1 /* Control flow functions for trees.
2    Copyright (C) 2001-2018 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
65 
66 /* This file contains functions for building the Control Flow Graph (CFG)
67    for a function tree.  */
68 
69 /* Local declarations.  */
70 
71 /* Initial capacity for the basic block array.  */
72 static const int initial_cfg_capacity = 20;
73 
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75    which use a particular edge.  The CASE_LABEL_EXPRs are chained together
76    via their CASE_CHAIN field, which we clear after we're done with the
77    hash table to prevent problems with duplication of GIMPLE_SWITCHes.
78 
79    Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80    update the case vector in response to edge redirections.
81 
82    Right now this table is set up and torn down at key points in the
83    compilation process.  It would be nice if we could make the table
84    more persistent.  The key is getting notification of changes to
85    the CFG (particularly edge removal, creation and redirection).  */
86 
87 static hash_map<edge, tree> *edge_to_cases;
88 
89 /* If we record edge_to_cases, this bitmap will hold indexes
90    of basic blocks that end in a GIMPLE_SWITCH which we touched
91    due to edge manipulations.  */
92 
93 static bitmap touched_switch_bbs;
94 
95 /* CFG statistics.  */
96 struct cfg_stats_d
97 {
98   long num_merged_labels;
99 };
100 
101 static struct cfg_stats_d cfg_stats;
102 
103 /* Data to pass to replace_block_vars_by_duplicates_1.  */
104 struct replace_decls_d
105 {
106   hash_map<tree, tree> *vars_map;
107   tree to_context;
108 };
109 
110 /* Hash table to store last discriminator assigned for each locus.  */
111 struct locus_discrim_map
112 {
113   location_t locus;
114   int discriminator;
115 };
116 
117 /* Hashtable helpers.  */
118 
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
120 {
121   static inline hashval_t hash (const locus_discrim_map *);
122   static inline bool equal (const locus_discrim_map *,
123 			    const locus_discrim_map *);
124 };
125 
126 /* Trivial hash function for a location_t.  ITEM is a pointer to
127    a hash table entry that maps a location_t to a discriminator.  */
128 
129 inline hashval_t
hash(const locus_discrim_map * item)130 locus_discrim_hasher::hash (const locus_discrim_map *item)
131 {
132   return LOCATION_LINE (item->locus);
133 }
134 
135 /* Equality function for the locus-to-discriminator map.  A and B
136    point to the two hash table entries to compare.  */
137 
138 inline bool
equal(const locus_discrim_map * a,const locus_discrim_map * b)139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 			     const locus_discrim_map *b)
141 {
142   return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
143 }
144 
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
146 
147 /* Basic blocks and flowgraphs.  */
148 static void make_blocks (gimple_seq);
149 
150 /* Edges.  */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
159 
160 /* Various helpers.  */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
167 
168 /* Flowgraph optimization and cleanup.  */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
177 
178 void
init_empty_tree_cfg_for_function(struct function * fn)179 init_empty_tree_cfg_for_function (struct function *fn)
180 {
181   /* Initialize the basic block array.  */
182   init_flow (fn);
183   profile_status_for_fn (fn) = PROFILE_ABSENT;
184   n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185   last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186   vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187   vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 			 initial_cfg_capacity);
189 
190   /* Build a mapping of labels to their associated blocks.  */
191   vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192   vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 			 initial_cfg_capacity);
194 
195   SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196   SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
197 
198   ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199     = EXIT_BLOCK_PTR_FOR_FN (fn);
200   EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201     = ENTRY_BLOCK_PTR_FOR_FN (fn);
202 }
203 
204 void
init_empty_tree_cfg(void)205 init_empty_tree_cfg (void)
206 {
207   init_empty_tree_cfg_for_function (cfun);
208 }
209 
210 /*---------------------------------------------------------------------------
211 			      Create basic blocks
212 ---------------------------------------------------------------------------*/
213 
214 /* Entry point to the CFG builder for trees.  SEQ is the sequence of
215    statements to be added to the flowgraph.  */
216 
217 static void
build_gimple_cfg(gimple_seq seq)218 build_gimple_cfg (gimple_seq seq)
219 {
220   /* Register specific gimple functions.  */
221   gimple_register_cfg_hooks ();
222 
223   memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
224 
225   init_empty_tree_cfg ();
226 
227   make_blocks (seq);
228 
229   /* Make sure there is always at least one block, even if it's empty.  */
230   if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231     create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
232 
233   /* Adjust the size of the array.  */
234   if (basic_block_info_for_fn (cfun)->length ()
235       < (size_t) n_basic_blocks_for_fn (cfun))
236     vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 			   n_basic_blocks_for_fn (cfun));
238 
239   /* To speed up statement iterator walks, we first purge dead labels.  */
240   cleanup_dead_labels ();
241 
242   /* Group case nodes to reduce the number of edges.
243      We do this after cleaning up dead labels because otherwise we miss
244      a lot of obvious case merging opportunities.  */
245   group_case_labels ();
246 
247   /* Create the edges of the flowgraph.  */
248   discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249   make_edges ();
250   assign_discriminators ();
251   lower_phi_internal_fn ();
252   cleanup_dead_labels ();
253   delete discriminator_per_locus;
254   discriminator_per_locus = NULL;
255 }
256 
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258    them and propagate the information to LOOP.  We assume that the annotations
259    come immediately before the condition in BB, if any.  */
260 
261 static void
replace_loop_annotate_in_block(basic_block bb,struct loop * loop)262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
263 {
264   gimple_stmt_iterator gsi = gsi_last_bb (bb);
265   gimple *stmt = gsi_stmt (gsi);
266 
267   if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268     return;
269 
270   for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
271     {
272       stmt = gsi_stmt (gsi);
273       if (gimple_code (stmt) != GIMPLE_CALL)
274 	break;
275       if (!gimple_call_internal_p (stmt)
276 	  || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 	break;
278 
279       switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
280 	{
281 	case annot_expr_ivdep_kind:
282 	  loop->safelen = INT_MAX;
283 	  break;
284 	case annot_expr_unroll_kind:
285 	  loop->unroll
286 	    = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 	  cfun->has_unroll = true;
288 	  break;
289 	case annot_expr_no_vector_kind:
290 	  loop->dont_vectorize = true;
291 	  break;
292 	case annot_expr_vector_kind:
293 	  loop->force_vectorize = true;
294 	  cfun->has_force_vectorize_loops = true;
295 	  break;
296 	case annot_expr_parallel_kind:
297 	  loop->can_be_parallel = true;
298 	  loop->safelen = INT_MAX;
299 	  break;
300 	default:
301 	  gcc_unreachable ();
302 	}
303 
304       stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 				  gimple_call_arg (stmt, 0));
306       gsi_replace (&gsi, stmt, true);
307     }
308 }
309 
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311    them and propagate the information to the loop.  We assume that the
312    annotations come immediately before the condition of the loop.  */
313 
314 static void
replace_loop_annotate(void)315 replace_loop_annotate (void)
316 {
317   struct loop *loop;
318   basic_block bb;
319   gimple_stmt_iterator gsi;
320   gimple *stmt;
321 
322   FOR_EACH_LOOP (loop, 0)
323     {
324       /* First look into the header.  */
325       replace_loop_annotate_in_block (loop->header, loop);
326 
327       /* Then look into the latch, if any.  */
328       if (loop->latch)
329 	replace_loop_annotate_in_block (loop->latch, loop);
330     }
331 
332   /* Remove IFN_ANNOTATE.  Safeguard for the case loop->latch == NULL.  */
333   FOR_EACH_BB_FN (bb, cfun)
334     {
335       for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
336 	{
337 	  stmt = gsi_stmt (gsi);
338 	  if (gimple_code (stmt) != GIMPLE_CALL)
339 	    continue;
340 	  if (!gimple_call_internal_p (stmt)
341 	      || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 	    continue;
343 
344 	  switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
345 	    {
346 	    case annot_expr_ivdep_kind:
347 	    case annot_expr_unroll_kind:
348 	    case annot_expr_no_vector_kind:
349 	    case annot_expr_vector_kind:
350 	    case annot_expr_parallel_kind:
351 	      break;
352 	    default:
353 	      gcc_unreachable ();
354 	    }
355 
356 	  warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 	  stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 				      gimple_call_arg (stmt, 0));
359 	  gsi_replace (&gsi, stmt, true);
360 	}
361     }
362 }
363 
364 /* Lower internal PHI function from GIMPLE FE.  */
365 
366 static void
lower_phi_internal_fn()367 lower_phi_internal_fn ()
368 {
369   basic_block bb, pred = NULL;
370   gimple_stmt_iterator gsi;
371   tree lhs;
372   gphi *phi_node;
373   gimple *stmt;
374 
375   /* After edge creation, handle __PHI function from GIMPLE FE.  */
376   FOR_EACH_BB_FN (bb, cfun)
377     {
378       for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
379 	{
380 	  stmt = gsi_stmt (gsi);
381 	  if (! gimple_call_internal_p (stmt, IFN_PHI))
382 	    break;
383 
384 	  lhs = gimple_call_lhs (stmt);
385 	  phi_node = create_phi_node (lhs, bb);
386 
387 	  /* Add arguments to the PHI node.  */
388 	  for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
389 	    {
390 	      tree arg = gimple_call_arg (stmt, i);
391 	      if (TREE_CODE (arg) == LABEL_DECL)
392 		pred = label_to_block (arg);
393 	      else
394 		{
395 		  edge e = find_edge (pred, bb);
396 		  add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
397 		}
398 	    }
399 
400 	  gsi_remove (&gsi, true);
401 	}
402     }
403 }
404 
405 static unsigned int
execute_build_cfg(void)406 execute_build_cfg (void)
407 {
408   gimple_seq body = gimple_body (current_function_decl);
409 
410   build_gimple_cfg (body);
411   gimple_set_body (current_function_decl, NULL);
412   if (dump_file && (dump_flags & TDF_DETAILS))
413     {
414       fprintf (dump_file, "Scope blocks:\n");
415       dump_scope_blocks (dump_file, dump_flags);
416     }
417   cleanup_tree_cfg ();
418   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419   replace_loop_annotate ();
420   return 0;
421 }
422 
423 namespace {
424 
425 const pass_data pass_data_build_cfg =
426 {
427   GIMPLE_PASS, /* type */
428   "cfg", /* name */
429   OPTGROUP_NONE, /* optinfo_flags */
430   TV_TREE_CFG, /* tv_id */
431   PROP_gimple_leh, /* properties_required */
432   ( PROP_cfg | PROP_loops ), /* properties_provided */
433   0, /* properties_destroyed */
434   0, /* todo_flags_start */
435   0, /* todo_flags_finish */
436 };
437 
438 class pass_build_cfg : public gimple_opt_pass
439 {
440 public:
pass_build_cfg(gcc::context * ctxt)441   pass_build_cfg (gcc::context *ctxt)
442     : gimple_opt_pass (pass_data_build_cfg, ctxt)
443   {}
444 
445   /* opt_pass methods: */
execute(function *)446   virtual unsigned int execute (function *) { return execute_build_cfg (); }
447 
448 }; // class pass_build_cfg
449 
450 } // anon namespace
451 
452 gimple_opt_pass *
make_pass_build_cfg(gcc::context * ctxt)453 make_pass_build_cfg (gcc::context *ctxt)
454 {
455   return new pass_build_cfg (ctxt);
456 }
457 
458 
459 /* Return true if T is a computed goto.  */
460 
461 bool
computed_goto_p(gimple * t)462 computed_goto_p (gimple *t)
463 {
464   return (gimple_code (t) == GIMPLE_GOTO
465 	  && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
466 }
467 
468 /* Returns true if the sequence of statements STMTS only contains
469    a call to __builtin_unreachable ().  */
470 
471 bool
gimple_seq_unreachable_p(gimple_seq stmts)472 gimple_seq_unreachable_p (gimple_seq stmts)
473 {
474   if (stmts == NULL
475       /* Return false if -fsanitize=unreachable, we don't want to
476 	 optimize away those calls, but rather turn them into
477 	 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 	 later.  */
479       || sanitize_flags_p (SANITIZE_UNREACHABLE))
480     return false;
481 
482   gimple_stmt_iterator gsi = gsi_last (stmts);
483 
484   if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485     return false;
486 
487   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
488     {
489       gimple *stmt = gsi_stmt (gsi);
490       if (gimple_code (stmt) != GIMPLE_LABEL
491 	  && !is_gimple_debug (stmt)
492 	  && !gimple_clobber_p (stmt))
493       return false;
494     }
495   return true;
496 }
497 
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499    the other edge points to a bb with just __builtin_unreachable ().
500    I.e. return true for C->M edge in:
501    <bb C>:
502    ...
503    if (something)
504      goto <bb N>;
505    else
506      goto <bb M>;
507    <bb N>:
508    __builtin_unreachable ();
509    <bb M>:  */
510 
511 bool
assert_unreachable_fallthru_edge_p(edge e)512 assert_unreachable_fallthru_edge_p (edge e)
513 {
514   basic_block pred_bb = e->src;
515   gimple *last = last_stmt (pred_bb);
516   if (last && gimple_code (last) == GIMPLE_COND)
517     {
518       basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519       if (other_bb == e->dest)
520 	other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521       if (EDGE_COUNT (other_bb->succs) == 0)
522 	return gimple_seq_unreachable_p (bb_seq (other_bb));
523     }
524   return false;
525 }
526 
527 
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529    could alter control flow except via eh. We initialize the flag at
530    CFG build time and only ever clear it later.  */
531 
532 static void
gimple_call_initialize_ctrl_altering(gimple * stmt)533 gimple_call_initialize_ctrl_altering (gimple *stmt)
534 {
535   int flags = gimple_call_flags (stmt);
536 
537   /* A call alters control flow if it can make an abnormal goto.  */
538   if (call_can_make_abnormal_goto (stmt)
539       /* A call also alters control flow if it does not return.  */
540       || flags & ECF_NORETURN
541       /* TM ending statements have backedges out of the transaction.
542 	 Return true so we split the basic block containing them.
543 	 Note that the TM_BUILTIN test is merely an optimization.  */
544       || ((flags & ECF_TM_BUILTIN)
545 	  && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546       /* BUILT_IN_RETURN call is same as return statement.  */
547       || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548       /* IFN_UNIQUE should be the last insn, to make checking for it
549 	 as cheap as possible.  */
550       || (gimple_call_internal_p (stmt)
551 	  && gimple_call_internal_unique_p (stmt)))
552     gimple_call_set_ctrl_altering (stmt, true);
553   else
554     gimple_call_set_ctrl_altering (stmt, false);
555 }
556 
557 
558 /* Insert SEQ after BB and build a flowgraph.  */
559 
560 static basic_block
make_blocks_1(gimple_seq seq,basic_block bb)561 make_blocks_1 (gimple_seq seq, basic_block bb)
562 {
563   gimple_stmt_iterator i = gsi_start (seq);
564   gimple *stmt = NULL;
565   gimple *prev_stmt = NULL;
566   bool start_new_block = true;
567   bool first_stmt_of_seq = true;
568 
569   while (!gsi_end_p (i))
570     {
571       /* PREV_STMT should only be set to a debug stmt if the debug
572 	 stmt is before nondebug stmts.  Once stmt reaches a nondebug
573 	 nonlabel, prev_stmt will be set to it, so that
574 	 stmt_starts_bb_p will know to start a new block if a label is
575 	 found.  However, if stmt was a label after debug stmts only,
576 	 keep the label in prev_stmt even if we find further debug
577 	 stmts, for there may be other labels after them, and they
578 	 should land in the same block.  */
579       if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 	prev_stmt = stmt;
581       stmt = gsi_stmt (i);
582 
583       if (stmt && is_gimple_call (stmt))
584 	gimple_call_initialize_ctrl_altering (stmt);
585 
586       /* If the statement starts a new basic block or if we have determined
587 	 in a previous pass that we need to create a new block for STMT, do
588 	 so now.  */
589       if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
590 	{
591 	  if (!first_stmt_of_seq)
592 	    gsi_split_seq_before (&i, &seq);
593 	  bb = create_basic_block (seq, bb);
594 	  start_new_block = false;
595 	  prev_stmt = NULL;
596 	}
597 
598       /* Now add STMT to BB and create the subgraphs for special statement
599 	 codes.  */
600       gimple_set_bb (stmt, bb);
601 
602       /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 	 next iteration.  */
604       if (stmt_ends_bb_p (stmt))
605 	{
606 	  /* If the stmt can make abnormal goto use a new temporary
607 	     for the assignment to the LHS.  This makes sure the old value
608 	     of the LHS is available on the abnormal edge.  Otherwise
609 	     we will end up with overlapping life-ranges for abnormal
610 	     SSA names.  */
611 	  if (gimple_has_lhs (stmt)
612 	      && stmt_can_make_abnormal_goto (stmt)
613 	      && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
614 	    {
615 	      tree lhs = gimple_get_lhs (stmt);
616 	      tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 	      gimple *s = gimple_build_assign (lhs, tmp);
618 	      gimple_set_location (s, gimple_location (stmt));
619 	      gimple_set_block (s, gimple_block (stmt));
620 	      gimple_set_lhs (stmt, tmp);
621 	      if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 		  || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 		DECL_GIMPLE_REG_P (tmp) = 1;
624 	      gsi_insert_after (&i, s, GSI_SAME_STMT);
625 	    }
626 	  start_new_block = true;
627 	}
628 
629       gsi_next (&i);
630       first_stmt_of_seq = false;
631     }
632   return bb;
633 }
634 
635 /* Build a flowgraph for the sequence of stmts SEQ.  */
636 
637 static void
make_blocks(gimple_seq seq)638 make_blocks (gimple_seq seq)
639 {
640   /* Look for debug markers right before labels, and move the debug
641      stmts after the labels.  Accepting labels among debug markers
642      adds no value, just complexity; if we wanted to annotate labels
643      with view numbers (so sequencing among markers would matter) or
644      somesuch, we're probably better off still moving the labels, but
645      adding other debug annotations in their original positions or
646      emitting nonbind or bind markers associated with the labels in
647      the original position of the labels.
