_Discriminal (E, Hi);
9445                  Do_Expand := True;
9446               end if;
9447
9448               if Do_Expand then
9449                  if not Is_Entity_Name (Lo) then
9450                     Lo := Duplicate_Subexpr_No_Checks (Lo);
9451                  end if;
9452
9453                  if not Is_Entity_Name (Hi) then
9454                     Lo := Duplicate_Subexpr_No_Checks (Hi);
9455                  end if;
9456
9457                  N :=
9458                    Make_Op_Add (Loc,
9459                      Left_Opnd =>
9460                        Make_Op_Subtract (Loc,
9461                          Left_Opnd  => Hi,
9462                          Right_Opnd => Lo),
9463
9464                      Right_Opnd => Make_Integer_Literal (Loc, 1));
9465                  return N;
9466
9467               else
9468                  N :=
9469                    Make_Attribute_Reference (Loc,
9470                      Attribute_Name => Name_Length,
9471                      Prefix =>
9472                        New_Occurrence_Of (E1, Loc));
9473
9474                  if Indx > 1 then
9475                     Set_Expressions (N, New_List (
9476                       Make_Integer_Literal (Loc, Indx)));
9477                  end if;
9478
9479                  return N;
9480               end if;
9481            end;
9482
9483         else
9484            N :=
9485              Make_Attribute_Reference (Loc,
9486                Attribute_Name => Name_Length,
9487                Prefix =>
9488                  New_Occurrence_Of (E1, Loc));
9489
9490            if Indx > 1 then
9491               Set_Expressions (N, New_List (
9492                 Make_Integer_Literal (Loc, Indx)));
9493            end if;
9494
9495            return N;
9496         end if;
9497      end Get_E_Length;
9498
9499      ------------------
9500      -- Get_N_Length --
9501      ------------------
9502
9503      function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9504      begin
9505         return
9506           Make_Attribute_Reference (Loc,
9507             Attribute_Name => Name_Length,
9508             Prefix =>
9509               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9510             Expressions => New_List (
9511               Make_Integer_Literal (Loc, Indx)));
9512      end Get_N_Length;
9513
9514      -------------------
9515      -- Length_E_Cond --
9516      -------------------
9517
9518      function Length_E_Cond
9519        (Exptyp : Entity_Id;
9520         Typ    : Entity_Id;
9521         Indx   : Nat) return Node_Id
9522      is
9523      begin
9524         return
9525           Make_Op_Ne (Loc,
9526             Left_Opnd  => Get_E_Length (Typ, Indx),
9527             Right_Opnd => Get_E_Length (Exptyp, Indx));
9528      end Length_E_Cond;
9529
9530      -------------------
9531      -- Length_N_Cond --
9532      -------------------
9533
9534      function Length_N_Cond
9535        (Expr : Node_Id;
9536         Typ  : Entity_Id;
9537         Indx : Nat) return Node_Id
9538      is
9539      begin
9540         return
9541           Make_Op_Ne (Loc,
9542             Left_Opnd  => Get_E_Length (Typ, Indx),
9543             Right_Opnd => Get_N_Length (Expr, Indx));
9544      end Length_N_Cond;
9545
9546      -----------------
9547      -- Same_Bounds --
9548      -----------------
9549
9550      function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9551      begin
9552         return
9553           (Nkind (L) = N_Integer_Literal
9554             and then Nkind (R) = N_Integer_Literal
9555             and then Intval (L) = Intval (R))
9556
9557          or else
9558            (Is_Entity_Name (L)
9559              and then Ekind (Entity (L)) = E_Constant
9560              and then ((Is_Entity_Name (R)
9561                         and then Entity (L) = Entity (R))
9562                        or else
9563                       (Nkind (R) = N_Type_Conversion
9564                         and then Is_Entity_Name (Expression (R))
9565                         and then Entity (L) = Entity (Expression (R)))))
9566
9567          or else
9568            (Is_Entity_Name (R)
9569              and then Ekind (Entity (R)) = E_Constant
9570              and then Nkind (L) = N_Type_Conversion
9571              and then Is_Entity_Name (Expression (L))
9572              and then Entity (R) = Entity (Expression (L)))
9573
9574         or else
9575            (Is_Entity_Name (L)
9576              and then Is_Entity_Name (R)
9577              and then Entity (L) = Entity (R)
9578              and then Ekind (Entity (L)) = E_In_Parameter
9579              and then Inside_Init_Proc);
9580      end Same_Bounds;
9581
9582   --  Start of processing for Selected_Length_Checks
9583
9584   begin
9585      --  Checks will be applied only when generating code
9586
9587      if not Expander_Active then
9588         return Ret_Result;
9589      end if;
9590
9591      if Target_Typ = Any_Type
9592        or else Target_Typ = Any_Composite
9593        or else Raises_Constraint_Error (Ck_Node)
9594      then
9595         return Ret_Result;
9596      end if;
9597
9598      if No (Wnode) then
9599         Wnode := Ck_Node;
9600      end if;
9601
9602      T_Typ := Target_Typ;
9603
9604      if No (Source_Typ) then
9605         S_Typ := Etype (Ck_Node);
9606      else
9607         S_Typ := Source_Typ;
9608      end if;
9609
9610      if S_Typ = Any_Type or else S_Typ = Any_Composite then
9611         return Ret_Result;
9612      end if;
9613
9614      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9615         S_Typ := Designated_Type (S_Typ);
9616         T_Typ := Designated_Type (T_Typ);
9617         Do_Access := True;
9618
9619         --  A simple optimization for the null case
9620
9621         if Known_Null (Ck_Node) then
9622            return Ret_Result;
9623         end if;
9624      end if;
9625
9626      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9627         if Is_Constrained (T_Typ) then
9628
9629            --  The checking code to be generated will freeze the corresponding
9630            --  array type. However, we must freeze the type now, so that the
9631            --  freeze node does not appear within the generated if expression,
9632            --  but ahead of it.
