1 /* Register Transfer Language (RTL) definitions for GCC
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22 
23 /* This file is occasionally included by generator files which expect
24    machmode.h and other files to exist and would not normally have been
25    included by coretypes.h.  */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif  /* GENERATOR_FILE */
36 
37 #include "hard-reg-set.h"
38 
39 /* Value used by some passes to "recognize" noop moves as valid
40  instructions.  */
41 #define NOOP_MOVE_INSN_CODE	INT_MAX
42 
43 /* Register Transfer Language EXPRESSIONS CODES */
44 
45 #define RTX_CODE	enum rtx_code
46 enum rtx_code  {
47 
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS)   ENUM ,
49 #include "rtl.def"		/* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
51 
52   LAST_AND_UNUSED_RTX_CODE};	/* A convenient way to get a value for
53 				   NUM_RTX_CODE.
54 				   Assumes default enum value assignment.  */
55 
56 /* The cast here, saves many elsewhere.  */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
58 
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
63 
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
65 
66 enum rtx_class  {
67   /* We check bit 0-1 of some rtx class codes in the predicates below.  */
68 
69   /* Bit 0 = comparison if 0, arithmetic is 1
70      Bit 1 = 1 if commutative.  */
71   RTX_COMPARE,		/* 0 */
72   RTX_COMM_COMPARE,
73   RTX_BIN_ARITH,
74   RTX_COMM_ARITH,
75 
76   /* Must follow the four preceding values.  */
77   RTX_UNARY,		/* 4 */
78 
79   RTX_EXTRA,
80   RTX_MATCH,
81   RTX_INSN,
82 
83   /* Bit 0 = 1 if constant.  */
84   RTX_OBJ,		/* 8 */
85   RTX_CONST_OBJ,
86 
87   RTX_TERNARY,
88   RTX_BITFIELD_OPS,
89   RTX_AUTOINC
90 };
91 
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
103 
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE)		(rtx_length[(int) (CODE)])
106 
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE)		(rtx_name[(int) (CODE)])
109 
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE)		(rtx_format[(int) (CODE)])
112 
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE)		(rtx_class[(int) (CODE)])
115 
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117    and NEXT_INSN fields).  */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
119 
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
122 
123 /* The flags and bitfields of an ADDR_DIFF_VEC.  BASE is the base label
124    relative to which the offsets are calculated, as explained in rtl.def.  */
125 struct addr_diff_vec_flags
126 {
127   /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128   unsigned min_align: 8;
129   /* Flags: */
130   unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC.  */
131   unsigned min_after_vec: 1;  /* minimum address target label is
132 				 after the ADDR_DIFF_VEC.  */
133   unsigned max_after_vec: 1;  /* maximum address target label is
134 				 after the ADDR_DIFF_VEC.  */
135   unsigned min_after_base: 1; /* minimum address target label is
136 				 after BASE.  */
137   unsigned max_after_base: 1; /* maximum address target label is
138 				 after BASE.  */
139   /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140   unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned.  */
141   unsigned : 2;
142   unsigned scale : 8;
143 };
144 
145 /* Structure used to describe the attributes of a MEM.  These are hashed
146    so MEMs that the same attributes share a data structure.  This means
147    they cannot be modified in place.  */
148 struct GTY(()) mem_attrs
149 {
150   mem_attrs ();
151 
152   /* The expression that the MEM accesses, or null if not known.
153      This expression might be larger than the memory reference itself.
154      (In other words, the MEM might access only part of the object.)  */
155   tree expr;
156 
157   /* The offset of the memory reference from the start of EXPR.
158      Only valid if OFFSET_KNOWN_P.  */
159   poly_int64 offset;
160 
161   /* The size of the memory reference in bytes.  Only valid if
162      SIZE_KNOWN_P.  */
163   poly_int64 size;
164 
165   /* The alias set of the memory reference.  */
166   alias_set_type alias;
167 
168   /* The alignment of the reference in bits.  Always a multiple of
169      BITS_PER_UNIT.  Note that EXPR may have a stricter alignment
170      than the memory reference itself.  */
171   unsigned int align;
172 
173   /* The address space that the memory reference uses.  */
174   unsigned char addrspace;
175 
176   /* True if OFFSET is known.  */
177   bool offset_known_p;
178 
179   /* True if SIZE is known.  */
180   bool size_known_p;
181 };
182 
183 /* Structure used to describe the attributes of a REG in similar way as
184    mem_attrs does for MEM above.  Note that the OFFSET field is calculated
185    in the same way as for mem_attrs, rather than in the same way as a
186    SUBREG_BYTE.  For example, if a big-endian target stores a byte
187    object in the low part of a 4-byte register, the OFFSET field
188    will be -3 rather than 0.  */
189 
190 struct GTY((for_user)) reg_attrs {
191   tree decl;			/* decl corresponding to REG.  */
192   poly_int64 offset;		/* Offset from start of DECL.  */
193 };
194 
195 /* Common union for an element of an rtx.  */
196 
197 union rtunion
198 {
199   int rt_int;
200   unsigned int rt_uint;
201   poly_uint16_pod rt_subreg;
202   const char *rt_str;
203   rtx rt_rtx;
204   rtvec rt_rtvec;
205   machine_mode rt_type;
206   addr_diff_vec_flags rt_addr_diff_vec_flags;
207   struct cselib_val *rt_cselib;
208   tree rt_tree;
209   basic_block rt_bb;
210   mem_attrs *rt_mem;
211   struct constant_descriptor_rtx *rt_constant;
212   struct dw_cfi_node *rt_cfi;
213 };
214 
215 /* Describes the properties of a REG.  */
216 struct GTY(()) reg_info {
217   /* The value of REGNO.  */
218   unsigned int regno;
219 
220   /* The value of REG_NREGS.  */
221   unsigned int nregs : 8;
222   unsigned int unused : 24;
223 
224   /* The value of REG_ATTRS.  */
225   reg_attrs *attrs;
226 };
227 
228 /* This structure remembers the position of a SYMBOL_REF within an
229    object_block structure.  A SYMBOL_REF only provides this information
230    if SYMBOL_REF_HAS_BLOCK_INFO_P is true.  */
231 struct GTY(()) block_symbol {
232   /* The usual SYMBOL_REF fields.  */
233   rtunion GTY ((skip)) fld[2];
234 
235   /* The block that contains this object.  */
236   struct object_block *block;
237 
238   /* The offset of this object from the start of its block.  It is negative
239      if the symbol has not yet been assigned an offset.  */
240   HOST_WIDE_INT offset;
241 };
242 
243 /* Describes a group of objects that are to be placed together in such
244    a way that their relative positions are known.  */
245 struct GTY((for_user)) object_block {
246   /* The section in which these objects should be placed.  */
247   section *sect;
248 
249   /* The alignment of the first object, measured in bits.  */
250   unsigned int alignment;
251 
252   /* The total size of the objects, measured in bytes.  */
253   HOST_WIDE_INT size;
254 
255   /* The SYMBOL_REFs for each object.  The vector is sorted in
256      order of increasing offset and the following conditions will
257      hold for each element X:
258 
259 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
260 	 !SYMBOL_REF_ANCHOR_P (X)
261 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
262 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
263   vec<rtx, va_gc> *objects;
264 
265   /* All the anchor SYMBOL_REFs used to address these objects, sorted
266      in order of increasing offset, and then increasing TLS model.
267      The following conditions will hold for each element X in this vector:
268 
269 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
270 	 SYMBOL_REF_ANCHOR_P (X)
271 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
272 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
273   vec<rtx, va_gc> *anchors;
274 };
275 
276 struct GTY((variable_size)) hwivec_def {
277   HOST_WIDE_INT elem[1];
278 };
279 
280 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT.  */
281 #define CWI_GET_NUM_ELEM(RTX)					\
282   ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
283 #define CWI_PUT_NUM_ELEM(RTX, NUM)					\
284   (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
285 
286 struct GTY((variable_size)) const_poly_int_def {
287   trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
288 };
289 
290 /* RTL expression ("rtx").  */
291 
292 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
293    field for gengtype to recognize that inheritance is occurring,
294    so that all subclasses are redirected to the traversal hook for the
295    base class.
296    However, all of the fields are in the base class, and special-casing
297    is at work.  Hence we use desc and tag of 0, generating a switch
298    statement of the form:
299      switch (0)
300        {
301        case 0: // all the work happens here
302       }
303    in order to work with the existing special-casing in gengtype.  */
304 
305 struct GTY((desc("0"), tag("0"),
306 	    chain_next ("RTX_NEXT (&%h)"),
307 	    chain_prev ("RTX_PREV (&%h)"))) rtx_def {
308   /* The kind of expression this is.  */
309   ENUM_BITFIELD(rtx_code) code: 16;
310 
311   /* The kind of value the expression has.  */
312   ENUM_BITFIELD(machine_mode) mode : 8;
313 
314   /* 1 in a MEM if we should keep the alias set for this mem unchanged
315      when we access a component.
316      1 in a JUMP_INSN if it is a crossing jump.
317      1 in a CALL_INSN if it is a sibling call.
318      1 in a SET that is for a return.
319      In a CODE_LABEL, part of the two-bit alternate entry field.
320      1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
321      1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
322      1 in a SUBREG generated by LRA for reload insns.
323      1 in a REG if this is a static chain register.
324      1 in a CALL for calls instrumented by Pointer Bounds Checker.
325      Dumped as "/j" in RTL dumps.  */
326   unsigned int jump : 1;
327   /* In a CODE_LABEL, part of the two-bit alternate entry field.
328      1 in a MEM if it cannot trap.
329      1 in a CALL_INSN logically equivalent to
330        ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
331      Dumped as "/c" in RTL dumps.  */
332   unsigned int call : 1;
333   /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
334      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
335      1 in a SYMBOL_REF if it addresses something in the per-function
336      constants pool.
337      1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
338      1 in a NOTE, or EXPR_LIST for a const call.
339      1 in a JUMP_INSN of an annulling branch.
340      1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
341      1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
342      1 in a clobber temporarily created for LRA.
343      Dumped as "/u" in RTL dumps.  */
344   unsigned int unchanging : 1;
345   /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
346      1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
347      if it has been deleted.
348      1 in a REG expression if corresponds to a variable declared by the user,
349      0 for an internally generated temporary.
350      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
351      1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
352      non-local label.
353      In a SYMBOL_REF, this flag is used for machine-specific purposes.
354      In a PREFETCH, this flag indicates that it should be considered a
355      scheduling barrier.
356      1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
357      Dumped as "/v" in RTL dumps.  */
358   unsigned int volatil : 1;
359   /* 1 in a REG if the register is used only in exit code a loop.
360      1 in a SUBREG expression if was generated from a variable with a
361      promoted mode.
362      1 in a CODE_LABEL if the label is used for nonlocal gotos
363      and must not be deleted even if its count is zero.
364      1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
365      together with the preceding insn.  Valid only within sched.
366      1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
367      from the target of a branch.  Valid from reorg until end of compilation;
368      cleared before used.
369 
370      The name of the field is historical.  It used to be used in MEMs
371      to record whether the MEM accessed part of a structure.
372      Dumped as "/s" in RTL dumps.  */
373   unsigned int in_struct : 1;
374   /* At the end of RTL generation, 1 if this rtx is used.  This is used for
375      copying shared structure.  See `unshare_all_rtl'.
376      In a REG, this is not needed for that purpose, and used instead
377      in `leaf_renumber_regs_insn'.
378      1 in a SYMBOL_REF, means that emit_library_call
379      has used it as the function.
380      1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
381      1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c.  */
382   unsigned int used : 1;
383   /* 1 in an INSN or a SET if this rtx is related to the call frame,
384      either changing how we compute the frame address or saving and
385      restoring registers in the prologue and epilogue.
386      1 in a REG or MEM if it is a pointer.
387      1 in a SYMBOL_REF if it addresses something in the per-function
388      constant string pool.
389      1 in a VALUE is VALUE_CHANGED in var-tracking.c.
390      Dumped as "/f" in RTL dumps.  */
391   unsigned frame_related : 1;
392   /* 1 in a REG or PARALLEL that is the current function's return value.
393      1 in a SYMBOL_REF for a weak symbol.
394      1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
395      1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
396      1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
397      Dumped as "/i" in RTL dumps.  */
398   unsigned return_val : 1;
399 
400   union {
401     /* The final union field is aligned to 64 bits on LP64 hosts,
402        giving a 32-bit gap after the fields above.  We optimize the
403        layout for that case and use the gap for extra code-specific
404        information.  */
405 
406     /* The ORIGINAL_REGNO of a REG.  */
407     unsigned int original_regno;
408 
409     /* The INSN_UID of an RTX_INSN-class code.  */
410     int insn_uid;
411 
412     /* The SYMBOL_REF_FLAGS of a SYMBOL_REF.  */
413     unsigned int symbol_ref_flags;
414 
415     /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION.  */
416     enum var_init_status var_location_status;
417 
418     /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
419        HOST_WIDE_INTs in the hwivec_def.  */
420     unsigned int num_elem;
421 
422     /* Information about a CONST_VECTOR.  */
423     struct
424     {
425       /* The value of CONST_VECTOR_NPATTERNS.  */
426       unsigned int npatterns : 16;
427 
428       /* The value of CONST_VECTOR_NELTS_PER_PATTERN.  */
429       unsigned int nelts_per_pattern : 8;
430 
431       /* For future expansion.  */
432       unsigned int unused : 8;
433     } const_vector;
434   } GTY ((skip)) u2;
435 
436   /* The first element of the operands of this rtx.
437      The number of operands and their types are controlled
438      by the `code' field, according to rtl.def.  */
439   union u {
440     rtunion fld[1];
441     HOST_WIDE_INT hwint[1];
442     struct reg_info reg;
443     struct block_symbol block_sym;
444     struct real_value rv;
445     struct fixed_value fv;
446     struct hwivec_def hwiv;
447     struct const_poly_int_def cpi;
448   } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
449 };
450 
451 /* A node for constructing singly-linked lists of rtx.  */
452 
class()453 class GTY(()) rtx_expr_list : public rtx_def
454 {
455   /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST).  */
456 
457 public:
458   /* Get next in list.  */
459   rtx_expr_list *next () const;
460 
461   /* Get at the underlying rtx.  */
462   rtx element () const;
463 };
464 
465 template <>
466 template <>
467 inline bool
test(rtx rt)468 is_a_helper <rtx_expr_list *>::test (rtx rt)
469 {
470   return rt->code == EXPR_LIST;
471 }
472 
class()473 class GTY(()) rtx_insn_list : public rtx_def
474 {
475   /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
476 
477      This is an instance of:
478 
479        DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
480 
481      i.e. a node for constructing singly-linked lists of rtx_insn *, where
482      the list is "external" to the insn (as opposed to the doubly-linked
483      list embedded within rtx_insn itself).  */
484 
485 public:
486   /* Get next in list.  */
487   rtx_insn_list *next () const;
488 
489   /* Get at the underlying instruction.  */
490   rtx_insn *insn () const;
491 
492 };
493 
494 template <>
495 template <>
496 inline bool
test(rtx rt)497 is_a_helper <rtx_insn_list *>::test (rtx rt)
498 {
499   return rt->code == INSN_LIST;
500 }
501 
502 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
503    typically (but not always) of rtx_insn *, used in the late passes.  */
504 
class()505 class GTY(()) rtx_sequence : public rtx_def
506 {
507   /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE).  */
508 
509 public:
510   /* Get number of elements in sequence.  */
511   int len () const;
512 
513   /* Get i-th element of the sequence.  */
514   rtx element (int index) const;
515 
516   /* Get i-th element of the sequence, with a checked cast to
517      rtx_insn *.  */
518   rtx_insn *insn (int index) const;
519 };
520 
521 template <>
522 template <>
523 inline bool
test(rtx rt)524 is_a_helper <rtx_sequence *>::test (rtx rt)
525 {
526   return rt->code == SEQUENCE;
527 }
528 
529 template <>
530 template <>
531 inline bool
test(const_rtx rt)532 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
533 {
534   return rt->code == SEQUENCE;
535 }
536 
class()537 class GTY(()) rtx_insn : public rtx_def
538 {
539 public:
540   /* No extra fields, but adds the invariant:
541 
542      (INSN_P (X)
543       || NOTE_P (X)
544       || JUMP_TABLE_DATA_P (X)
545       || BARRIER_P (X)
546       || LABEL_P (X))
547 
548      i.e. that we must be able to use the following:
549       INSN_UID ()
550       NEXT_INSN ()
551       PREV_INSN ()
552     i.e. we have an rtx that has an INSN_UID field and can be part of
553     a linked list of insns.
554   */
555 
556   /* Returns true if this insn has been deleted.  */
557 
558   bool deleted () const { return volatil; }
559 
560   /* Mark this insn as deleted.  */
561 
562   void set_deleted () { volatil = true; }
563 
564   /* Mark this insn as not deleted.  */
565 
566   void set_undeleted () { volatil = false; }
567 };
568 
569 /* Subclasses of rtx_insn.  */
570 
class()571 class GTY(()) rtx_debug_insn : public rtx_insn
572 {
573   /* No extra fields, but adds the invariant:
574        DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
575      i.e. an annotation for tracking variable assignments.
576 
577      This is an instance of:
578        DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
579      from rtl.def.  */
580 };
581 
class()582 class GTY(()) rtx_nonjump_insn : public rtx_insn
583 {
584   /* No extra fields, but adds the invariant:
585        NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
586      i.e an instruction that cannot jump.
587 
588      This is an instance of:
589        DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
590      from rtl.def.  */
591 };
592 
class()593 class GTY(()) rtx_jump_insn : public rtx_insn
594 {
595 public:
596   /* No extra fields, but adds the invariant:
597        JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
598      i.e. an instruction that can possibly jump.
599 
600      This is an instance of:
601        DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
602      from rtl.def.  */
603 
604   /* Returns jump target of this instruction.  The returned value is not
605      necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
606      expression.  Also, when the code label is marked "deleted", it is
607      replaced by a NOTE.  In some cases the value is NULL_RTX.  */
608 
609   inline rtx jump_label () const;
610 
611   /* Returns jump target cast to rtx_code_label *.  */
612 
613   inline rtx_code_label *jump_target () const;
614 
615   /* Set jump target.  */
616 
617   inline void set_jump_target (rtx_code_label *);
618 };
619 
class()620 class GTY(()) rtx_call_insn : public rtx_insn
621 {
622   /* No extra fields, but adds the invariant:
623        CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
624      i.e. an instruction that can possibly call a subroutine
625      but which will not change which instruction comes next
626      in the current function.