648 
649      Moving labels would probably be simpler, but we can't do that:
650      moving labels assigns label ids to them, and doing so because of
651      debug markers makes for -fcompare-debug and possibly even codegen
652      differences.  So, we have to move the debug stmts instead.  To
653      that end, we scan SEQ backwards, marking the position of the
654      latest (earliest we find) label, and moving debug stmts that are
655      not separated from it by nondebug nonlabel stmts after the
656      label.  */
657   if (MAY_HAVE_DEBUG_MARKER_STMTS)
658     {
659       gimple_stmt_iterator label = gsi_none ();
660 
661       for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
662 	{
663 	  gimple *stmt = gsi_stmt (i);
664 
665 	  /* If this is the first label we encounter (latest in SEQ)
666 	     before nondebug stmts, record its position.  */
667 	  if (is_a <glabel *> (stmt))
668 	    {
669 	      if (gsi_end_p (label))
670 		label = i;
671 	      continue;
672 	    }
673 
674 	  /* Without a recorded label position to move debug stmts to,
675 	     there's nothing to do.  */
676 	  if (gsi_end_p (label))
677 	    continue;
678 
679 	  /* Move the debug stmt at I after LABEL.  */
680 	  if (is_gimple_debug (stmt))
681 	    {
682 	      gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 	      /* As STMT is removed, I advances to the stmt after
684 		 STMT, so the gsi_prev in the for "increment"
685 		 expression gets us to the stmt we're to visit after
686 		 STMT.  LABEL, however, would advance to the moved
687 		 stmt if we passed it to gsi_move_after, so pass it a
688 		 copy instead, so as to keep LABEL pointing to the
689 		 LABEL.  */
690 	      gimple_stmt_iterator copy = label;
691 	      gsi_move_after (&i, &copy);
692 	      continue;
693 	    }
694 
695 	  /* There aren't any (more?) debug stmts before label, so
696 	     there isn't anything else to move after it.  */
697 	  label = gsi_none ();
698 	}
699     }
700 
701   make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
702 }
703 
704 /* Create and return a new empty basic block after bb AFTER.  */
705 
706 static basic_block
create_bb(void * h,void * e,basic_block after)707 create_bb (void *h, void *e, basic_block after)
708 {
709   basic_block bb;
710 
711   gcc_assert (!e);
712 
713   /* Create and initialize a new basic block.  Since alloc_block uses
714      GC allocation that clears memory to allocate a basic block, we do
715      not have to clear the newly allocated basic block here.  */
716   bb = alloc_block ();
717 
718   bb->index = last_basic_block_for_fn (cfun);
719   bb->flags = BB_NEW;
720   set_bb_seq (bb, h ? (gimple_seq) h : NULL);
721 
722   /* Add the new block to the linked list of blocks.  */
723   link_block (bb, after);
724 
725   /* Grow the basic block array if needed.  */
726   if ((size_t) last_basic_block_for_fn (cfun)
727       == basic_block_info_for_fn (cfun)->length ())
728     {
729       size_t new_size =
730 	(last_basic_block_for_fn (cfun)
731 	 + (last_basic_block_for_fn (cfun) + 3) / 4);
732       vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
733     }
734 
735   /* Add the newly created block to the array.  */
736   SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
737 
738   n_basic_blocks_for_fn (cfun)++;
739   last_basic_block_for_fn (cfun)++;
740 
741   return bb;
742 }
743 
744 
745 /*---------------------------------------------------------------------------
746 				 Edge creation
747 ---------------------------------------------------------------------------*/
748 
749 /* If basic block BB has an abnormal edge to a basic block
750    containing IFN_ABNORMAL_DISPATCHER internal call, return
751    that the dispatcher's basic block, otherwise return NULL.  */
752 
753 basic_block
get_abnormal_succ_dispatcher(basic_block bb)754 get_abnormal_succ_dispatcher (basic_block bb)
755 {
756   edge e;
757   edge_iterator ei;
758 
759   FOR_EACH_EDGE (e, ei, bb->succs)
760     if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
761       {
762 	gimple_stmt_iterator gsi
763 	  = gsi_start_nondebug_after_labels_bb (e->dest);
764 	gimple *g = gsi_stmt (gsi);
765 	if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 	  return e->dest;
767       }
768   return NULL;
769 }
770 
771 /* Helper function for make_edges.  Create a basic block with
772    with ABNORMAL_DISPATCHER internal call in it if needed, and
773    create abnormal edges from BBS to it and from it to FOR_BB
774    if COMPUTED_GOTO is false, otherwise factor the computed gotos.  */
775 
776 static void
handle_abnormal_edges(basic_block * dispatcher_bbs,basic_block for_bb,int * bb_to_omp_idx,auto_vec<basic_block> * bbs,bool computed_goto)777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 		       basic_block for_bb, int *bb_to_omp_idx,
779 		       auto_vec<basic_block> *bbs, bool computed_goto)
780 {
781   basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782   unsigned int idx = 0;
783   basic_block bb;
784   bool inner = false;
785 
786   if (bb_to_omp_idx)
787     {
788       dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789       if (bb_to_omp_idx[for_bb->index] != 0)
790 	inner = true;
791     }
792 
793   /* If the dispatcher has been created already, then there are basic
794      blocks with abnormal edges to it, so just make a new edge to
795      for_bb.  */
796   if (*dispatcher == NULL)
797     {
798       /* Check if there are any basic blocks that need to have
799 	 abnormal edges to this dispatcher.  If there are none, return
800 	 early.  */
801       if (bb_to_omp_idx == NULL)
802 	{
803 	  if (bbs->is_empty ())
804 	    return;
805 	}
806       else
807 	{
808 	  FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 	    if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 	      break;
811 	  if (bb == NULL)
812 	    return;
813 	}
814 
815       /* Create the dispatcher bb.  */
816       *dispatcher = create_basic_block (NULL, for_bb);
817       if (computed_goto)
818 	{
819 	  /* Factor computed gotos into a common computed goto site.  Also
820 	     record the location of that site so that we can un-factor the
821 	     gotos after we have converted back to normal form.  */
822 	  gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
823 
824 	  /* Create the destination of the factored goto.  Each original
825 	     computed goto will put its desired destination into this
826 	     variable and jump to the label we create immediately below.  */
827 	  tree var = create_tmp_var (ptr_type_node, "gotovar");
828 
829 	  /* Build a label for the new block which will contain the
830 	     factored computed goto.  */
831 	  tree factored_label_decl
832 	    = create_artificial_label (UNKNOWN_LOCATION);
833 	  gimple *factored_computed_goto_label
834 	    = gimple_build_label (factored_label_decl);
835 	  gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
836 
837 	  /* Build our new computed goto.  */
838 	  gimple *factored_computed_goto = gimple_build_goto (var);
839 	  gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
840 
841 	  FOR_EACH_VEC_ELT (*bbs, idx, bb)
842 	    {
843 	      if (bb_to_omp_idx
844 		  && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 		continue;
846 
847 	      gsi = gsi_last_bb (bb);
848 	      gimple *last = gsi_stmt (gsi);
849 
850 	      gcc_assert (computed_goto_p (last));
851 
852 	      /* Copy the original computed goto's destination into VAR.  */
853 	      gimple *assignment
854 		= gimple_build_assign (var, gimple_goto_dest (last));
855 	      gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
856 
857 	      edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 	      e->goto_locus = gimple_location (last);
859 	      gsi_remove (&gsi, true);
860 	    }
861 	}
862       else
863 	{
864 	  tree arg = inner ? boolean_true_node : boolean_false_node;
865 	  gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 						 1, arg);
867 	  gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 	  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
869 
870 	  /* Create predecessor edges of the dispatcher.  */
871 	  FOR_EACH_VEC_ELT (*bbs, idx, bb)
872 	    {
873 	      if (bb_to_omp_idx
874 		  && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 		continue;
876 	      make_edge (bb, *dispatcher, EDGE_ABNORMAL);
877 	    }
878 	}
879     }
880 
881   make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
882 }
883 
884 /* Creates outgoing edges for BB.  Returns 1 when it ends with an
885    computed goto, returns 2 when it ends with a statement that
886    might return to this function via an nonlocal goto, otherwise
887    return 0.  Updates *PCUR_REGION with the OMP region this BB is in.  */
888 
889 static int
make_edges_bb(basic_block bb,struct omp_region ** pcur_region,int * pomp_index)890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
891 {
892   gimple *last = last_stmt (bb);
893   bool fallthru = false;
894   int ret = 0;
895 
896   if (!last)
897     return ret;
898 
899   switch (gimple_code (last))
900     {
901     case GIMPLE_GOTO:
902       if (make_goto_expr_edges (bb))
903 	ret = 1;
904       fallthru = false;
905       break;
906     case GIMPLE_RETURN:
907       {
908 	edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 	e->goto_locus = gimple_location (last);
910 	fallthru = false;
911       }
912       break;
913     case GIMPLE_COND:
914       make_cond_expr_edges (bb);
915       fallthru = false;
916       break;
917     case GIMPLE_SWITCH:
918       make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919       fallthru = false;
920       break;
921     case GIMPLE_RESX:
922       make_eh_edges (last);
923       fallthru = false;
924       break;
925     case GIMPLE_EH_DISPATCH:
926       fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927       break;
928 
929     case GIMPLE_CALL:
930       /* If this function receives a nonlocal goto, then we need to
931 	 make edges from this call site to all the nonlocal goto
932 	 handlers.  */
933       if (stmt_can_make_abnormal_goto (last))
934 	ret = 2;
935 
936       /* If this statement has reachable exception handlers, then
937 	 create abnormal edges to them.  */
938       make_eh_edges (last);
939 
940       /* BUILTIN_RETURN is really a return statement.  */
941       if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
942 	{
943 	  make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 	  fallthru = false;
945 	}
946       /* Some calls are known not to return.  */
947       else
948 	fallthru = !gimple_call_noreturn_p (last);
949       break;
950 
951     case GIMPLE_ASSIGN:
952       /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 	 control-altering.  */
954       if (is_ctrl_altering_stmt (last))
955 	make_eh_edges (last);
956       fallthru = true;
957       break;
958 
959     case GIMPLE_ASM:
960       make_gimple_asm_edges (bb);
961       fallthru = true;
962       break;
963 
964     CASE_GIMPLE_OMP:
965       fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966       break;
967 
968     case GIMPLE_TRANSACTION:
969       {
970         gtransaction *txn = as_a <gtransaction *> (last);
971 	tree label1 = gimple_transaction_label_norm (txn);
972 	tree label2 = gimple_transaction_label_uninst (txn);
973 
974 	if (label1)
975 	  make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 	if (label2)
977 	  make_edge (bb, label_to_block (label2),
978 		     EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
979 
980 	tree label3 = gimple_transaction_label_over (txn);
981 	if (gimple_transaction_subcode (txn)
982 	    & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 	  make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
984 
985 	fallthru = false;
986       }
987       break;
988 
989     default:
990       gcc_assert (!stmt_ends_bb_p (last));
991       fallthru = true;
992       break;
993     }
994 
995   if (fallthru)
996     make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
997 
998   return ret;
999 }
1000 
1001 /* Join all the blocks in the flowgraph.  */
1002 
1003 static void
make_edges(void)1004 make_edges (void)
1005 {
1006   basic_block bb;
1007   struct omp_region *cur_region = NULL;
1008   auto_vec<basic_block> ab_edge_goto;
1009   auto_vec<basic_block> ab_edge_call;
1010   int *bb_to_omp_idx = NULL;
1011   int cur_omp_region_idx = 0;
1012 
1013   /* Create an edge from entry to the first block with executable
1014      statements in it.  */
1015   make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 	     BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 	     EDGE_FALLTHRU);
1018 
1019   /* Traverse the basic block array placing edges.  */
1020   FOR_EACH_BB_FN (bb, cfun)
1021     {
1022       int mer;
1023 
1024       if (bb_to_omp_idx)
1025 	bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1026 
1027       mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028       if (mer == 1)
1029 	ab_edge_goto.safe_push (bb);
1030       else if (mer == 2)
1031 	ab_edge_call.safe_push (bb);
1032 
1033       if (cur_region && bb_to_omp_idx == NULL)
1034 	bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1035     }
1036 
1037   /* Computed gotos are hell to deal with, especially if there are
1038      lots of them with a large number of destinations.  So we factor
1039      them to a common computed goto location before we build the
1040      edge list.  After we convert back to normal form, we will un-factor
1041      the computed gotos since factoring introduces an unwanted jump.
1042      For non-local gotos and abnormal edges from calls to calls that return
1043      twice or forced labels, factor the abnormal edges too, by having all
1044      abnormal edges from the calls go to a common artificial basic block
1045      with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046      basic block to all forced labels and calls returning twice.
1047      We do this per-OpenMP structured block, because those regions
1048      are guaranteed to be single entry single exit by the standard,
1049      so it is not allowed to enter or exit such regions abnormally this way,
1050      thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051      must not transfer control across SESE region boundaries.  */
1052   if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1053     {
1054       gimple_stmt_iterator gsi;
1055       basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056       basic_block *dispatcher_bbs = dispatcher_bb_array;
1057       int count = n_basic_blocks_for_fn (cfun);
1058 
1059       if (bb_to_omp_idx)
1060 	dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1061 
1062       FOR_EACH_BB_FN (bb, cfun)
1063 	{
1064 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1065 	    {
1066 	      glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 	      tree target;
1068 
1069 	      if (!label_stmt)
1070 		break;
1071 
1072 	      target = gimple_label_label (label_stmt);
1073 
1074 	      /* Make an edge to every label block that has been marked as a
1075 		 potential target for a computed goto or a non-local goto.  */
1076 	      if (FORCED_LABEL (target))
1077 		handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 				       &ab_edge_goto, true);
1079 	      if (DECL_NONLOCAL (target))
1080 		{
1081 		  handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 					 &ab_edge_call, false);
1083 		  break;
1084 		}
1085 	    }
1086 
1087 	  if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 	    gsi_next_nondebug (&gsi);
1089 	  if (!gsi_end_p (gsi))
1090 	    {
1091 	      /* Make an edge to every setjmp-like call.  */
1092 	      gimple *call_stmt = gsi_stmt (gsi);
1093 	      if (is_gimple_call (call_stmt)
1094 		  && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 		      || gimple_call_builtin_p (call_stmt,
1096 						BUILT_IN_SETJMP_RECEIVER)))
1097 		handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 				       &ab_edge_call, false);
1099 	    }
1100 	}
1101 
1102       if (bb_to_omp_idx)
1103 	XDELETE (dispatcher_bbs);
1104     }
1105 
1106   XDELETE (bb_to_omp_idx);
1107 
1108   omp_free_regions ();
1109 }
1110 
1111 /* Add SEQ after GSI.  Start new bb after GSI, and created further bbs as
1112    needed.  Returns true if new bbs were created.
1113    Note: This is transitional code, and should not be used for new code.  We
1114    should be able to get rid of this by rewriting all target va-arg
1115    gimplification hooks to use an interface gimple_build_cond_value as described
1116    in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html.  */
1117 
1118 bool
gimple_find_sub_bbs(gimple_seq seq,gimple_stmt_iterator * gsi)1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1120 {
1121   gimple *stmt = gsi_stmt (*gsi);
1122   basic_block bb = gimple_bb (stmt);
1123   basic_block lastbb, afterbb;
1124   int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125   edge e;
1126   lastbb = make_blocks_1 (seq, bb);
1127   if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128     return false;
1129   e = split_block (bb, stmt);
1130   /* Move e->dest to come after the new basic blocks.  */
1131   afterbb = e->dest;
1132   unlink_block (afterbb);
1133   link_block (afterbb, lastbb);
1134   redirect_edge_succ (e, bb->next_bb);
1135   bb = bb->next_bb;
1136   while (bb != afterbb)
1137     {
1138       struct omp_region *cur_region = NULL;
1139       profile_count cnt = profile_count::zero ();
1140       bool all = true;
1141 
1142       int cur_omp_region_idx = 0;
1143       int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144       gcc_assert (!mer && !cur_region);
1145       add_bb_to_loop (bb, afterbb->loop_father);
1146 
1147       edge e;
1148       edge_iterator ei;
1149       FOR_EACH_EDGE (e, ei, bb->preds)
1150 	{
1151 	  if (e->count ().initialized_p ())
1152 	    cnt += e->count ();
1153 	  else
1154 	    all = false;
1155 	}
1156       tree_guess_outgoing_edge_probabilities (bb);
1157       if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158         bb->count = cnt;
1159 
1160       bb = bb->next_bb;
1161     }
1162   return true;
1163 }
1164 
1165 /* Find the next available discriminator value for LOCUS.  The
1166    discriminator distinguishes among several basic blocks that
1167    share a common locus, allowing for more accurate sample-based
1168    profiling.  */
1169 
1170 static int
next_discriminator_for_locus(location_t locus)1171 next_discriminator_for_locus (location_t locus)
1172 {
1173   struct locus_discrim_map item;
1174   struct locus_discrim_map **slot;
1175 
1176   item.locus = locus;
1177   item.discriminator = 0;
1178   slot = discriminator_per_locus->find_slot_with_hash (
1179       &item, LOCATION_LINE (locus), INSERT);
1180   gcc_assert (slot);
1181   if (*slot == HTAB_EMPTY_ENTRY)
1182     {
1183       *slot = XNEW (struct locus_discrim_map);
1184       gcc_assert (*slot);
1185       (*slot)->locus = locus;
1186       (*slot)->discriminator = 0;
1187     }
1188   (*slot)->discriminator++;
1189   return (*slot)->discriminator;
1190 }
1191 
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line.  */
1193 
1194 static bool
same_line_p(location_t locus1,location_t locus2)1195 same_line_p (location_t locus1, location_t locus2)
1196 {
1197   expanded_location from, to;
1198 
1199   if (locus1 == locus2)
1200     return true;
1201 
1202   from = expand_location (locus1);
1203   to = expand_location (locus2);
1204 
1205   if (from.line != to.line)
1206     return false;
1207   if (from.file == to.file)
1208     return true;
1209   return (from.file != NULL
1210           && to.file != NULL
1211           && filename_cmp (from.file, to.file) == 0);
1212 }
1213 
1214 /* Assign discriminators to each basic block.  */
1215 
1216 static void
assign_discriminators(void)1217 assign_discriminators (void)
1218 {
1219   basic_block bb;
1220 
1221   FOR_EACH_BB_FN (bb, cfun)
1222     {
1223       edge e;
1224       edge_iterator ei;
1225       gimple *last = last_stmt (bb);
1226       location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1227 
1228       if (locus == UNKNOWN_LOCATION)
1229 	continue;
1230 
1231       FOR_EACH_EDGE (e, ei, bb->succs)
1232 	{
1233 	  gimple *first = first_non_label_stmt (e->dest);
1234 	  gimple *last = last_stmt (e->dest);
1235 	  if ((first && same_line_p (locus, gimple_location (first)))
1236 	      || (last && same_line_p (locus, gimple_location (last))))
1237 	    {
1238 	      if (e->dest->discriminator != 0 && bb->discriminator == 0)
1239 		bb->discriminator = next_discriminator_for_locus (locus);
1240 	      else
1241 		e->dest->discriminator = next_discriminator_for_locus (locus);
1242 	    }
1243 	}
1244     }
1245 }
1246 
1247 /* Create the edges for a GIMPLE_COND starting at block BB.  */
1248 
1249 static void
make_cond_expr_edges(basic_block bb)1250 make_cond_expr_edges (basic_block bb)
1251 {
1252   gcond *entry = as_a <gcond *> (last_stmt (bb));
1253   gimple *then_stmt, *else_stmt;
1254   basic_block then_bb, else_bb;
1255   tree then_label, else_label;
1256   edge e;
1257 
1258   gcc_assert (entry);
1259   gcc_assert (gimple_code (entry) == GIMPLE_COND);
1260 
1261   /* Entry basic blocks for each component.  */
1262   then_label = gimple_cond_true_label (entry);
1263   else_label = gimple_cond_false_label (entry);
1264   then_bb = label_to_block (then_label);
1265   else_bb = label_to_block (else_label);
1266   then_stmt = first_stmt (then_bb);
1267   else_stmt = first_stmt (else_bb);
1268 
1269   e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1270   e->goto_locus = gimple_location (then_stmt);
1271   e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1272   if (e)
1273     e->goto_locus = gimple_location (else_stmt);
1274 
1275   /* We do not need the labels anymore.  */
1276   gimple_cond_set_true_label (entry, NULL_TREE);
1277   gimple_cond_set_false_label (entry, NULL_TREE);
1278 }
1279 
1280 
1281 /* Called for each element in the hash table (P) as we delete the
1282    edge to cases hash table.