9633
9634            Freeze_Before (Ck_Node, T_Typ);
9635
9636            Expr_Actual := Get_Referenced_Object (Ck_Node);
9637            Exptyp      := Get_Actual_Subtype (Ck_Node);
9638
9639            if Is_Access_Type (Exptyp) then
9640               Exptyp := Designated_Type (Exptyp);
9641            end if;
9642
9643            --  String_Literal case. This needs to be handled specially be-
9644            --  cause no index types are available for string literals. The
9645            --  condition is simply:
9646
9647            --    T_Typ'Length = string-literal-length
9648
9649            if Nkind (Expr_Actual) = N_String_Literal
9650              and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9651            then
9652               Cond :=
9653                 Make_Op_Ne (Loc,
9654                   Left_Opnd  => Get_E_Length (T_Typ, 1),
9655                   Right_Opnd =>
9656                     Make_Integer_Literal (Loc,
9657                       Intval =>
9658                         String_Literal_Length (Etype (Expr_Actual))));
9659
9660            --  General array case. Here we have a usable actual subtype for
9661            --  the expression, and the condition is built from the two types
9662            --  (Do_Length):
9663
9664            --     T_Typ'Length     /= Exptyp'Length     or else
9665            --     T_Typ'Length (2) /= Exptyp'Length (2) or else
9666            --     T_Typ'Length (3) /= Exptyp'Length (3) or else
9667            --     ...
9668
9669            elsif Is_Constrained (Exptyp) then
9670               declare
9671                  Ndims : constant Nat := Number_Dimensions (T_Typ);
9672
9673                  L_Index  : Node_Id;
9674                  R_Index  : Node_Id;
9675                  L_Low    : Node_Id;
9676                  L_High   : Node_Id;
9677                  R_Low    : Node_Id;
9678                  R_High   : Node_Id;
9679                  L_Length : Uint;
9680                  R_Length : Uint;
9681                  Ref_Node : Node_Id;
9682
9683               begin
9684                  --  At the library level, we need to ensure that the type of
9685                  --  the object is elaborated before the check itself is
9686                  --  emitted. This is only done if the object is in the
9687                  --  current compilation unit, otherwise the type is frozen
9688                  --  and elaborated in its unit.
9689
9690                  if Is_Itype (Exptyp)
9691                    and then
9692                      Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9693                    and then
9694                      not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9695                    and then In_Open_Scopes (Scope (Exptyp))
9696                  then
9697                     Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9698                     Set_Itype (Ref_Node, Exptyp);
9699                     Insert_Action (Ck_Node, Ref_Node);
9700                  end if;
9701
9702                  L_Index := First_Index (T_Typ);
9703                  R_Index := First_Index (Exptyp);
9704
9705                  for Indx in 1 .. Ndims loop
9706                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
9707                               or else
9708                             Nkind (R_Index) = N_Raise_Constraint_Error)
9709                     then
9710                        Get_Index_Bounds (L_Index, L_Low, L_High);
9711                        Get_Index_Bounds (R_Index, R_Low, R_High);
9712
9713                        --  Deal with compile time length check. Note that we
9714                        --  skip this in the access case, because the access
9715                        --  value may be null, so we cannot know statically.
9716
9717                        if not Do_Access
9718                          and then Compile_Time_Known_Value (L_Low)
9719                          and then Compile_Time_Known_Value (L_High)
9720                          and then Compile_Time_Known_Value (R_Low)
9721                          and then Compile_Time_Known_Value (R_High)
9722                        then
9723                           if Expr_Value (L_High) >= Expr_Value (L_Low) then
9724                              L_Length := Expr_Value (L_High) -
9725                                          Expr_Value (L_Low) + 1;
9726                           else
9727                              L_Length := UI_From_Int (0);
9728                           end if;
9729
9730                           if Expr_Value (R_High) >= Expr_Value (R_Low) then
9731                              R_Length := Expr_Value (R_High) -
9732                                          Expr_Value (R_Low) + 1;
9733                           else
9734                              R_Length := UI_From_Int (0);
9735                           end if;
9736
9737                           if L_Length > R_Length then
9738                              Add_Check
9739                                (Compile_Time_Constraint_Error
9740                                  (Wnode, "too few elements for}??", T_Typ));
9741
9742                           elsif L_Length < R_Length then
9743                              Add_Check
9744                                (Compile_Time_Constraint_Error
9745                                  (Wnode, "too many elements for}??", T_Typ));
9746                           end if;
9747
9748                        --  The comparison for an individual index subtype
9749                        --  is omitted if the corresponding index subtypes
9750                        --  statically match, since the result is known to
9751                        --  be true. Note that this test is worth while even
9752                        --  though we do static evaluation, because non-static
9753                        --  subtypes can statically match.