627 
628      This is an instance of:
629        DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
630      from rtl.def.  */
631 };
632 
class()633 class GTY(()) rtx_jump_table_data : public rtx_insn
634 {
635   /* No extra fields, but adds the invariant:
636        JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
637      i.e. a data for a jump table, considered an instruction for
638      historical reasons.
639 
640      This is an instance of:
641        DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
642      from rtl.def.  */
643 
644 public:
645 
646   /* This can be either:
647 
648        (a) a table of absolute jumps, in which case PATTERN (this) is an
649            ADDR_VEC with arg 0 a vector of labels, or
650 
651        (b) a table of relative jumps (e.g. for -fPIC), in which case
652            PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
653 	   arg 1 the vector of labels.
654 
655      This method gets the underlying vec.  */
656 
657   inline rtvec get_labels () const;
658   inline scalar_int_mode get_data_mode () const;
659 };
660 
class()661 class GTY(()) rtx_barrier : public rtx_insn
662 {
663   /* No extra fields, but adds the invariant:
664        BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
665      i.e. a marker that indicates that control will not flow through.
666 
667      This is an instance of:
668        DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
669      from rtl.def.  */
670 };
671 
class()672 class GTY(()) rtx_code_label : public rtx_insn
673 {
674   /* No extra fields, but adds the invariant:
675        LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
676      i.e. a label in the assembler.
677 
678      This is an instance of:
679        DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
680      from rtl.def.  */
681 };
682 
class()683 class GTY(()) rtx_note : public rtx_insn
684 {
685   /* No extra fields, but adds the invariant:
686        NOTE_P(X) aka (GET_CODE (X) == NOTE)
687      i.e. a note about the corresponding source code.
688 
689      This is an instance of:
690        DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
691      from rtl.def.  */
692 };
693 
694 /* The size in bytes of an rtx header (code, mode and flags).  */
695 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
696 
697 /* The size in bytes of an rtx with code CODE.  */
698 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
699 
700 #define NULL_RTX (rtx) 0
701 
702 /* The "next" and "previous" RTX, relative to this one.  */
703 
704 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL			\
705 		     : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
706 
707 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
708  */
709 #define RTX_PREV(X) ((INSN_P (X)       			\
710                       || NOTE_P (X)       		\
711                       || JUMP_TABLE_DATA_P (X)		\
712                       || BARRIER_P (X)        		\
713                       || LABEL_P (X))    		\
714 		     && PREV_INSN (as_a <rtx_insn *> (X)) != NULL	\
715                      && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
716                      ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
717 
718 /* Define macros to access the `code' field of the rtx.  */
719 
720 #define GET_CODE(RTX)	    ((enum rtx_code) (RTX)->code)
721 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
722 
723 #define GET_MODE(RTX)		((machine_mode) (RTX)->mode)
724 #define PUT_MODE_RAW(RTX, MODE)	((RTX)->mode = (MODE))
725 
726 /* RTL vector.  These appear inside RTX's when there is a need
727    for a variable number of things.  The principle use is inside
728    PARALLEL expressions.  */
729 
730 struct GTY(()) rtvec_def {
731   int num_elem;		/* number of elements */
732   rtx GTY ((length ("%h.num_elem"))) elem[1];
733 };
734 
735 #define NULL_RTVEC (rtvec) 0
736 
737 #define GET_NUM_ELEM(RTVEC)		((RTVEC)->num_elem)
738 #define PUT_NUM_ELEM(RTVEC, NUM)	((RTVEC)->num_elem = (NUM))
739 
740 /* Predicate yielding nonzero iff X is an rtx for a register.  */
741 #define REG_P(X) (GET_CODE (X) == REG)
742 
743 /* Predicate yielding nonzero iff X is an rtx for a memory location.  */
744 #define MEM_P(X) (GET_CODE (X) == MEM)
745 
746 #if TARGET_SUPPORTS_WIDE_INT
747 
748 /* Match CONST_*s that can represent compile-time constant integers.  */
749 #define CASE_CONST_SCALAR_INT \
750    case CONST_INT: \
751    case CONST_WIDE_INT
752 
753 /* Match CONST_*s for which pointer equality corresponds to value
754    equality.  */
755 #define CASE_CONST_UNIQUE \
756    case CONST_INT: \
757    case CONST_WIDE_INT: \
758    case CONST_POLY_INT: \
759    case CONST_DOUBLE: \
760    case CONST_FIXED
761 
762 /* Match all CONST_* rtxes.  */
763 #define CASE_CONST_ANY \
764    case CONST_INT: \
765    case CONST_WIDE_INT: \
766    case CONST_POLY_INT: \
767    case CONST_DOUBLE: \
768    case CONST_FIXED: \
769    case CONST_VECTOR
770 
771 #else
772 
773 /* Match CONST_*s that can represent compile-time constant integers.  */
774 #define CASE_CONST_SCALAR_INT \
775    case CONST_INT: \
776    case CONST_DOUBLE
777 
778 /* Match CONST_*s for which pointer equality corresponds to value
779    equality.  */
780 #define CASE_CONST_UNIQUE \
781    case CONST_INT: \
782    case CONST_DOUBLE: \
783    case CONST_FIXED
784 
785 /* Match all CONST_* rtxes.  */
786 #define CASE_CONST_ANY \
787    case CONST_INT: \
788    case CONST_DOUBLE: \
789    case CONST_FIXED: \
790    case CONST_VECTOR
791 #endif
792 
793 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
794 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
795 
796 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
797 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
798 
799 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
800    integer.  */
801 #define CONST_POLY_INT_P(X) \
802   (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
803 
804 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point.  */
805 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
806 
807 /* Predicate yielding true iff X is an rtx for a double-int
808    or floating point constant.  */
809 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
810 
811 /* Predicate yielding true iff X is an rtx for a double-int.  */
812 #define CONST_DOUBLE_AS_INT_P(X) \
813   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
814 
815 /* Predicate yielding true iff X is an rtx for a integer const.  */
816 #if TARGET_SUPPORTS_WIDE_INT
817 #define CONST_SCALAR_INT_P(X) \
818   (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
819 #else
820 #define CONST_SCALAR_INT_P(X) \
821   (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
822 #endif
823 
824 /* Predicate yielding true iff X is an rtx for a double-int.  */
825 #define CONST_DOUBLE_AS_FLOAT_P(X) \
826   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
827 
828 /* Predicate yielding nonzero iff X is a label insn.  */
829 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
830 
831 /* Predicate yielding nonzero iff X is a jump insn.  */
832 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
833 
834 /* Predicate yielding nonzero iff X is a call insn.  */
835 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
836 
837 /* Predicate yielding nonzero iff X is an insn that cannot jump.  */
838 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
839 
840 /* Predicate yielding nonzero iff X is a debug note/insn.  */
841 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
842 
843 /* Predicate yielding nonzero iff X is an insn that is not a debug insn.  */
844 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
845 
846 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold.  */
847 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
848 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold.  */
849 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
850 /* Nonzero if DEBUG_INSN_P may possibly hold.  */
851 #define MAY_HAVE_DEBUG_INSNS					\
852   (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
853 
854 /* Predicate yielding nonzero iff X is a real insn.  */
855 #define INSN_P(X) \
856   (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
857 
858 /* Predicate yielding nonzero iff X is a note insn.  */
859 #define NOTE_P(X) (GET_CODE (X) == NOTE)
860 
861 /* Predicate yielding nonzero iff X is a barrier insn.  */
862 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
863 
864 /* Predicate yielding nonzero iff X is a data for a jump table.  */
865 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
866 
867 /* Predicate yielding nonzero iff RTX is a subreg.  */
868 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
869 
870 /* Predicate yielding true iff RTX is a symbol ref.  */
871 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
872 
873 template <>
874 template <>
875 inline bool
test(rtx rt)876 is_a_helper <rtx_insn *>::test (rtx rt)
877 {
878   return (INSN_P (rt)
879 	  || NOTE_P (rt)
880 	  || JUMP_TABLE_DATA_P (rt)
881 	  || BARRIER_P (rt)
882 	  || LABEL_P (rt));
883 }
884 
885 template <>
886 template <>
887 inline bool
test(const_rtx rt)888 is_a_helper <const rtx_insn *>::test (const_rtx rt)
889 {
890   return (INSN_P (rt)
891 	  || NOTE_P (rt)
892 	  || JUMP_TABLE_DATA_P (rt)
893 	  || BARRIER_P (rt)
894 	  || LABEL_P (rt));
895 }
896 
897 template <>
898 template <>
899 inline bool
test(rtx rt)900 is_a_helper <rtx_debug_insn *>::test (rtx rt)
901 {
902   return DEBUG_INSN_P (rt);
903 }
904 
905 template <>
906 template <>
907 inline bool
test(rtx rt)908 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
909 {
910   return NONJUMP_INSN_P (rt);
911 }
912 
913 template <>
914 template <>
915 inline bool
test(rtx rt)916 is_a_helper <rtx_jump_insn *>::test (rtx rt)
917 {
918   return JUMP_P (rt);
919 }
920 
921 template <>
922 template <>
923 inline bool
test(rtx_insn * insn)924 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
925 {
926   return JUMP_P (insn);
927 }
928 
929 template <>
930 template <>
931 inline bool
test(rtx rt)932 is_a_helper <rtx_call_insn *>::test (rtx rt)
933 {
934   return CALL_P (rt);
935 }
936 
937 template <>
938 template <>
939 inline bool
test(rtx_insn * insn)940 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
941 {
942   return CALL_P (insn);
943 }
944 
945 template <>
946 template <>
947 inline bool
test(rtx rt)948 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
949 {
950   return JUMP_TABLE_DATA_P (rt);
951 }
952 
953 template <>
954 template <>
955 inline bool
test(rtx_insn * insn)956 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
957 {
958   return JUMP_TABLE_DATA_P (insn);
959 }
960 
961 template <>
962 template <>
963 inline bool
test(rtx rt)964 is_a_helper <rtx_barrier *>::test (rtx rt)
965 {
966   return BARRIER_P (rt);
967 }
968 
969 template <>
970 template <>
971 inline bool
test(rtx rt)972 is_a_helper <rtx_code_label *>::test (rtx rt)
973 {
974   return LABEL_P (rt);
975 }
976 
977 template <>
978 template <>
979 inline bool
test(rtx_insn * insn)980 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
981 {
982   return LABEL_P (insn);
983 }
984 
985 template <>
986 template <>
987 inline bool
test(rtx rt)988 is_a_helper <rtx_note *>::test (rtx rt)
989 {
990   return NOTE_P (rt);
991 }
992 
993 template <>
994 template <>
995 inline bool
test(rtx_insn * insn)996 is_a_helper <rtx_note *>::test (rtx_insn *insn)
997 {
998   return NOTE_P (insn);
999 }
1000 
1001 /* Predicate yielding nonzero iff X is a return or simple_return.  */
1002 #define ANY_RETURN_P(X) \
1003   (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1004 
1005 /* 1 if X is a unary operator.  */
1006 
1007 #define UNARY_P(X)   \
1008   (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1009 
1010 /* 1 if X is a binary operator.  */
1011 
1012 #define BINARY_P(X)   \
1013   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1014 
1015 /* 1 if X is an arithmetic operator.  */
1016 
1017 #define ARITHMETIC_P(X)   \
1018   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK)			\
1019     == RTX_ARITHMETIC_RESULT)
1020 
1021 /* 1 if X is an arithmetic operator.  */
1022 
1023 #define COMMUTATIVE_ARITH_P(X)   \
1024   (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1025 
1026 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1027    These two are sometimes selected together because it is possible to
1028    swap the two operands.  */
1029 
1030 #define SWAPPABLE_OPERANDS_P(X)   \
1031   ((1 << GET_RTX_CLASS (GET_CODE (X)))					\
1032     & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE)			\
1033        | (1 << RTX_COMPARE)))
1034 
1035 /* 1 if X is a non-commutative operator.  */
1036 
1037 #define NON_COMMUTATIVE_P(X)   \
1038   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1039     == RTX_NON_COMMUTATIVE_RESULT)
1040 
1041 /* 1 if X is a commutative operator on integers.  */
1042 
1043 #define COMMUTATIVE_P(X)   \
1044   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1045     == RTX_COMMUTATIVE_RESULT)
1046 
1047 /* 1 if X is a relational operator.  */
1048 
1049 #define COMPARISON_P(X)   \
1050   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1051 
1052 /* 1 if X is a constant value that is an integer.  */
1053 
1054 #define CONSTANT_P(X)   \
1055   (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1056 
1057 /* 1 if X can be used to represent an object.  */
1058 #define OBJECT_P(X)							\
1059   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1060 
1061 /* General accessor macros for accessing the fields of an rtx.  */
1062 
1063 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1064 /* The bit with a star outside the statement expr and an & inside is
1065    so that N can be evaluated only once.  */
1066 #define RTL_CHECK1(RTX, N, C1) __extension__				\
1067 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1068      const enum rtx_code _code = GET_CODE (_rtx);			\
1069      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1070        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1071 				__FUNCTION__);				\
1072      if (GET_RTX_FORMAT (_code)[_n] != C1)				\
1073        rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__,	\
1074 			       __FUNCTION__);				\
1075      &_rtx->u.fld[_n]; }))
1076 
1077 #define RTL_CHECK2(RTX, N, C1, C2) __extension__			\
1078 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1079      const enum rtx_code _code = GET_CODE (_rtx);			\
1080      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1081        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1082 				__FUNCTION__);				\
1083      if (GET_RTX_FORMAT (_code)[_n] != C1				\
1084 	 && GET_RTX_FORMAT (_code)[_n] != C2)				\
1085        rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__,	\
1086 			       __FUNCTION__);				\
1087      &_rtx->u.fld[_n]; }))
1088 
1089 #define RTL_CHECKC1(RTX, N, C) __extension__				\
1090 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1091      if (GET_CODE (_rtx) != (C))					\
1092        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1093 			       __FUNCTION__);				\
1094      &_rtx->u.fld[_n]; }))
1095 
1096 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__			\
1097 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1098      const enum rtx_code _code = GET_CODE (_rtx);			\
1099      if (_code != (C1) && _code != (C2))				\
1100        rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__,	\
1101 			       __FUNCTION__); \
1102      &_rtx->u.fld[_n]; }))
1103 
1104 #define RTVEC_ELT(RTVEC, I) __extension__				\
1105 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I);	\
1106      if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec))				\
1107        rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__,	\
1108 				  __FUNCTION__);			\
1109      &_rtvec->elem[_i]; }))
1110 
1111 #define XWINT(RTX, N) __extension__					\
1112 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1113      const enum rtx_code _code = GET_CODE (_rtx);			\
1114      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1115        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1116 				__FUNCTION__);				\
1117      if (GET_RTX_FORMAT (_code)[_n] != 'w')				\
1118        rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__,	\
1119 			       __FUNCTION__);				\
1120      &_rtx->u.hwint[_n]; }))
1121 
1122 #define CWI_ELT(RTX, I) __extension__					\
1123 (*({ __typeof (RTX) const _cwi = (RTX);					\
1124      int _max = CWI_GET_NUM_ELEM (_cwi);				\
1125      const int _i = (I);						\
1126      if (_i < 0 || _i >= _max)						\
1127        cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__,		\
1128 				__FUNCTION__);				\
1129      &_cwi->u.hwiv.elem[_i]; }))
1130 
1131 #define XCWINT(RTX, N, C) __extension__					\
1132 (*({ __typeof (RTX) const _rtx = (RTX);					\
1133      if (GET_CODE (_rtx) != (C))					\
1134        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1135 			       __FUNCTION__);				\
1136      &_rtx->u.hwint[N]; }))
1137 
1138 #define XCMWINT(RTX, N, C, M) __extension__				\
1139 (*({ __typeof (RTX) const _rtx = (RTX);					\
1140      if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M))		\
1141        rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__,	\
1142 				   __LINE__, __FUNCTION__);		\
1143      &_rtx->u.hwint[N]; }))
1144 
1145 #define XCNMPRV(RTX, C, M) __extension__				\
1146 ({ __typeof (RTX) const _rtx = (RTX);					\
1147    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1148      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1149 				 __LINE__, __FUNCTION__);		\
1150    &_rtx->u.rv; })
1151 
1152 #define XCNMPFV(RTX, C, M) __extension__				\
1153 ({ __typeof (RTX) const _rtx = (RTX);					\
1154    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1155      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1156 				 __LINE__, __FUNCTION__);		\
1157    &_rtx->u.fv; })
1158 
1159 #define REG_CHECK(RTX) __extension__					\
1160 ({ __typeof (RTX) const _rtx = (RTX);					\
1161    if (GET_CODE (_rtx) != REG)						\
1162      rtl_check_failed_code1 (_rtx, REG,  __FILE__, __LINE__,		\
1163 			     __FUNCTION__);				\
1164    &_rtx->u.reg; })
1165 
1166 #define BLOCK_SYMBOL_CHECK(RTX) __extension__				\
1167 ({ __typeof (RTX) const _symbol = (RTX);				\
1168    const unsigned int flags = SYMBOL_REF_FLAGS (_symbol);		\
1169    if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0)			\
1170      rtl_check_failed_block_symbol (__FILE__, __LINE__,			\
1171 				    __FUNCTION__);			\
1172    &_symbol->u.block_sym; })
1173 
1174 #define HWIVEC_CHECK(RTX,C) __extension__				\
1175 ({ __typeof (RTX) const _symbol = (RTX);				\
1176    RTL_CHECKC1 (_symbol, 0, C);						\
1177    &_symbol->u.hwiv; })
1178 
1179 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1180 				     const char *)
1181     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1182 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1183 				    const char *)
1184     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1185 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1186 				    int, const char *)
1187     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1188 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1189 				    int, const char *)
1190     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1191 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1192 				    const char *, int, const char *)
1193     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1194 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1195 					bool, const char *, int, const char *)
1196     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1197 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1198     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1199 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1200 				     const char *)
1201     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1202 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1203 				       const char *)
1204     ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1205 
1206 #else   /* not ENABLE_RTL_CHECKING */
1207 
1208 #define RTL_CHECK1(RTX, N, C1)      ((RTX)->u.fld[N])
1209 #define RTL_CHECK2(RTX, N, C1, C2)  ((RTX)->u.fld[N])
1210 #define RTL_CHECKC1(RTX, N, C)	    ((RTX)->u.fld[N])
1211 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1212 #define RTVEC_ELT(RTVEC, I)	    ((RTVEC)->elem[I])
1213 #define XWINT(RTX, N)		    ((RTX)->u.hwint[N])
1214 #define CWI_ELT(RTX, I)		    ((RTX)->u.hwiv.elem[I])
1215 #define XCWINT(RTX, N, C)	    ((RTX)->u.hwint[N])
1216 #define XCMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1217 #define XCNMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1218 #define XCNMPRV(RTX, C, M)	    (&(RTX)->u.rv)
1219 #define XCNMPFV(RTX, C, M)	    (&(RTX)->u.fv)
1220 #define REG_CHECK(RTX)		    (&(RTX)->u.reg)
1221 #define BLOCK_SYMBOL_CHECK(RTX)	    (&(RTX)->u.block_sym)
1222 #define HWIVEC_CHECK(RTX,C)	    (&(RTX)->u.hwiv)
1223 
1224 #endif
1225 
1226 /* General accessor macros for accessing the flags of an rtx.  */
1227 
1228 /* Access an individual rtx flag, with no checking of any kind.  */
1229 #define RTX_FLAG(RTX, FLAG)	((RTX)->FLAG)
1230 
1231 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1232 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__			\
1233 ({ __typeof (RTX) const _rtx = (RTX);					\