1283 
1284    Clear all the CASE_CHAINs to prevent problems with copying of
1285    SWITCH_EXPRs and structure sharing rules, then free the hash table
1286    element.  */
1287 
1288 bool
edge_to_cases_cleanup(edge const &,tree const & value,void *)1289 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1290 {
1291   tree t, next;
1292 
1293   for (t = value; t; t = next)
1294     {
1295       next = CASE_CHAIN (t);
1296       CASE_CHAIN (t) = NULL;
1297     }
1298 
1299   return true;
1300 }
1301 
1302 /* Start recording information mapping edges to case labels.  */
1303 
1304 void
start_recording_case_labels(void)1305 start_recording_case_labels (void)
1306 {
1307   gcc_assert (edge_to_cases == NULL);
1308   edge_to_cases = new hash_map<edge, tree>;
1309   touched_switch_bbs = BITMAP_ALLOC (NULL);
1310 }
1311 
1312 /* Return nonzero if we are recording information for case labels.  */
1313 
1314 static bool
recording_case_labels_p(void)1315 recording_case_labels_p (void)
1316 {
1317   return (edge_to_cases != NULL);
1318 }
1319 
1320 /* Stop recording information mapping edges to case labels and
1321    remove any information we have recorded.  */
1322 void
end_recording_case_labels(void)1323 end_recording_case_labels (void)
1324 {
1325   bitmap_iterator bi;
1326   unsigned i;
1327   edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1328   delete edge_to_cases;
1329   edge_to_cases = NULL;
1330   EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1331     {
1332       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1333       if (bb)
1334 	{
1335 	  gimple *stmt = last_stmt (bb);
1336 	  if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1337 	    group_case_labels_stmt (as_a <gswitch *> (stmt));
1338 	}
1339     }
1340   BITMAP_FREE (touched_switch_bbs);
1341 }
1342 
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344    a chain of CASE_LABEL_EXPRs from T which reference E.
1345 
1346    Otherwise return NULL.  */
1347 
1348 static tree
get_cases_for_edge(edge e,gswitch * t)1349 get_cases_for_edge (edge e, gswitch *t)
1350 {
1351   tree *slot;
1352   size_t i, n;
1353 
1354   /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355      chains available.  Return NULL so the caller can detect this case.  */
1356   if (!recording_case_labels_p ())
1357     return NULL;
1358 
1359   slot = edge_to_cases->get (e);
1360   if (slot)
1361     return *slot;
1362 
1363   /* If we did not find E in the hash table, then this must be the first
1364      time we have been queried for information about E & T.  Add all the
1365      elements from T to the hash table then perform the query again.  */
1366 
1367   n = gimple_switch_num_labels (t);
1368   for (i = 0; i < n; i++)
1369     {
1370       tree elt = gimple_switch_label (t, i);
1371       tree lab = CASE_LABEL (elt);
1372       basic_block label_bb = label_to_block (lab);
1373       edge this_edge = find_edge (e->src, label_bb);
1374 
1375       /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1376 	 a new chain.  */
1377       tree &s = edge_to_cases->get_or_insert (this_edge);
1378       CASE_CHAIN (elt) = s;
1379       s = elt;
1380     }
1381 
1382   return *edge_to_cases->get (e);
1383 }
1384 
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB.  */
1386 
1387 static void
make_gimple_switch_edges(gswitch * entry,basic_block bb)1388 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1389 {
1390   size_t i, n;
1391 
1392   n = gimple_switch_num_labels (entry);
1393 
1394   for (i = 0; i < n; ++i)
1395     {
1396       tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1397       basic_block label_bb = label_to_block (lab);
1398       make_edge (bb, label_bb, 0);
1399     }
1400 }
1401 
1402 
1403 /* Return the basic block holding label DEST.  */
1404 
1405 basic_block
label_to_block_fn(struct function * ifun,tree dest)1406 label_to_block_fn (struct function *ifun, tree dest)
1407 {
1408   int uid = LABEL_DECL_UID (dest);
1409 
1410   /* We would die hard when faced by an undefined label.  Emit a label to
1411      the very first basic block.  This will hopefully make even the dataflow
1412      and undefined variable warnings quite right.  */
1413   if (seen_error () && uid < 0)
1414     {
1415       gimple_stmt_iterator gsi =
1416 	gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1417       gimple *stmt;
1418 
1419       stmt = gimple_build_label (dest);
1420       gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1421       uid = LABEL_DECL_UID (dest);
1422     }
1423   if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1424     return NULL;
1425   return (*ifun->cfg->x_label_to_block_map)[uid];
1426 }
1427 
1428 /* Create edges for a goto statement at block BB.  Returns true
1429    if abnormal edges should be created.  */
1430 
1431 static bool
make_goto_expr_edges(basic_block bb)1432 make_goto_expr_edges (basic_block bb)
1433 {
1434   gimple_stmt_iterator last = gsi_last_bb (bb);
1435   gimple *goto_t = gsi_stmt (last);
1436 
1437   /* A simple GOTO creates normal edges.  */
1438   if (simple_goto_p (goto_t))
1439     {
1440       tree dest = gimple_goto_dest (goto_t);
1441       basic_block label_bb = label_to_block (dest);
1442       edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1443       e->goto_locus = gimple_location (goto_t);
1444       gsi_remove (&last, true);
1445       return false;
1446     }
1447 
1448   /* A computed GOTO creates abnormal edges.  */
1449   return true;
1450 }
1451 
1452 /* Create edges for an asm statement with labels at block BB.  */
1453 
1454 static void
make_gimple_asm_edges(basic_block bb)1455 make_gimple_asm_edges (basic_block bb)
1456 {
1457   gasm *stmt = as_a <gasm *> (last_stmt (bb));
1458   int i, n = gimple_asm_nlabels (stmt);
1459 
1460   for (i = 0; i < n; ++i)
1461     {
1462       tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1463       basic_block label_bb = label_to_block (label);
1464       make_edge (bb, label_bb, 0);
1465     }
1466 }
1467 
1468 /*---------------------------------------------------------------------------
1469 			       Flowgraph analysis
1470 ---------------------------------------------------------------------------*/
1471 
1472 /* Cleanup useless labels in basic blocks.  This is something we wish
1473    to do early because it allows us to group case labels before creating
1474    the edges for the CFG, and it speeds up block statement iterators in
1475    all passes later on.
1476    We rerun this pass after CFG is created, to get rid of the labels that
1477    are no longer referenced.  After then we do not run it any more, since
1478    (almost) no new labels should be created.  */
1479 
1480 /* A map from basic block index to the leading label of that block.  */
1481 static struct label_record
1482 {
1483   /* The label.  */
1484   tree label;
1485 
1486   /* True if the label is referenced from somewhere.  */
1487   bool used;
1488 } *label_for_bb;
1489 
1490 /* Given LABEL return the first label in the same basic block.  */
1491 
1492 static tree
main_block_label(tree label)1493 main_block_label (tree label)
1494 {
1495   basic_block bb = label_to_block (label);
1496   tree main_label = label_for_bb[bb->index].label;
1497 
1498   /* label_to_block possibly inserted undefined label into the chain.  */
1499   if (!main_label)
1500     {
1501       label_for_bb[bb->index].label = label;
1502       main_label = label;
1503     }
1504 
1505   label_for_bb[bb->index].used = true;
1506   return main_label;
1507 }
1508 
1509 /* Clean up redundant labels within the exception tree.  */
1510 
1511 static void
cleanup_dead_labels_eh(void)1512 cleanup_dead_labels_eh (void)
1513 {
1514   eh_landing_pad lp;
1515   eh_region r;
1516   tree lab;
1517   int i;
1518 
1519   if (cfun->eh == NULL)
1520     return;
1521 
1522   for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1523     if (lp && lp->post_landing_pad)
1524       {
1525 	lab = main_block_label (lp->post_landing_pad);
1526 	if (lab != lp->post_landing_pad)
1527 	  {
1528 	    EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1529 	    EH_LANDING_PAD_NR (lab) = lp->index;
1530 	  }
1531       }
1532 
1533   FOR_ALL_EH_REGION (r)
1534     switch (r->type)
1535       {
1536       case ERT_CLEANUP:
1537       case ERT_MUST_NOT_THROW:
1538 	break;
1539 
1540       case ERT_TRY:
1541 	{
1542 	  eh_catch c;
1543 	  for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1544 	    {
1545 	      lab = c->label;
1546 	      if (lab)
1547 		c->label = main_block_label (lab);
1548 	    }
1549 	}
1550 	break;
1551 
1552       case ERT_ALLOWED_EXCEPTIONS:
1553 	lab = r->u.allowed.label;
1554 	if (lab)
1555 	  r->u.allowed.label = main_block_label (lab);
1556 	break;
1557       }
1558 }
1559 
1560 
1561 /* Cleanup redundant labels.  This is a three-step process:
1562      1) Find the leading label for each block.
1563      2) Redirect all references to labels to the leading labels.
1564      3) Cleanup all useless labels.  */
1565 
1566 void
cleanup_dead_labels(void)1567 cleanup_dead_labels (void)
1568 {
1569   basic_block bb;
1570   label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1571 
1572   /* Find a suitable label for each block.  We use the first user-defined
1573      label if there is one, or otherwise just the first label we see.  */
1574   FOR_EACH_BB_FN (bb, cfun)
1575     {
1576       gimple_stmt_iterator i;
1577 
1578       for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1579 	{
1580 	  tree label;
1581 	  glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1582 
1583 	  if (!label_stmt)
1584 	    break;
1585 
1586 	  label = gimple_label_label (label_stmt);
1587 
1588 	  /* If we have not yet seen a label for the current block,
1589 	     remember this one and see if there are more labels.  */
1590 	  if (!label_for_bb[bb->index].label)
1591 	    {
1592 	      label_for_bb[bb->index].label = label;
1593 	      continue;
1594 	    }
1595 
1596 	  /* If we did see a label for the current block already, but it
1597 	     is an artificially created label, replace it if the current
1598 	     label is a user defined label.  */
1599 	  if (!DECL_ARTIFICIAL (label)
1600 	      && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1601 	    {
1602 	      label_for_bb[bb->index].label = label;
1603 	      break;
1604 	    }
1605 	}
1606     }
1607 
1608   /* Now redirect all jumps/branches to the selected label.
1609      First do so for each block ending in a control statement.  */
1610   FOR_EACH_BB_FN (bb, cfun)
1611     {
1612       gimple *stmt = last_stmt (bb);
1613       tree label, new_label;
1614 
1615       if (!stmt)
1616 	continue;
1617 
1618       switch (gimple_code (stmt))
1619 	{
1620 	case GIMPLE_COND:
1621 	  {
1622 	    gcond *cond_stmt = as_a <gcond *> (stmt);
1623 	    label = gimple_cond_true_label (cond_stmt);
1624 	    if (label)
1625 	      {
1626 		new_label = main_block_label (label);
1627 		if (new_label != label)
1628 		  gimple_cond_set_true_label (cond_stmt, new_label);
1629 	      }
1630 
1631 	    label = gimple_cond_false_label (cond_stmt);
1632 	    if (label)
1633 	      {
1634 		new_label = main_block_label (label);
1635 		if (new_label != label)
1636 		  gimple_cond_set_false_label (cond_stmt, new_label);
1637 	      }
1638 	  }
1639 	  break;
1640 
1641 	case GIMPLE_SWITCH:
1642 	  {
1643 	    gswitch *switch_stmt = as_a <gswitch *> (stmt);
1644 	    size_t i, n = gimple_switch_num_labels (switch_stmt);
1645 
1646 	    /* Replace all destination labels.  */
1647 	    for (i = 0; i < n; ++i)
1648 	      {
1649 		tree case_label = gimple_switch_label (switch_stmt, i);
1650 		label = CASE_LABEL (case_label);
1651 		new_label = main_block_label (label);
1652 		if (new_label != label)
1653 		  CASE_LABEL (case_label) = new_label;
1654 	      }
1655 	    break;
1656 	  }
1657 
1658 	case GIMPLE_ASM:
1659 	  {
1660 	    gasm *asm_stmt = as_a <gasm *> (stmt);
1661 	    int i, n = gimple_asm_nlabels (asm_stmt);
1662 
1663 	    for (i = 0; i < n; ++i)
1664 	      {
1665 		tree cons = gimple_asm_label_op (asm_stmt, i);
1666 		tree label = main_block_label (TREE_VALUE (cons));
1667 		TREE_VALUE (cons) = label;
1668 	      }
1669 	    break;
1670 	  }
1671 
1672 	/* We have to handle gotos until they're removed, and we don't
1673 	   remove them until after we've created the CFG edges.  */
1674 	case GIMPLE_GOTO:
1675 	  if (!computed_goto_p (stmt))
1676 	    {
1677 	      ggoto *goto_stmt = as_a <ggoto *> (stmt);
1678 	      label = gimple_goto_dest (goto_stmt);
1679 	      new_label = main_block_label (label);
1680 	      if (new_label != label)
1681 		gimple_goto_set_dest (goto_stmt, new_label);
1682 	    }
1683 	  break;
1684 
1685 	case GIMPLE_TRANSACTION:
1686 	  {
1687 	    gtransaction *txn = as_a <gtransaction *> (stmt);
1688 
1689 	    label = gimple_transaction_label_norm (txn);
1690 	    if (label)
1691 	      {
1692 		new_label = main_block_label (label);
1693 		if (new_label != label)
1694 		  gimple_transaction_set_label_norm (txn, new_label);
1695 	      }
1696 
1697 	    label = gimple_transaction_label_uninst (txn);
1698 	    if (label)
1699 	      {
1700 		new_label = main_block_label (label);
1701 		if (new_label != label)
1702 		  gimple_transaction_set_label_uninst (txn, new_label);
1703 	      }
1704 
1705 	    label = gimple_transaction_label_over (txn);
1706 	    if (label)
1707 	      {
1708 		new_label = main_block_label (label);
1709 		if (new_label != label)
1710 		  gimple_transaction_set_label_over (txn, new_label);
1711 	      }
1712 	  }
1713 	  break;
1714 
1715 	default:
1716 	  break;
1717       }
1718     }
1719 
1720   /* Do the same for the exception region tree labels.  */
1721   cleanup_dead_labels_eh ();
1722 
1723   /* Finally, purge dead labels.  All user-defined labels and labels that
1724      can be the target of non-local gotos and labels which have their
1725      address taken are preserved.  */
1726   FOR_EACH_BB_FN (bb, cfun)
1727     {
1728       gimple_stmt_iterator i;
1729       tree label_for_this_bb = label_for_bb[bb->index].label;
1730 
1731       if (!label_for_this_bb)
1732 	continue;
1733 
1734       /* If the main label of the block is unused, we may still remove it.  */
1735       if (!label_for_bb[bb->index].used)
1736 	label_for_this_bb = NULL;
1737 
1738       for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1739 	{
1740 	  tree label;
1741 	  glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1742 
1743 	  if (!label_stmt)
1744 	    break;
1745 
1746 	  label = gimple_label_label (label_stmt);
1747 
1748 	  if (label == label_for_this_bb
1749 	      || !DECL_ARTIFICIAL (label)
1750 	      || DECL_NONLOCAL (label)
1751 	      || FORCED_LABEL (label))
1752 	    gsi_next (&i);
1753 	  else
1754 	    gsi_remove (&i, true);
1755 	}
1756     }
1757 
1758   free (label_for_bb);
1759 }
1760 
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762    the ones jumping to the same label.
1763    Eg. three separate entries 1: 2: 3: become one entry 1..3:  */
1764 
1765 bool
group_case_labels_stmt(gswitch * stmt)1766 group_case_labels_stmt (gswitch *stmt)
1767 {
1768   int old_size = gimple_switch_num_labels (stmt);
1769   int i, next_index, new_size;
1770   basic_block default_bb = NULL;
1771 
1772   default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1773 
1774   /* Look for possible opportunities to merge cases.  */
1775   new_size = i = 1;
1776   while (i < old_size)
1777     {
1778       tree base_case, base_high;
1779       basic_block base_bb;
1780 
1781       base_case = gimple_switch_label (stmt, i);
1782 
1783       gcc_assert (base_case);
1784       base_bb = label_to_block (CASE_LABEL (base_case));
1785 
1786       /* Discard cases that have the same destination as the default case or
1787 	 whose destiniation blocks have already been removed as unreachable.  */
1788       if (base_bb == NULL || base_bb == default_bb)
1789 	{
1790 	  i++;
1791 	  continue;
1792 	}
1793 
1794       base_high = CASE_HIGH (base_case)
1795 	  ? CASE_HIGH (base_case)
1796 	  : CASE_LOW (base_case);
1797       next_index = i + 1;
1798 
1799       /* Try to merge case labels.  Break out when we reach the end
1800 	 of the label vector or when we cannot merge the next case
1801 	 label with the current one.  */
1802       while (next_index < old_size)
1803 	{
1804 	  tree merge_case = gimple_switch_label (stmt, next_index);
1805 	  basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1806 	  wide_int bhp1 = wi::to_wide (base_high) + 1;
1807 
1808 	  /* Merge the cases if they jump to the same place,
1809 	     and their ranges are consecutive.  */
1810 	  if (merge_bb == base_bb
1811 	      && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1812 	    {
1813 	      base_high = CASE_HIGH (merge_case) ?