9754
9755                        elsif not
9756                          Subtypes_Statically_Match
9757                            (Etype (L_Index), Etype (R_Index))
9758
9759                          and then not
9760                            (Same_Bounds (L_Low, R_Low)
9761                              and then Same_Bounds (L_High, R_High))
9762                        then
9763                           Evolve_Or_Else
9764                             (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9765                        end if;
9766
9767                        Next (L_Index);
9768                        Next (R_Index);
9769                     end if;
9770                  end loop;
9771               end;
9772
9773            --  Handle cases where we do not get a usable actual subtype that
9774            --  is constrained. This happens for example in the function call
9775            --  and explicit dereference cases. In these cases, we have to get
9776            --  the length or range from the expression itself, making sure we
9777            --  do not evaluate it more than once.
9778
9779            --  Here Ck_Node is the original expression, or more properly the
9780            --  result of applying Duplicate_Expr to the original tree, forcing
9781            --  the result to be a name.
9782
9783            else
9784               declare
9785                  Ndims : constant Nat := Number_Dimensions (T_Typ);
9786
9787               begin
9788                  --  Build the condition for the explicit dereference case
9789
9790                  for Indx in 1 .. Ndims loop
9791                     Evolve_Or_Else
9792                       (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9793                  end loop;
9794               end;
9795            end if;
9796         end if;
9797      end if;
9798
9799      --  Construct the test and insert into the tree
9800
9801      if Present (Cond) then
9802         if Do_Access then
9803            Cond := Guard_Access (Cond, Loc, Ck_Node);
9804         end if;
9805
9806         Add_Check
9807           (Make_Raise_Constraint_Error (Loc,
9808              Condition => Cond,
9809              Reason => CE_Length_Check_Failed));
9810      end if;
9811
9812      return Ret_Result;
9813   end Selected_Length_Checks;
9814
9815   ---------------------------
9816   -- Selected_Range_Checks --
9817   ---------------------------
9818
9819   function Selected_Range_Checks
9820     (Ck_Node    : Node_Id;
9821      Target_Typ : Entity_Id;
9822      Source_Typ : Entity_Id;
9823      Warn_Node  : Node_Id) return Check_Result
9824   is
9825      Loc         : constant Source_Ptr := Sloc (Ck_Node);
9826      S_Typ       : Entity_Id;
9827      T_Typ       : Entity_Id;
9828      Expr_Actual : Node_Id;
9829      Exptyp      : Entity_Id;
9830      Cond        : Node_Id := Empty;
9831      Do_Access   : Boolean := False;
9832      Wnode       : Node_Id  := Warn_Node;
9833      Ret_Result  : Check_Result := (Empty, Empty);
9834      Num_Checks  : Natural := 0;
9835
9836      procedure Add_Check (N : Node_Id);
9837      --  Adds the action given to Ret_Result if N is non-Empty
9838
9839      function Discrete_Range_Cond
9840        (Expr : Node_Id;
9841         Typ  : Entity_Id) return Node_Id;
9842      --  Returns expression to compute:
9843      --    Low_Bound (Expr) < Typ'First
9844      --      or else
9845      --    High_Bound (Expr) > Typ'Last
9846
9847      function Discrete_Expr_Cond
9848        (Expr : Node_Id;
9849         Typ  : Entity_Id) return Node_Id;
9850      --  Returns expression to compute:
9851      --    Expr < Typ'First
9852      --      or else
9853      --    Expr > Typ'Last
9854
9855      function Get_E_First_Or_Last
9856        (Loc  : Source_Ptr;
9857         E    : Entity_Id;
9858         Indx : Nat;
9859         Nam  : Name_Id) return Node_Id;
9860      --  Returns an attribute reference
9861      --    E'First or E'Last
9862      --  with a source location of Loc.
9863      --
9864      --  Nam is Name_First or Name_Last, according to which attribute is
9865      --  desired. If Indx is non-zero, it is passed as a literal in the
9866      --  Expressions of the attribute reference (identifying the desired
9867      --  array dimension).
9868
9869      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9870      function Get_N_Last  (N : Node_Id; Indx : Nat) return Node_Id;
9871      --  Returns expression to compute:
9872      --    N'First or N'Last using Duplicate_Subexpr_No_Checks
9873
9874      function Range_E_Cond
9875        (Exptyp : Entity_Id;
9876         Typ    : Entity_Id;
9877         Indx   : Nat)
9878         return   Node_Id;
9879      --  Returns expression to compute:
9880      --    Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9881
9882      function Range_Equal_E_Cond
9883        (Exptyp : Entity_Id;
9884         Typ    : Entity_Id;
9885         Indx   : Nat) return Node_Id;
9886      --  Returns expression to compute:
9887      --    Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9888
9889      function Range_N_Cond
9890        (Expr : Node_Id;
9891         Typ  : Entity_Id;
9892         Indx : Nat) return Node_Id;
9893      --  Return expression to compute:
9894      --    Expr'First < Typ'First or else Expr'Last > Typ'Last
9895
9896      ---------------
9897      -- Add_Check --
9898      ---------------
9899
9900      procedure Add_Check (N : Node_Id) is
9901      begin
9902         if Present (N) then
9903
9904            --  For now, ignore attempt to place more than 2 checks ???