1234    if (GET_CODE (_rtx) != C1)						\
1235      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1236 			     __FUNCTION__);				\
1237    _rtx; })
1238 
1239 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__		\
1240 ({ __typeof (RTX) const _rtx = (RTX);					\
1241    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2)			\
1242      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1243 			      __FUNCTION__);				\
1244    _rtx; })
1245 
1246 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__		\
1247 ({ __typeof (RTX) const _rtx = (RTX);					\
1248    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1249        && GET_CODE (_rtx) != C3)					\
1250      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1251 			     __FUNCTION__);				\
1252    _rtx; })
1253 
1254 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__	\
1255 ({ __typeof (RTX) const _rtx = (RTX);					\
1256    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1257        && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4)		\
1258      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1259 			      __FUNCTION__);				\
1260    _rtx; })
1261 
1262 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__	\
1263 ({ __typeof (RTX) const _rtx = (RTX);					\
1264    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1265        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1266        && GET_CODE (_rtx) != C5)					\
1267      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1268 			     __FUNCTION__);				\
1269    _rtx; })
1270 
1271 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		\
1272   __extension__								\
1273 ({ __typeof (RTX) const _rtx = (RTX);					\
1274    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1275        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1276        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6)		\
1277      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1278 			     __FUNCTION__);				\
1279    _rtx; })
1280 
1281 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		\
1282   __extension__								\
1283 ({ __typeof (RTX) const _rtx = (RTX);					\
1284    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1285        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1286        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6		\
1287        && GET_CODE (_rtx) != C7)					\
1288      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1289 			     __FUNCTION__);				\
1290    _rtx; })
1291 
1292 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				\
1293   __extension__								\
1294 ({ __typeof (RTX) const _rtx = (RTX);					\
1295    if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx)))				\
1296      rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__,		\
1297 			    __FUNCTION__);				\
1298    _rtx; })
1299 
1300 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1301 				   int, const char *)
1302     ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1303     ;
1304 
1305 #else	/* not ENABLE_RTL_FLAG_CHECKING */
1306 
1307 #define RTL_FLAG_CHECK1(NAME, RTX, C1)					(RTX)
1308 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2)				(RTX)
1309 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3)				(RTX)
1310 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4)			(RTX)
1311 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5)			(RTX)
1312 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		(RTX)
1313 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		(RTX)
1314 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				(RTX)
1315 #endif
1316 
1317 #define XINT(RTX, N)	(RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1318 #define XUINT(RTX, N)   (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1319 #define XSTR(RTX, N)	(RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1320 #define XEXP(RTX, N)	(RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1321 #define XVEC(RTX, N)	(RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1322 #define XMODE(RTX, N)	(RTL_CHECK1 (RTX, N, 'M').rt_type)
1323 #define XTREE(RTX, N)   (RTL_CHECK1 (RTX, N, 't').rt_tree)
1324 #define XBBDEF(RTX, N)	(RTL_CHECK1 (RTX, N, 'B').rt_bb)
1325 #define XTMPL(RTX, N)	(RTL_CHECK1 (RTX, N, 'T').rt_str)
1326 #define XCFI(RTX, N)	(RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1327 
1328 #define XVECEXP(RTX, N, M)	RTVEC_ELT (XVEC (RTX, N), M)
1329 #define XVECLEN(RTX, N)		GET_NUM_ELEM (XVEC (RTX, N))
1330 
1331 /* These are like XINT, etc. except that they expect a '0' field instead
1332    of the normal type code.  */
1333 
1334 #define X0INT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_int)
1335 #define X0UINT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_uint)
1336 #define X0STR(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_str)
1337 #define X0EXP(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1338 #define X0VEC(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1339 #define X0MODE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_type)
1340 #define X0TREE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_tree)
1341 #define X0BBDEF(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_bb)
1342 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1343 #define X0CSELIB(RTX, N)   (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1344 #define X0MEMATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1345 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1346 
1347 /* Access a '0' field with any type.  */
1348 #define X0ANY(RTX, N)	   RTL_CHECK1 (RTX, N, '0')
1349 
1350 #define XCINT(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_int)
1351 #define XCUINT(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_uint)
1352 #define XCSUBREG(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1353 #define XCSTR(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_str)
1354 #define XCEXP(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1355 #define XCVEC(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1356 #define XCMODE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_type)
1357 #define XCTREE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_tree)
1358 #define XCBBDEF(RTX, N, C)    (RTL_CHECKC1 (RTX, N, C).rt_bb)
1359 #define XCCFI(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1360 #define XCCSELIB(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1361 
1362 #define XCVECEXP(RTX, N, M, C)	RTVEC_ELT (XCVEC (RTX, N, C), M)
1363 #define XCVECLEN(RTX, N, C)	GET_NUM_ELEM (XCVEC (RTX, N, C))
1364 
1365 #define XC2EXP(RTX, N, C1, C2)      (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1366 
1367 
1368 /* Methods of rtx_expr_list.  */
1369 
next()1370 inline rtx_expr_list *rtx_expr_list::next () const
1371 {
1372   rtx tmp = XEXP (this, 1);
1373   return safe_as_a <rtx_expr_list *> (tmp);
1374 }
1375 
element()1376 inline rtx rtx_expr_list::element () const
1377 {
1378   return XEXP (this, 0);
1379 }
1380 
1381 /* Methods of rtx_insn_list.  */
1382 
next()1383 inline rtx_insn_list *rtx_insn_list::next () const
1384 {
1385   rtx tmp = XEXP (this, 1);
1386   return safe_as_a <rtx_insn_list *> (tmp);
1387 }
1388 
insn()1389 inline rtx_insn *rtx_insn_list::insn () const
1390 {
1391   rtx tmp = XEXP (this, 0);
1392   return safe_as_a <rtx_insn *> (tmp);
1393 }
1394 
1395 /* Methods of rtx_sequence.  */
1396 
len()1397 inline int rtx_sequence::len () const
1398 {
1399   return XVECLEN (this, 0);
1400 }
1401 
element(int index)1402 inline rtx rtx_sequence::element (int index) const
1403 {
1404   return XVECEXP (this, 0, index);
1405 }
1406 
insn(int index)1407 inline rtx_insn *rtx_sequence::insn (int index) const
1408 {
1409   return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1410 }
1411 
1412 /* ACCESS MACROS for particular fields of insns.  */
1413 
1414 /* Holds a unique number for each insn.
1415    These are not necessarily sequentially increasing.  */
INSN_UID(const_rtx insn)1416 inline int INSN_UID (const_rtx insn)
1417 {
1418   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1419 				    (insn))->u2.insn_uid;
1420 }
INSN_UID(rtx insn)1421 inline int& INSN_UID (rtx insn)
1422 {
1423   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1424 				    (insn))->u2.insn_uid;
1425 }
1426 
1427 /* Chain insns together in sequence.  */
1428 
1429 /* For now these are split in two: an rvalue form:
1430      PREV_INSN/NEXT_INSN
1431    and an lvalue form:
1432      SET_NEXT_INSN/SET_PREV_INSN.  */
1433 
PREV_INSN(const rtx_insn * insn)1434 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1435 {
1436   rtx prev = XEXP (insn, 0);
1437   return safe_as_a <rtx_insn *> (prev);
1438 }
1439 
SET_PREV_INSN(rtx_insn * insn)1440 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1441 {
1442   return XEXP (insn, 0);
1443 }
1444 
NEXT_INSN(const rtx_insn * insn)1445 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1446 {
1447   rtx next = XEXP (insn, 1);
1448   return safe_as_a <rtx_insn *> (next);
1449 }
1450 
SET_NEXT_INSN(rtx_insn * insn)1451 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1452 {
1453   return XEXP (insn, 1);
1454 }
1455 
BLOCK_FOR_INSN(const_rtx insn)1456 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1457 {
1458   return XBBDEF (insn, 2);
1459 }
1460 
BLOCK_FOR_INSN(rtx insn)1461 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1462 {
1463   return XBBDEF (insn, 2);
1464 }
1465 
set_block_for_insn(rtx_insn * insn,basic_block bb)1466 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1467 {
1468   BLOCK_FOR_INSN (insn) = bb;
1469 }
1470 
1471 /* The body of an insn.  */
PATTERN(const_rtx insn)1472 inline rtx PATTERN (const_rtx insn)
1473 {
1474   return XEXP (insn, 3);
1475 }
1476 
PATTERN(rtx insn)1477 inline rtx& PATTERN (rtx insn)
1478 {
1479   return XEXP (insn, 3);
1480 }
1481 
INSN_LOCATION(const rtx_insn * insn)1482 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1483 {
1484   return XUINT (insn, 4);
1485 }
1486 
INSN_LOCATION(rtx_insn * insn)1487 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1488 {
1489   return XUINT (insn, 4);
1490 }
1491 
INSN_HAS_LOCATION(const rtx_insn * insn)1492 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1493 {
1494   return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1495 }
1496 
1497 /* LOCATION of an RTX if relevant.  */
1498 #define RTL_LOCATION(X) (INSN_P (X) ? \
1499 			 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1500 			 : UNKNOWN_LOCATION)
1501 
1502 /* Code number of instruction, from when it was recognized.
1503    -1 means this instruction has not been recognized yet.  */
1504 #define INSN_CODE(INSN) XINT (INSN, 5)
1505 
get_labels()1506 inline rtvec rtx_jump_table_data::get_labels () const
1507 {
1508   rtx pat = PATTERN (this);
1509   if (GET_CODE (pat) == ADDR_VEC)
1510     return XVEC (pat, 0);
1511   else
1512     return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1513 }
1514 
1515 /* Return the mode of the data in the table, which is always a scalar
1516    integer.  */
1517 
1518 inline scalar_int_mode
get_data_mode()1519 rtx_jump_table_data::get_data_mode () const
1520 {
1521   return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1522 }
1523 
1524 /* If LABEL is followed by a jump table, return the table, otherwise
1525    return null.  */
1526 
1527 inline rtx_jump_table_data *
jump_table_for_label(const rtx_code_label * label)1528 jump_table_for_label (const rtx_code_label *label)
1529 {
1530   return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1531 }
1532 
1533 #define RTX_FRAME_RELATED_P(RTX)					\
1534   (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN,	\
1535 		    CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1536 
1537 /* 1 if JUMP RTX is a crossing jump.  */
1538 #define CROSSING_JUMP_P(RTX) \
1539   (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1540 
1541 /* 1 if RTX is a call to a const function.  Built from ECF_CONST and
1542    TREE_READONLY.  */
1543 #define RTL_CONST_CALL_P(RTX)					\
1544   (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1545 
1546 /* 1 if RTX is a call to a pure function.  Built from ECF_PURE and
1547    DECL_PURE_P.  */
1548 #define RTL_PURE_CALL_P(RTX)					\
1549   (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1550 
1551 /* 1 if RTX is a call to a const or pure function.  */
1552 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1553   (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1554 
1555 /* 1 if RTX is a call to a looping const or pure function.  Built from
1556    ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.  */
1557 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX)				\
1558   (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1559 
1560 /* 1 if RTX is a call_insn for a sibling call.  */
1561 #define SIBLING_CALL_P(RTX)						\
1562   (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1563 
1564 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch.  */
1565 #define INSN_ANNULLED_BRANCH_P(RTX)					\
1566   (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1567 
1568 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1569    If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1570    executed if the branch is taken.  For annulled branches with this bit
1571    clear, the insn should be executed only if the branch is not taken.  */
1572 #define INSN_FROM_TARGET_P(RTX)						\
1573   (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1574 		    CALL_INSN)->in_struct)
1575 
1576 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1577    See the comments for ADDR_DIFF_VEC in rtl.def.  */
1578 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1579 
1580 /* In a VALUE, the value cselib has assigned to RTX.
1581    This is a "struct cselib_val", see cselib.h.  */
1582 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1583 
1584 /* Holds a list of notes on what this insn does to various REGs.
1585    It is a chain of EXPR_LIST rtx's, where the second operand is the
1586    chain pointer and the first operand is the REG being described.
1587    The mode field of the EXPR_LIST contains not a real machine mode
1588    but a value from enum reg_note.  */
1589 #define REG_NOTES(INSN)	XEXP(INSN, 6)
1590 
1591 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1592    question.  */
1593 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1594 
1595 enum reg_note
1596 {
1597 #define DEF_REG_NOTE(NAME) NAME,
1598 #include "reg-notes.def"
1599 #undef DEF_REG_NOTE
1600   REG_NOTE_MAX
1601 };
1602 
1603 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST.  */
1604 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1605 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1606   PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1607 
1608 /* Names for REG_NOTE's in EXPR_LIST insn's.  */
1609 
1610 extern const char * const reg_note_name[];
1611 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1612 
1613 /* This field is only present on CALL_INSNs.  It holds a chain of EXPR_LIST of
1614    USE and CLOBBER expressions.
1615      USE expressions list the registers filled with arguments that
1616    are passed to the function.
1617      CLOBBER expressions document the registers explicitly clobbered
1618    by this CALL_INSN.
1619      Pseudo registers can not be mentioned in this list.  */
1620 #define CALL_INSN_FUNCTION_USAGE(INSN)	XEXP(INSN, 7)
1621 
1622 /* The label-number of a code-label.  The assembler label
1623    is made from `L' and the label-number printed in decimal.
1624    Label numbers are unique in a compilation.  */
1625 #define CODE_LABEL_NUMBER(INSN)	XINT (INSN, 5)
1626 
1627 /* In a NOTE that is a line number, this is a string for the file name that the
1628    line is in.  We use the same field to record block numbers temporarily in
1629    NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.  (We avoid lots of casts
1630    between ints and pointers if we use a different macro for the block number.)
1631    */
1632 
1633 /* Opaque data.  */
1634 #define NOTE_DATA(INSN)	        RTL_CHECKC1 (INSN, 3, NOTE)
1635 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1636 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1637 #define NOTE_BLOCK(INSN)	XCTREE (INSN, 3, NOTE)
1638 #define NOTE_EH_HANDLER(INSN)	XCINT (INSN, 3, NOTE)
1639 #define NOTE_BASIC_BLOCK(INSN)	XCBBDEF (INSN, 3, NOTE)
1640 #define NOTE_VAR_LOCATION(INSN)	XCEXP (INSN, 3, NOTE)
1641 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1642 #define NOTE_CFI(INSN)		XCCFI (INSN, 3, NOTE)
1643 #define NOTE_LABEL_NUMBER(INSN)	XCINT (INSN, 3, NOTE)
1644 
1645 /* In a NOTE that is a line number, this is the line number.
1646    Other kinds of NOTEs are identified by negative numbers here.  */
1647 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1648 
1649 /* Nonzero if INSN is a note marking the beginning of a basic block.  */
1650 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1651   (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1652 
1653 /* Nonzero if INSN is a debug nonbind marker note,
1654    for which NOTE_MARKER_LOCATION can be used.  */
1655 #define NOTE_MARKER_P(INSN)				\
1656   (NOTE_P (INSN) &&					\
1657    (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT		\
1658     || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1659 
1660 /* Variable declaration and the location of a variable.  */
1661 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1662 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1663 
1664 /* Initialization status of the variable in the location.  Status
1665    can be unknown, uninitialized or initialized.  See enumeration
1666    type below.  */
1667 #define PAT_VAR_LOCATION_STATUS(PAT) \
1668   (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1669    ->u2.var_location_status)
1670 
1671 /* Accessors for a NOTE_INSN_VAR_LOCATION.  */
1672 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1673   PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1674 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1675   PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1676 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1677   PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1678 
1679 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1680    location/value tracking annotation.  */
1681 #define DEBUG_BIND_INSN_P(INSN)			\
1682   (DEBUG_INSN_P (INSN)				\
1683    && (GET_CODE (PATTERN (INSN))		\
1684        == VAR_LOCATION))
1685 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1686    source location marker.  */
1687 #define DEBUG_MARKER_INSN_P(INSN)		\
1688   (DEBUG_INSN_P (INSN)				\
1689    && (GET_CODE (PATTERN (INSN))		\
1690        != VAR_LOCATION))
1691 /* Evaluate to the marker kind.  */
1692 #define INSN_DEBUG_MARKER_KIND(INSN)		  \
1693   (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER	  \
1694    ? (GET_MODE (PATTERN (INSN)) == VOIDmode	  \
1695       ? NOTE_INSN_BEGIN_STMT			  \
1696       : GET_MODE (PATTERN (INSN)) == BLKmode	  \
1697       ? NOTE_INSN_INLINE_ENTRY			  \
1698       : (enum insn_note)-1) 			  \
1699    : (enum insn_note)-1)
1700 /* Create patterns for debug markers.  These and the above abstract
1701    the representation, so that it's easier to get rid of the abuse of
1702    the mode to hold the marker kind.  Other marker types are
1703    envisioned, so a single bit flag won't do; maybe separate RTL codes
1704    wouldn't be a problem.  */
1705 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1706   gen_rtx_DEBUG_MARKER (VOIDmode)
1707 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1708   gen_rtx_DEBUG_MARKER (BLKmode)
1709 
1710 /* The VAR_LOCATION rtx in a DEBUG_INSN.  */
1711 #define INSN_VAR_LOCATION(INSN) \
1712   (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1713 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN.  */
1714 #define INSN_VAR_LOCATION_PTR(INSN) \
1715   (&PATTERN (INSN))
1716 
1717 /* Accessors for a tree-expanded var location debug insn.  */
1718 #define INSN_VAR_LOCATION_DECL(INSN) \
1719   PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1720 #define INSN_VAR_LOCATION_LOC(INSN) \
1721   PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1722 #define INSN_VAR_LOCATION_STATUS(INSN) \
1723   PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1724 
1725 /* Expand to the RTL that denotes an unknown variable location in a
1726    DEBUG_INSN.  */
1727 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1728 
1729 /* Determine whether X is such an unknown location.  */
1730 #define VAR_LOC_UNKNOWN_P(X) \
1731   (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1732 
1733 /* 1 if RTX is emitted after a call, but it should take effect before
1734    the call returns.  */
1735 #define NOTE_DURING_CALL_P(RTX)				\
1736   (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1737 
1738 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX.  */
1739 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1740 
1741 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of.  */
1742 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1743 
1744 /* PARM_DECL DEBUG_PARAMETER_REF references.  */
1745 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1746 
1747 /* Codes that appear in the NOTE_KIND field for kinds of notes
1748    that are not line numbers.  These codes are all negative.