1814 		  CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1815 	      CASE_HIGH (base_case) = base_high;
1816 	      next_index++;
1817 	    }
1818 	  else
1819 	    break;
1820 	}
1821 
1822       /* Discard cases that have an unreachable destination block.  */
1823       if (EDGE_COUNT (base_bb->succs) == 0
1824 	  && gimple_seq_unreachable_p (bb_seq (base_bb))
1825 	  /* Don't optimize this if __builtin_unreachable () is the
1826 	     implicitly added one by the C++ FE too early, before
1827 	     -Wreturn-type can be diagnosed.  We'll optimize it later
1828 	     during switchconv pass or any other cfg cleanup.  */
1829 	  && (gimple_in_ssa_p (cfun)
1830 	      || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1831 		  != BUILTINS_LOCATION)))
1832 	{
1833 	  edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1834 	  if (base_edge != NULL)
1835 	    remove_edge_and_dominated_blocks (base_edge);
1836 	  i = next_index;
1837 	  continue;
1838 	}
1839 
1840       if (new_size < i)
1841 	gimple_switch_set_label (stmt, new_size,
1842 				 gimple_switch_label (stmt, i));
1843       i = next_index;
1844       new_size++;
1845     }
1846 
1847   gcc_assert (new_size <= old_size);
1848 
1849   if (new_size < old_size)
1850     gimple_switch_set_num_labels (stmt, new_size);
1851 
1852   return new_size < old_size;
1853 }
1854 
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856    and scan the sorted vector of cases.  Combine the ones jumping to the
1857    same label.  */
1858 
1859 bool
group_case_labels(void)1860 group_case_labels (void)
1861 {
1862   basic_block bb;
1863   bool changed = false;
1864 
1865   FOR_EACH_BB_FN (bb, cfun)
1866     {
1867       gimple *stmt = last_stmt (bb);
1868       if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1869 	changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1870     }
1871 
1872   return changed;
1873 }
1874 
1875 /* Checks whether we can merge block B into block A.  */
1876 
1877 static bool
gimple_can_merge_blocks_p(basic_block a,basic_block b)1878 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1879 {
1880   gimple *stmt;
1881 
1882   if (!single_succ_p (a))
1883     return false;
1884 
1885   if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1886     return false;
1887 
1888   if (single_succ (a) != b)
1889     return false;
1890 
1891   if (!single_pred_p (b))
1892     return false;
1893 
1894   if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1895       || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1896     return false;
1897 
1898   /* If A ends by a statement causing exceptions or something similar, we
1899      cannot merge the blocks.  */
1900   stmt = last_stmt (a);
1901   if (stmt && stmt_ends_bb_p (stmt))
1902     return false;
1903 
1904   /* Do not allow a block with only a non-local label to be merged.  */
1905   if (stmt)
1906     if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1907       if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1908 	return false;
1909 
1910   /* Examine the labels at the beginning of B.  */
1911   for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1912        gsi_next (&gsi))
1913     {
1914       tree lab;
1915       glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1916       if (!label_stmt)
1917 	break;
1918       lab = gimple_label_label (label_stmt);
1919 
1920       /* Do not remove user forced labels or for -O0 any user labels.  */
1921       if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1922 	return false;
1923     }
1924 
1925   /* Protect simple loop latches.  We only want to avoid merging
1926      the latch with the loop header or with a block in another
1927      loop in this case.  */
1928   if (current_loops
1929       && b->loop_father->latch == b
1930       && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1931       && (b->loop_father->header == a
1932 	  || b->loop_father != a->loop_father))
1933     return false;
1934 
1935   /* It must be possible to eliminate all phi nodes in B.  If ssa form
1936      is not up-to-date and a name-mapping is registered, we cannot eliminate
1937      any phis.  Symbols marked for renaming are never a problem though.  */
1938   for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1939        gsi_next (&gsi))
1940     {
1941       gphi *phi = gsi.phi ();
1942       /* Technically only new names matter.  */
1943       if (name_registered_for_update_p (PHI_RESULT (phi)))
1944 	return false;
1945     }
1946 
1947   /* When not optimizing, don't merge if we'd lose goto_locus.  */
1948   if (!optimize
1949       && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1950     {
1951       location_t goto_locus = single_succ_edge (a)->goto_locus;
1952       gimple_stmt_iterator prev, next;
1953       prev = gsi_last_nondebug_bb (a);
1954       next = gsi_after_labels (b);
1955       if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1956 	gsi_next_nondebug (&next);
1957       if ((gsi_end_p (prev)
1958 	   || gimple_location (gsi_stmt (prev)) != goto_locus)
1959 	  && (gsi_end_p (next)
1960 	      || gimple_location (gsi_stmt (next)) != goto_locus))
1961 	return false;
1962     }
1963 
1964   return true;
1965 }
1966 
1967 /* Replaces all uses of NAME by VAL.  */
1968 
1969 void
replace_uses_by(tree name,tree val)1970 replace_uses_by (tree name, tree val)
1971 {
1972   imm_use_iterator imm_iter;
1973   use_operand_p use;
1974   gimple *stmt;
1975   edge e;
1976 
1977   FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1978     {
1979       /* Mark the block if we change the last stmt in it.  */
1980       if (cfgcleanup_altered_bbs
1981 	  && stmt_ends_bb_p (stmt))
1982 	bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1983 
1984       FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1985         {
1986 	  replace_exp (use, val);
1987 
1988 	  if (gimple_code (stmt) == GIMPLE_PHI)
1989 	    {
1990 	      e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1991 				       PHI_ARG_INDEX_FROM_USE (use));
1992 	      if (e->flags & EDGE_ABNORMAL
1993 		  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1994 		{
1995 		  /* This can only occur for virtual operands, since
1996 		     for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 		     would prevent replacement.  */
1998 		  gcc_checking_assert (virtual_operand_p (name));
1999 		  SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2000 		}
2001 	    }
2002 	}
2003 
2004       if (gimple_code (stmt) != GIMPLE_PHI)
2005 	{
2006 	  gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2007 	  gimple *orig_stmt = stmt;
2008 	  size_t i;
2009 
2010 	  /* FIXME.  It shouldn't be required to keep TREE_CONSTANT
2011 	     on ADDR_EXPRs up-to-date on GIMPLE.  Propagation will
2012 	     only change sth from non-invariant to invariant, and only
2013 	     when propagating constants.  */
2014 	  if (is_gimple_min_invariant (val))
2015 	    for (i = 0; i < gimple_num_ops (stmt); i++)
2016 	      {
2017 		tree op = gimple_op (stmt, i);
2018 		/* Operands may be empty here.  For example, the labels
2019 		   of a GIMPLE_COND are nulled out following the creation
2020 		   of the corresponding CFG edges.  */
2021 		if (op && TREE_CODE (op) == ADDR_EXPR)
2022 		  recompute_tree_invariant_for_addr_expr (op);
2023 	      }
2024 
2025 	  if (fold_stmt (&gsi))
2026 	    stmt = gsi_stmt (gsi);
2027 
2028 	  if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2029 	    gimple_purge_dead_eh_edges (gimple_bb (stmt));
2030 
2031 	  update_stmt (stmt);
2032 	}
2033     }
2034 
2035   gcc_checking_assert (has_zero_uses (name));
2036 
2037   /* Also update the trees stored in loop structures.  */
2038   if (current_loops)
2039     {
2040       struct loop *loop;
2041 
2042       FOR_EACH_LOOP (loop, 0)
2043 	{
2044 	  substitute_in_loop_info (loop, name, val);
2045 	}
2046     }
2047 }
2048 
2049 /* Merge block B into block A.  */
2050 
2051 static void
gimple_merge_blocks(basic_block a,basic_block b)2052 gimple_merge_blocks (basic_block a, basic_block b)
2053 {
2054   gimple_stmt_iterator last, gsi;
2055   gphi_iterator psi;
2056 
2057   if (dump_file)
2058     fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2059 
2060   /* Remove all single-valued PHI nodes from block B of the form
2061      V_i = PHI <V_j> by propagating V_j to all the uses of V_i.  */
2062   gsi = gsi_last_bb (a);
2063   for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2064     {
2065       gimple *phi = gsi_stmt (psi);
2066       tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2067       gimple *copy;
2068       bool may_replace_uses = (virtual_operand_p (def)
2069 			       || may_propagate_copy (def, use));
2070 
2071       /* In case we maintain loop closed ssa form, do not propagate arguments
2072 	 of loop exit phi nodes.  */
2073       if (current_loops
2074 	  && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2075 	  && !virtual_operand_p (def)
2076 	  && TREE_CODE (use) == SSA_NAME
2077 	  && a->loop_father != b->loop_father)
2078 	may_replace_uses = false;
2079 
2080       if (!may_replace_uses)
2081 	{
2082 	  gcc_assert (!virtual_operand_p (def));
2083 
2084 	  /* Note that just emitting the copies is fine -- there is no problem
2085 	     with ordering of phi nodes.  This is because A is the single
2086 	     predecessor of B, therefore results of the phi nodes cannot
2087 	     appear as arguments of the phi nodes.  */
2088 	  copy = gimple_build_assign (def, use);
2089 	  gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2090           remove_phi_node (&psi, false);
2091 	}
2092       else
2093         {
2094 	  /* If we deal with a PHI for virtual operands, we can simply
2095 	     propagate these without fussing with folding or updating
2096 	     the stmt.  */
2097 	  if (virtual_operand_p (def))
2098 	    {
2099 	      imm_use_iterator iter;
2100 	      use_operand_p use_p;
2101 	      gimple *stmt;
2102 
2103 	      FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2104 		FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2105 		  SET_USE (use_p, use);
2106 
2107 	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2108 		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2109 	    }
2110 	  else
2111             replace_uses_by (def, use);
2112 
2113           remove_phi_node (&psi, true);
2114         }
2115     }
2116 
2117   /* Ensure that B follows A.  */
2118   move_block_after (b, a);
2119 
2120   gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2121   gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2122 
2123   /* Remove labels from B and set gimple_bb to A for other statements.  */
2124   for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2125     {
2126       gimple *stmt = gsi_stmt (gsi);
2127       if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2128 	{
2129 	  tree label = gimple_label_label (label_stmt);
2130 	  int lp_nr;
2131 
2132 	  gsi_remove (&gsi, false);
2133 
2134 	  /* Now that we can thread computed gotos, we might have
2135 	     a situation where we have a forced label in block B
2136 	     However, the label at the start of block B might still be
2137 	     used in other ways (think about the runtime checking for
2138 	     Fortran assigned gotos).  So we can not just delete the
2139 	     label.  Instead we move the label to the start of block A.  */
2140 	  if (FORCED_LABEL (label))
2141 	    {
2142 	      gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2143 	      gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2144 	    }
2145 	  /* Other user labels keep around in a form of a debug stmt.  */
2146 	  else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2147 	    {
2148 	      gimple *dbg = gimple_build_debug_bind (label,
2149 						     integer_zero_node,
2150 						     stmt);
2151 	      gimple_debug_bind_reset_value (dbg);
2152 	      gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2153 	    }
2154 
2155 	  lp_nr = EH_LANDING_PAD_NR (label);
2156 	  if (lp_nr)
2157 	    {
2158 	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2159 	      lp->post_landing_pad = NULL;
2160 	    }
2161 	}
2162       else
2163 	{
2164 	  gimple_set_bb (stmt, a);
2165 	  gsi_next (&gsi);
2166 	}
2167     }
2168 
2169   /* When merging two BBs, if their counts are different, the larger count
2170      is selected as the new bb count. This is to handle inconsistent
2171      profiles.  */
2172   if (a->loop_father == b->loop_father)
2173     {
2174       a->count = a->count.merge (b->count);
2175     }
2176 
2177   /* Merge the sequences.  */
2178   last = gsi_last_bb (a);
2179   gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2180   set_bb_seq (b, NULL);
2181 
2182   if (cfgcleanup_altered_bbs)
2183     bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2184 }
2185 
2186 
2187 /* Return the one of two successors of BB that is not reachable by a
2188    complex edge, if there is one.  Else, return BB.  We use
2189    this in optimizations that use post-dominators for their heuristics,
2190    to catch the cases in C++ where function calls are involved.  */
2191 
2192 basic_block
single_noncomplex_succ(basic_block bb)2193 single_noncomplex_succ (basic_block bb)
2194 {
2195   edge e0, e1;
2196   if (EDGE_COUNT (bb->succs) != 2)
2197     return bb;
2198 
2199   e0 = EDGE_SUCC (bb, 0);
2200   e1 = EDGE_SUCC (bb, 1);
2201   if (e0->flags & EDGE_COMPLEX)
2202     return e1->dest;
2203   if (e1->flags & EDGE_COMPLEX)
2204     return e0->dest;
2205 
2206   return bb;
2207 }
2208 
2209 /* T is CALL_EXPR.  Set current_function_calls_* flags.  */
2210 
2211 void
notice_special_calls(gcall * call)2212 notice_special_calls (gcall *call)
2213 {
2214   int flags = gimple_call_flags (call);
2215 
2216   if (flags & ECF_MAY_BE_ALLOCA)
2217     cfun->calls_alloca = true;
2218   if (flags & ECF_RETURNS_TWICE)
2219     cfun->calls_setjmp = true;
2220 }
2221 
2222 
2223 /* Clear flags set by notice_special_calls.  Used by dead code removal
2224    to update the flags.  */
2225 
2226 void
clear_special_calls(void)2227 clear_special_calls (void)
2228 {
2229   cfun->calls_alloca = false;
2230   cfun->calls_setjmp = false;
2231 }
2232 
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB.  */
2234 
2235 static void
remove_phi_nodes_and_edges_for_unreachable_block(basic_block bb)2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2237 {
2238   /* Since this block is no longer reachable, we can just delete all
2239      of its PHI nodes.  */
2240   remove_phi_nodes (bb);
2241 
2242   /* Remove edges to BB's successors.  */
2243   while (EDGE_COUNT (bb->succs) > 0)
2244     remove_edge (EDGE_SUCC (bb, 0));
2245 }
2246 
2247 
2248 /* Remove statements of basic block BB.  */
2249 
2250 static void
remove_bb(basic_block bb)2251 remove_bb (basic_block bb)
2252 {
2253   gimple_stmt_iterator i;
2254 
2255   if (dump_file)
2256     {
2257       fprintf (dump_file, "Removing basic block %d\n", bb->index);
2258       if (dump_flags & TDF_DETAILS)
2259 	{
2260 	  dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2261 	  fprintf (dump_file, "\n");
2262 	}
2263     }
2264 
2265   if (current_loops)
2266     {
2267       struct loop *loop = bb->loop_father;
2268 
2269       /* If a loop gets removed, clean up the information associated
2270 	 with it.  */
2271       if (loop->latch == bb
2272 	  || loop->header == bb)
2273 	free_numbers_of_iterations_estimates (loop);
2274     }
2275 
2276   /* Remove all the instructions in the block.  */
2277   if (bb_seq (bb) != NULL)
2278     {
2279       /* Walk backwards so as to get a chance to substitute all
2280 	 released DEFs into debug stmts.  See
2281 	 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2282 	 details.  */
2283       for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2284 	{
2285 	  gimple *stmt = gsi_stmt (i);
2286 	  glabel *label_stmt = dyn_cast <glabel *> (stmt);
2287 	  if (label_stmt
2288 	      && (FORCED_LABEL (gimple_label_label (label_stmt))
2289 		  || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2290 	    {
2291 	      basic_block new_bb;
2292 	      gimple_stmt_iterator new_gsi;
2293 
2294 	      /* A non-reachable non-local label may still be referenced.
2295 		 But it no longer needs to carry the extra semantics of
2296 		 non-locality.  */
2297 	      if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2298 		{
2299 		  DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2300 		  FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2301 		}
2302 
2303 	      new_bb = bb->prev_bb;
2304 	      /* Don't move any labels into ENTRY block.  */
2305 	      if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2306 		{
2307 		  new_bb = single_succ (new_bb);
2308 		  gcc_assert (new_bb != bb);
2309 		}
2310 	      new_gsi = gsi_after_labels (new_bb);
2311 	      gsi_remove (&i, false);
2312 	      gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2313 	    }
2314 	  else
2315 	    {
2316 	      /* Release SSA definitions.  */
2317 	      release_defs (stmt);
2318 	      gsi_remove (&i, true);
2319 	    }
2320 
2321 	  if (gsi_end_p (i))
2322 	    i = gsi_last_bb (bb);
2323 	  else
2324 	    gsi_prev (&i);
2325 	}
2326     }
2327 
2328   remove_phi_nodes_and_edges_for_unreachable_block (bb);
2329   bb->il.gimple.seq = NULL;
2330   bb->il.gimple.phi_nodes = NULL;
2331 }
2332 
2333 
2334 /* Given a basic block BB and a value VAL for use in the final statement
2335    of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2336    the edge that will be taken out of the block.
2337    If VAL is NULL_TREE, then the current value of the final statement's
2338    predicate or index is used.
2339    If the value does not match a unique edge, NULL is returned.  */
2340 
2341 edge
find_taken_edge(basic_block bb,tree val)2342 find_taken_edge (basic_block bb, tree val)
2343 {
2344   gimple *stmt;
2345 
2346   stmt = last_stmt (bb);
2347 
2348   /* Handle ENTRY and EXIT.  */
2349   if (!stmt)
2350     return NULL;
2351 
2352   if (gimple_code (stmt) == GIMPLE_COND)
2353     return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2354 
2355   if (gimple_code (stmt) == GIMPLE_SWITCH)
2356     return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2357 
2358   if (computed_goto_p (stmt))
2359     {
2360       /* Only optimize if the argument is a label, if the argument is
2361 	 not a label then we can not construct a proper CFG.
2362 
2363          It may be the case that we only need to allow the LABEL_REF to
2364          appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2365          appear inside a LABEL_EXPR just to be safe.  */
2366       if (val
2367 	  && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2368 	  && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2369 	return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2370     }
2371 
2372   /* Otherwise we only know the taken successor edge if it's unique.  */
2373   return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2374 }
2375 
2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2377    statement, determine which of the outgoing edges will be taken out of the
2378    block.  Return NULL if either edge may be taken.  */
2379 
2380 static edge
find_taken_edge_computed_goto(basic_block bb,tree val)2381 find_taken_edge_computed_goto (basic_block bb, tree val)
2382 {
2383   basic_block dest;
2384   edge e = NULL;
2385 
2386   dest = label_to_block (val);
2387   if (dest)
2388     e = find_edge (bb, dest);
2389 
2390   /* It's possible for find_edge to return NULL here on invalid code
2391      that abuses the labels-as-values extension (e.g. code that attempts to
2392      jump *between* functions via stored labels-as-values; PR 84136).
2393      If so, then we simply return that NULL for the edge.
2394      We don't currently have a way of detecting such invalid code, so we
2395      can't assert that it was the case when a NULL edge occurs here.  */
2396 
2397   return e;
2398 }
2399 
2400 /* Given COND_STMT and a constant value VAL for use as the predicate,
2401    determine which of the two edges will be taken out of
2402    the statement's block.  Return NULL if either edge may be taken.