9905
9906            if Num_Checks = 2 then
9907               return;
9908            end if;
9909
9910            pragma Assert (Num_Checks <= 1);
9911            Num_Checks := Num_Checks + 1;
9912            Ret_Result (Num_Checks) := N;
9913         end if;
9914      end Add_Check;
9915
9916      -------------------------
9917      -- Discrete_Expr_Cond --
9918      -------------------------
9919
9920      function Discrete_Expr_Cond
9921        (Expr : Node_Id;
9922         Typ  : Entity_Id) return Node_Id
9923      is
9924      begin
9925         return
9926           Make_Or_Else (Loc,
9927             Left_Opnd =>
9928               Make_Op_Lt (Loc,
9929                 Left_Opnd =>
9930                   Convert_To (Base_Type (Typ),
9931                     Duplicate_Subexpr_No_Checks (Expr)),
9932                 Right_Opnd =>
9933                   Convert_To (Base_Type (Typ),
9934                               Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
9935
9936             Right_Opnd =>
9937               Make_Op_Gt (Loc,
9938                 Left_Opnd =>
9939                   Convert_To (Base_Type (Typ),
9940                     Duplicate_Subexpr_No_Checks (Expr)),
9941                 Right_Opnd =>
9942                   Convert_To
9943                     (Base_Type (Typ),
9944                      Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
9945      end Discrete_Expr_Cond;
9946
9947      -------------------------
9948      -- Discrete_Range_Cond --
9949      -------------------------
9950
9951      function Discrete_Range_Cond
9952        (Expr : Node_Id;
9953         Typ  : Entity_Id) return Node_Id
9954      is
9955         LB : Node_Id := Low_Bound (Expr);
9956         HB : Node_Id := High_Bound (Expr);
9957
9958         Left_Opnd  : Node_Id;
9959         Right_Opnd : Node_Id;
9960
9961      begin
9962         if Nkind (LB) = N_Identifier
9963           and then Ekind (Entity (LB)) = E_Discriminant
9964         then
9965            LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9966         end if;
9967
9968         Left_Opnd :=
9969           Make_Op_Lt (Loc,
9970             Left_Opnd  =>
9971               Convert_To
9972                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
9973
9974             Right_Opnd =>
9975               Convert_To
9976                 (Base_Type (Typ),
9977                  Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
9978
9979         if Nkind (HB) = N_Identifier
9980           and then Ekind (Entity (HB)) = E_Discriminant
9981         then
9982            HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9983         end if;
9984
9985         Right_Opnd :=
9986           Make_Op_Gt (Loc,
9987             Left_Opnd  =>
9988               Convert_To
9989                 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
9990
9991             Right_Opnd =>
9992               Convert_To
9993                 (Base_Type (Typ),
9994                  Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
9995
9996         return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
9997      end Discrete_Range_Cond;
9998
9999      -------------------------
10000      -- Get_E_First_Or_Last --
10001      -------------------------
10002
10003      function Get_E_First_Or_Last
10004        (Loc  : Source_Ptr;
10005         E    : Entity_Id;
10006         Indx : Nat;
10007         Nam  : Name_Id) return Node_Id
10008      is
10009         Exprs : List_Id;
10010      begin
10011         if Indx > 0 then
10012            Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
10013         else
10014            Exprs := No_List;
10015         end if;
10016
10017         return Make_Attribute_Reference (Loc,
10018                  Prefix         => New_Occurrence_Of (E, Loc),
10019                  Attribute_Name => Nam,
10020                  Expressions    => Exprs);
10021      end Get_E_First_Or_Last;
10022
10023      -----------------
10024      -- Get_N_First --
10025      -----------------
10026
10027      function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10028      begin
10029         return
10030           Make_Attribute_Reference (Loc,
10031             Attribute_Name => Name_First,
10032             Prefix =>
10033               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10034             Expressions => New_List (
10035               Make_Integer_Literal (Loc, Indx)));
10036      end Get_N_First;
10037
10038      ----------------
10039      -- Get_N_Last --
10040      ----------------
10041
10042      function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10043      begin
10044         return
10045           Make_Attribute_Reference (Loc,
10046             Attribute_Name => Name_Last,
10047             Prefix =>
10048               Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10049             Expressions => New_List (
10050              Make_Integer_Literal (Loc, Indx)));
10051      end Get_N_Last;
10052
10053      ------------------
10054      -- Range_E_Cond --
10055      ------------------
10056
10057      function Range_E_Cond
10058        (Exptyp : Entity_Id;
10059         Typ    : Entity_Id;
10060         Indx   : Nat) return Node_Id
10061      is
10062      begin
10063         return
10064           Make_Or_Else (Loc,
10065             Left_Opnd =>
10066               Make_Op_Lt (Loc,
10067                 Left_Opnd   =>
10068                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10069                 Right_Opnd  =>
10070                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10071
10072             Right_Opnd =>
10073               Make_Op_Gt (Loc,
10074                 Left_Opnd   =>
10075                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10076                 Right_Opnd  =>
10077                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10078      end Range_E_Cond;
10079
10080      ------------------------
10081      -- Range_Equal_E_Cond --
10082      ------------------------
10083
10084      function Range_Equal_E_Cond
10085        (Exptyp : Entity_Id;
10086         Typ    : Entity_Id;
10087         Indx   : Nat) return Node_Id
10088      is
10089      begin
10090         return
10091           Make_Or_Else (Loc,
10092             Left_Opnd =>
10093               Make_Op_Ne (Loc,
10094                 Left_Opnd   =>
10095                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10096                 Right_Opnd  =>
10097                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10098
10099             Right_Opnd =>
10100               Make_Op_Ne (Loc,
10101                 Left_Opnd   =>
10102                   Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10103                 Right_Opnd  =>
10104                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10105      end Range_Equal_E_Cond;
10106
10107      ------------------
10108      -- Range_N_Cond --
10109      ------------------
10110
10111      function Range_N_Cond
10112        (Expr : Node_Id;
10113         Typ  : Entity_Id;
10114         Indx : Nat) return Node_Id
10115      is
10116      begin
10117         return
10118           Make_Or_Else (Loc,
10119             Left_Opnd =>
10120               Make_Op_Lt (Loc,
10121                 Left_Opnd  =>
10122                   Get_N_First (Expr, Indx),
10123                 Right_Opnd =>
10124                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10125
10126             Right_Opnd =>
10127               Make_Op_Gt (Loc,
10128                 Left_Opnd  =>
10129                   Get_N_Last (Expr, Indx),
10130                 Right_Opnd =>
10131                   Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10132      end Range_N_Cond;
10133
10134   --  Start of processing for Selected_Range_Checks
10135
10136   begin
10137      --  Checks will be applied only when generating code. In GNATprove mode,
10138      --  we do not apply the checks, but we still call Selected_Range_Checks
10139      --  to possibly issue errors on SPARK code when a run-time error can be
10140      --  detected at compile time.