1749 
1750    Notice that we do not try to use zero here for any of
1751    the special note codes because sometimes the source line
1752    actually can be zero!  This happens (for example) when we
1753    are generating code for the per-translation-unit constructor
1754    and destructor routines for some C++ translation unit.  */
1755 
1756 enum insn_note
1757 {
1758 #define DEF_INSN_NOTE(NAME) NAME,
1759 #include "insn-notes.def"
1760 #undef DEF_INSN_NOTE
1761 
1762   NOTE_INSN_MAX
1763 };
1764 
1765 /* Names for NOTE insn's other than line numbers.  */
1766 
1767 extern const char * const note_insn_name[NOTE_INSN_MAX];
1768 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1769   (note_insn_name[(NOTE_CODE)])
1770 
1771 /* The name of a label, in case it corresponds to an explicit label
1772    in the input source code.  */
1773 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1774 
1775 /* In jump.c, each label contains a count of the number
1776    of LABEL_REFs that point at it, so unused labels can be deleted.  */
1777 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1778 
1779 /* Labels carry a two-bit field composed of the ->jump and ->call
1780    bits.  This field indicates whether the label is an alternate
1781    entry point, and if so, what kind.  */
1782 enum label_kind
1783 {
1784   LABEL_NORMAL = 0,	/* ordinary label */
1785   LABEL_STATIC_ENTRY,	/* alternate entry point, not exported */
1786   LABEL_GLOBAL_ENTRY,	/* alternate entry point, exported */
1787   LABEL_WEAK_ENTRY	/* alternate entry point, exported as weak symbol */
1788 };
1789 
1790 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1791 
1792 /* Retrieve the kind of LABEL.  */
1793 #define LABEL_KIND(LABEL) __extension__					\
1794 ({ __typeof (LABEL) const _label = (LABEL);				\
1795    if (! LABEL_P (_label))						\
1796      rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__,	\
1797 			    __FUNCTION__);				\
1798    (enum label_kind) ((_label->jump << 1) | _label->call); })
1799 
1800 /* Set the kind of LABEL.  */
1801 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1802    __typeof (LABEL) const _label = (LABEL);				\
1803    const unsigned int _kind = (KIND);					\
1804    if (! LABEL_P (_label))						\
1805      rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1806 			    __FUNCTION__);				\
1807    _label->jump = ((_kind >> 1) & 1);					\
1808    _label->call = (_kind & 1);						\
1809 } while (0)
1810 
1811 #else
1812 
1813 /* Retrieve the kind of LABEL.  */
1814 #define LABEL_KIND(LABEL) \
1815    ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1816 
1817 /* Set the kind of LABEL.  */
1818 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1819    rtx const _label = (LABEL);						\
1820    const unsigned int _kind = (KIND);					\
1821    _label->jump = ((_kind >> 1) & 1);					\
1822    _label->call = (_kind & 1);						\
1823 } while (0)
1824 
1825 #endif /* rtl flag checking */
1826 
1827 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1828 
1829 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1830    so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1831    be decremented and possibly the label can be deleted.  */
1832 #define JUMP_LABEL(INSN)   XCEXP (INSN, 7, JUMP_INSN)
1833 
JUMP_LABEL_AS_INSN(const rtx_insn * insn)1834 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1835 {
1836   return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1837 }
1838 
1839 /* Methods of rtx_jump_insn.  */
1840 
jump_label()1841 inline rtx rtx_jump_insn::jump_label () const
1842 {
1843   return JUMP_LABEL (this);
1844 }
1845 
jump_target()1846 inline rtx_code_label *rtx_jump_insn::jump_target () const
1847 {
1848   return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1849 }
1850 
set_jump_target(rtx_code_label * target)1851 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1852 {
1853   JUMP_LABEL (this) = target;
1854 }
1855 
1856 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1857    goes through all the LABEL_REFs that jump to that label.  The chain
1858    eventually winds up at the CODE_LABEL: it is circular.  */
1859 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1860 
1861 /* Get the label that a LABEL_REF references.  */
1862 static inline rtx_insn *
label_ref_label(const_rtx ref)1863 label_ref_label (const_rtx ref)
1864 {
1865   return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1866 }
1867 
1868 /* Set the label that LABEL_REF ref refers to.  */
1869 
1870 static inline void
set_label_ref_label(rtx ref,rtx_insn * label)1871 set_label_ref_label (rtx ref, rtx_insn *label)
1872 {
1873   XCEXP (ref, 0, LABEL_REF) = label;
1874 }
1875 
1876 /* For a REG rtx, REGNO extracts the register number.  REGNO can only
1877    be used on RHS.  Use SET_REGNO to change the value.  */
1878 #define REGNO(RTX) (rhs_regno(RTX))
1879 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1880 
1881 /* Return the number of consecutive registers in a REG.  This is always
1882    1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1883    hard registers.  */
1884 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1885 
1886 /* ORIGINAL_REGNO holds the number the register originally had; for a
1887    pseudo register turned into a hard reg this will hold the old pseudo
1888    register number.  */
1889 #define ORIGINAL_REGNO(RTX) \
1890   (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1891 
1892 /* Force the REGNO macro to only be used on the lhs.  */
1893 static inline unsigned int
rhs_regno(const_rtx x)1894 rhs_regno (const_rtx x)
1895 {
1896   return REG_CHECK (x)->regno;
1897 }
1898 
1899 /* Return the final register in REG X plus one.  */
1900 static inline unsigned int
END_REGNO(const_rtx x)1901 END_REGNO (const_rtx x)
1902 {
1903   return REGNO (x) + REG_NREGS (x);
1904 }
1905 
1906 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1907    bypassing the df machinery.  */
1908 static inline void
set_regno_raw(rtx x,unsigned int regno,unsigned int nregs)1909 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1910 {
1911   reg_info *reg = REG_CHECK (x);
1912   reg->regno = regno;
1913   reg->nregs = nregs;
1914 }
1915 
1916 /* 1 if RTX is a reg or parallel that is the current function's return
1917    value.  */
1918 #define REG_FUNCTION_VALUE_P(RTX)					\
1919   (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1920 
1921 /* 1 if RTX is a reg that corresponds to a variable declared by the user.  */
1922 #define REG_USERVAR_P(RTX)						\
1923   (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1924 
1925 /* 1 if RTX is a reg that holds a pointer value.  */
1926 #define REG_POINTER(RTX)						\
1927   (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1928 
1929 /* 1 if RTX is a mem that holds a pointer value.  */
1930 #define MEM_POINTER(RTX)						\
1931   (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1932 
1933 /* 1 if the given register REG corresponds to a hard register.  */
1934 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1935 
1936 /* 1 if the given register number REG_NO corresponds to a hard register.  */
1937 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1938 
1939 /* For a CONST_INT rtx, INTVAL extracts the integer.  */
1940 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1941 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1942 
1943 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1944    elements actually needed to represent the constant.
1945    CONST_WIDE_INT_ELT gets one of the elements.  0 is the least
1946    significant HOST_WIDE_INT.  */
1947 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1948 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1949 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1950 
1951 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1952    individual coefficients, in the form of a trailing_wide_ints structure.  */
1953 #define CONST_POLY_INT_COEFFS(RTX) \
1954   (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1955 		   CONST_POLY_INT)->u.cpi.coeffs)
1956 
1957 /* For a CONST_DOUBLE:
1958 #if TARGET_SUPPORTS_WIDE_INT == 0
1959    For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1960      low-order word and ..._HIGH the high-order.
1961 #endif
1962    For a float, there is a REAL_VALUE_TYPE structure, and
1963      CONST_DOUBLE_REAL_VALUE(r) is a pointer to it.  */
1964 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1965 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1966 #define CONST_DOUBLE_REAL_VALUE(r) \
1967   ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1968 
1969 #define CONST_FIXED_VALUE(r) \
1970   ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1971 #define CONST_FIXED_VALUE_HIGH(r) \
1972   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1973 #define CONST_FIXED_VALUE_LOW(r) \
1974   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1975 
1976 /* For a CONST_VECTOR, return element #n.  */
1977 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
1978 
1979 /* See rtl.texi for a description of these macros.  */
1980 #define CONST_VECTOR_NPATTERNS(RTX) \
1981  (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
1982   ->u2.const_vector.npatterns)
1983 
1984 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
1985  (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
1986   ->u2.const_vector.nelts_per_pattern)
1987 
1988 #define CONST_VECTOR_DUPLICATE_P(RTX) \
1989   (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
1990 
1991 #define CONST_VECTOR_STEPPED_P(RTX) \
1992   (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
1993 
1994 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1995 
1996 /* Return the number of elements encoded directly in a CONST_VECTOR.  */
1997 
1998 inline unsigned int
const_vector_encoded_nelts(const_rtx x)1999 const_vector_encoded_nelts (const_rtx x)
2000 {
2001   return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2002 }
2003 
2004 /* For a CONST_VECTOR, return the number of elements in a vector.  */
2005 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2006 
2007 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2008    SUBREG_BYTE extracts the byte-number.  */
2009 
2010 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2011 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2012 
2013 /* in rtlanal.c */
2014 /* Return the right cost to give to an operation
2015    to make the cost of the corresponding register-to-register instruction
2016    N times that of a fast register-to-register instruction.  */
2017 #define COSTS_N_INSNS(N) ((N) * 4)
2018 
2019 /* Maximum cost of an rtl expression.  This value has the special meaning
2020    not to use an rtx with this cost under any circumstances.  */
2021 #define MAX_COST INT_MAX
2022 
2023 /* Return true if CODE always has VOIDmode.  */
2024 
2025 static inline bool
always_void_p(enum rtx_code code)2026 always_void_p (enum rtx_code code)
2027 {
2028   return code == SET;
2029 }
2030 
2031 /* A structure to hold all available cost information about an rtl
2032    expression.  */
2033 struct full_rtx_costs
2034 {
2035   int speed;
2036   int size;
2037 };
2038 
2039 /* Initialize a full_rtx_costs structure C to the maximum cost.  */
2040 static inline void
init_costs_to_max(struct full_rtx_costs * c)2041 init_costs_to_max (struct full_rtx_costs *c)
2042 {
2043   c->speed = MAX_COST;
2044   c->size = MAX_COST;
2045 }
2046 
2047 /* Initialize a full_rtx_costs structure C to zero cost.  */
2048 static inline void
init_costs_to_zero(struct full_rtx_costs * c)2049 init_costs_to_zero (struct full_rtx_costs *c)
2050 {
2051   c->speed = 0;
2052   c->size = 0;
2053 }
2054 
2055 /* Compare two full_rtx_costs structures A and B, returning true
2056    if A < B when optimizing for speed.  */
2057 static inline bool
costs_lt_p(struct full_rtx_costs * a,struct full_rtx_costs * b,bool speed)2058 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2059 	    bool speed)
2060 {
2061   if (speed)
2062     return (a->speed < b->speed
2063 	    || (a->speed == b->speed && a->size < b->size));
2064   else
2065     return (a->size < b->size
2066 	    || (a->size == b->size && a->speed < b->speed));
2067 }
2068 
2069 /* Increase both members of the full_rtx_costs structure C by the
2070    cost of N insns.  */
2071 static inline void
costs_add_n_insns(struct full_rtx_costs * c,int n)2072 costs_add_n_insns (struct full_rtx_costs *c, int n)
2073 {
2074   c->speed += COSTS_N_INSNS (n);
2075   c->size += COSTS_N_INSNS (n);
2076 }
2077 
2078 /* Describes the shape of a subreg:
2079 
2080    inner_mode == the mode of the SUBREG_REG
2081    offset     == the SUBREG_BYTE
2082    outer_mode == the mode of the SUBREG itself.  */
2083 struct subreg_shape {
2084   subreg_shape (machine_mode, poly_uint16, machine_mode);
2085   bool operator == (const subreg_shape &) const;
2086   bool operator != (const subreg_shape &) const;
2087   unsigned HOST_WIDE_INT unique_id () const;
2088 
2089   machine_mode inner_mode;
2090   poly_uint16 offset;
2091   machine_mode outer_mode;
2092 };
2093 
2094 inline
subreg_shape(machine_mode inner_mode_in,poly_uint16 offset_in,machine_mode outer_mode_in)2095 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2096 			    poly_uint16 offset_in,
2097 			    machine_mode outer_mode_in)
2098   : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2099 {}
2100 
2101 inline bool
2102 subreg_shape::operator == (const subreg_shape &other) const
2103 {
2104   return (inner_mode == other.inner_mode
2105 	  && known_eq (offset, other.offset)
2106 	  && outer_mode == other.outer_mode);
2107 }
2108 
2109 inline bool
2110 subreg_shape::operator != (const subreg_shape &other) const
2111 {
2112   return !operator == (other);
2113 }
2114 
2115 /* Return an integer that uniquely identifies this shape.  Structures
2116    like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2117    current mode is anywhere near being 65536 bytes in size, so the
2118    id comfortably fits in an int.  */
2119 
2120 inline unsigned HOST_WIDE_INT
unique_id()2121 subreg_shape::unique_id () const
2122 {
2123   { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2124   { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2125   { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2126   int res = (int) inner_mode + ((int) outer_mode << 8);
2127   for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2128     res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2129   return res;
2130 }
2131 
2132 /* Return the shape of a SUBREG rtx.  */
2133 
2134 static inline subreg_shape
shape_of_subreg(const_rtx x)2135 shape_of_subreg (const_rtx x)
2136 {
2137   return subreg_shape (GET_MODE (SUBREG_REG (x)),
2138 		       SUBREG_BYTE (x), GET_MODE (x));
2139 }
2140 
2141 /* Information about an address.  This structure is supposed to be able
2142    to represent all supported target addresses.  Please extend it if it
2143    is not yet general enough.  */
2144 struct address_info {
2145   /* The mode of the value being addressed, or VOIDmode if this is
2146      a load-address operation with no known address mode.  */
2147   machine_mode mode;
2148 
2149   /* The address space.  */
2150   addr_space_t as;
2151 
2152   /* True if this is an RTX_AUTOINC address.  */
2153   bool autoinc_p;
2154 
2155   /* A pointer to the top-level address.  */
2156   rtx *outer;
2157 
2158   /* A pointer to the inner address, after all address mutations
2159      have been stripped from the top-level address.  It can be one
2160      of the following:
2161 
2162      - A {PRE,POST}_{INC,DEC} of *BASE.  SEGMENT, INDEX and DISP are null.
2163 
2164      - A {PRE,POST}_MODIFY of *BASE.  In this case either INDEX or DISP
2165        points to the step value, depending on whether the step is variable
2166        or constant respectively.  SEGMENT is null.
2167 
2168      - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2169        with null fields evaluating to 0.  */
2170   rtx *inner;
2171 
2172   /* Components that make up *INNER.  Each one may be null or nonnull.
2173      When nonnull, their meanings are as follows:
2174 
2175      - *SEGMENT is the "segment" of memory to which the address refers.
2176        This value is entirely target-specific and is only called a "segment"
2177        because that's its most typical use.  It contains exactly one UNSPEC,
2178        pointed to by SEGMENT_TERM.  The contents of *SEGMENT do not need
2179        reloading.
2180 
2181      - *BASE is a variable expression representing a base address.
2182        It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2183 
2184      - *INDEX is a variable expression representing an index value.