2403    If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2404    is used.  */
2405 
2406 static edge
find_taken_edge_cond_expr(const gcond * cond_stmt,tree val)2407 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2408 {
2409   edge true_edge, false_edge;
2410 
2411   if (val == NULL_TREE)
2412     {
2413       /* Use the current value of the predicate.  */
2414       if (gimple_cond_true_p (cond_stmt))
2415 	val = integer_one_node;
2416       else if (gimple_cond_false_p (cond_stmt))
2417 	val = integer_zero_node;
2418       else
2419 	return NULL;
2420     }
2421   else if (TREE_CODE (val) != INTEGER_CST)
2422     return NULL;
2423 
2424   extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2425 				       &true_edge, &false_edge);
2426 
2427   return (integer_zerop (val) ? false_edge : true_edge);
2428 }
2429 
2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2431    which edge will be taken out of the statement's block.  Return NULL if any
2432    edge may be taken.
2433    If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2434    is used.  */
2435 
2436 static edge
find_taken_edge_switch_expr(const gswitch * switch_stmt,tree val)2437 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2438 {
2439   basic_block dest_bb;
2440   edge e;
2441   tree taken_case;
2442 
2443   if (gimple_switch_num_labels (switch_stmt) == 1)
2444     taken_case = gimple_switch_default_label (switch_stmt);
2445   else
2446     {
2447       if (val == NULL_TREE)
2448 	val = gimple_switch_index (switch_stmt);
2449       if (TREE_CODE (val) != INTEGER_CST)
2450 	return NULL;
2451       else
2452 	taken_case = find_case_label_for_value (switch_stmt, val);
2453     }
2454   dest_bb = label_to_block (CASE_LABEL (taken_case));
2455 
2456   e = find_edge (gimple_bb (switch_stmt), dest_bb);
2457   gcc_assert (e);
2458   return e;
2459 }
2460 
2461 
2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2463    We can make optimal use here of the fact that the case labels are
2464    sorted: We can do a binary search for a case matching VAL.  */
2465 
2466 static tree
find_case_label_for_value(const gswitch * switch_stmt,tree val)2467 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2468 {
2469   size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2470   tree default_case = gimple_switch_default_label (switch_stmt);
2471 
2472   for (low = 0, high = n; high - low > 1; )
2473     {
2474       size_t i = (high + low) / 2;
2475       tree t = gimple_switch_label (switch_stmt, i);
2476       int cmp;
2477 
2478       /* Cache the result of comparing CASE_LOW and val.  */
2479       cmp = tree_int_cst_compare (CASE_LOW (t), val);
2480 
2481       if (cmp > 0)
2482 	high = i;
2483       else
2484 	low = i;
2485 
2486       if (CASE_HIGH (t) == NULL)
2487 	{
2488 	  /* A singe-valued case label.  */
2489 	  if (cmp == 0)
2490 	    return t;
2491 	}
2492       else
2493 	{
2494 	  /* A case range.  We can only handle integer ranges.  */
2495 	  if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2496 	    return t;
2497 	}
2498     }
2499 
2500   return default_case;
2501 }
2502 
2503 
2504 /* Dump a basic block on stderr.  */
2505 
2506 void
gimple_debug_bb(basic_block bb)2507 gimple_debug_bb (basic_block bb)
2508 {
2509   dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2510 }
2511 
2512 
2513 /* Dump basic block with index N on stderr.  */
2514 
2515 basic_block
gimple_debug_bb_n(int n)2516 gimple_debug_bb_n (int n)
2517 {
2518   gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2519   return BASIC_BLOCK_FOR_FN (cfun, n);
2520 }
2521 
2522 
2523 /* Dump the CFG on stderr.
2524 
2525    FLAGS are the same used by the tree dumping functions
2526    (see TDF_* in dumpfile.h).  */
2527 
2528 void
gimple_debug_cfg(dump_flags_t flags)2529 gimple_debug_cfg (dump_flags_t flags)
2530 {
2531   gimple_dump_cfg (stderr, flags);
2532 }
2533 
2534 
2535 /* Dump the program showing basic block boundaries on the given FILE.
2536 
2537    FLAGS are the same used by the tree dumping functions (see TDF_* in
2538    tree.h).  */
2539 
2540 void
gimple_dump_cfg(FILE * file,dump_flags_t flags)2541 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2542 {
2543   if (flags & TDF_DETAILS)
2544     {
2545       dump_function_header (file, current_function_decl, flags);
2546       fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2547 	       n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2548 	       last_basic_block_for_fn (cfun));
2549 
2550       brief_dump_cfg (file, flags);
2551       fprintf (file, "\n");
2552     }
2553 
2554   if (flags & TDF_STATS)
2555     dump_cfg_stats (file);
2556 
2557   dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2558 }
2559 
2560 
2561 /* Dump CFG statistics on FILE.  */
2562 
2563 void
dump_cfg_stats(FILE * file)2564 dump_cfg_stats (FILE *file)
2565 {
2566   static long max_num_merged_labels = 0;
2567   unsigned long size, total = 0;
2568   long num_edges;
2569   basic_block bb;
2570   const char * const fmt_str   = "%-30s%-13s%12s\n";
2571   const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2572   const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2573   const char * const fmt_str_3 = "%-43s%11lu%c\n";
2574   const char *funcname = current_function_name ();
2575 
2576   fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2577 
2578   fprintf (file, "---------------------------------------------------------\n");
2579   fprintf (file, fmt_str, "", "  Number of  ", "Memory");
2580   fprintf (file, fmt_str, "", "  instances  ", "used ");
2581   fprintf (file, "---------------------------------------------------------\n");
2582 
2583   size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2584   total += size;
2585   fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2586 	   SCALE (size), LABEL (size));
2587 
2588   num_edges = 0;
2589   FOR_EACH_BB_FN (bb, cfun)
2590     num_edges += EDGE_COUNT (bb->succs);
2591   size = num_edges * sizeof (struct edge_def);
2592   total += size;
2593   fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2594 
2595   fprintf (file, "---------------------------------------------------------\n");
2596   fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2597 	   LABEL (total));
2598   fprintf (file, "---------------------------------------------------------\n");
2599   fprintf (file, "\n");
2600 
2601   if (cfg_stats.num_merged_labels > max_num_merged_labels)
2602     max_num_merged_labels = cfg_stats.num_merged_labels;
2603 
2604   fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2605 	   cfg_stats.num_merged_labels, max_num_merged_labels);
2606 
2607   fprintf (file, "\n");
2608 }
2609 
2610 
2611 /* Dump CFG statistics on stderr.  Keep extern so that it's always
2612    linked in the final executable.  */
2613 
2614 DEBUG_FUNCTION void
debug_cfg_stats(void)2615 debug_cfg_stats (void)
2616 {
2617   dump_cfg_stats (stderr);
2618 }
2619 
2620 /*---------------------------------------------------------------------------
2621 			     Miscellaneous helpers
2622 ---------------------------------------------------------------------------*/
2623 
2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2625    flow.  Transfers of control flow associated with EH are excluded.  */
2626 
2627 static bool
call_can_make_abnormal_goto(gimple * t)2628 call_can_make_abnormal_goto (gimple *t)
2629 {
2630   /* If the function has no non-local labels, then a call cannot make an
2631      abnormal transfer of control.  */
2632   if (!cfun->has_nonlocal_label
2633       && !cfun->calls_setjmp)
2634    return false;
2635 
2636   /* Likewise if the call has no side effects.  */
2637   if (!gimple_has_side_effects (t))
2638     return false;
2639 
2640   /* Likewise if the called function is leaf.  */
2641   if (gimple_call_flags (t) & ECF_LEAF)
2642     return false;
2643 
2644   return true;
2645 }
2646 
2647 
2648 /* Return true if T can make an abnormal transfer of control flow.
2649    Transfers of control flow associated with EH are excluded.  */
2650 
2651 bool
stmt_can_make_abnormal_goto(gimple * t)2652 stmt_can_make_abnormal_goto (gimple *t)
2653 {
2654   if (computed_goto_p (t))
2655     return true;
2656   if (is_gimple_call (t))
2657     return call_can_make_abnormal_goto (t);
2658   return false;
2659 }
2660 
2661 
2662 /* Return true if T represents a stmt that always transfers control.  */
2663 
2664 bool
is_ctrl_stmt(gimple * t)2665 is_ctrl_stmt (gimple *t)
2666 {
2667   switch (gimple_code (t))
2668     {
2669     case GIMPLE_COND:
2670     case GIMPLE_SWITCH:
2671     case GIMPLE_GOTO:
2672     case GIMPLE_RETURN:
2673     case GIMPLE_RESX:
2674       return true;
2675     default:
2676       return false;
2677     }
2678 }
2679 
2680 
2681 /* Return true if T is a statement that may alter the flow of control
2682    (e.g., a call to a non-returning function).  */
2683 
2684 bool
is_ctrl_altering_stmt(gimple * t)2685 is_ctrl_altering_stmt (gimple *t)
2686 {
2687   gcc_assert (t);
2688 
2689   switch (gimple_code (t))
2690     {
2691     case GIMPLE_CALL:
2692       /* Per stmt call flag indicates whether the call could alter
2693 	 controlflow.  */
2694       if (gimple_call_ctrl_altering_p (t))
2695 	return true;
2696       break;
2697 
2698     case GIMPLE_EH_DISPATCH:
2699       /* EH_DISPATCH branches to the individual catch handlers at
2700 	 this level of a try or allowed-exceptions region.  It can
2701 	 fallthru to the next statement as well.  */
2702       return true;
2703 
2704     case GIMPLE_ASM:
2705       if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2706 	return true;
2707       break;
2708 
2709     CASE_GIMPLE_OMP:
2710       /* OpenMP directives alter control flow.  */
2711       return true;
2712 
2713     case GIMPLE_TRANSACTION:
2714       /* A transaction start alters control flow.  */
2715       return true;
2716 
2717     default:
2718       break;
2719     }
2720 
2721   /* If a statement can throw, it alters control flow.  */
2722   return stmt_can_throw_internal (t);
2723 }
2724 
2725 
2726 /* Return true if T is a simple local goto.  */
2727 
2728 bool
simple_goto_p(gimple * t)2729 simple_goto_p (gimple *t)
2730 {
2731   return (gimple_code (t) == GIMPLE_GOTO
2732 	  && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2733 }
2734 
2735 
2736 /* Return true if STMT should start a new basic block.  PREV_STMT is
2737    the statement preceding STMT.  It is used when STMT is a label or a
2738    case label.  Labels should only start a new basic block if their
2739    previous statement wasn't a label.  Otherwise, sequence of labels
2740    would generate unnecessary basic blocks that only contain a single
2741    label.  */
2742 
2743 static inline bool
stmt_starts_bb_p(gimple * stmt,gimple * prev_stmt)2744 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2745 {
2746   if (stmt == NULL)
2747     return false;
2748 
2749   /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2750      any nondebug stmts in the block.  We don't want to start another
2751      block in this case: the debug stmt will already have started the
2752      one STMT would start if we weren't outputting debug stmts.  */
2753   if (prev_stmt && is_gimple_debug (prev_stmt))
2754     return false;
2755 
2756   /* Labels start a new basic block only if the preceding statement
2757      wasn't a label of the same type.  This prevents the creation of
2758      consecutive blocks that have nothing but a single label.  */
2759   if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2760     {
2761       /* Nonlocal and computed GOTO targets always start a new block.  */
2762       if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2763 	  || FORCED_LABEL (gimple_label_label (label_stmt)))
2764 	return true;
2765 
2766       if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2767 	{
2768 	  if (DECL_NONLOCAL (gimple_label_label (
2769 			       as_a <glabel *> (prev_stmt))))
2770 	    return true;
2771 
2772 	  cfg_stats.num_merged_labels++;
2773 	  return false;
2774 	}
2775       else
2776 	return true;
2777     }
2778   else if (gimple_code (stmt) == GIMPLE_CALL)
2779     {
2780       if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2781 	/* setjmp acts similar to a nonlocal GOTO target and thus should
2782 	   start a new block.  */
2783 	return true;
2784       if (gimple_call_internal_p (stmt, IFN_PHI)
2785 	  && prev_stmt
2786 	  && gimple_code (prev_stmt) != GIMPLE_LABEL
2787 	  && (gimple_code (prev_stmt) != GIMPLE_CALL
2788 	      || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2789 	/* PHI nodes start a new block unless preceeded by a label
2790 	   or another PHI.  */
2791 	return true;
2792     }
2793 
2794   return false;
2795 }
2796 
2797 
2798 /* Return true if T should end a basic block.  */
2799 
2800 bool
stmt_ends_bb_p(gimple * t)2801 stmt_ends_bb_p (gimple *t)
2802 {
2803   return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2804 }
2805 
2806 /* Remove block annotations and other data structures.  */
2807 
2808 void
delete_tree_cfg_annotations(struct function * fn)2809 delete_tree_cfg_annotations (struct function *fn)
2810 {
2811   vec_free (label_to_block_map_for_fn (fn));
2812 }
2813 
2814 /* Return the virtual phi in BB.  */
2815 
2816 gphi *
get_virtual_phi(basic_block bb)2817 get_virtual_phi (basic_block bb)
2818 {
2819   for (gphi_iterator gsi = gsi_start_phis (bb);
2820        !gsi_end_p (gsi);
2821        gsi_next (&gsi))
2822     {
2823       gphi *phi = gsi.phi ();
2824 
2825       if (virtual_operand_p (PHI_RESULT (phi)))
2826 	return phi;
2827     }
2828 
2829   return NULL;
2830 }
2831 
2832 /* Return the first statement in basic block BB.  */
2833 
2834 gimple *
first_stmt(basic_block bb)2835 first_stmt (basic_block bb)
2836 {
2837   gimple_stmt_iterator i = gsi_start_bb (bb);
2838   gimple *stmt = NULL;
2839 
2840   while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2841     {
2842       gsi_next (&i);
2843       stmt = NULL;
2844     }
2845   return stmt;
2846 }
2847 
2848 /* Return the first non-label statement in basic block BB.  */
2849 
2850 static gimple *
first_non_label_stmt(basic_block bb)2851 first_non_label_stmt (basic_block bb)
2852 {
2853   gimple_stmt_iterator i = gsi_start_bb (bb);
2854   while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2855     gsi_next (&i);
2856   return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2857 }
2858 
2859 /* Return the last statement in basic block BB.  */
2860 
2861 gimple *
last_stmt(basic_block bb)2862 last_stmt (basic_block bb)
2863 {
2864   gimple_stmt_iterator i = gsi_last_bb (bb);
2865   gimple *stmt = NULL;
2866 
2867   while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2868     {
2869       gsi_prev (&i);
2870       stmt = NULL;
2871     }
2872   return stmt;
2873 }
2874 
2875 /* Return the last statement of an otherwise empty block.  Return NULL
2876    if the block is totally empty, or if it contains more than one
2877    statement.  */
2878 
2879 gimple *
last_and_only_stmt(basic_block bb)2880 last_and_only_stmt (basic_block bb)
2881 {
2882   gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2883   gimple *last, *prev;
2884 
2885   if (gsi_end_p (i))
2886     return NULL;
2887 
2888   last = gsi_stmt (i);
2889   gsi_prev_nondebug (&i);
2890   if (gsi_end_p (i))
2891     return last;
2892 
2893   /* Empty statements should no longer appear in the instruction stream.
2894      Everything that might have appeared before should be deleted by
2895      remove_useless_stmts, and the optimizers should just gsi_remove
2896      instead of smashing with build_empty_stmt.
2897 
2898      Thus the only thing that should appear here in a block containing
2899      one executable statement is a label.  */
2900   prev = gsi_stmt (i);
2901   if (gimple_code (prev) == GIMPLE_LABEL)
2902     return last;
2903   else
2904     return NULL;
2905 }
2906 
2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE.  */
2908 
2909 static void
reinstall_phi_args(edge new_edge,edge old_edge)2910 reinstall_phi_args (edge new_edge, edge old_edge)
2911 {
2912   edge_var_map *vm;
2913   int i;
2914   gphi_iterator phis;
2915 
2916   vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2917   if (!v)
2918     return;
2919 
2920   for (i = 0, phis = gsi_start_phis (new_edge->dest);
2921        v->iterate (i, &vm) && !gsi_end_p (phis);
2922        i++, gsi_next (&phis))
2923     {
2924       gphi *phi = phis.phi ();
2925       tree result = redirect_edge_var_map_result (vm);
2926       tree arg = redirect_edge_var_map_def (vm);
2927 
2928       gcc_assert (result == gimple_phi_result (phi));
2929 
2930       add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2931     }
2932 
2933   redirect_edge_var_map_clear (old_edge);
2934 }
2935 
2936 /* Returns the basic block after which the new basic block created
2937    by splitting edge EDGE_IN should be placed.  Tries to keep the new block
2938    near its "logical" location.  This is of most help to humans looking
2939    at debugging dumps.  */
2940 
2941 basic_block
split_edge_bb_loc(edge edge_in)2942 split_edge_bb_loc (edge edge_in)
2943 {
2944   basic_block dest = edge_in->dest;
2945   basic_block dest_prev = dest->prev_bb;
2946 
2947   if (dest_prev)
2948     {
2949       edge e = find_edge (dest_prev, dest);
2950       if (e && !(e->flags & EDGE_COMPLEX))
2951 	return edge_in->src;
2952     }
2953   return dest_prev;
2954 }
2955 
2956 /* Split a (typically critical) edge EDGE_IN.  Return the new block.