10141
10142      if not Expander_Active and not GNATprove_Mode then
10143         return Ret_Result;
10144      end if;
10145
10146      if Target_Typ = Any_Type
10147        or else Target_Typ = Any_Composite
10148        or else Raises_Constraint_Error (Ck_Node)
10149      then
10150         return Ret_Result;
10151      end if;
10152
10153      if No (Wnode) then
10154         Wnode := Ck_Node;
10155      end if;
10156
10157      T_Typ := Target_Typ;
10158
10159      if No (Source_Typ) then
10160         S_Typ := Etype (Ck_Node);
10161      else
10162         S_Typ := Source_Typ;
10163      end if;
10164
10165      if S_Typ = Any_Type or else S_Typ = Any_Composite then
10166         return Ret_Result;
10167      end if;
10168
10169      --  The order of evaluating T_Typ before S_Typ seems to be critical
10170      --  because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10171      --  in, and since Node can be an N_Range node, it might be invalid.
10172      --  Should there be an assert check somewhere for taking the Etype of
10173      --  an N_Range node ???
10174
10175      if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10176         S_Typ := Designated_Type (S_Typ);
10177         T_Typ := Designated_Type (T_Typ);
10178         Do_Access := True;
10179
10180         --  A simple optimization for the null case
10181
10182         if Known_Null (Ck_Node) then
10183            return Ret_Result;
10184         end if;
10185      end if;
10186
10187      --  For an N_Range Node, check for a null range and then if not
10188      --  null generate a range check action.
10189
10190      if Nkind (Ck_Node) = N_Range then
10191
10192         --  There's no point in checking a range against itself
10193
10194         if Ck_Node = Scalar_Range (T_Typ) then
10195            return Ret_Result;
10196         end if;
10197
10198         declare
10199            T_LB       : constant Node_Id := Type_Low_Bound  (T_Typ);
10200            T_HB       : constant Node_Id := Type_High_Bound (T_Typ);
10201            Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10202            Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10203
10204            LB         : Node_Id := Low_Bound (Ck_Node);
10205            HB         : Node_Id := High_Bound (Ck_Node);
10206            Known_LB   : Boolean := False;
10207            Known_HB   : Boolean := False;
10208
10209            Null_Range     : Boolean;
10210            Out_Of_Range_L : Boolean;
10211            Out_Of_Range_H : Boolean;
10212
10213         begin
10214            --  Compute what is known at compile time
10215
10216            if Known_T_LB and Known_T_HB then
10217               if Compile_Time_Known_Value (LB) then
10218                  Known_LB := True;
10219
10220               --  There's no point in checking that a bound is within its
10221               --  own range so pretend that it is known in this case. First
10222               --  deal with low bound.
10223
10224               elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10225                 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10226               then
10227                  LB := T_LB;
10228                  Known_LB := True;
10229               end if;
10230
10231               --  Likewise for the high bound
10232
10233               if Compile_Time_Known_Value (HB) then
10234                  Known_HB := True;
10235
10236               elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10237                 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10238               then
10239                  HB := T_HB;
10240                  Known_HB := True;
10241               end if;
10242            end if;
10243
10244            --  Check for case where everything is static and we can do the
10245            --  check at compile time. This is skipped if we have an access
10246            --  type, since the access value may be null.
10247
10248            --  ??? This code can be improved since you only need to know that
10249            --  the two respective bounds (LB & T_LB or HB & T_HB) are known at
10250            --  compile time to emit pertinent messages.