2185        It may be a scaled expression, such as a MULT.  It has exactly
2186        one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2187 
2188      - *DISP is a constant, possibly mutated.  DISP_TERM points to the
2189        unmutated RTX_CONST_OBJ.  */
2190   rtx *segment;
2191   rtx *base;
2192   rtx *index;
2193   rtx *disp;
2194 
2195   rtx *segment_term;
2196   rtx *base_term;
2197   rtx *index_term;
2198   rtx *disp_term;
2199 
2200   /* In a {PRE,POST}_MODIFY address, this points to a second copy
2201      of BASE_TERM, otherwise it is null.  */
2202   rtx *base_term2;
2203 
2204   /* ADDRESS if this structure describes an address operand, MEM if
2205      it describes a MEM address.  */
2206   enum rtx_code addr_outer_code;
2207 
2208   /* If BASE is nonnull, this is the code of the rtx that contains it.  */
2209   enum rtx_code base_outer_code;
2210 };
2211 
2212 /* This is used to bundle an rtx and a mode together so that the pair
2213    can be used with the wi:: routines.  If we ever put modes into rtx
2214    integer constants, this should go away and then just pass an rtx in.  */
2215 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2216 
2217 namespace wi
2218 {
2219   template <>
2220   struct int_traits <rtx_mode_t>
2221   {
2222     static const enum precision_type precision_type = VAR_PRECISION;
2223     static const bool host_dependent_precision = false;
2224     /* This ought to be true, except for the special case that BImode
2225        is canonicalized to STORE_FLAG_VALUE, which might be 1.  */
2226     static const bool is_sign_extended = false;
2227     static unsigned int get_precision (const rtx_mode_t &);
2228     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2229 				      const rtx_mode_t &);
2230   };
2231 }
2232 
2233 inline unsigned int
2234 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2235 {
2236   return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2237 }
2238 
2239 inline wi::storage_ref
2240 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2241 					unsigned int precision,
2242 					const rtx_mode_t &x)
2243 {
2244   gcc_checking_assert (precision == get_precision (x));
2245   switch (GET_CODE (x.first))
2246     {
2247     case CONST_INT:
2248       if (precision < HOST_BITS_PER_WIDE_INT)
2249 	/* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2250 	   targets is 1 rather than -1.  */
2251 	gcc_checking_assert (INTVAL (x.first)
2252 			     == sext_hwi (INTVAL (x.first), precision)
2253 			     || (x.second == BImode && INTVAL (x.first) == 1));
2254 
2255       return wi::storage_ref (&INTVAL (x.first), 1, precision);
2256 
2257     case CONST_WIDE_INT:
2258       return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2259 			      CONST_WIDE_INT_NUNITS (x.first), precision);
2260 
2261 #if TARGET_SUPPORTS_WIDE_INT == 0
2262     case CONST_DOUBLE:
2263       return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2264 #endif
2265 
2266     default:
2267       gcc_unreachable ();
2268     }
2269 }
2270 
2271 namespace wi
2272 {
2273   hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2274   wide_int min_value (machine_mode, signop);
2275   wide_int max_value (machine_mode, signop);
2276 }
2277 
2278 inline wi::hwi_with_prec
2279 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2280 {
2281   return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2282 }
2283 
2284 /* Produce the smallest number that is represented in MODE.  The precision
2285    is taken from MODE and the sign from SGN.  */
2286 inline wide_int
2287 wi::min_value (machine_mode mode, signop sgn)
2288 {
2289   return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2290 }
2291 
2292 /* Produce the largest number that is represented in MODE.  The precision
2293    is taken from MODE and the sign from SGN.  */
2294 inline wide_int
2295 wi::max_value (machine_mode mode, signop sgn)
2296 {
2297   return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2298 }
2299 
2300 namespace wi
2301 {
2302   typedef poly_int<NUM_POLY_INT_COEFFS,
2303 		   generic_wide_int <wide_int_ref_storage <false, false> > >
2304     rtx_to_poly_wide_ref;
2305   rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2306 }
2307 
2308 /* Return the value of a CONST_POLY_INT in its native precision.  */
2309 
2310 inline wi::rtx_to_poly_wide_ref
2311 const_poly_int_value (const_rtx x)
2312 {
2313   poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2314   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2315     res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2316   return res;
2317 }
2318 
2319 /* Return true if X is a scalar integer or a CONST_POLY_INT.  The value
2320    can then be extracted using wi::to_poly_wide.  */
2321 
2322 inline bool
2323 poly_int_rtx_p (const_rtx x)
2324 {
2325   return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2326 }
2327 
2328 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2329    MODE is the mode of X.  */
2330 
2331 inline wi::rtx_to_poly_wide_ref
2332 wi::to_poly_wide (const_rtx x, machine_mode mode)
2333 {
2334   if (CONST_POLY_INT_P (x))
2335     return const_poly_int_value (x);
2336   return rtx_mode_t (const_cast<rtx> (x), mode);
2337 }
2338 
2339 /* Return the value of X as a poly_int64.  */
2340 
2341 inline poly_int64
2342 rtx_to_poly_int64 (const_rtx x)
2343 {
2344   if (CONST_POLY_INT_P (x))
2345     {
2346       poly_int64 res;
2347       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2348 	res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2349       return res;
2350     }
2351   return INTVAL (x);
2352 }
2353 
2354 /* Return true if arbitrary value X is an integer constant that can
2355    be represented as a poly_int64.  Store the value in *RES if so,
2356    otherwise leave it unmodified.  */
2357 
2358 inline bool
2359 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2360 {
2361   if (CONST_INT_P (x))
2362     {
2363       *res = INTVAL (x);
2364       return true;
2365     }
2366   if (CONST_POLY_INT_P (x))
2367     {
2368       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2369 	if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2370 	  return false;
2371       for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2372 	res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2373       return true;
2374     }
2375   return false;
2376 }
2377 
2378 extern void init_rtlanal (void);
2379 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2380 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2381 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2382 			       struct full_rtx_costs *);
2383 extern poly_uint64 subreg_lsb (const_rtx);
2384 extern poly_uint64 subreg_lsb_1 (machine_mode, machine_mode, poly_uint64);
2385 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2386 						poly_uint64);
2387 extern bool read_modify_subreg_p (const_rtx);
2388 
2389 /* Return the subreg byte offset for a subreg whose outer mode is
2390    OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2391    LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2392    the inner value.  This is the inverse of subreg_lsb_1 (which converts
2393    byte offsets to bit shifts).  */
2394 
2395 inline poly_uint64
2396 subreg_offset_from_lsb (machine_mode outer_mode,
2397 			machine_mode inner_mode,
2398 			poly_uint64 lsb_shift)
2399 {
2400   return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2401 				      GET_MODE_SIZE (inner_mode), lsb_shift);
2402 }
2403 
2404 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2405 					 poly_uint64, machine_mode);
2406 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2407 					   poly_uint64, machine_mode);
2408 extern unsigned int subreg_regno (const_rtx);
2409 extern int simplify_subreg_regno (unsigned int, machine_mode,
2410 				  poly_uint64, machine_mode);
2411 extern unsigned int subreg_nregs (const_rtx);
2412 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2413 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2414 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2415 extern bool constant_pool_constant_p (rtx);
2416 extern bool truncated_to_mode (machine_mode, const_rtx);
2417 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2418 extern void split_double (rtx, rtx *, rtx *);
2419 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2420 extern void decompose_address (struct address_info *, rtx *,
2421 			       machine_mode, addr_space_t, enum rtx_code);
2422 extern void decompose_lea_address (struct address_info *, rtx *);
2423 extern void decompose_mem_address (struct address_info *, rtx);
2424 extern void update_address (struct address_info *);
2425 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2426 extern enum rtx_code get_index_code (const struct address_info *);
2427 
2428 /* 1 if RTX is a subreg containing a reg that is already known to be
2429    sign- or zero-extended from the mode of the subreg to the mode of
2430    the reg.  SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2431    extension.
2432 
2433    When used as a LHS, is means that this extension must be done
2434    when assigning to SUBREG_REG.  */
2435 
2436 #define SUBREG_PROMOTED_VAR_P(RTX)					\
2437   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2438 
2439 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P().  In that case
2440    this gives the necessary extensions:
2441    0  - signed (SPR_SIGNED)
2442    1  - normal unsigned (SPR_UNSIGNED)
2443    2  - value is both sign and unsign extended for mode
2444 	(SPR_SIGNED_AND_UNSIGNED).
2445    -1 - pointer unsigned, which most often can be handled like unsigned
2446         extension, except for generating instructions where we need to
2447 	emit special code (ptr_extend insns) on some architectures
2448 	(SPR_POINTER). */
2449 
2450 const int SRP_POINTER = -1;
2451 const int SRP_SIGNED = 0;
2452 const int SRP_UNSIGNED = 1;
2453 const int SRP_SIGNED_AND_UNSIGNED = 2;
2454 
2455 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P().  */
2456 #define SUBREG_PROMOTED_SET(RTX, VAL)		                        \
2457 do {								        \
2458   rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET",		\
2459                                     (RTX), SUBREG);			\
2460   switch (VAL)								\
2461   {									\
2462     case SRP_POINTER:							\
2463       _rtx->volatil = 0;						\
2464       _rtx->unchanging = 0;						\
2465       break;								\
2466     case SRP_SIGNED:							\
2467       _rtx->volatil = 0;						\
2468       _rtx->unchanging = 1;						\
2469       break;								\
2470     case SRP_UNSIGNED:							\
2471       _rtx->volatil = 1;						\
2472       _rtx->unchanging = 0;						\
2473       break;								\
2474     case SRP_SIGNED_AND_UNSIGNED:					\
2475       _rtx->volatil = 1;						\
2476       _rtx->unchanging = 1;						\
2477       break;								\
2478   }									\
2479 } while (0)
2480 
2481 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2482    including SRP_SIGNED_AND_UNSIGNED if promoted for
2483    both signed and unsigned.  */
2484 #define SUBREG_PROMOTED_GET(RTX)	\
2485   (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2486    + (RTX)->unchanging - 1)
2487 
2488 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P().  */
2489 #define SUBREG_PROMOTED_SIGN(RTX)	\
2490   ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2491    : (RTX)->unchanging - 1)
2492 
2493 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2494    for SIGNED type.  */
2495 #define SUBREG_PROMOTED_SIGNED_P(RTX)	\
2496   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2497 
2498 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2499    for UNSIGNED type.  */
2500 #define SUBREG_PROMOTED_UNSIGNED_P(RTX)	\
2501   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2502 
2503 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN.  */
2504 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN)	\
2505 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER	\
2506  : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX)		\
2507  : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2508 
2509 /* True if the REG is the static chain register for some CALL_INSN.  */
2510 #define STATIC_CHAIN_REG_P(RTX)	\
2511   (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2512 
2513 /* True if the subreg was generated by LRA for reload insns.  Such
2514    subregs are valid only during LRA.  */
2515 #define LRA_SUBREG_P(RTX)	\
2516   (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2517 
2518 /* True if call is instrumented by Pointer Bounds Checker.  */
2519 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2520   (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2521 
2522 /* Access various components of an ASM_OPERANDS rtx.  */
2523 
2524 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2525 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2526 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2527 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2528 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2529 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2530 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2531 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2532   XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2533 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2534   XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2535 #define ASM_OPERANDS_INPUT_MODE(RTX, N)  \
2536   GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2537 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2538 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2539 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2540 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2541 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2542 
2543 /* 1 if RTX is a mem that is statically allocated in read-only memory.  */
2544 #define MEM_READONLY_P(RTX) \
2545   (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2546 
2547 /* 1 if RTX is a mem and we should keep the alias set for this mem
2548    unchanged when we access a component.  Set to 1, or example, when we
2549    are already in a non-addressable component of an aggregate.  */
2550 #define MEM_KEEP_ALIAS_SET_P(RTX)					\
2551   (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2552 
2553 /* 1 if RTX is a mem or asm_operand for a volatile reference.  */
2554 #define MEM_VOLATILE_P(RTX)						\
2555   (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS,		\
2556 		    ASM_INPUT)->volatil)
2557 
2558 /* 1 if RTX is a mem that cannot trap.  */
2559 #define MEM_NOTRAP_P(RTX) \
2560   (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2561 
2562 /* The memory attribute block.  We provide access macros for each value
2563    in the block and provide defaults if none specified.  */
2564 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2565 
2566 /* The register attribute block.  We provide access macros for each value
2567    in the block and provide defaults if none specified.  */
2568 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2569 
2570 #ifndef GENERATOR_FILE
2571 /* For a MEM rtx, the alias set.  If 0, this MEM is not in any alias
2572    set, and may alias anything.  Otherwise, the MEM can only alias
2573    MEMs in a conflicting alias set.  This value is set in a
2574    language-dependent manner in the front-end, and should not be
2575    altered in the back-end.  These set numbers are tested with
2576    alias_sets_conflict_p.  */
2577 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2578 
2579 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2580    refer to part of a DECL.  It may also be a COMPONENT_REF.  */
2581 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2582 
2583 /* For a MEM rtx, true if its MEM_OFFSET is known.  */
2584 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2585 
2586 /* For a MEM rtx, the offset from the start of MEM_EXPR.  */
2587 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2588 
2589 /* For a MEM rtx, the address space.  */
2590 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2591 
2592 /* For a MEM rtx, true if its MEM_SIZE is known.  */
2593 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2594 
2595 /* For a MEM rtx, the size in bytes of the MEM.  */
2596 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2597 
2598 /* For a MEM rtx, the alignment in bits.  We can use the alignment of the
2599    mode as a default when STRICT_ALIGNMENT, but not if not.  */
2600 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2601 #else
2602 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2603 #endif
2604 
2605 /* For a REG rtx, the decl it is known to refer to, if it is known to
2606    refer to part of a DECL.  */
2607 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2608 
2609 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2610    HOST_WIDE_INT.  */
2611 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2612 
2613 /* Copy the attributes that apply to memory locations from RHS to LHS.  */
2614 #define MEM_COPY_ATTRIBUTES(LHS, RHS)				\
2615   (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS),			\
2616    MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS),			\
2617    MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS),			\
2618    MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS),	\
2619    MEM_POINTER (LHS) = MEM_POINTER (RHS),			\
2620    MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2621 
2622 /* 1 if RTX is a label_ref for a nonlocal label.  */
2623 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2624    REG_LABEL_TARGET note.  */
2625 #define LABEL_REF_NONLOCAL_P(RTX)					\
2626   (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2627 
2628 /* 1 if RTX is a code_label that should always be considered to be needed.  */
2629 #define LABEL_PRESERVE_P(RTX)						\
2630   (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2631 
2632 /* During sched, 1 if RTX is an insn that must be scheduled together
2633    with the preceding insn.  */
2634 #define SCHED_GROUP_P(RTX)						\
2635   (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN,		\
2636 		    JUMP_INSN, CALL_INSN)->in_struct)
2637 
2638 /* For a SET rtx, SET_DEST is the place that is set
2639    and SET_SRC is the value it is set to.  */
2640 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2641 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2642 #define SET_IS_RETURN_P(RTX)						\
2643   (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2644 
2645 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression.  */
2646 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2647 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2648 
2649 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2650    conditionally executing the code on, COND_EXEC_CODE is the code
2651    to execute if the condition is true.  */
2652 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2653 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2654 
2655 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2656    constants pool.  */
2657 #define CONSTANT_POOL_ADDRESS_P(RTX)					\
2658   (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2659 
2660 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2661    tree constant pool.  This information is private to varasm.c.  */
2662 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX)				\
2663   (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P",			\
2664 		    (RTX), SYMBOL_REF)->frame_related)
2665 
2666 /* Used if RTX is a symbol_ref, for machine-specific purposes.  */
2667 #define SYMBOL_REF_FLAG(RTX)						\
2668   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2669 
2670 /* 1 if RTX is a symbol_ref that has been the library function in
2671    emit_library_call.  */
2672 #define SYMBOL_REF_USED(RTX)						\
2673   (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2674 
2675 /* 1 if RTX is a symbol_ref for a weak symbol.  */
2676 #define SYMBOL_REF_WEAK(RTX)						\
2677   (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2678 
2679 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2680    SYMBOL_REF_CONSTANT.  */
2681 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2682 
2683 /* Set RTX's SYMBOL_REF_DECL to DECL.  RTX must not be a constant
2684    pool symbol.  */
2685 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2686   (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2687 
2688 /* The tree (decl or constant) associated with the symbol, or null.  */
2689 #define SYMBOL_REF_DECL(RTX) \
2690   (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2691 
2692 /* Set RTX's SYMBOL_REF_CONSTANT to C.  RTX must be a constant pool symbol.  */
2693 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2694   (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2695 
2696 /* The rtx constant pool entry for a symbol, or null.  */
2697 #define SYMBOL_REF_CONSTANT(RTX) \
2698   (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2699 
2700 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2701    information derivable from the tree decl associated with this symbol.
2702    Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2703    decl.  In some cases this is a bug.  But beyond that, it's nice to cache
2704    this information to avoid recomputing it.  Finally, this allows space for
2705    the target to store more than one bit of information, as with
2706    SYMBOL_REF_FLAG.  */
2707 #define SYMBOL_REF_FLAGS(RTX) \
2708   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2709    ->u2.symbol_ref_flags)
2710 
2711 /* These flags are common enough to be defined for all targets.  They
2712    are computed by the default version of targetm.encode_section_info.  */
2713 
2714 /* Set if this symbol is a function.  */
2715 #define SYMBOL_FLAG_FUNCTION	(1 << 0)
2716 #define SYMBOL_REF_FUNCTION_P(RTX) \
2717   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2718 /* Set if targetm.binds_local_p is true.  */
2719 #define SYMBOL_FLAG_LOCAL	(1 << 1)
2720 #define SYMBOL_REF_LOCAL_P(RTX) \
2721   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2722 /* Set if targetm.in_small_data_p is true.  */
2723 #define SYMBOL_FLAG_SMALL	(1 << 2)
2724 #define SYMBOL_REF_SMALL_P(RTX) \
2725   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2726 /* The three-bit field at [5:3] is true for TLS variables; use
2727    SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model.  */
2728 #define SYMBOL_FLAG_TLS_SHIFT	3
2729 #define SYMBOL_REF_TLS_MODEL(RTX) \
2730   ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2731 /* Set if this symbol is not defined in this translation unit.  */
2732 #define SYMBOL_FLAG_EXTERNAL	(1 << 6)
2733 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2734   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2735 /* Set if this symbol has a block_symbol structure associated with it.  */
2736 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2737 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2738   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2739 /* Set if this symbol is a section anchor.  SYMBOL_REF_ANCHOR_P implies
2740    SYMBOL_REF_HAS_BLOCK_INFO_P.  */
2741 #define SYMBOL_FLAG_ANCHOR	(1 << 8)
2742 #define SYMBOL_REF_ANCHOR_P(RTX) \
2743   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2744 
2745 /* Subsequent bits are available for the target to use.  */
2746 #define SYMBOL_FLAG_MACH_DEP_SHIFT	9
2747 #define SYMBOL_FLAG_MACH_DEP		(1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2748 
2749 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2750    structure to which the symbol belongs, or NULL if it has not been
2751    assigned a block.  */
2752 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2753 
2754 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2755    the first object in SYMBOL_REF_BLOCK (RTX).  The value is negative if
2756    RTX has not yet been assigned to a block, or it has not been given an
2757    offset within that block.  */
2758 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2759 
2760 /* True if RTX is flagged to be a scheduling barrier.  */
2761 #define PREFETCH_SCHEDULE_BARRIER_P(RTX)					\
2762   (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2763 
2764 /* Indicate whether the machine has any sort of auto increment addressing.