2957    Abort on abnormal edges.  */
2958 
2959 static basic_block
gimple_split_edge(edge edge_in)2960 gimple_split_edge (edge edge_in)
2961 {
2962   basic_block new_bb, after_bb, dest;
2963   edge new_edge, e;
2964 
2965   /* Abnormal edges cannot be split.  */
2966   gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2967 
2968   dest = edge_in->dest;
2969 
2970   after_bb = split_edge_bb_loc (edge_in);
2971 
2972   new_bb = create_empty_bb (after_bb);
2973   new_bb->count = edge_in->count ();
2974 
2975   e = redirect_edge_and_branch (edge_in, new_bb);
2976   gcc_assert (e == edge_in);
2977 
2978   new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2979   reinstall_phi_args (new_edge, e);
2980 
2981   return new_bb;
2982 }
2983 
2984 
2985 /* Verify properties of the address expression T with base object BASE.  */
2986 
2987 static tree
verify_address(tree t,tree base)2988 verify_address (tree t, tree base)
2989 {
2990   bool old_constant;
2991   bool old_side_effects;
2992   bool new_constant;
2993   bool new_side_effects;
2994 
2995   old_constant = TREE_CONSTANT (t);
2996   old_side_effects = TREE_SIDE_EFFECTS (t);
2997 
2998   recompute_tree_invariant_for_addr_expr (t);
2999   new_side_effects = TREE_SIDE_EFFECTS (t);
3000   new_constant = TREE_CONSTANT (t);
3001 
3002   if (old_constant != new_constant)
3003     {
3004       error ("constant not recomputed when ADDR_EXPR changed");
3005       return t;
3006     }
3007   if (old_side_effects != new_side_effects)
3008     {
3009       error ("side effects not recomputed when ADDR_EXPR changed");
3010       return t;
3011     }
3012 
3013   if (!(VAR_P (base)
3014 	|| TREE_CODE (base) == PARM_DECL
3015 	|| TREE_CODE (base) == RESULT_DECL))
3016     return NULL_TREE;
3017 
3018   if (DECL_GIMPLE_REG_P (base))
3019     {
3020       error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3021       return base;
3022     }
3023 
3024   return NULL_TREE;
3025 }
3026 
3027 /* Callback for walk_tree, check that all elements with address taken are
3028    properly noticed as such.  The DATA is an int* that is 1 if TP was seen
3029    inside a PHI node.  */
3030 
3031 static tree
verify_expr(tree * tp,int * walk_subtrees,void * data ATTRIBUTE_UNUSED)3032 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3033 {
3034   tree t = *tp, x;
3035 
3036   if (TYPE_P (t))
3037     *walk_subtrees = 0;
3038 
3039   /* Check operand N for being valid GIMPLE and give error MSG if not.  */
3040 #define CHECK_OP(N, MSG) \
3041   do { if (!is_gimple_val (TREE_OPERAND (t, N)))		\
3042        { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3043 
3044   switch (TREE_CODE (t))
3045     {
3046     case SSA_NAME:
3047       if (SSA_NAME_IN_FREE_LIST (t))
3048 	{
3049 	  error ("SSA name in freelist but still referenced");
3050 	  return *tp;
3051 	}
3052       break;
3053 
3054     case PARM_DECL:
3055     case VAR_DECL:
3056     case RESULT_DECL:
3057       {
3058 	tree context = decl_function_context (t);
3059 	if (context != cfun->decl
3060 	    && !SCOPE_FILE_SCOPE_P (context)
3061 	    && !TREE_STATIC (t)
3062 	    && !DECL_EXTERNAL (t))
3063 	  {
3064 	    error ("Local declaration from a different function");
3065 	    return t;
3066 	  }
3067       }
3068       break;
3069 
3070     case INDIRECT_REF:
3071       error ("INDIRECT_REF in gimple IL");
3072       return t;
3073 
3074     case MEM_REF:
3075       x = TREE_OPERAND (t, 0);
3076       if (!POINTER_TYPE_P (TREE_TYPE (x))
3077 	  || !is_gimple_mem_ref_addr (x))
3078 	{
3079 	  error ("invalid first operand of MEM_REF");
3080 	  return x;
3081 	}
3082       if (!poly_int_tree_p (TREE_OPERAND (t, 1))
3083 	  || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3084 	{
3085 	  error ("invalid offset operand of MEM_REF");
3086 	  return TREE_OPERAND (t, 1);
3087 	}
3088       if (TREE_CODE (x) == ADDR_EXPR)
3089 	{
3090 	  tree va = verify_address (x, TREE_OPERAND (x, 0));
3091 	  if (va)
3092 	    return va;
3093 	  x = TREE_OPERAND (x, 0);
3094 	}
3095       walk_tree (&x, verify_expr, data, NULL);
3096       *walk_subtrees = 0;
3097       break;
3098 
3099     case ASSERT_EXPR:
3100       x = fold (ASSERT_EXPR_COND (t));
3101       if (x == boolean_false_node)
3102 	{
3103 	  error ("ASSERT_EXPR with an always-false condition");
3104 	  return *tp;
3105 	}
3106       break;
3107 
3108     case MODIFY_EXPR:
3109       error ("MODIFY_EXPR not expected while having tuples");
3110       return *tp;
3111 
3112     case ADDR_EXPR:
3113       {
3114 	tree tem;
3115 
3116 	gcc_assert (is_gimple_address (t));
3117 
3118 	/* Skip any references (they will be checked when we recurse down the
3119 	   tree) and ensure that any variable used as a prefix is marked
3120 	   addressable.  */
3121 	for (x = TREE_OPERAND (t, 0);
3122 	     handled_component_p (x);
3123 	     x = TREE_OPERAND (x, 0))
3124 	  ;
3125 
3126 	if ((tem = verify_address (t, x)))
3127 	  return tem;
3128 
3129 	if (!(VAR_P (x)
3130 	      || TREE_CODE (x) == PARM_DECL
3131 	      || TREE_CODE (x) == RESULT_DECL))
3132 	  return NULL;
3133 
3134 	if (!TREE_ADDRESSABLE (x))
3135 	  {
3136 	    error ("address taken, but ADDRESSABLE bit not set");
3137 	    return x;
3138 	  }
3139 
3140 	break;
3141       }
3142 
3143     case COND_EXPR:
3144       x = COND_EXPR_COND (t);
3145       if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3146 	{
3147 	  error ("non-integral used in condition");
3148 	  return x;
3149 	}
3150       if (!is_gimple_condexpr (x))
3151         {
3152 	  error ("invalid conditional operand");
3153 	  return x;
3154 	}
3155       break;
3156 
3157     case NON_LVALUE_EXPR:
3158     case TRUTH_NOT_EXPR:
3159       gcc_unreachable ();
3160 
3161     CASE_CONVERT:
3162     case FIX_TRUNC_EXPR:
3163     case FLOAT_EXPR:
3164     case NEGATE_EXPR:
3165     case ABS_EXPR:
3166     case BIT_NOT_EXPR:
3167       CHECK_OP (0, "invalid operand to unary operator");
3168       break;
3169 
3170     case REALPART_EXPR:
3171     case IMAGPART_EXPR:
3172     case BIT_FIELD_REF:
3173       if (!is_gimple_reg_type (TREE_TYPE (t)))
3174 	{
3175 	  error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3176 	  return t;
3177 	}
3178 
3179       if (TREE_CODE (t) == BIT_FIELD_REF)
3180 	{
3181 	  tree t0 = TREE_OPERAND (t, 0);
3182 	  tree t1 = TREE_OPERAND (t, 1);
3183 	  tree t2 = TREE_OPERAND (t, 2);
3184 	  poly_uint64 size, bitpos;
3185 	  if (!poly_int_tree_p (t1, &size)
3186 	      || !poly_int_tree_p (t2, &bitpos)
3187 	      || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3188 	      || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3189 	    {
3190 	      error ("invalid position or size operand to BIT_FIELD_REF");
3191 	      return t;
3192 	    }
3193 	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3194 	      && maybe_ne (TYPE_PRECISION (TREE_TYPE (t)), size))
3195 	    {
3196 	      error ("integral result type precision does not match "
3197 		     "field size of BIT_FIELD_REF");
3198 	      return t;
3199 	    }
3200 	  else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3201 		   && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3202 		   && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))),
3203 				size))
3204 	    {
3205 	      error ("mode size of non-integral result does not "
3206 		     "match field size of BIT_FIELD_REF");
3207 	      return t;
3208 	    }
3209 	  if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3210 	      && maybe_gt (size + bitpos,
3211 			   tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0)))))
3212 	    {
3213 	      error ("position plus size exceeds size of referenced object in "
3214 		     "BIT_FIELD_REF");
3215 	      return t;
3216 	    }
3217 	}
3218       t = TREE_OPERAND (t, 0);
3219 
3220       /* Fall-through.  */
3221     case COMPONENT_REF:
3222     case ARRAY_REF:
3223     case ARRAY_RANGE_REF:
3224     case VIEW_CONVERT_EXPR:
3225       /* We have a nest of references.  Verify that each of the operands
3226 	 that determine where to reference is either a constant or a variable,
3227 	 verify that the base is valid, and then show we've already checked
3228 	 the subtrees.  */
3229       while (handled_component_p (t))
3230 	{
3231 	  if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3232 	    CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3233 	  else if (TREE_CODE (t) == ARRAY_REF
3234 		   || TREE_CODE (t) == ARRAY_RANGE_REF)
3235 	    {
3236 	      CHECK_OP (1, "invalid array index");
3237 	      if (TREE_OPERAND (t, 2))
3238 		CHECK_OP (2, "invalid array lower bound");
3239 	      if (TREE_OPERAND (t, 3))
3240 		CHECK_OP (3, "invalid array stride");
3241 	    }
3242 	  else if (TREE_CODE (t) == BIT_FIELD_REF
3243 		   || TREE_CODE (t) == REALPART_EXPR
3244 		   || TREE_CODE (t) == IMAGPART_EXPR)
3245 	    {
3246 	      error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3247 		     "REALPART_EXPR");
3248 	      return t;
3249 	    }
3250 
3251 	  t = TREE_OPERAND (t, 0);
3252 	}
3253 
3254       if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3255 	{
3256 	  error ("invalid reference prefix");
3257 	  return t;
3258 	}
3259       walk_tree (&t, verify_expr, data, NULL);
3260       *walk_subtrees = 0;
3261       break;
3262     case PLUS_EXPR:
3263     case MINUS_EXPR:
3264       /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3265 	 POINTER_PLUS_EXPR. */
3266       if (POINTER_TYPE_P (TREE_TYPE (t)))
3267 	{
3268 	  error ("invalid operand to plus/minus, type is a pointer");
3269 	  return t;
3270 	}
3271       CHECK_OP (0, "invalid operand to binary operator");
3272       CHECK_OP (1, "invalid operand to binary operator");
3273       break;
3274 
3275     case POINTER_DIFF_EXPR:
3276       if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
3277 	  || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3278 	{
3279 	  error ("invalid operand to pointer diff, operand is not a pointer");
3280 	  return t;
3281 	}
3282       if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3283 	  || TYPE_UNSIGNED (TREE_TYPE (t))
3284 	  || (TYPE_PRECISION (TREE_TYPE (t))
3285 	      != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
3286 	{
3287 	  error ("invalid type for pointer diff");
3288 	  return t;
3289 	}
3290       CHECK_OP (0, "invalid operand to pointer diff");
3291       CHECK_OP (1, "invalid operand to pointer diff");
3292       break;
3293 
3294     case POINTER_PLUS_EXPR:
3295       /* Check to make sure the first operand is a pointer or reference type. */
3296       if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3297 	{
3298 	  error ("invalid operand to pointer plus, first operand is not a pointer");
3299 	  return t;
3300 	}
3301       /* Check to make sure the second operand is a ptrofftype.  */
3302       if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3303 	{
3304 	  error ("invalid operand to pointer plus, second operand is not an "
3305 		 "integer type of appropriate width");
3306 	  return t;
3307 	}
3308       /* FALLTHROUGH */
3309     case LT_EXPR:
3310     case LE_EXPR:
3311     case GT_EXPR:
3312     case GE_EXPR:
3313     case EQ_EXPR:
3314     case NE_EXPR:
3315     case UNORDERED_EXPR:
3316     case ORDERED_EXPR:
3317     case UNLT_EXPR:
3318     case UNLE_EXPR:
3319     case UNGT_EXPR:
3320     case UNGE_EXPR:
3321     case UNEQ_EXPR:
3322     case LTGT_EXPR:
3323     case MULT_EXPR:
3324     case TRUNC_DIV_EXPR:
3325     case CEIL_DIV_EXPR:
3326     case FLOOR_DIV_EXPR:
3327     case ROUND_DIV_EXPR:
3328     case TRUNC_MOD_EXPR:
3329     case CEIL_MOD_EXPR:
3330     case FLOOR_MOD_EXPR:
3331     case ROUND_MOD_EXPR:
3332     case RDIV_EXPR:
3333     case EXACT_DIV_EXPR:
3334     case MIN_EXPR:
3335     case MAX_EXPR:
3336     case LSHIFT_EXPR:
3337     case RSHIFT_EXPR:
3338     case LROTATE_EXPR:
3339     case RROTATE_EXPR:
3340     case BIT_IOR_EXPR:
3341     case BIT_XOR_EXPR:
3342     case BIT_AND_EXPR:
3343       CHECK_OP (0, "invalid operand to binary operator");
3344       CHECK_OP (1, "invalid operand to binary operator");
3345       break;
3346 
3347     case CONSTRUCTOR:
3348       if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3349 	*walk_subtrees = 0;
3350       break;
3351 
3352     case CASE_LABEL_EXPR:
3353       if (CASE_CHAIN (t))
3354 	{
3355 	  error ("invalid CASE_CHAIN");
3356 	  return t;
3357 	}
3358       break;
3359 
3360     default:
3361       break;
3362     }
3363   return NULL;
3364 
3365 #undef CHECK_OP
3366 }
3367 
3368 
3369 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3370    Returns true if there is an error, otherwise false.  */
3371 
3372 static bool
verify_types_in_gimple_min_lval(tree expr)3373 verify_types_in_gimple_min_lval (tree expr)
3374 {
3375   tree op;
3376 
3377   if (is_gimple_id (expr))
3378     return false;
3379 
3380   if (TREE_CODE (expr) != TARGET_MEM_REF
3381       && TREE_CODE (expr) != MEM_REF)
3382     {
3383       error ("invalid expression for min lvalue");
3384       return true;
3385     }
3386 
3387   /* TARGET_MEM_REFs are strange beasts.  */
3388   if (TREE_CODE (expr) == TARGET_MEM_REF)
3389     return false;
3390 
3391   op = TREE_OPERAND (expr, 0);
3392   if (!is_gimple_val (op))
3393     {
3394       error ("invalid operand in indirect reference");
3395       debug_generic_stmt (op);
3396       return true;
3397     }
3398   /* Memory references now generally can involve a value conversion.  */
3399 
3400   return false;
3401 }
3402 
3403 /* Verify if EXPR is a valid GIMPLE reference expression.  If
3404    REQUIRE_LVALUE is true verifies it is an lvalue.  Returns true
3405    if there is an error, otherwise false.  */
3406 
3407 static bool
verify_types_in_gimple_reference(tree expr,bool require_lvalue)3408 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3409 {
3410   while (handled_component_p (expr))
3411     {
3412       tree op = TREE_OPERAND (expr, 0);
3413 
3414       if (TREE_CODE (expr) == ARRAY_REF
3415 	  || TREE_CODE (expr) == ARRAY_RANGE_REF)
3416 	{
3417 	  if (!is_gimple_val (TREE_OPERAND (expr, 1))
3418 	      || (TREE_OPERAND (expr, 2)
3419 		  && !is_gimple_val (TREE_OPERAND (expr, 2)))
3420 	      || (TREE_OPERAND (expr, 3)
3421 		  && !is_gimple_val (TREE_OPERAND (expr, 3))))
3422 	    {
3423 	      error ("invalid operands to array reference");
3424 	      debug_generic_stmt (expr);
3425 	      return true;
3426 	    }
3427 	}
3428 
3429       /* Verify if the reference array element types are compatible.  */
3430       if (TREE_CODE (expr) == ARRAY_REF
3431 	  && !useless_type_conversion_p (TREE_TYPE (expr),
3432 					 TREE_TYPE (TREE_TYPE (op))))
3433 	{
3434 	  error ("type mismatch in array reference");
3435 	  debug_generic_stmt (TREE_TYPE (expr));
3436 	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3437 	  return true;
3438 	}
3439       if (TREE_CODE (expr) == ARRAY_RANGE_REF
3440 	  && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3441 					 TREE_TYPE (TREE_TYPE (op))))
3442 	{
3443 	  error ("type mismatch in array range reference");
3444 	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3445 	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3446 	  return true;
3447 	}
3448 
3449       if ((TREE_CODE (expr) == REALPART_EXPR
3450 	   || TREE_CODE (expr) == IMAGPART_EXPR)
3451 	  && !useless_type_conversion_p (TREE_TYPE (expr),
3452 					 TREE_TYPE (TREE_TYPE (op))))
3453 	{
3454 	  error ("type mismatch in real/imagpart reference");
3455 	  debug_generic_stmt (TREE_TYPE (expr));
3456 	  debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3457 	  return true;
3458 	}
3459 
3460       if (TREE_CODE (expr) == COMPONENT_REF
3461 	  && !useless_type_conversion_p (TREE_TYPE (expr),
3462 					 TREE_TYPE (TREE_OPERAND (expr, 1))))
3463 	{
3464 	  error ("type mismatch in component reference");
3465 	  debug_generic_stmt (TREE_TYPE (expr));
3466 	  debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3467 	  return true;
3468 	}
3469 
3470       if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3471 	{
3472 	  /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3473 	     that their operand is not an SSA name or an invariant when
3474 	     requiring an lvalue (this usually means there is a SRA or IPA-SRA
3475 	     bug).  Otherwise there is nothing to verify, gross mismatches at
3476 	     most invoke undefined behavior.  */
3477 	  if (require_lvalue
3478 	      && (TREE_CODE (op) == SSA_NAME
3479 		  || is_gimple_min_invariant (op)))
3480 	    {
3481 	      error ("conversion of an SSA_NAME on the left hand side");
3482 	      debug_generic_stmt (expr);
3483 	      return true;
3484 	    }
3485 	  else if (TREE_CODE (op) == SSA_NAME
3486 		   && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3487 	    {
3488 	      error ("conversion of register to a different size");
3489 	      debug_generic_stmt (expr);
3490 	      return true;
3491 	    }
3492 	  else if (!handled_component_p (op))
3493 	    return false;
3494 	}
3495 
3496       expr = op;
3497     }
3498 
3499   if (TREE_CODE (expr) == MEM_REF)
3500     {
3501       if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3502 	{
3503 	  error ("invalid address operand in MEM_REF");
3504 	  debug_generic_stmt (expr);
3505 	  return true;
3506 	}
3507       if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3508 	  || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3509 	{
3510 	  error ("invalid offset operand in MEM_REF");
3511 	  debug_generic_stmt (expr);
3512 	  return true;
3513 	}
3514     }
3515   else if (TREE_CODE (expr) == TARGET_MEM_REF)
3516     {
3517       if (!TMR_BASE (expr)
3518 	  || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3519 	{
3520 	  error ("invalid address operand in TARGET_MEM_REF");
3521 	  return true;
3522 	}
3523       if (!TMR_OFFSET (expr)
3524 	  || !poly_int_tree_p (TMR_OFFSET (expr))
3525 	  || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3526 	{
3527 	  error ("invalid offset operand in TARGET_MEM_REF");
3528 	  debug_generic_stmt (expr);
3529 	  return true;
3530 	}
3531     }
3532 
3533   return ((require_lvalue || !is_gimple_min_invariant (expr))
3534 	  && verify_types_in_gimple_min_lval (expr));
3535 }
3536 
3537 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3538    list of pointer-to types that is trivially convertible to DEST.  */
3539 
3540 static bool
one_pointer_to_useless_type_conversion_p(tree dest,tree src_obj)3541 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3542 {
3543   tree src;
3544 
3545   if (!TYPE_POINTER_TO (src_obj))
3546     return true;
3547 
3548   for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3549     if (useless_type_conversion_p (dest, src))
3550       return true;
3551 
3552   return false;
3553 }
3554 
3555 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3556    from TYPE2 can be handled by FIXED_CONVERT_EXPR.  */
3557 
3558 static bool
valid_fixed_convert_types_p(tree type1,tree type2)3559 valid_fixed_convert_types_p (tree type1, tree type2)
3560 {
3561   return (FIXED_POINT_TYPE_P (type1)
3562 	  && (INTEGRAL_TYPE_P (type2)
3563 	      || SCALAR_FLOAT_TYPE_P (type2)
3564 	      || FIXED_POINT_TYPE_P (type2)));
3565 }
3566 
3567 /* Verify the contents of a GIMPLE_CALL STMT.  Returns true when there
3568    is a problem, otherwise false.  */
3569 
3570 static bool
verify_gimple_call(gcall * stmt)3571 verify_gimple_call (gcall *stmt)
3572 {
3573   tree fn = gimple_call_fn (stmt);
3574   tree fntype, fndecl;
3575   unsigned i;
3576 
3577   if (gimple_call_internal_p (stmt))
3578     {
3579       if (fn)
3580 	{
3581 	  error ("gimple call has two targets");
3582 	  debug_generic_stmt (fn);
3583 	  return true;
3584 	}
3585       /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3586       else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3587 	{
3588 	  return false;
3589 	}
3590     }
3591   else
3592     {
3593       if (!fn)
3594 	{
3595 	  error ("gimple call has no target");
3596 	  return true;
3597 	}
3598     }
3599 
3600   if (fn && !is_gimple_call_addr (fn))
3601     {
3602       error ("invalid function in gimple call");
3603       debug_generic_stmt (fn);
3604       return true;
3605     }
3606 
3607   if (fn
3608       && (!POINTER_TYPE_P (TREE_TYPE (fn))
3609 	  || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3610 	      && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3611     {
3612       error ("non-function in gimple call");
3613       return true;
3614     }
3615 
3616    fndecl = gimple_call_fndecl (stmt);
3617    if (fndecl
3618        && TREE_CODE (fndecl) == FUNCTION_DECL
3619        && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3620        && !DECL_PURE_P (fndecl)
3621        && !TREE_READONLY (fndecl))
3622      {
3623        error ("invalid pure const state for function");
3624        return true;
3625      }
3626 
3627   tree lhs = gimple_call_lhs (stmt);
3628   if (lhs
3629       && (!is_gimple_lvalue (lhs)
3630 	  || verify_types_in_gimple_reference (lhs, true)))
3631     {
3632       error ("invalid LHS in gimple call");
3633       return true;
3634     }
3635 
3636   if (gimple_call_ctrl_altering_p (stmt)
3637       && gimple_call_noreturn_p (stmt)
3638       && should_remove_lhs_p (lhs))
3639     {
3640       error ("LHS in noreturn call");
3641       return true;
3642     }
3643 
3644   fntype = gimple_call_fntype (stmt);
3645   if (fntype
3646       && lhs
3647       && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3648       /* ???  At least C++ misses conversions at assignments from
3649 	 void * call results.