10251
10252            if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10253              and not Do_Access
10254            then
10255               --  Floating-point case
10256
10257               if Is_Floating_Point_Type (S_Typ) then
10258                  Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10259                  Out_Of_Range_L :=
10260                    (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10261                      or else
10262                    (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10263
10264                  Out_Of_Range_H :=
10265                    (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10266                      or else
10267                    (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10268
10269               --  Fixed or discrete type case
10270
10271               else
10272                  Null_Range := Expr_Value (HB) < Expr_Value (LB);
10273                  Out_Of_Range_L :=
10274                    (Expr_Value (LB) < Expr_Value (T_LB))
10275                      or else
10276                    (Expr_Value (LB) > Expr_Value (T_HB));
10277
10278                  Out_Of_Range_H :=
10279                    (Expr_Value (HB) > Expr_Value (T_HB))
10280                      or else
10281                    (Expr_Value (HB) < Expr_Value (T_LB));
10282               end if;
10283
10284               if not Null_Range then
10285                  if Out_Of_Range_L then
10286                     if No (Warn_Node) then
10287                        Add_Check
10288                          (Compile_Time_Constraint_Error
10289                             (Low_Bound (Ck_Node),
10290                              "static value out of range of}??", T_Typ));
10291
10292                     else
10293                        Add_Check
10294                          (Compile_Time_Constraint_Error
10295                            (Wnode,
10296                             "static range out of bounds of}??", T_Typ));
10297                     end if;
10298                  end if;
10299
10300                  if Out_Of_Range_H then
10301                     if No (Warn_Node) then
10302                        Add_Check
10303                          (Compile_Time_Constraint_Error
10304                             (High_Bound (Ck_Node),
10305                              "static value out of range of}??", T_Typ));
10306
10307                     else
10308                        Add_Check
10309                          (Compile_Time_Constraint_Error
10310                             (Wnode,
10311                              "static range out of bounds of}??", T_Typ));
10312                     end if;
10313                  end if;
10314               end if;
10315
10316            else
10317               declare
10318                  LB : Node_Id := Low_Bound (Ck_Node);
10319                  HB : Node_Id := High_Bound (Ck_Node);
10320
10321               begin
10322                  --  If either bound is a discriminant and we are within the
10323                  --  record declaration, it is a use of the discriminant in a
10324                  --  constraint of a component, and nothing can be checked
10325                  --  here. The check will be emitted within the init proc.
10326                  --  Before then, the discriminal has no real meaning.
10327                  --  Similarly, if the entity is a discriminal, there is no
10328                  --  check to perform yet.
10329
10330                  --  The same holds within a discriminated synchronized type,
10331                  --  where the discriminant may constrain a component or an
10332                  --  entry family.
10333
10334                  if Nkind (LB) = N_Identifier
10335                    and then Denotes_Discriminant (LB, True)
10336                  then
10337                     if Current_Scope = Scope (Entity (LB))
10338                       or else Is_Concurrent_Type (Current_Scope)
10339                       or else Ekind (Entity (LB)) /= E_Discriminant
10340                     then
10341                        return Ret_Result;
10342                     else
10343                        LB :=
10344                          New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10345                     end if;
10346                  end if;
10347
10348                  if Nkind (HB) = N_Identifier
10349                    and then Denotes_Discriminant (HB, True)
10350                  then
10351                     if Current_Scope = Scope (Entity (HB))
10352                       or else Is_Concurrent_Type (Current_Scope)
10353                       or else Ekind (Entity (HB)) /= E_Discriminant
10354                     then
10355                        return Ret_Result;
10356                     else
10357                        HB :=
10358                          New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10359                     end if;
10360                  end if;
10361
10362                  Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10363                  Set_Paren_Count (Cond, 1);
10364
10365                  Cond :=
10366                    Make_And_Then (Loc,
10367                      Left_Opnd =>
10368                        Make_Op_Ge (Loc,
10369                          Left_Opnd  =>
10370                            Convert_To (Base_Type (Etype (HB)),
10371                              Duplicate_Subexpr_No_Checks (HB)),
10372                          Right_Opnd =>
10373                            Convert_To (Base_Type (Etype (LB)),
10374                              Duplicate_Subexpr_No_Checks (LB))),
10375                      Right_Opnd => Cond);
10376               end;
10377            end if;
10378         end;
10379
10380      elsif Is_Scalar_Type (S_Typ) then
10381
10382         --  This somewhat duplicates what Apply_Scalar_Range_Check does,
10383         --  except the above simply sets a flag in the node and lets
10384         --  gigi generate the check base on the Etype of the expression.
10385         --  Sometimes, however we want to do a dynamic check against an
10386         --  arbitrary target type, so we do that here.
10387
10388         if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10389            Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10390
10391         --  For literals, we can tell if the constraint error will be
10392         --  raised at compile time, so we never need a dynamic check, but
10393         --  if the exception will be raised, then post the usual warning,
10394         --  and replace the literal with a raise constraint error
10395         --  expression. As usual, skip this for access types
10396
10397         elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
10398            declare
10399               LB : constant Node_Id := Type_Low_Bound (T_Typ);
10400               UB : constant Node_Id := Type_High_Bound (T_Typ);
10401
10402               Out_Of_Range  : Boolean;
10403               Static_Bounds : constant Boolean :=
10404                 Compile_Time_Known_Value (LB)
10405                 and Compile_Time_Known_Value (UB);
10406
10407            begin
10408               --  Following range tests should use Sem_Eval routine ???