2765    If not, we can avoid checking for REG_INC notes.  */
2766 
2767 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2768      || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2769      || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2770      || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2771 #define AUTO_INC_DEC 1
2772 #else
2773 #define AUTO_INC_DEC 0
2774 #endif
2775 
2776 /* Define a macro to look for REG_INC notes,
2777    but save time on machines where they never exist.  */
2778 
2779 #if AUTO_INC_DEC
2780 #define FIND_REG_INC_NOTE(INSN, REG)			\
2781   ((REG) != NULL_RTX && REG_P ((REG))			\
2782    ? find_regno_note ((INSN), REG_INC, REGNO (REG))	\
2783    : find_reg_note ((INSN), REG_INC, (REG)))
2784 #else
2785 #define FIND_REG_INC_NOTE(INSN, REG) 0
2786 #endif
2787 
2788 #ifndef HAVE_PRE_INCREMENT
2789 #define HAVE_PRE_INCREMENT 0
2790 #endif
2791 
2792 #ifndef HAVE_PRE_DECREMENT
2793 #define HAVE_PRE_DECREMENT 0
2794 #endif
2795 
2796 #ifndef HAVE_POST_INCREMENT
2797 #define HAVE_POST_INCREMENT 0
2798 #endif
2799 
2800 #ifndef HAVE_POST_DECREMENT
2801 #define HAVE_POST_DECREMENT 0
2802 #endif
2803 
2804 #ifndef HAVE_POST_MODIFY_DISP
2805 #define HAVE_POST_MODIFY_DISP 0
2806 #endif
2807 
2808 #ifndef HAVE_POST_MODIFY_REG
2809 #define HAVE_POST_MODIFY_REG 0
2810 #endif
2811 
2812 #ifndef HAVE_PRE_MODIFY_DISP
2813 #define HAVE_PRE_MODIFY_DISP 0
2814 #endif
2815 
2816 #ifndef HAVE_PRE_MODIFY_REG
2817 #define HAVE_PRE_MODIFY_REG 0
2818 #endif
2819 
2820 
2821 /* Some architectures do not have complete pre/post increment/decrement
2822    instruction sets, or only move some modes efficiently.  These macros
2823    allow us to tune autoincrement generation.  */
2824 
2825 #ifndef USE_LOAD_POST_INCREMENT
2826 #define USE_LOAD_POST_INCREMENT(MODE)   HAVE_POST_INCREMENT
2827 #endif
2828 
2829 #ifndef USE_LOAD_POST_DECREMENT
2830 #define USE_LOAD_POST_DECREMENT(MODE)   HAVE_POST_DECREMENT
2831 #endif
2832 
2833 #ifndef USE_LOAD_PRE_INCREMENT
2834 #define USE_LOAD_PRE_INCREMENT(MODE)    HAVE_PRE_INCREMENT
2835 #endif
2836 
2837 #ifndef USE_LOAD_PRE_DECREMENT
2838 #define USE_LOAD_PRE_DECREMENT(MODE)    HAVE_PRE_DECREMENT
2839 #endif
2840 
2841 #ifndef USE_STORE_POST_INCREMENT
2842 #define USE_STORE_POST_INCREMENT(MODE)  HAVE_POST_INCREMENT
2843 #endif
2844 
2845 #ifndef USE_STORE_POST_DECREMENT
2846 #define USE_STORE_POST_DECREMENT(MODE)  HAVE_POST_DECREMENT
2847 #endif
2848 
2849 #ifndef USE_STORE_PRE_INCREMENT
2850 #define USE_STORE_PRE_INCREMENT(MODE)   HAVE_PRE_INCREMENT
2851 #endif
2852 
2853 #ifndef USE_STORE_PRE_DECREMENT
2854 #define USE_STORE_PRE_DECREMENT(MODE)   HAVE_PRE_DECREMENT
2855 #endif
2856 
2857 /* Nonzero when we are generating CONCATs.  */
2858 extern int generating_concat_p;
2859 
2860 /* Nonzero when we are expanding trees to RTL.  */
2861 extern int currently_expanding_to_rtl;
2862 
2863 /* Generally useful functions.  */
2864 
2865 #ifndef GENERATOR_FILE
2866 /* Return the cost of SET X.  SPEED_P is true if optimizing for speed
2867    rather than size.  */
2868 
2869 static inline int
2870 set_rtx_cost (rtx x, bool speed_p)
2871 {
2872   return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2873 }
2874 
2875 /* Like set_rtx_cost, but return both the speed and size costs in C.  */
2876 
2877 static inline void
2878 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2879 {
2880   get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2881 }
2882 
2883 /* Return the cost of moving X into a register, relative to the cost
2884    of a register move.  SPEED_P is true if optimizing for speed rather
2885    than size.  */
2886 
2887 static inline int
2888 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2889 {
2890   return rtx_cost (x, mode, SET, 1, speed_p);
2891 }
2892 
2893 /* Like set_src_cost, but return both the speed and size costs in C.  */
2894 
2895 static inline void
2896 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2897 {
2898   get_full_rtx_cost (x, mode, SET, 1, c);
2899 }
2900 #endif
2901 
2902 /* A convenience macro to validate the arguments of a zero_extract
2903    expression.  It determines whether SIZE lies inclusively within
2904    [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2905    and the sum lies inclusively within [1, RANGE].  RANGE must be
2906    >= 1, but SIZE and POS may be negative.  */
2907 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2908   (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2909    && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2910 			   - (unsigned HOST_WIDE_INT)(POS)))
2911 
2912 /* In explow.c */
2913 extern HOST_WIDE_INT trunc_int_for_mode	(HOST_WIDE_INT, machine_mode);
2914 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2915 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2916 extern HOST_WIDE_INT get_stack_check_protect (void);
2917 
2918 /* In rtl.c */
2919 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2920 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2921 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2922 #define const_wide_int_alloc(NWORDS)				\
2923   rtx_alloc_v (CONST_WIDE_INT,					\
2924 	       (sizeof (struct hwivec_def)			\
2925 		+ ((NWORDS)-1) * sizeof (HOST_WIDE_INT)))	\
2926 
2927 extern rtvec rtvec_alloc (int);
2928 extern rtvec shallow_copy_rtvec (rtvec);
2929 extern bool shared_const_p (const_rtx);
2930 extern rtx copy_rtx (rtx);
2931 extern enum rtx_code classify_insn (rtx);
2932 extern void dump_rtx_statistics (void);
2933 
2934 /* In emit-rtl.c */
2935 extern rtx copy_rtx_if_shared (rtx);
2936 
2937 /* In rtl.c */
2938 extern unsigned int rtx_size (const_rtx);
2939 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2940 extern int rtx_equal_p (const_rtx, const_rtx);
2941 extern bool rtvec_all_equal_p (const_rtvec);
2942 
2943 /* Return true if X is a vector constant with a duplicated element value.  */
2944 
2945 inline bool
2946 const_vec_duplicate_p (const_rtx x)
2947 {
2948   return (GET_CODE (x) == CONST_VECTOR
2949 	  && CONST_VECTOR_NPATTERNS (x) == 1
2950 	  && CONST_VECTOR_DUPLICATE_P (x));
2951 }
2952 
2953 /* Return true if X is a vector constant with a duplicated element value.
2954    Store the duplicated element in *ELT if so.  */
2955 
2956 template <typename T>
2957 inline bool
2958 const_vec_duplicate_p (T x, T *elt)
2959 {
2960   if (const_vec_duplicate_p (x))
2961     {
2962       *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
2963       return true;
2964     }
2965   return false;
2966 }
2967 
2968 /* Return true if X is a vector with a duplicated element value, either
2969    constant or nonconstant.  Store the duplicated element in *ELT if so.  */
2970 
2971 template <typename T>
2972 inline bool
2973 vec_duplicate_p (T x, T *elt)
2974 {
2975   if (GET_CODE (x) == VEC_DUPLICATE
2976       && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
2977     {
2978       *elt = XEXP (x, 0);
2979       return true;
2980     }
2981   return const_vec_duplicate_p (x, elt);
2982 }
2983 
2984 /* If X is a vector constant with a duplicated element value, return that
2985    element value, otherwise return X.  */
2986 
2987 template <typename T>
2988 inline T
2989 unwrap_const_vec_duplicate (T x)
2990 {
2991   if (const_vec_duplicate_p (x))
2992     x = CONST_VECTOR_ELT (x, 0);
2993   return x;
2994 }
2995 
2996 /* In emit-rtl.c.  */
2997 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
2998 extern rtx const_vector_elt (const_rtx, unsigned int);
2999 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3000 
3001 /* Return true if X is an integer constant vector that contains a linear
3002    series of the form:
3003 
3004    { B, B + S, B + 2 * S, B + 3 * S, ... }
3005 
3006    for a nonzero S.  Store B and S in *BASE_OUT and *STEP_OUT on sucess.  */
3007 
3008 inline bool
3009 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3010 {
3011   if (GET_CODE (x) == CONST_VECTOR
3012       && CONST_VECTOR_NPATTERNS (x) == 1
3013       && !CONST_VECTOR_DUPLICATE_P (x))
3014     return const_vec_series_p_1 (x, base_out, step_out);
3015   return false;
3016 }
3017 
3018 /* Return true if X is a vector that contains a linear series of the
3019    form:
3020 
3021    { B, B + S, B + 2 * S, B + 3 * S, ... }
3022 
3023    where B and S are constant or nonconstant.  Store B and S in
3024    *BASE_OUT and *STEP_OUT on sucess.  */
3025 
3026 inline bool
3027 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3028 {
3029   if (GET_CODE (x) == VEC_SERIES)
3030     {
3031       *base_out = XEXP (x, 0);
3032       *step_out = XEXP (x, 1);
3033       return true;
3034     }
3035   return const_vec_series_p (x, base_out, step_out);
3036 }
3037 
3038 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X.  */
3039 
3040 inline scalar_int_mode
3041 subreg_unpromoted_mode (rtx x)
3042 {
3043   gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3044   return as_a <scalar_int_mode> (GET_MODE (x));
3045 }
3046 
3047 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X.  */
3048 
3049 inline scalar_int_mode
3050 subreg_promoted_mode (rtx x)
3051 {
3052   gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3053   return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3054 }
3055 
3056 /* In emit-rtl.c */
3057 extern rtvec gen_rtvec_v (int, rtx *);
3058 extern rtvec gen_rtvec_v (int, rtx_insn **);
3059 extern rtx gen_reg_rtx (machine_mode);
3060 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3061 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3062 extern rtx gen_reg_rtx_and_attrs (rtx);
3063 extern rtx_code_label *gen_label_rtx (void);
3064 extern rtx gen_lowpart_common (machine_mode, rtx);
3065 
3066 /* In cse.c */
3067 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3068 
3069 /* In emit-rtl.c */
3070 extern rtx gen_highpart (machine_mode, rtx);
3071 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3072 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3073 
3074 /* In emit-rtl.c */
3075 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3076 extern int subreg_lowpart_p (const_rtx);
3077 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3078 
3079 /* Return true if a subreg of mode OUTERMODE would only access part of
3080    an inner register with mode INNERMODE.  The other bits of the inner
3081    register would then be "don't care" on read.  The behavior for writes
3082    depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3083    chunk would be clobbered but other bits would be preserved.  */
3084 
3085 inline bool
3086 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3087 {
3088   /* Modes involved in a subreg must be ordered.  In particular, we must
3089      always know at compile time whether the subreg is paradoxical.  */
3090   poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3091   poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3092   gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3093   return maybe_lt (outer_prec, inner_prec);
3094 }
3095 
3096 /* Likewise return true if X is a subreg that is smaller than the inner
3097    register.  Use read_modify_subreg_p to test whether writing to such
3098    a subreg preserves any part of the inner register.  */
3099 
3100 inline bool
3101 partial_subreg_p (const_rtx x)
3102 {
3103   if (GET_CODE (x) != SUBREG)
3104     return false;
3105   return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3106 }
3107 
3108 /* Return true if a subreg with the given outer and inner modes is
3109    paradoxical.  */
3110 
3111 inline bool
3112 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3113 {
3114   /* Modes involved in a subreg must be ordered.  In particular, we must
3115      always know at compile time whether the subreg is paradoxical.  */
3116   poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3117   poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3118   gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3119   return maybe_gt (outer_prec, inner_prec);
3120 }
3121 
3122 /* Return true if X is a paradoxical subreg, false otherwise.  */
3123 
3124 inline bool
3125 paradoxical_subreg_p (const_rtx x)
3126 {
3127   if (GET_CODE (x) != SUBREG)
3128     return false;
3129   return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3130 }
3131 
3132 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */
3133 
3134 inline poly_uint64
3135 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3136 {
3137   return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3138 				     GET_MODE_SIZE (innermode));
3139 }
3140 
3141 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3142    return the smaller of the two modes if they are different sizes,
3143    otherwise return the outer mode.  */
3144 
3145 inline machine_mode
3146 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3147 {
3148   return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3149 }
3150 
3151 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3152    return the mode that is big enough to hold both the outer and inner
3153    values.  Prefer the outer mode in the event of a tie.  */
3154 
3155 inline machine_mode
3156 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3157 {
3158   return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3159 }
3160 
3161 /* Likewise for subreg X.  */
3162 
3163 inline machine_mode
3164 wider_subreg_mode (const_rtx x)
3165 {
3166   return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3167 }
3168 
3169 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3170 
3171 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value.  */
3172 
3173 inline poly_uint64
3174 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3175 {
3176   return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3177 				      GET_MODE_SIZE (innermode));
3178 }
3179 
3180 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3181 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3182 					poly_uint64);
3183 extern poly_int64 subreg_memory_offset (const_rtx);
3184 extern rtx make_safe_from (rtx, rtx);
3185 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3186 						addr_space_t, bool, bool);
3187 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3188 					      addr_space_t);
3189 #define convert_memory_address(to_mode,x) \
3190 	convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3191 extern const char *get_insn_name (int);
3192 extern rtx_insn *get_last_insn_anywhere (void);
3193 extern rtx_insn *get_first_nonnote_insn (void);
3194 extern rtx_insn *get_last_nonnote_insn (void);
3195 extern void start_sequence (void);
3196 extern void push_to_sequence (rtx_insn *);
3197 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3198 extern void end_sequence (void);
3199 #if TARGET_SUPPORTS_WIDE_INT == 0
3200 extern double_int rtx_to_double_int (const_rtx);
3201 #endif
3202 extern void cwi_output_hex (FILE *, const_rtx);
3203 #if TARGET_SUPPORTS_WIDE_INT == 0
3204 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3205 			       machine_mode);
3206 #endif
3207 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3208 
3209 /* In varasm.c  */
3210 extern rtx force_const_mem (machine_mode, rtx);
3211 
3212 /* In varasm.c  */
3213 
3214 struct function;
3215 extern rtx get_pool_constant (const_rtx);
3216 extern rtx get_pool_constant_mark (rtx, bool *);
3217 extern fixed_size_mode get_pool_mode (const_rtx);
3218 extern rtx simplify_subtraction (rtx);
3219 extern void decide_function_section (tree);
3220 
3221 /* In emit-rtl.c */
3222 extern rtx_insn *emit_insn_before (rtx, rtx);
3223 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3224 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
3225 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
3226 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3227 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
3228 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3229 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3230 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
3231 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3232 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
3233 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
3234 extern rtx_barrier *emit_barrier_before (rtx);
3235 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
3236 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3237 extern rtx_insn *emit_insn_after (rtx, rtx);
3238 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
3239 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
3240 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
3241 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
3242 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
3243 extern rtx_insn *emit_call_insn_after (rtx, rtx);
3244 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
3245 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
3246 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
3247 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
3248 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
3249 extern rtx_barrier *emit_barrier_after (rtx);
3250 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
3251 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3252 extern rtx_insn *emit_insn (rtx);
3253 extern rtx_insn *emit_debug_insn (rtx);
3254 extern rtx_insn *emit_jump_insn (rtx);
3255 extern rtx_insn *emit_call_insn (rtx);
3256 extern rtx_code_label *emit_label (rtx);
3257 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3258 extern rtx_barrier *emit_barrier (void);
3259 extern rtx_note *emit_note (enum insn_note);
3260 extern rtx_note *emit_note_copy (rtx_note *);
3261 extern rtx_insn *gen_clobber (rtx);
3262 extern rtx_insn *emit_clobber (rtx);
3263 extern rtx_insn *gen_use (rtx);
3264 extern rtx_insn *emit_use (rtx);
3265 extern rtx_insn *make_insn_raw (rtx);
3266 extern void add_function_usage_to (rtx, rtx);
3267 extern rtx_call_insn *last_call_insn (void);
3268 extern rtx_insn *previous_insn (rtx_insn *);
3269 extern rtx_insn *next_insn (rtx_insn *);
3270 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3271 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3272 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3273 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3274 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3275 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3276 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3277 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3278 extern rtx_insn *prev_real_insn (rtx_insn *);
3279 extern rtx_insn *next_real_insn (rtx);
3280 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3281 extern rtx_insn *next_real_nondebug_insn (rtx);
3282 extern rtx_insn *prev_active_insn (rtx_insn *);
3283 extern rtx_insn *next_active_insn (rtx_insn *);
3284 extern int active_insn_p (const rtx_insn *);
3285 extern rtx_insn *next_cc0_user (rtx_insn *);
3286 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3287 
3288 /* In emit-rtl.c  */
3289 extern int insn_line (const rtx_insn *);
3290 extern const char * insn_file (const rtx_insn *);
3291 extern tree insn_scope (const rtx_insn *);
3292 extern expanded_location insn_location (const rtx_insn *);
3293 extern location_t prologue_location, epilogue_location;
3294 
3295 /* In jump.c */
3296 extern enum rtx_code reverse_condition (enum rtx_code);
3297 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3298 extern enum rtx_code swap_condition (enum rtx_code);
3299 extern enum rtx_code unsigned_condition (enum rtx_code);
3300 extern enum rtx_code signed_condition (enum rtx_code);
3301 extern void mark_jump_label (rtx, rtx_insn *, int);
3302 
3303 /* In jump.c */
3304 extern rtx_insn *delete_related_insns (rtx);
3305 
3306 /* In recog.c  */
3307 extern rtx *find_constant_term_loc (rtx *);
3308 
3309 /* In emit-rtl.c  */
3310 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3311 
3312 /* In insn-recog.c (generated by genrecog).  */
3313 extern rtx_insn *split_insns (rtx, rtx_insn *);
3314 
3315 /* In simplify-rtx.c  */
3316 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3317 					   rtx, machine_mode);
3318 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3319 				     machine_mode);
3320 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3321 					    rtx, rtx);
3322 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3323 				      rtx);
3324 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3325 				       machine_mode, rtx, rtx, rtx);
3326 extern rtx simplify_const_relational_operation (enum rtx_code,
3327 						machine_mode, rtx, rtx);
3328 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3329 					  machine_mode, rtx, rtx);
3330 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3331 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3332 			       machine_mode);
3333 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3334 				 machine_mode, rtx, rtx, rtx);
3335 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3336 				    machine_mode, rtx, rtx);
3337 extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3338 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3339 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3340 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3341 				    rtx (*fn) (rtx, const_rtx, void *), void *);
3342 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3343 extern rtx simplify_rtx (const_rtx);
3344 extern rtx avoid_constant_pool_reference (rtx);
3345 extern rtx delegitimize_mem_from_attrs (rtx);
3346 extern bool mode_signbit_p (machine_mode, const_rtx);
3347 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3348 extern bool val_signbit_known_set_p (machine_mode,
3349 				     unsigned HOST_WIDE_INT);
3350 extern bool val_signbit_known_clear_p (machine_mode,
3351 				       unsigned HOST_WIDE_INT);
3352 
3353 /* In reginfo.c  */
3354 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3355 					       bool);