3650 	 For now simply allow arbitrary pointer type conversions.  */
3651       && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3652 	   && POINTER_TYPE_P (TREE_TYPE (fntype))))
3653     {
3654       error ("invalid conversion in gimple call");
3655       debug_generic_stmt (TREE_TYPE (lhs));
3656       debug_generic_stmt (TREE_TYPE (fntype));
3657       return true;
3658     }
3659 
3660   if (gimple_call_chain (stmt)
3661       && !is_gimple_val (gimple_call_chain (stmt)))
3662     {
3663       error ("invalid static chain in gimple call");
3664       debug_generic_stmt (gimple_call_chain (stmt));
3665       return true;
3666     }
3667 
3668   /* If there is a static chain argument, the call should either be
3669      indirect, or the decl should have DECL_STATIC_CHAIN set.  */
3670   if (gimple_call_chain (stmt)
3671       && fndecl
3672       && !DECL_STATIC_CHAIN (fndecl))
3673     {
3674       error ("static chain with function that doesn%'t use one");
3675       return true;
3676     }
3677 
3678   if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3679     {
3680       switch (DECL_FUNCTION_CODE (fndecl))
3681 	{
3682 	case BUILT_IN_UNREACHABLE:
3683 	case BUILT_IN_TRAP:
3684 	  if (gimple_call_num_args (stmt) > 0)
3685 	    {
3686 	      /* Built-in unreachable with parameters might not be caught by
3687 		 undefined behavior sanitizer.  Front-ends do check users do not
3688 		 call them that way but we also produce calls to
3689 		 __builtin_unreachable internally, for example when IPA figures
3690 		 out a call cannot happen in a legal program.  In such cases,
3691 		 we must make sure arguments are stripped off.  */
3692 	      error ("__builtin_unreachable or __builtin_trap call with "
3693 		     "arguments");
3694 	      return true;
3695 	    }
3696 	  break;
3697 	default:
3698 	  break;
3699 	}
3700     }
3701 
3702   /* ???  The C frontend passes unpromoted arguments in case it
3703      didn't see a function declaration before the call.  So for now
3704      leave the call arguments mostly unverified.  Once we gimplify
3705      unit-at-a-time we have a chance to fix this.  */
3706 
3707   for (i = 0; i < gimple_call_num_args (stmt); ++i)
3708     {
3709       tree arg = gimple_call_arg (stmt, i);
3710       if ((is_gimple_reg_type (TREE_TYPE (arg))
3711 	   && !is_gimple_val (arg))
3712 	  || (!is_gimple_reg_type (TREE_TYPE (arg))
3713 	      && !is_gimple_lvalue (arg)))
3714 	{
3715 	  error ("invalid argument to gimple call");
3716 	  debug_generic_expr (arg);
3717 	  return true;
3718 	}
3719     }
3720 
3721   return false;
3722 }
3723 
3724 /* Verifies the gimple comparison with the result type TYPE and
3725    the operands OP0 and OP1, comparison code is CODE.  */
3726 
3727 static bool
verify_gimple_comparison(tree type,tree op0,tree op1,enum tree_code code)3728 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3729 {
3730   tree op0_type = TREE_TYPE (op0);
3731   tree op1_type = TREE_TYPE (op1);
3732 
3733   if (!is_gimple_val (op0) || !is_gimple_val (op1))
3734     {
3735       error ("invalid operands in gimple comparison");
3736       return true;
3737     }
3738 
3739   /* For comparisons we do not have the operations type as the
3740      effective type the comparison is carried out in.  Instead
3741      we require that either the first operand is trivially
3742      convertible into the second, or the other way around.
3743      Because we special-case pointers to void we allow
3744      comparisons of pointers with the same mode as well.  */
3745   if (!useless_type_conversion_p (op0_type, op1_type)
3746       && !useless_type_conversion_p (op1_type, op0_type)
3747       && (!POINTER_TYPE_P (op0_type)
3748 	  || !POINTER_TYPE_P (op1_type)
3749 	  || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3750     {
3751       error ("mismatching comparison operand types");
3752       debug_generic_expr (op0_type);
3753       debug_generic_expr (op1_type);
3754       return true;
3755     }
3756 
3757   /* The resulting type of a comparison may be an effective boolean type.  */
3758   if (INTEGRAL_TYPE_P (type)
3759       && (TREE_CODE (type) == BOOLEAN_TYPE
3760 	  || TYPE_PRECISION (type) == 1))
3761     {
3762       if ((TREE_CODE (op0_type) == VECTOR_TYPE
3763 	   || TREE_CODE (op1_type) == VECTOR_TYPE)
3764 	  && code != EQ_EXPR && code != NE_EXPR
3765 	  && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3766 	  && !VECTOR_INTEGER_TYPE_P (op0_type))
3767 	{
3768 	  error ("unsupported operation or type for vector comparison"
3769 		 " returning a boolean");
3770 	  debug_generic_expr (op0_type);
3771 	  debug_generic_expr (op1_type);
3772 	  return true;
3773         }
3774     }
3775   /* Or a boolean vector type with the same element count
3776      as the comparison operand types.  */
3777   else if (TREE_CODE (type) == VECTOR_TYPE
3778 	   && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3779     {
3780       if (TREE_CODE (op0_type) != VECTOR_TYPE
3781 	  || TREE_CODE (op1_type) != VECTOR_TYPE)
3782         {
3783           error ("non-vector operands in vector comparison");
3784           debug_generic_expr (op0_type);
3785           debug_generic_expr (op1_type);
3786           return true;
3787         }
3788 
3789       if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3790 		    TYPE_VECTOR_SUBPARTS (op0_type)))
3791         {
3792           error ("invalid vector comparison resulting type");
3793           debug_generic_expr (type);
3794           return true;
3795         }
3796     }
3797   else
3798     {
3799       error ("bogus comparison result type");
3800       debug_generic_expr (type);
3801       return true;
3802     }
3803 
3804   return false;
3805 }
3806 
3807 /* Verify a gimple assignment statement STMT with an unary rhs.
3808    Returns true if anything is wrong.  */
3809 
3810 static bool
verify_gimple_assign_unary(gassign * stmt)3811 verify_gimple_assign_unary (gassign *stmt)
3812 {
3813   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3814   tree lhs = gimple_assign_lhs (stmt);
3815   tree lhs_type = TREE_TYPE (lhs);
3816   tree rhs1 = gimple_assign_rhs1 (stmt);
3817   tree rhs1_type = TREE_TYPE (rhs1);
3818 
3819   if (!is_gimple_reg (lhs))
3820     {
3821       error ("non-register as LHS of unary operation");
3822       return true;
3823     }
3824 
3825   if (!is_gimple_val (rhs1))
3826     {
3827       error ("invalid operand in unary operation");
3828       return true;
3829     }
3830 
3831   /* First handle conversions.  */
3832   switch (rhs_code)
3833     {
3834     CASE_CONVERT:
3835       {
3836 	/* Allow conversions from pointer type to integral type only if
3837 	   there is no sign or zero extension involved.
3838 	   For targets were the precision of ptrofftype doesn't match that
3839 	   of pointers we need to allow arbitrary conversions to ptrofftype.  */
3840 	if ((POINTER_TYPE_P (lhs_type)
3841 	     && INTEGRAL_TYPE_P (rhs1_type))
3842 	    || (POINTER_TYPE_P (rhs1_type)
3843 		&& INTEGRAL_TYPE_P (lhs_type)
3844 		&& (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3845 		    || ptrofftype_p (sizetype))))
3846 	  return false;
3847 
3848 	/* Allow conversion from integral to offset type and vice versa.  */
3849 	if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3850 	     && INTEGRAL_TYPE_P (rhs1_type))
3851 	    || (INTEGRAL_TYPE_P (lhs_type)
3852 		&& TREE_CODE (rhs1_type) == OFFSET_TYPE))
3853 	  return false;
3854 
3855 	/* Otherwise assert we are converting between types of the
3856 	   same kind.  */
3857 	if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3858 	  {
3859 	    error ("invalid types in nop conversion");
3860 	    debug_generic_expr (lhs_type);
3861 	    debug_generic_expr (rhs1_type);
3862 	    return true;
3863 	  }
3864 
3865 	return false;
3866       }
3867 
3868     case ADDR_SPACE_CONVERT_EXPR:
3869       {
3870 	if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3871 	    || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3872 		== TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3873 	  {
3874 	    error ("invalid types in address space conversion");
3875 	    debug_generic_expr (lhs_type);
3876 	    debug_generic_expr (rhs1_type);
3877 	    return true;
3878 	  }
3879 
3880 	return false;
3881       }
3882 
3883     case FIXED_CONVERT_EXPR:
3884       {
3885 	if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3886 	    && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3887 	  {
3888 	    error ("invalid types in fixed-point conversion");
3889 	    debug_generic_expr (lhs_type);
3890 	    debug_generic_expr (rhs1_type);
3891 	    return true;
3892 	  }
3893 
3894 	return false;
3895       }
3896 
3897     case FLOAT_EXPR:
3898       {
3899 	if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3900 	    && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3901 	        || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3902 	  {
3903 	    error ("invalid types in conversion to floating point");
3904 	    debug_generic_expr (lhs_type);
3905 	    debug_generic_expr (rhs1_type);
3906 	    return true;
3907 	  }
3908 
3909         return false;
3910       }
3911 
3912     case FIX_TRUNC_EXPR:
3913       {
3914         if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3915             && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3916                 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3917 	  {
3918 	    error ("invalid types in conversion to integer");
3919 	    debug_generic_expr (lhs_type);
3920 	    debug_generic_expr (rhs1_type);
3921 	    return true;
3922 	  }
3923 
3924         return false;
3925       }
3926 
3927     case VEC_UNPACK_HI_EXPR:
3928     case VEC_UNPACK_LO_EXPR:
3929     case VEC_UNPACK_FLOAT_HI_EXPR:
3930     case VEC_UNPACK_FLOAT_LO_EXPR:
3931       /* FIXME.  */
3932       return false;
3933 
3934     case NEGATE_EXPR:
3935     case ABS_EXPR:
3936     case BIT_NOT_EXPR:
3937     case PAREN_EXPR:
3938     case CONJ_EXPR:
3939       break;
3940 
3941     case VEC_DUPLICATE_EXPR:
3942       if (TREE_CODE (lhs_type) != VECTOR_TYPE
3943 	  || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3944 	{
3945 	  error ("vec_duplicate should be from a scalar to a like vector");
3946 	  debug_generic_expr (lhs_type);
3947 	  debug_generic_expr (rhs1_type);
3948 	  return true;
3949 	}
3950       return false;
3951 
3952     default:
3953       gcc_unreachable ();
3954     }
3955 
3956   /* For the remaining codes assert there is no conversion involved.  */
3957   if (!useless_type_conversion_p (lhs_type, rhs1_type))
3958     {
3959       error ("non-trivial conversion in unary operation");
3960       debug_generic_expr (lhs_type);
3961       debug_generic_expr (rhs1_type);
3962       return true;
3963     }
3964 
3965   return false;
3966 }
3967 
3968 /* Verify a gimple assignment statement STMT with a binary rhs.