10409
10410               if Static_Bounds then
10411                  if Is_Floating_Point_Type (S_Typ) then
10412                     Out_Of_Range :=
10413                       (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10414                         or else
10415                       (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10416
10417                  --  Fixed or discrete type
10418
10419                  else
10420                     Out_Of_Range :=
10421                       Expr_Value (Ck_Node) < Expr_Value (LB)
10422                         or else
10423                       Expr_Value (Ck_Node) > Expr_Value (UB);
10424                  end if;
10425
10426                  --  Bounds of the type are static and the literal is out of
10427                  --  range so output a warning message.
10428
10429                  if Out_Of_Range then
10430                     if No (Warn_Node) then
10431                        Add_Check
10432                          (Compile_Time_Constraint_Error
10433                             (Ck_Node,
10434                              "static value out of range of}??", T_Typ));
10435
10436                     else
10437                        Add_Check
10438                          (Compile_Time_Constraint_Error
10439                             (Wnode,
10440                              "static value out of range of}??", T_Typ));
10441                     end if;
10442                  end if;
10443
10444               else
10445                  Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10446               end if;
10447            end;
10448
10449         --  Here for the case of a non-static expression, we need a runtime
10450         --  check unless the source type range is guaranteed to be in the
10451         --  range of the target type.
10452
10453         else
10454            if not In_Subrange_Of (S_Typ, T_Typ) then
10455               Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10456            end if;
10457         end if;
10458      end if;
10459
10460      if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10461         if Is_Constrained (T_Typ) then
10462
10463            Expr_Actual := Get_Referenced_Object (Ck_Node);
10464            Exptyp      := Get_Actual_Subtype (Expr_Actual);
10465
10466            if Is_Access_Type (Exptyp) then
10467               Exptyp := Designated_Type (Exptyp);
10468            end if;
10469
10470            --  String_Literal case. This needs to be handled specially be-
10471            --  cause no index types are available for string literals. The
10472            --  condition is simply:
10473
10474            --    T_Typ'Length = string-literal-length
10475
10476            if Nkind (Expr_Actual) = N_String_Literal then
10477               null;
10478
10479            --  General array case. Here we have a usable actual subtype for
10480            --  the expression, and the condition is built from the two types
10481
10482            --     T_Typ'First     < Exptyp'First     or else
10483            --     T_Typ'Last      > Exptyp'Last      or else
10484            --     T_Typ'First(1)  < Exptyp'First(1)  or else
10485            --     T_Typ'Last(1)   > Exptyp'Last(1)   or else
10486            --     ...
10487
10488            elsif Is_Constrained (Exptyp) then
10489               declare
10490                  Ndims : constant Nat := Number_Dimensions (T_Typ);
10491
10492                  L_Index : Node_Id;
10493                  R_Index : Node_Id;
10494
10495               begin
10496                  L_Index := First_Index (T_Typ);
10497                  R_Index := First_Index (Exptyp);
10498
10499                  for Indx in 1 .. Ndims loop
10500                     if not (Nkind (L_Index) = N_Raise_Constraint_Error
10501                               or else
10502                             Nkind (R_Index) = N_Raise_Constraint_Error)
10503                     then
10504                        --  Deal with compile time length check. Note that we
10505                        --  skip this in the access case, because the access
10506                        --  value may be null, so we cannot know statically.
10507
10508                        if not
10509                          Subtypes_Statically_Match
10510                            (Etype (L_Index), Etype (R_Index))
10511                        then
10512                           --  If the target type is constrained then we
10513                           --  have to check for exact equality of bounds
10514                           --  (required for qualified expressions).
10515
10516                           if Is_Constrained (T_Typ) then
10517                              Evolve_Or_Else
10518                                (Cond,
10519                                 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
10520                           else
10521                              Evolve_Or_Else
10522                                (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10523                           end if;
10524                        end if;
10525
10526                        Next (L_Index);
10527                        Next (R_Index);
10528                     end if;
10529                  end loop;
10530               end;
10531
10532            --  Handle cases where we do not get a usable actual subtype that
10533            --  is constrained. This happens for example in the function call
10534            --  and explicit dereference cases. In these cases, we have to get
10535            --  the length or range from the expression itself, making sure we
10536            --  do not evaluate it more than once.
10537
10538            --  Here Ck_Node is the original expression, or more properly the
10539            --  result of applying Duplicate_Expr to the original tree,
10540            --  forcing the result to be a name.
10541
10542            else
10543               declare
10544                  Ndims : constant Nat := Number_Dimensions (T_Typ);
10545
10546               begin
10547                  --  Build the condition for the explicit dereference case
10548
10549                  for Indx in 1 .. Ndims loop
10550                     Evolve_Or_Else
10551                       (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10552                  end loop;
10553               end;
10554            end if;
10555
10556         else
10557            --  For a conversion to an unconstrained array type, generate an
10558            --  Action to check that the bounds of the source value are within
10559            --  the constraints imposed by the target type (RM 4.6(38)). No
10560            --  check is needed for a conversion to an access to unconstrained
10561            --  array type, as 4.6(24.15/2) requires the designated subtypes
10562            --  of the two access types to statically match.
10563
10564            if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10565              and then not Do_Access
10566            then
10567               declare
10568                  Opnd_Index : Node_Id;
10569                  Targ_Index : Node_Id;
10570                  Opnd_Range : Node_Id;
10571
10572               begin
10573                  Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10574                  Targ_Index := First_Index (T_Typ);
10575                  while Present (Opnd_Index) loop
10576
10577                     --  If the index is a range, use its bounds. If it is an
10578                     --  entity (as will be the case if it is a named subtype
10579                     --  or an itype created for a slice) retrieve its range.