3356 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3357 
3358 /* In emit-rtl.c  */
3359 extern rtx set_for_reg_notes (rtx);
3360 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3361 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3362 extern void set_insn_deleted (rtx);
3363 
3364 /* Functions in rtlanal.c */
3365 
3366 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3367 extern bool contains_symbol_ref_p (const_rtx);
3368 extern bool contains_symbolic_reference_p (const_rtx);
3369 
3370 /* Handle the cheap and common cases inline for performance.  */
3371 
3372 inline rtx single_set (const rtx_insn *insn)
3373 {
3374   if (!INSN_P (insn))
3375     return NULL_RTX;
3376 
3377   if (GET_CODE (PATTERN (insn)) == SET)
3378     return PATTERN (insn);
3379 
3380   /* Defer to the more expensive case.  */
3381   return single_set_2 (insn, PATTERN (insn));
3382 }
3383 
3384 extern scalar_int_mode get_address_mode (rtx mem);
3385 extern int rtx_addr_can_trap_p (const_rtx);
3386 extern bool nonzero_address_p (const_rtx);
3387 extern int rtx_unstable_p (const_rtx);
3388 extern bool rtx_varies_p (const_rtx, bool);
3389 extern bool rtx_addr_varies_p (const_rtx, bool);
3390 extern rtx get_call_rtx_from (rtx);
3391 extern HOST_WIDE_INT get_integer_term (const_rtx);
3392 extern rtx get_related_value (const_rtx);
3393 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3394 extern void split_const (rtx, rtx *, rtx *);
3395 extern rtx strip_offset (rtx, poly_int64_pod *);
3396 extern poly_int64 get_args_size (const_rtx);
3397 extern bool unsigned_reg_p (rtx);
3398 extern int reg_mentioned_p (const_rtx, const_rtx);
3399 extern int count_occurrences (const_rtx, const_rtx, int);
3400 extern int reg_referenced_p (const_rtx, const_rtx);
3401 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3402 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3403 extern int commutative_operand_precedence (rtx);
3404 extern bool swap_commutative_operands_p (rtx, rtx);
3405 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3406 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3407 extern int modified_in_p (const_rtx, const_rtx);
3408 extern int reg_set_p (const_rtx, const_rtx);
3409 extern int multiple_sets (const_rtx);
3410 extern int set_noop_p (const_rtx);
3411 extern int noop_move_p (const rtx_insn *);
3412 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3413 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3414 extern const_rtx set_of (const_rtx, const_rtx);
3415 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3416 extern void record_hard_reg_uses (rtx *, void *);
3417 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3418 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3419 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3420 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3421 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3422 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3423 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3424 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3425 extern rtx find_reg_equal_equiv_note (const_rtx);
3426 extern rtx find_constant_src (const rtx_insn *);
3427 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3428 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3429 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3430 extern void add_reg_note (rtx, enum reg_note, rtx);
3431 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3432 extern void add_args_size_note (rtx_insn *, poly_int64);
3433 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3434 extern rtx duplicate_reg_note (rtx);
3435 extern void remove_note (rtx_insn *, const_rtx);
3436 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3437 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3438 extern int side_effects_p (const_rtx);
3439 extern int volatile_refs_p (const_rtx);
3440 extern int volatile_insn_p (const_rtx);
3441 extern int may_trap_p_1 (const_rtx, unsigned);
3442 extern int may_trap_p (const_rtx);
3443 extern int may_trap_or_fault_p (const_rtx);
3444 extern bool can_throw_internal (const_rtx);
3445 extern bool can_throw_external (const_rtx);
3446 extern bool insn_could_throw_p (const_rtx);
3447 extern bool insn_nothrow_p (const_rtx);
3448 extern bool can_nonlocal_goto (const rtx_insn *);
3449 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3450 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3451 extern int inequality_comparisons_p (const_rtx);
3452 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3453 extern void replace_label (rtx *, rtx, rtx, bool);
3454 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3455 extern bool rtx_referenced_p (const_rtx, const_rtx);
3456 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3457 extern int computed_jump_p (const rtx_insn *);
3458 extern bool tls_referenced_p (const_rtx);
3459 extern bool contains_mem_rtx_p (rtx x);
3460 
3461 /* Overload for refers_to_regno_p for checking a single register.  */
3462 inline bool
3463 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3464 {
3465   return refers_to_regno_p (regnum, regnum + 1, x, loc);
3466 }
3467 
3468 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3469    within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3470    NULL.  The callback is passed the same opaque ARG passed to
3471    for_each_inc_dec.  Return zero to continue looking for other
3472    autoinc operations or any other value to interrupt the traversal and
3473    return that value to the caller of for_each_inc_dec.  */
3474 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3475 				    rtx srcoff, void *arg);
3476 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3477 
3478 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3479                                               rtx *, rtx *);
3480 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3481                            rtx_equal_p_callback_function);
3482 
3483 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3484                                            machine_mode *);
3485 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3486                              bool, hash_rtx_callback_function);
3487 
3488 extern rtx regno_use_in (unsigned int, rtx);
3489 extern int auto_inc_p (const_rtx);
3490 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3491 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3492 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3493 extern int loc_mentioned_in_p (rtx *, const_rtx);
3494 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3495 extern bool keep_with_call_p (const rtx_insn *);
3496 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3497 extern int pattern_cost (rtx, bool);
3498 extern int insn_cost (rtx_insn *, bool);
3499 extern unsigned seq_cost (const rtx_insn *, bool);
3500 
3501 /* Given an insn and condition, return a canonical description of
3502    the test being made.  */
3503 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3504 				   int, int);
3505 
3506 /* Given a JUMP_INSN, return a canonical description of the test
3507    being made.  */
3508 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3509 
3510 /* Information about a subreg of a hard register.  */
3511 struct subreg_info
3512 {
3513   /* Offset of first hard register involved in the subreg.  */
3514   int offset;
3515   /* Number of hard registers involved in the subreg.  In the case of
3516      a paradoxical subreg, this is the number of registers that would
3517      be modified by writing to the subreg; some of them may be don't-care
3518      when reading from the subreg.  */
3519   int nregs;
3520   /* Whether this subreg can be represented as a hard reg with the new
3521      mode (by adding OFFSET to the original hard register).  */
3522   bool representable_p;
3523 };
3524 
3525 extern void subreg_get_info (unsigned int, machine_mode,
3526 			     poly_uint64, machine_mode,
3527 			     struct subreg_info *);
3528 
3529 /* lists.c */
3530 
3531 extern void free_EXPR_LIST_list (rtx_expr_list **);
3532 extern void free_INSN_LIST_list (rtx_insn_list **);
3533 extern void free_EXPR_LIST_node (rtx);
3534 extern void free_INSN_LIST_node (rtx);
3535 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3536 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3537 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3538 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3539 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3540 extern rtx remove_list_elem (rtx, rtx *);
3541 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3542 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3543 
3544 
3545 /* reginfo.c */
3546 
3547 /* Resize reg info.  */
3548 extern bool resize_reg_info (void);
3549 /* Free up register info memory.  */
3550 extern void free_reg_info (void);
3551 extern void init_subregs_of_mode (void);
3552 extern void finish_subregs_of_mode (void);
3553 
3554 /* recog.c */
3555 extern rtx extract_asm_operands (rtx);
3556 extern int asm_noperands (const_rtx);
3557 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3558 					machine_mode *, location_t *);
3559 extern void get_referenced_operands (const char *, bool *, unsigned int);
3560 
3561 extern enum reg_class reg_preferred_class (int);
3562 extern enum reg_class reg_alternate_class (int);
3563 extern enum reg_class reg_allocno_class (int);
3564 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3565 			       enum reg_class);
3566 
3567 extern void split_all_insns (void);
3568 extern unsigned int split_all_insns_noflow (void);
3569 
3570 #define MAX_SAVED_CONST_INT 64
3571 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3572 
3573 #define const0_rtx	(const_int_rtx[MAX_SAVED_CONST_INT])
3574 #define const1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+1])
3575 #define const2_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+2])
3576 #define constm1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT-1])
3577 extern GTY(()) rtx const_true_rtx;
3578 
3579 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3580 
3581 /* Returns a constant 0 rtx in mode MODE.  Integer modes are treated the
3582    same as VOIDmode.  */
3583 
3584 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3585 
3586 /* Likewise, for the constants 1 and 2 and -1.  */
3587 
3588 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3589 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3590 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3591 
3592 extern GTY(()) rtx pc_rtx;
3593 extern GTY(()) rtx cc0_rtx;
3594 extern GTY(()) rtx ret_rtx;
3595 extern GTY(()) rtx simple_return_rtx;
3596 extern GTY(()) rtx_insn *invalid_insn_rtx;
3597 
3598 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3599    is used to represent the frame pointer.  This is because the
3600    hard frame pointer and the automatic variables are separated by an amount
3601    that cannot be determined until after register allocation.  We can assume
3602    that in this case ELIMINABLE_REGS will be defined, one action of which
3603    will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM.  */
3604 #ifndef HARD_FRAME_POINTER_REGNUM
3605 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3606 #endif
3607 
3608 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3609 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3610   (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3611 #endif
3612 
3613 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3614 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3615   (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3616 #endif
3617 
3618 /* Index labels for global_rtl.  */
3619 enum global_rtl_index
3620 {
3621   GR_STACK_POINTER,
3622   GR_FRAME_POINTER,
3623 /* For register elimination to work properly these hard_frame_pointer_rtx,
3624    frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3625    the same register.  */
3626 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3627   GR_ARG_POINTER = GR_FRAME_POINTER,
3628 #endif
3629 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3630   GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3631 #else
3632   GR_HARD_FRAME_POINTER,
3633 #endif
3634 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3635 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3636   GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3637 #else
3638   GR_ARG_POINTER,
3639 #endif
3640 #endif
3641   GR_VIRTUAL_INCOMING_ARGS,
3642   GR_VIRTUAL_STACK_ARGS,
3643   GR_VIRTUAL_STACK_DYNAMIC,
3644   GR_VIRTUAL_OUTGOING_ARGS,
3645   GR_VIRTUAL_CFA,
3646   GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3647 
3648   GR_MAX
3649 };
3650 
3651 /* Target-dependent globals.  */
3652 struct GTY(()) target_rtl {
3653   /* All references to the hard registers in global_rtl_index go through
3654      these unique rtl objects.  On machines where the frame-pointer and
3655      arg-pointer are the same register, they use the same unique object.
3656 
3657      After register allocation, other rtl objects which used to be pseudo-regs
3658      may be clobbered to refer to the frame-pointer register.
3659      But references that were originally to the frame-pointer can be
3660      distinguished from the others because they contain frame_pointer_rtx.
3661 
3662      When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3663      tricky: until register elimination has taken place hard_frame_pointer_rtx
3664      should be used if it is being set, and frame_pointer_rtx otherwise.  After
3665      register elimination hard_frame_pointer_rtx should always be used.
3666      On machines where the two registers are same (most) then these are the
3667      same.  */
3668   rtx x_global_rtl[GR_MAX];
3669 
3670   /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM).  */
3671   rtx x_pic_offset_table_rtx;
3672 
3673   /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3674      This is used to implement __builtin_return_address for some machines;
3675      see for instance the MIPS port.  */
3676   rtx x_return_address_pointer_rtx;
3677 
3678   /* Commonly used RTL for hard registers.  These objects are not
3679      necessarily unique, so we allocate them separately from global_rtl.
3680      They are initialized once per compilation unit, then copied into
3681      regno_reg_rtx at the beginning of each function.  */
3682   rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3683 
3684   /* A sample (mem:M stack_pointer_rtx) rtx for each mode M.  */
3685   rtx x_top_of_stack[MAX_MACHINE_MODE];
3686 
3687   /* Static hunks of RTL used by the aliasing code; these are treated
3688      as persistent to avoid unnecessary RTL allocations.  */
3689   rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3690 
3691   /* The default memory attributes for each mode.  */
3692   struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3693 
3694   /* Track if RTL has been initialized.  */
3695   bool target_specific_initialized;
3696 };
3697 
3698 extern GTY(()) struct target_rtl default_target_rtl;
3699 #if SWITCHABLE_TARGET
3700 extern struct target_rtl *this_target_rtl;
3701 #else
3702 #define this_target_rtl (&default_target_rtl)
3703 #endif
3704 
3705 #define global_rtl				\
3706   (this_target_rtl->x_global_rtl)
3707 #define pic_offset_table_rtx \
3708   (this_target_rtl->x_pic_offset_table_rtx)
3709 #define return_address_pointer_rtx \
3710   (this_target_rtl->x_return_address_pointer_rtx)
3711 #define top_of_stack \
3712   (this_target_rtl->x_top_of_stack)
3713 #define mode_mem_attrs \
3714   (this_target_rtl->x_mode_mem_attrs)
3715 
3716 /* All references to certain hard regs, except those created
3717    by allocating pseudo regs into them (when that's possible),
3718    go through these unique rtx objects.  */
3719 #define stack_pointer_rtx       (global_rtl[GR_STACK_POINTER])
3720 #define frame_pointer_rtx       (global_rtl[GR_FRAME_POINTER])
3721 #define hard_frame_pointer_rtx	(global_rtl[GR_HARD_FRAME_POINTER])
3722 #define arg_pointer_rtx		(global_rtl[GR_ARG_POINTER])
3723 
3724 #ifndef GENERATOR_FILE
3725 /* Return the attributes of a MEM rtx.  */
3726 static inline const struct mem_attrs *
3727 get_mem_attrs (const_rtx x)
3728 {
3729   struct mem_attrs *attrs;
3730 
3731   attrs = MEM_ATTRS (x);
3732   if (!attrs)
3733     attrs = mode_mem_attrs[(int) GET_MODE (x)];
3734   return attrs;
3735 }
3736 #endif
3737 
3738 /* Include the RTL generation functions.  */
3739 
3740 #ifndef GENERATOR_FILE
3741 #include "genrtl.h"
3742 #undef gen_rtx_ASM_INPUT
3743 #define gen_rtx_ASM_INPUT(MODE, ARG0)				\
3744   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3745 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC)			\
3746   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3747 #endif
3748 
3749 /* There are some RTL codes that require special attention; the
3750    generation functions included above do the raw handling.  If you
3751    add to this list, modify special_rtx in gengenrtl.c as well.  */
3752 
3753 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3754 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3755 extern rtx_insn *
3756 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3757 	      basic_block bb, rtx pattern, int location, int code,
3758 	      rtx reg_notes);
3759 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3760 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3761 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3762 extern rtx gen_raw_REG (machine_mode, unsigned int);
3763 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3764 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3765 extern rtx gen_rtx_MEM (machine_mode, rtx);
3766 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3767 				 enum var_init_status);
3768 
3769 #ifdef GENERATOR_FILE
3770 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3771 #else
3772 static inline void
3773 PUT_MODE (rtx x, machine_mode mode)
3774 {
3775   if (REG_P (x))
3776     set_mode_and_regno (x, mode, REGNO (x));
3777   else
3778     PUT_MODE_RAW (x, mode);
3779 }
3780 #endif
3781 
3782 #define GEN_INT(N)  gen_rtx_CONST_INT (VOIDmode, (N))
3783 
3784 /* Virtual registers are used during RTL generation to refer to locations into
3785    the stack frame when the actual location isn't known until RTL generation
3786    is complete.  The routine instantiate_virtual_regs replaces these with
3787    the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3788    a constant.  */
3789 
3790 #define FIRST_VIRTUAL_REGISTER	(FIRST_PSEUDO_REGISTER)
3791 
3792 /* This points to the first word of the incoming arguments passed on the stack,
3793    either by the caller or by the callee when pretending it was passed by the
3794    caller.  */
3795 
3796 #define virtual_incoming_args_rtx       (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3797 
3798 #define VIRTUAL_INCOMING_ARGS_REGNUM	(FIRST_VIRTUAL_REGISTER)
3799 
3800 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3801    variable on the stack.  Otherwise, it points to the first variable on
3802    the stack.  */
3803 
3804 #define virtual_stack_vars_rtx	        (global_rtl[GR_VIRTUAL_STACK_ARGS])
3805 
3806 #define VIRTUAL_STACK_VARS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 1)
3807 
3808 /* This points to the location of dynamically-allocated memory on the stack
3809    immediately after the stack pointer has been adjusted by the amount
3810    desired.  */
3811 
3812 #define virtual_stack_dynamic_rtx	(global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3813 
3814 #define VIRTUAL_STACK_DYNAMIC_REGNUM	((FIRST_VIRTUAL_REGISTER) + 2)
3815 
3816 /* This points to the location in the stack at which outgoing arguments should
3817    be written when the stack is pre-pushed (arguments pushed using push
3818    insns always use sp).  */
3819 
3820 #define virtual_outgoing_args_rtx	(global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3821 
3822 #define VIRTUAL_OUTGOING_ARGS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 3)
3823 
3824 /* This points to the Canonical Frame Address of the function.  This
3825    should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3826    but is calculated relative to the arg pointer for simplicity; the
3827    frame pointer nor stack pointer are necessarily fixed relative to
3828    the CFA until after reload.  */
3829 
3830 #define virtual_cfa_rtx			(global_rtl[GR_VIRTUAL_CFA])
3831 
3832 #define VIRTUAL_CFA_REGNUM		((FIRST_VIRTUAL_REGISTER) + 4)
3833 
3834 #define LAST_VIRTUAL_POINTER_REGISTER	((FIRST_VIRTUAL_REGISTER) + 4)
3835 
3836 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3837    when finalized.  */
3838 
3839 #define virtual_preferred_stack_boundary_rtx \
3840 	(global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3841 
3842 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3843 					((FIRST_VIRTUAL_REGISTER) + 5)
3844 
3845 #define LAST_VIRTUAL_REGISTER		((FIRST_VIRTUAL_REGISTER) + 5)
3846 
3847 /* Nonzero if REGNUM is a pointer into the stack frame.  */
3848 #define REGNO_PTR_FRAME_P(REGNUM)		\
3849   ((REGNUM) == STACK_POINTER_REGNUM		\
3850    || (REGNUM) == FRAME_POINTER_REGNUM		\
3851    || (REGNUM) == HARD_FRAME_POINTER_REGNUM	\
3852    || (REGNUM) == ARG_POINTER_REGNUM		\
3853    || ((REGNUM) >= FIRST_VIRTUAL_REGISTER	\
3854        && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3855 
3856 /* REGNUM never really appearing in the INSN stream.  */
3857 #define INVALID_REGNUM			(~(unsigned int) 0)
3858 
3859 /* REGNUM for which no debug information can be generated.  */
3860 #define IGNORED_DWARF_REGNUM            (INVALID_REGNUM - 1)
3861 
3862 extern rtx output_constant_def (tree, int);
3863 extern rtx lookup_constant_def (tree);
3864 
3865 /* Nonzero after end of reload pass.
3866    Set to 1 or 0 by reload1.c.  */
3867 
3868 extern int reload_completed;
3869 
3870 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
3871 extern int epilogue_completed;
3872 
3873 /* Set to 1 while reload_as_needed is operating.
3874    Required by some machines to handle any generated moves differently.  */
3875 
3876 extern int reload_in_progress;
3877 
3878 /* Set to 1 while in lra.  */
3879 extern int lra_in_progress;
3880 
3881 /* This macro indicates whether you may create a new
3882    pseudo-register.  */
3883 
3884 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3885 
3886 #ifdef STACK_REGS
3887 /* Nonzero after end of regstack pass.
3888    Set to 1 or 0 by reg-stack.c.  */
3889 extern int regstack_completed;
3890 #endif
3891 
3892 /* If this is nonzero, we do not bother generating VOLATILE
3893    around volatile memory references, and we are willing to
3894    output indirect addresses.  If cse is to follow, we reject
3895    indirect addresses so a useful potential cse is generated;
3896    if it is used only once, instruction combination will produce
3897    the same indirect address eventually.  */
3898 extern int cse_not_expected;
3899 
3900 /* Translates rtx code to tree code, for those codes needed by
3901    real_arithmetic.  The function returns an int because the caller may not
3902    know what `enum tree_code' means.  */
3903 
3904 extern int rtx_to_tree_code (enum rtx_code);
3905 
3906 /* In cse.c */
3907 extern int delete_trivially_dead_insns (rtx_insn *, int);
3908 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3909 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3910 
3911 /* In dse.c */
3912 extern bool check_for_inc_dec (rtx_insn *insn);
3913 
3914 /* In jump.c */
3915 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3916 extern bool jump_to_label_p (const rtx_insn *);
3917 extern int condjump_p (const rtx_insn *);
3918 extern int any_condjump_p (const rtx_insn *);
3919 extern int any_uncondjump_p (const rtx_insn *);
3920 extern rtx pc_set (const rtx_insn *);
3921 extern rtx condjump_label (const rtx_insn *);
3922 extern int simplejump_p (const rtx_insn *);
3923 extern int returnjump_p (const rtx_insn *);
3924 extern int eh_returnjump_p (rtx_insn *);
3925 extern int onlyjump_p (const rtx_insn *);
3926 extern int only_sets_cc0_p (const_rtx);
3927 extern int sets_cc0_p (const_rtx);
3928 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3929 extern int invert_jump (rtx_jump_insn *, rtx, int);
3930 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3931 extern int true_regnum (const_rtx);
3932 extern unsigned int reg_or_subregno (const_rtx);
3933 extern int redirect_jump_1 (rtx_insn *, rtx);
3934 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3935 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3936 extern void rebuild_jump_labels (rtx_insn *);
3937 extern void rebuild_jump_labels_chain (rtx_insn *);
3938 extern rtx reversed_comparison (const_rtx, machine_mode);
3939 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3940 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3941 						     const_rtx, const rtx_insn *);
3942 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3943 extern int condjump_in_parallel_p (const rtx_insn *);
3944 
3945 /* In emit-rtl.c.  */
3946 extern int max_reg_num (void);
3947 extern int max_label_num (void);
3948 extern int get_first_label_num (void);
3949 extern void maybe_set_first_label_num (rtx_code_label *);
3950 extern void delete_insns_since (rtx_insn *);
3951 extern void mark_reg_pointer (rtx, int);
3952 extern void mark_user_reg (rtx);
3953 extern void reset_used_flags (rtx);
3954 extern void set_used_flags (rtx);
3955 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3956 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3957 extern int get_max_insn_count (void);
3958 extern int in_sequence_p (void);
3959 extern void init_emit (void);
3960 extern void init_emit_regs (void);
3961 extern void init_derived_machine_modes (void);
3962 extern void init_emit_once (void);
3963 extern void push_topmost_sequence (void);
3964 extern void pop_topmost_sequence (void);
3965 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3966 extern unsigned int unshare_all_rtl (void);
3967 extern void unshare_all_rtl_again (rtx_insn *);
3968 extern void unshare_all_rtl_in_chain (rtx_insn *);
3969 extern void verify_rtl_sharing (void);
3970 extern void add_insn (rtx_insn *);
3971 extern void add_insn_before (rtx, rtx, basic_block);
3972 extern void add_insn_after (rtx, rtx, basic_block);
3973 extern void remove_insn (rtx);
3974 extern rtx_insn *emit (rtx, bool = true);
3975 extern void emit_insn_at_entry (rtx);
3976 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3977 extern rtx gen_const_mem (machine_mode, rtx);
3978 extern rtx gen_frame_mem (machine_mode, rtx);
3979 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3980 extern bool validate_subreg (machine_mode, machine_mode,
3981 			     const_rtx, poly_uint64);
3982 
3983 /* In combine.c  */
3984 extern unsigned int extended_count (const_rtx, machine_mode, int);
3985 extern rtx remove_death (unsigned int, rtx_insn *);
3986 extern void dump_combine_stats (FILE *);
3987 extern void dump_combine_total_stats (FILE *);
3988 extern rtx make_compound_operation (rtx, enum rtx_code);
3989 
3990 /* In sched-rgn.c.  */
3991 extern void schedule_insns (void);
3992 
3993 /* In sched-ebb.c.  */
3994 extern void schedule_ebbs (void);
3995 
3996 /* In sel-sched-dump.c.  */
3997 extern void sel_sched_fix_param (const char *param, const char *val);
3998 
3999 /* In print-rtl.c */
4000 extern const char *print_rtx_head;
4001 extern void debug (const rtx_def &ref);
4002 extern void debug (const rtx_def *ptr);
4003 extern void debug_rtx (const_rtx);
4004 extern void debug_rtx_list (const rtx_insn *, int);
4005 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4006 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4007 extern void print_mem_expr (FILE *, const_tree);
4008 extern void print_rtl (FILE *, const_rtx);
4009 extern void print_simple_rtl (FILE *, const_rtx);
4010 extern int print_rtl_single (FILE *, const_rtx);
4011 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4012 extern void print_inline_rtx (FILE *, const_rtx, int);
4013 
4014 /* In stmt.c */
4015 extern void expand_null_return (void);
4016 extern void expand_naked_return (void);
4017 extern void emit_jump (rtx);
4018 
4019 /* In expr.c */
4020 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4021 			   unsigned int, int);
4022 extern poly_int64 find_args_size_adjust (rtx_insn *);
4023 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4024 
4025 /* In expmed.c */
4026 extern void init_expmed (void);
4027 extern void expand_inc (rtx, rtx);
4028 extern void expand_dec (rtx, rtx);
4029 
4030 /* In lower-subreg.c */
4031 extern void init_lower_subreg (void);
4032 
4033 /* In gcse.c */
4034 extern bool can_copy_p (machine_mode);
4035 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4036 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4037 
4038 /* In cprop.c */
4039 extern rtx fis_get_condition (rtx_insn *);
4040 
4041 /* In ira.c */
4042 extern HARD_REG_SET eliminable_regset;
4043 extern void mark_elimination (int, int);
4044 
4045 /* In reginfo.c */
4046 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4047 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4048 extern void globalize_reg (tree, int);
4049 extern void init_reg_modes_target (void);
4050 extern void init_regs (void);
4051 extern void reinit_regs (void);
4052 extern void init_fake_stack_mems (void);
4053 extern void save_register_info (void);
4054 extern void init_reg_sets (void);
4055 extern void regclass (rtx, int);
4056 extern void reg_scan (rtx_insn *, unsigned int);
4057 extern void fix_register (const char *, int, int);
4058 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4059 
4060 /* In reload1.c */
4061 extern int function_invariant_p (const_rtx);
4062 
4063 /* In calls.c */
4064 enum libcall_type
4065 {
4066   LCT_NORMAL = 0,
4067   LCT_CONST = 1,
4068   LCT_PURE = 2,
4069   LCT_NORETURN = 3,
4070   LCT_THROW = 4,
4071   LCT_RETURNS_TWICE = 5
4072 };
4073 
4074 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4075 				      machine_mode, int, rtx_mode_t *);
4076 
4077 /* Output a library call and discard the returned value.  FUN is the
4078    address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4079    of the (discarded) return value.  FN_TYPE is LCT_NORMAL for `normal'
4080    calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4081    another LCT_ value for other types of library calls.
4082 
4083    There are different overloads of this function for different numbers
4084    of arguments.  In each case the argument value is followed by its mode.  */
4085 
4086 inline void
4087 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4088 {
4089   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4090 }
4091 
4092 inline void
4093 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4094 		   rtx arg1, machine_mode arg1_mode)
4095 {
4096   rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4097   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4098 }
4099 
4100 inline void
4101 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4102 		   rtx arg1, machine_mode arg1_mode,
4103 		   rtx arg2, machine_mode arg2_mode)
4104 {
4105   rtx_mode_t args[] = {
4106     rtx_mode_t (arg1, arg1_mode),
4107     rtx_mode_t (arg2, arg2_mode)
4108   };
4109   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4110 }
4111 
4112 inline void
4113 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4114 		   rtx arg1, machine_mode arg1_mode,
4115 		   rtx arg2, machine_mode arg2_mode,
4116 		   rtx arg3, machine_mode arg3_mode)
4117 {
4118   rtx_mode_t args[] = {
4119     rtx_mode_t (arg1, arg1_mode),
4120     rtx_mode_t (arg2, arg2_mode),
4121     rtx_mode_t (arg3, arg3_mode)
4122   };
4123   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4124 }
4125 
4126 inline void
4127 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4128 		   rtx arg1, machine_mode arg1_mode,
4129 		   rtx arg2, machine_mode arg2_mode,
4130 		   rtx arg3, machine_mode arg3_mode,
4131 		   rtx arg4, machine_mode arg4_mode)
4132 {
4133   rtx_mode_t args[] = {
4134     rtx_mode_t (arg1, arg1_mode),
4135     rtx_mode_t (arg2, arg2_mode),
4136     rtx_mode_t (arg3, arg3_mode),
4137     rtx_mode_t (arg4, arg4_mode)
4138   };
4139   emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4140 }
4141 
4142 /* Like emit_library_call, but return the value produced by the call.
4143    Use VALUE to store the result if it is nonnull, otherwise pick a
4144    convenient location.  */
4145 
4146 inline rtx
4147 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4148 			 machine_mode outmode)
4149 {
4150   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4151 }
4152 
4153 inline rtx
4154 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4155 			 machine_mode outmode,
4156 			 rtx arg1, machine_mode arg1_mode)
4157 {
4158   rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4159   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4160 }
4161 
4162 inline rtx
4163 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4164 			 machine_mode outmode,
4165 			 rtx arg1, machine_mode arg1_mode,
4166 			 rtx arg2, machine_mode arg2_mode)
4167 {
4168   rtx_mode_t args[] = {
4169     rtx_mode_t (arg1, arg1_mode),
4170     rtx_mode_t (arg2, arg2_mode)
4171   };
4172   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4173 }
4174 
4175 inline rtx
4176 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4177 			 machine_mode outmode,
4178 			 rtx arg1, machine_mode arg1_mode,
4179 			 rtx arg2, machine_mode arg2_mode,
4180 			 rtx arg3, machine_mode arg3_mode)
4181 {
4182   rtx_mode_t args[] = {
4183     rtx_mode_t (arg1, arg1_mode),
4184     rtx_mode_t (arg2, arg2_mode),
4185     rtx_mode_t (arg3, arg3_mode)
4186   };
4187   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4188 }
4189 
4190 inline rtx
4191 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4192 			 machine_mode outmode,
4193 			 rtx arg1, machine_mode arg1_mode,
4194 			 rtx arg2, machine_mode arg2_mode,
4195 			 rtx arg3, machine_mode arg3_mode,
4196 			 rtx arg4, machine_mode arg4_mode)
4197 {
4198   rtx_mode_t args[] = {
4199     rtx_mode_t (arg1, arg1_mode),
4200     rtx_mode_t (arg2, arg2_mode),
4201     rtx_mode_t (arg3, arg3_mode),
4202     rtx_mode_t (arg4, arg4_mode)
4203   };
4204   return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4205 }
4206 
4207 /* In varasm.c */
4208 extern void init_varasm_once (void);
4209 
4210 extern rtx make_debug_expr_from_rtl (const_rtx);
4211 
4212 /* In read-rtl.c */
4213 #ifdef GENERATOR_FILE
4214 extern bool read_rtx (const char *, vec<rtx> *);
4215 #endif
4216 
4217 /* In alias.c */
4218 extern rtx canon_rtx (rtx);
4219 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4220 extern rtx get_addr (rtx);
4221 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4222 				  const_rtx, rtx);
4223 extern int read_dependence (const_rtx, const_rtx);
4224 extern int anti_dependence (const_rtx, const_rtx);
4225 extern int canon_anti_dependence (const_rtx, bool,
4226 				  const_rtx, machine_mode, rtx);
4227 extern int output_dependence (const_rtx, const_rtx);
4228 extern int canon_output_dependence (const_rtx, bool,
4229 				    const_rtx, machine_mode, rtx);
4230 extern int may_alias_p (const_rtx, const_rtx);
4231 extern void init_alias_target (void);
4232 extern void init_alias_analysis (void);
4233 extern void end_alias_analysis (void);
4234 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4235 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4236 extern bool may_be_sp_based_p (rtx);
4237 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4238 extern rtx get_reg_known_value (unsigned int);
4239 extern bool get_reg_known_equiv_p (unsigned int);
4240 extern rtx get_reg_base_value (unsigned int);
4241 
4242 #ifdef STACK_REGS
4243 extern int stack_regs_mentioned (const_rtx insn);
4244 #endif
4245 
4246 /* In toplev.c */
4247 extern GTY(()) rtx stack_limit_rtx;
4248 
4249 /* In var-tracking.c */
4250 extern unsigned int variable_tracking_main (void);
4251 extern void delete_vta_debug_insns (bool);
4252 
4253 /* In stor-layout.c.  */
4254 extern void get_mode_bounds (scalar_int_mode, int,
4255 			     scalar_int_mode, rtx *, rtx *);
4256 
4257 /* In loop-iv.c  */
4258 extern rtx canon_condition (rtx);
4259 extern void simplify_using_condition (rtx, rtx *, bitmap);
4260 
4261 /* In final.c  */
4262 extern unsigned int compute_alignments (void);
4263 extern void update_alignments (vec<rtx> &);
4264 extern int asm_str_count (const char *templ);
4265 
4266 struct rtl_hooks
4267 {
4268   rtx (*gen_lowpart) (machine_mode, rtx);
4269   rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4270   rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4271 			   unsigned HOST_WIDE_INT *);
4272   rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4273 				  unsigned int *);
4274   bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4275 
4276   /* Whenever you add entries here, make sure you adjust rtlhooks-def.h.  */
4277 };
4278 
4279 /* Each pass can provide its own.  */
4280 extern struct rtl_hooks rtl_hooks;
4281 
4282 /* ... but then it has to restore these.  */
4283 extern const struct rtl_hooks general_rtl_hooks;
4284 
4285 /* Keep this for the nonce.  */
4286 #define gen_lowpart rtl_hooks.gen_lowpart
4287 
4288 extern void insn_locations_init (void);
4289 extern void insn_locations_finalize (void);
4290 extern void set_curr_insn_location (location_t);
4291 extern location_t curr_insn_location (void);
4292 
4293 /* rtl-error.c */
4294 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4295      ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4296 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4297      ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4298 
4299 #define fatal_insn(msgid, insn) \
4300 	_fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4301 #define fatal_insn_not_found(insn) \
4302 	_fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4303 
4304 /* reginfo.c */
4305 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4306 
4307 /* Information about the function that is propagated by the RTL backend.
4308    Available only for functions that has been already assembled.  */
4309 
4310 struct GTY(()) cgraph_rtl_info {
4311    unsigned int preferred_incoming_stack_boundary;
4312 
4313   /* Call unsaved hard registers really used by the corresponding
4314      function (including ones used by functions called by the
4315      function).  */
4316   HARD_REG_SET function_used_regs;
4317   /* Set if function_used_regs is valid.  */
4318   unsigned function_used_regs_valid: 1;
4319 };
4320 
4321 /* If loads from memories of mode MODE always sign or zero extend,
4322    return SIGN_EXTEND or ZERO_EXTEND as appropriate.  Return UNKNOWN
4323    otherwise.  */
4324 
4325 inline rtx_code
4326 load_extend_op (machine_mode mode)
4327 {
4328   scalar_int_mode int_mode;
4329   if (is_a <scalar_int_mode> (mode, &int_mode)
4330       && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4331     return LOAD_EXTEND_OP (int_mode);
4332   return UNKNOWN;
4333 }
4334 
4335 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4336    and return the base.  Return X otherwise.  */
4337 
4338 inline rtx
4339 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4340 {
4341   if (GET_CODE (x) == PLUS)
4342     {
4343       poly_int64 suboffset;
4344       x = strip_offset (x, &suboffset);
4345       *offset = poly_uint64 (*offset) + suboffset;
4346     }
4347   return x;
4348 }
4349 
4350 /* Return true if X is an operation that always operates on the full
4351    registers for WORD_REGISTER_OPERATIONS architectures.  */
4352 
4353 inline bool
4354 word_register_operation_p (const_rtx x)
4355 {
4356   switch (GET_CODE (x))
4357     {
4358     case CONST_INT:
4359     case ROTATE:
4360     case ROTATERT:
4361     case SIGN_EXTRACT:
4362     case ZERO_EXTRACT:
4363       return false;
4364 
4365     default:
4366       return true;
4367     }
4368 }
4369 
4370 /* gtype-desc.c.  */
4371 extern void gt_ggc_mx (rtx &);
4372 extern void gt_pch_nx (rtx &);
4373 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4374 
4375 #endif /* ! GCC_RTL_H */
4376