10580
10581                     if Is_Entity_Name (Opnd_Index)
10582                       and then Is_Type (Entity (Opnd_Index))
10583                     then
10584                        Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10585                     else
10586                        Opnd_Range := Opnd_Index;
10587                     end if;
10588
10589                     if Nkind (Opnd_Range) = N_Range then
10590                        if  Is_In_Range
10591                             (Low_Bound (Opnd_Range), Etype (Targ_Index),
10592                              Assume_Valid => True)
10593                          and then
10594                            Is_In_Range
10595                             (High_Bound (Opnd_Range), Etype (Targ_Index),
10596                              Assume_Valid => True)
10597                        then
10598                           null;
10599
10600                        --  If null range, no check needed
10601
10602                        elsif
10603                          Compile_Time_Known_Value (High_Bound (Opnd_Range))
10604                            and then
10605                          Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10606                            and then
10607                              Expr_Value (High_Bound (Opnd_Range)) <
10608                                  Expr_Value (Low_Bound (Opnd_Range))
10609                        then
10610                           null;
10611
10612                        elsif Is_Out_Of_Range
10613                                (Low_Bound (Opnd_Range), Etype (Targ_Index),
10614                                 Assume_Valid => True)
10615                          or else
10616                              Is_Out_Of_Range
10617                                (High_Bound (Opnd_Range), Etype (Targ_Index),
10618                                 Assume_Valid => True)
10619                        then
10620                           Add_Check
10621                             (Compile_Time_Constraint_Error
10622                               (Wnode, "value out of range of}??", T_Typ));
10623
10624                        else
10625                           Evolve_Or_Else
10626                             (Cond,
10627                              Discrete_Range_Cond
10628                                (Opnd_Range, Etype (Targ_Index)));
10629                        end if;
10630                     end if;
10631
10632                     Next_Index (Opnd_Index);
10633                     Next_Index (Targ_Index);
10634                  end loop;
10635               end;
10636            end if;
10637         end if;
10638      end if;
10639
10640      --  Construct the test and insert into the tree
10641
10642      if Present (Cond) then
10643         if Do_Access then
10644            Cond := Guard_Access (Cond, Loc, Ck_Node);
10645         end if;
10646
10647         Add_Check
10648           (Make_Raise_Constraint_Error (Loc,
10649             Condition => Cond,
10650             Reason    => CE_Range_Check_Failed));
10651      end if;
10652
10653      return Ret_Result;
10654   end Selected_Range_Checks;
10655
10656   -------------------------------
10657   -- Storage_Checks_Suppressed --
10658   -------------------------------
10659
10660   function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10661   begin
10662      if Present (E) and then Checks_May_Be_Suppressed (E) then
10663         return Is_Check_Suppressed (E, Storage_Check);
10664      else
10665         return Scope_Suppress.Suppress (Storage_Check);
10666      end if;
10667   end Storage_Checks_Suppressed;
10668
10669   ---------------------------
10670   -- Tag_Checks_Suppressed --
10671   ---------------------------
10672
10673   function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10674   begin
10675      if Present (E)
10676        and then Checks_May_Be_Suppressed (E)
10677      then
10678         return Is_Check_Suppressed (E, Tag_Check);
10679      else
10680         return Scope_Suppress.Suppress (Tag_Check);
10681      end if;
10682   end Tag_Checks_Suppressed;
10683
10684   ---------------------------------------
10685   -- Validate_Alignment_Check_Warnings --
10686   ---------------------------------------
10687
10688   procedure Validate_Alignment_Check_Warnings is
10689   begin
10690      for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10691         declare
10692            AWR : Alignment_Warnings_Record
10693                    renames Alignment_Warnings.Table (J);
10694         begin
10695            if Known_Alignment (AWR.E)
10696              and then AWR.A mod Alignment (AWR.E) = 0
10697            then
10698               Delete_Warning_And_Continuations (AWR.W);
10699            end if;
10700         end;
10701      end loop;
10702   end Validate_Alignment_Check_Warnings;
10703
10704   --------------------------
10705   -- Validity_Check_Range --
10706   --------------------------
10707
10708   procedure Validity_Check_Range
10709     (N          : Node_Id;
10710      Related_Id : Entity_Id := Empty)
10711   is
10712   begin
10713      if Validity_Checks_On and Validity_Check_Operands then
10714         if Nkind (N) = N_Range then
10715            Ensure_Valid
10716              (Expr          => Low_Bound (N),
10717               Related_Id    => Related_Id,
10718               Is_Low_Bound  => True);
10719
10720            Ensure_Valid
10721              (Expr          => High_Bound (N),
10722               Related_Id    => Related_Id,
10723               Is_High_Bound => True);
10724         end if;
10725      end if;
10726   end Validity_Check_Range;
10727
10728   --------------------------------
10729   -- Validity_Checks_Suppressed --
10730   --------------------------------
10731
10732   function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10733   begin
10734      if Present (E) and then Checks_May_Be_Suppressed (E) then
10735         return Is_Check_Suppressed (E, Validity_Check);
10736      else
10737         return Scope_Suppress.Suppress (Validity_Check);
10738      end if;
10739   end Validity_Checks_Suppressed;
10740
10741end Checks;
10742