3969    Returns true if anything is wrong.  */
3970 
3971 static bool
verify_gimple_assign_binary(gassign * stmt)3972 verify_gimple_assign_binary (gassign *stmt)
3973 {
3974   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3975   tree lhs = gimple_assign_lhs (stmt);
3976   tree lhs_type = TREE_TYPE (lhs);
3977   tree rhs1 = gimple_assign_rhs1 (stmt);
3978   tree rhs1_type = TREE_TYPE (rhs1);
3979   tree rhs2 = gimple_assign_rhs2 (stmt);
3980   tree rhs2_type = TREE_TYPE (rhs2);
3981 
3982   if (!is_gimple_reg (lhs))
3983     {
3984       error ("non-register as LHS of binary operation");
3985       return true;
3986     }
3987 
3988   if (!is_gimple_val (rhs1)
3989       || !is_gimple_val (rhs2))
3990     {
3991       error ("invalid operands in binary operation");
3992       return true;
3993     }
3994 
3995   /* First handle operations that involve different types.  */
3996   switch (rhs_code)
3997     {
3998     case COMPLEX_EXPR:
3999       {
4000 	if (TREE_CODE (lhs_type) != COMPLEX_TYPE
4001 	    || !(INTEGRAL_TYPE_P (rhs1_type)
4002 	         || SCALAR_FLOAT_TYPE_P (rhs1_type))
4003 	    || !(INTEGRAL_TYPE_P (rhs2_type)
4004 	         || SCALAR_FLOAT_TYPE_P (rhs2_type)))
4005 	  {
4006 	    error ("type mismatch in complex expression");
4007 	    debug_generic_expr (lhs_type);
4008 	    debug_generic_expr (rhs1_type);
4009 	    debug_generic_expr (rhs2_type);
4010 	    return true;
4011 	  }
4012 
4013 	return false;
4014       }
4015 
4016     case LSHIFT_EXPR:
4017     case RSHIFT_EXPR:
4018     case LROTATE_EXPR:
4019     case RROTATE_EXPR:
4020       {
4021 	/* Shifts and rotates are ok on integral types, fixed point
4022 	   types and integer vector types.  */
4023 	if ((!INTEGRAL_TYPE_P (rhs1_type)
4024 	     && !FIXED_POINT_TYPE_P (rhs1_type)
4025 	     && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
4026 		  && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
4027 	    || (!INTEGRAL_TYPE_P (rhs2_type)
4028 		/* Vector shifts of vectors are also ok.  */
4029 		&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
4030 		     && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4031 		     && TREE_CODE (rhs2_type) == VECTOR_TYPE
4032 		     && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
4033 	    || !useless_type_conversion_p (lhs_type, rhs1_type))
4034 	  {
4035 	    error ("type mismatch in shift expression");
4036 	    debug_generic_expr (lhs_type);
4037 	    debug_generic_expr (rhs1_type);
4038 	    debug_generic_expr (rhs2_type);
4039 	    return true;
4040 	  }
4041 
4042 	return false;
4043       }
4044 
4045     case WIDEN_LSHIFT_EXPR:
4046       {
4047         if (!INTEGRAL_TYPE_P (lhs_type)
4048             || !INTEGRAL_TYPE_P (rhs1_type)
4049             || TREE_CODE (rhs2) != INTEGER_CST
4050             || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
4051           {
4052             error ("type mismatch in widening vector shift expression");
4053             debug_generic_expr (lhs_type);
4054             debug_generic_expr (rhs1_type);
4055             debug_generic_expr (rhs2_type);
4056             return true;
4057           }
4058 
4059         return false;
4060       }
4061 
4062     case VEC_WIDEN_LSHIFT_HI_EXPR:
4063     case VEC_WIDEN_LSHIFT_LO_EXPR:
4064       {
4065         if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4066             || TREE_CODE (lhs_type) != VECTOR_TYPE
4067             || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4068             || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
4069             || TREE_CODE (rhs2) != INTEGER_CST
4070             || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
4071                 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
4072           {
4073             error ("type mismatch in widening vector shift expression");
4074             debug_generic_expr (lhs_type);
4075             debug_generic_expr (rhs1_type);
4076             debug_generic_expr (rhs2_type);
4077             return true;
4078           }
4079 
4080         return false;
4081       }
4082 
4083     case PLUS_EXPR:
4084     case MINUS_EXPR:
4085       {
4086 	tree lhs_etype = lhs_type;
4087 	tree rhs1_etype = rhs1_type;
4088 	tree rhs2_etype = rhs2_type;
4089 	if (TREE_CODE (lhs_type) == VECTOR_TYPE)
4090 	  {
4091 	    if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4092 		|| TREE_CODE (rhs2_type) != VECTOR_TYPE)
4093 	      {
4094 		error ("invalid non-vector operands to vector valued plus");
4095 		return true;
4096 	      }
4097 	    lhs_etype = TREE_TYPE (lhs_type);
4098 	    rhs1_etype = TREE_TYPE (rhs1_type);
4099 	    rhs2_etype = TREE_TYPE (rhs2_type);
4100 	  }
4101 	if (POINTER_TYPE_P (lhs_etype)
4102 	    || POINTER_TYPE_P (rhs1_etype)
4103 	    || POINTER_TYPE_P (rhs2_etype))
4104 	  {
4105 	    error ("invalid (pointer) operands to plus/minus");
4106 	    return true;
4107 	  }
4108 
4109 	/* Continue with generic binary expression handling.  */
4110 	break;
4111       }
4112 
4113     case POINTER_PLUS_EXPR:
4114       {
4115 	if (!POINTER_TYPE_P (rhs1_type)
4116 	    || !useless_type_conversion_p (lhs_type, rhs1_type)
4117 	    || !ptrofftype_p (rhs2_type))
4118 	  {
4119 	    error ("type mismatch in pointer plus expression");
4120 	    debug_generic_stmt (lhs_type);
4121 	    debug_generic_stmt (rhs1_type);
4122 	    debug_generic_stmt (rhs2_type);
4123 	    return true;
4124 	  }
4125 
4126 	return false;
4127       }
4128 
4129     case POINTER_DIFF_EXPR:
4130       {
4131 	if (!POINTER_TYPE_P (rhs1_type)
4132 	    || !POINTER_TYPE_P (rhs2_type)
4133 	    /* Because we special-case pointers to void we allow difference
4134 	       of arbitrary pointers with the same mode.  */
4135 	    || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4136 	    || TREE_CODE (lhs_type) != INTEGER_TYPE
4137 	    || TYPE_UNSIGNED (lhs_type)
4138 	    || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4139 	  {
4140 	    error ("type mismatch in pointer diff expression");
4141 	    debug_generic_stmt (lhs_type);
4142 	    debug_generic_stmt (rhs1_type);
4143 	    debug_generic_stmt (rhs2_type);
4144 	    return true;
4145 	  }
4146 
4147 	return false;
4148       }
4149 
4150     case TRUTH_ANDIF_EXPR:
4151     case TRUTH_ORIF_EXPR:
4152     case TRUTH_AND_EXPR:
4153     case TRUTH_OR_EXPR:
4154     case TRUTH_XOR_EXPR:
4155 
4156       gcc_unreachable ();
4157 
4158     case LT_EXPR:
4159     case LE_EXPR:
4160     case GT_EXPR:
4161     case GE_EXPR:
4162     case EQ_EXPR:
4163     case NE_EXPR:
4164     case UNORDERED_EXPR:
4165     case ORDERED_EXPR:
4166     case UNLT_EXPR:
4167     case UNLE_EXPR:
4168     case UNGT_EXPR:
4169     case UNGE_EXPR:
4170     case UNEQ_EXPR:
4171     case LTGT_EXPR:
4172       /* Comparisons are also binary, but the result type is not
4173 	 connected to the operand types.  */
4174       return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4175 
4176     case WIDEN_MULT_EXPR:
4177       if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4178 	return true;
4179       return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4180 	      || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4181 
4182     case WIDEN_SUM_EXPR:
4183       {
4184         if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4185 	      || TREE_CODE (lhs_type) != VECTOR_TYPE)
4186 	     && ((!INTEGRAL_TYPE_P (rhs1_type)
4187 		  && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4188 		 || (!INTEGRAL_TYPE_P (lhs_type)
4189 		     && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4190 	    || !useless_type_conversion_p (lhs_type, rhs2_type)
4191 	    || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
4192 			 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4193           {
4194             error ("type mismatch in widening sum reduction");
4195             debug_generic_expr (lhs_type);
4196             debug_generic_expr (rhs1_type);
4197             debug_generic_expr (rhs2_type);
4198             return true;
4199           }
4200         return false;
4201       }
4202 
4203     case VEC_WIDEN_MULT_HI_EXPR:
4204     case VEC_WIDEN_MULT_LO_EXPR:
4205     case VEC_WIDEN_MULT_EVEN_EXPR:
4206     case VEC_WIDEN_MULT_ODD_EXPR:
4207       {
4208         if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4209             || TREE_CODE (lhs_type) != VECTOR_TYPE
4210 	    || !types_compatible_p (rhs1_type, rhs2_type)
4211 	    || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4212 			 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4213           {
4214             error ("type mismatch in vector widening multiplication");
4215             debug_generic_expr (lhs_type);
4216             debug_generic_expr (rhs1_type);
4217             debug_generic_expr (rhs2_type);
4218             return true;
4219           }
4220         return false;
4221       }
4222 
4223     case VEC_PACK_TRUNC_EXPR:
4224       /* ???  We currently use VEC_PACK_TRUNC_EXPR to simply concat
4225 	 vector boolean types.  */
4226       if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4227 	  && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4228 	  && types_compatible_p (rhs1_type, rhs2_type)
4229 	  && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4230 		       2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4231 	return false;
4232 
4233       /* Fallthru.  */
4234     case VEC_PACK_SAT_EXPR:
4235     case VEC_PACK_FIX_TRUNC_EXPR:
4236       {
4237         if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4238             || TREE_CODE (lhs_type) != VECTOR_TYPE
4239             || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4240 		  && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4241 		  && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4242 		 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4243 		     == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4244 	    || !types_compatible_p (rhs1_type, rhs2_type)
4245 	    || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4246 			 2 * GET_MODE_SIZE (element_mode (lhs_type))))
4247           {
4248             error ("type mismatch in vector pack expression");
4249             debug_generic_expr (lhs_type);
4250             debug_generic_expr (rhs1_type);
4251             debug_generic_expr (rhs2_type);
4252             return true;
4253           }
4254 
4255         return false;
4256       }
4257 
4258     case MULT_EXPR:
4259     case MULT_HIGHPART_EXPR:
4260     case TRUNC_DIV_EXPR:
4261     case CEIL_DIV_EXPR:
4262     case FLOOR_DIV_EXPR:
4263     case ROUND_DIV_EXPR:
4264     case TRUNC_MOD_EXPR:
4265     case CEIL_MOD_EXPR:
4266     case FLOOR_MOD_EXPR:
4267     case ROUND_MOD_EXPR:
4268     case RDIV_EXPR:
4269     case EXACT_DIV_EXPR:
4270     case MIN_EXPR:
4271     case MAX_EXPR:
4272     case BIT_IOR_EXPR:
4273     case BIT_XOR_EXPR:
4274     case BIT_AND_EXPR:
4275       /* Continue with generic binary expression handling.  */
4276       break;
4277 
4278     case VEC_SERIES_EXPR:
4279       if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4280 	{
4281 	  error ("type mismatch in series expression");
4282 	  debug_generic_expr (rhs1_type);
4283 	  debug_generic_expr (rhs2_type);
4284 	  return true;
4285 	}
4286       if (TREE_CODE (lhs_type) != VECTOR_TYPE
4287 	  || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4288 	{
4289 	  error ("vector type expected in series expression");
4290 	  debug_generic_expr (lhs_type);
4291 	  return true;
4292 	}
4293       return false;
4294 
4295     default:
4296       gcc_unreachable ();
4297     }
4298 
4299   if (!useless_type_conversion_p (lhs_type, rhs1_type)
4300       || !useless_type_conversion_p (lhs_type, rhs2_type))
4301     {
4302       error ("type mismatch in binary expression");
4303       debug_generic_stmt (lhs_type);
4304       debug_generic_stmt (rhs1_type);
4305       debug_generic_stmt (rhs2_type);
4306       return true;
4307     }
4308 
4309   return false;
4310 }
4311 
4312 /* Verify a gimple assignment statement STMT with a ternary rhs.
4313    Returns true if anything is wrong.  */
4314 
4315 static bool
verify_gimple_assign_ternary(gassign * stmt)4316 verify_gimple_assign_ternary (gassign *stmt)
4317 {
4318   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4319   tree lhs = gimple_assign_lhs (stmt);
4320   tree lhs_type = TREE_TYPE (lhs);
4321   tree rhs1 = gimple_assign_rhs1 (stmt);
4322   tree rhs1_type = TREE_TYPE (rhs1);
4323   tree rhs2 = gimple_assign_rhs2 (stmt);
4324   tree rhs2_type = TREE_TYPE (rhs2);
4325   tree rhs3 = gimple_assign_rhs3 (stmt);
4326   tree rhs3_type = TREE_TYPE (rhs3);
4327 
4328   if (!is_gimple_reg (lhs))
4329     {
4330       error ("non-register as LHS of ternary operation");
4331       return true;
4332     }
4333 
4334   if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4335        ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4336       || !is_gimple_val (rhs2)
4337       || !is_gimple_val (rhs3))
4338     {
4339       error ("invalid operands in ternary operation");
4340       return true;
4341     }
4342 
4343   /* First handle operations that involve different types.  */
4344   switch (rhs_code)
4345     {
4346     case WIDEN_MULT_PLUS_EXPR:
4347     case WIDEN_MULT_MINUS_EXPR:
4348       if ((!INTEGRAL_TYPE_P (rhs1_type)
4349 	   && !FIXED_POINT_TYPE_P (rhs1_type))
4350 	  || !useless_type_conversion_p (rhs1_type, rhs2_type)
4351 	  || !useless_type_conversion_p (lhs_type, rhs3_type)
4352 	  || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4353 	  || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4354 	{
4355 	  error ("type mismatch in widening multiply-accumulate expression");
4356 	  debug_generic_expr (lhs_type);
4357 	  debug_generic_expr (rhs1_type);
4358 	  debug_generic_expr (rhs2_type);
4359 	  debug_generic_expr (rhs3_type);
4360 	  return true;
4361 	}
4362       break;
4363 
4364     case FMA_EXPR:
4365       if (!useless_type_conversion_p (lhs_type, rhs1_type)
4366 	  || !useless_type_conversion_p (lhs_type, rhs2_type)
4367 	  || !useless_type_conversion_p (lhs_type, rhs3_type))
4368 	{
4369 	  error ("type mismatch in fused multiply-add expression");
4370 	  debug_generic_expr (lhs_type);
4371 	  debug_generic_expr (rhs1_type);
4372 	  debug_generic_expr (rhs2_type);
4373 	  debug_generic_expr (rhs3_type);
4374 	  return true;
4375 	}
4376       break;
4377 
4378     case VEC_COND_EXPR:
4379       if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4380 	  || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4381 		       TYPE_VECTOR_SUBPARTS (lhs_type)))
4382 	{
4383 	  error ("the first argument of a VEC_COND_EXPR must be of a "
4384 		 "boolean vector type of the same number of elements "
4385 		 "as the result");
4386 	  debug_generic_expr (lhs_type);
4387 	  debug_generic_expr (rhs1_type);
4388 	  return true;
4389 	}
4390       /* Fallthrough.  */
4391     case COND_EXPR:
4392       if (!useless_type_conversion_p (lhs_type, rhs2_type)
4393 	  || !useless_type_conversion_p (lhs_type, rhs3_type))
4394 	{
4395 	  error ("type mismatch in conditional expression");
4396 	  debug_generic_expr (lhs_type);
4397 	  debug_generic_expr (rhs2_type);
4398 	  debug_generic_expr (rhs3_type);
4399 	  return true;
4400 	}
4401       break;
4402 
4403     case VEC_PERM_EXPR:
4404       if (!useless_type_conversion_p (lhs_type, rhs1_type)
4405 	  || !useless_type_conversion_p (lhs_type, rhs2_type))
4406 	{
4407 	  error ("type mismatch in vector permute expression");
4408 	  debug_generic_expr (lhs_type);
4409 	  debug_generic_expr (rhs1_type);
4410 	  debug_generic_expr (rhs2_type);
4411 	  debug_generic_expr (rhs3_type);
4412 	  return true;
4413 	}
4414 
4415       if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4416 	  || TREE_CODE (rhs2_type) != VECTOR_TYPE
4417 	  || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4418 	{
4419 	  error ("vector types expected in vector permute expression");
4420 	  debug_generic_expr (lhs_type);
4421 	  debug_generic_expr (rhs1_type);
4422 	  debug_generic_expr (rhs2_type);
4423 	  debug_generic_expr (rhs3_type);
4424 	  return true;
4425 	}
4426 
4427       if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4428 		    TYPE_VECTOR_SUBPARTS (rhs2_type))
4429 	  || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4430 		       TYPE_VECTOR_SUBPARTS (rhs3_type))
4431 	  || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4432 		       TYPE_VECTOR_SUBPARTS (lhs_type)))
4433 	{
4434 	  error ("vectors with different element number found "
4435 		 "in vector permute expression");
4436 	  debug_generic_expr (lhs_type);
4437 	  debug_generic_expr (rhs1_type);
4438 	  debug_generic_expr (rhs2_type);
4439 	  debug_generic_expr (rhs3_type);
4440 	  return true;
4441 	}
4442 
4443       if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4444 	  || (TREE_CODE (rhs3) != VECTOR_CST
4445 	      && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4446 				    (TREE_TYPE (rhs3_type)))
4447 		  != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4448 				       (TREE_TYPE (rhs1_type))))))
4449 	{
4450 	  error ("invalid mask type in vector permute expression");
4451 	  debug_generic_expr (lhs_type);
4452 	  debug_generic_expr (rhs1_type);
4453 	  debug_generic_expr (rhs2_type);
4454 	  debug_generic_expr (rhs3_type);
4455 	  return true;
4456 	}
4457 
4458       return false;
4459 
4460     case SAD_EXPR:
4461       if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4462 	  || !useless_type_conversion_p (lhs_type, rhs3_type)
4463 	  || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4464 	       > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4465 	{
4466 	  error ("type mismatch in sad expression");
4467 	  debug_generic_expr (lhs_type);
4468 	  debug_generic_expr (rhs1_type);
4469 	  debug_generic_expr (rhs2_type);
4470 	  debug_generic_expr (rhs3_type);
4471 	  return true;
4472 	}
4473 
4474       if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4475 	  || TREE_CODE (rhs2_type) != VECTOR_TYPE
4476 	  || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4477 	{
4478 	  error ("vector types expected in sad expression");
4479 	  debug_generic_expr (lhs_type);
4480 	  debug_generic_expr (rhs1_type);
4481 	  debug_generic_expr (rhs2_type);
4482 	  debug_generic_expr (rhs3_type);
4483 	  return true;
4484 	}
4485 
4486       return false;
4487 
4488     case BIT_INSERT_EXPR:
4489       if (! useless_type_conversion_p (lhs_type, rhs1_type))
4490 	{
4491 	  error ("type mismatch in BIT_INSERT_EXPR");
4492 	  debug_generic_expr (lhs_type);
4493 	  debug_generic_expr (rhs1_type);
4494 	  return true;
4495 	}
4496       if (! ((INTEGRAL_TYPE_P (rhs1_type)
4497 	      && INTEGRAL_TYPE_P (rhs2_type))
4498 	     || (VECTOR_TYPE_P (rhs1_type)
4499 		 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4500 	{
4501 	  error ("not allowed type combination in BIT_INSERT_EXPR");
4502 	  debug_generic_expr (rhs1_type);
4503 	  debug_generic_expr (rhs2_type);
4504 	  return true;
4505 	}
4506       if (! tree_fits_uhwi_p (rhs3)
4507 	  || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4508 	  || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4509 	{
4510 	  error ("invalid position or size in BIT_INSERT_EXPR");
4511 	  return true;
4512 	}
4513       if (INTEGRAL_TYPE_P (rhs1_type))
4514 	{
4515 	  unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4516 	  if (bitpos >= TYPE_PRECISION (rhs1_type)
4517 	      || (bitpos + TYPE_PRECISION (rhs2_type)
4518 		  > TYPE_PRECISION (rhs1_type)))
4519 	    {
4520 	      error ("insertion out of range in BIT_INSERT_EXPR");
4521 	      return true;
4522 	    }
4523 	}
4524       else if (VECTOR_TYPE_P (rhs1_type))
4525 	{
4526 	  unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4527 	  unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4528 	  if (bitpos % bitsize != 0)
4529 	    {
4530 	      error ("vector insertion not at element boundary");
4531 	      return true;
4532 	    }
4533 	}
4534       return false;
4535 
4536     case DOT_PROD_EXPR:
4537       {
4538         if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4539 	      || TREE_CODE (lhs_type) != VECTOR_TYPE)
4540 	     && ((!INTEGRAL_TYPE_P (rhs1_type)
4541 		  && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4542 		 || (!INTEGRAL_TYPE_P (lhs_type)
4543 		     && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4544 	    || !types_compatible_p (rhs1_type, rhs2_type)
4545 	    || !useless_type_conversion_p (lhs_type, rhs3_type)
4546 	    || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4547 			 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4548           {
4549             error ("type mismatch in dot product reduction");
4550             debug_generic_expr (lhs_type);
4551             debug_generic_expr (rhs1_type);
4552             debug_generic_expr (rhs2_type);
4553             return true;
4554           }
4555         return false;
4556       }
4557 
4558     case REALIGN_LOAD_EXPR:
4559       /* FIXME.  */
4560       return false;
4561 
4562     default:
4563       gcc_unreachable ();
4564     }
4565   return false;
4566 }
4567 
4568 /* Verify a gimple assignment statement STMT with a single rhs.
4569    Returns true if anything is wrong.  */
4570 
4571 static bool
verify_gimple_assign_single(gassign * stmt)4572 verify_gimple_assign_single (gassign *stmt)
4573 {
4574   enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4575   tree lhs = gimple_assign_lhs (stmt);
4576   tree lhs_type = TREE_TYPE (lhs);
4577   tree rhs1 = gimple_assign_rhs1 (stmt);
4578   tree rhs1_type = TREE_TYPE (rhs1);
4579   bool res = false;
4580 
4581   if (!useless_type_conversion_p (lhs_type, rhs1_type))
4582     {
4583       error ("non-trivial conversion at assignment");
4584       debug_generic_expr (lhs_type);
4585       debug_generic_expr (rhs1_type);
4586       return true;
4587     }
4588 
4589   if (gimple_clobber_p (stmt)
4590       && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4591     {
4592       error ("non-decl/MEM_REF LHS in clobber statement");
4593       debug_generic_expr (lhs);
4594       return true;
4595     }
4596 
4597   if (handled_component_p (lhs)
4598       || TREE_CODE (lhs) == MEM_REF
4599       || TREE_CODE (lhs) == TARGET_MEM_REF)
4600     res |= verify_types_in_gimple_reference (lhs, true);
4601 
4602   /* Special codes we cannot handle via their class.  */
4603   switch (rhs_code)
4604     {
4605     case ADDR_EXPR:
4606       {
4607 	tree op = TREE_OPERAND (rhs1, 0);
4608 	if (!is_gimple_addressable (op))
4609 	  {
4610 	    error ("invalid operand in unary expression");
4611 	    return true;
4612 	  }
4613 
4614 	/* Technically there is no longer a need for matching types, but
4615 	   gimple hygiene asks for this check.  In LTO we can end up
4616 	   combining incompatible units and thus end up with addresses
4617 	   of globals that change their type to a common one.  */
4618 	if (!in_lto_p
4619 	    && !types_compatible_p (TREE_TYPE (op),
4620 				    TREE_TYPE (TREE_TYPE (rhs1)))
4621 	    && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4622 							  TREE_TYPE (op)))
4623 	  {
4624 	    error ("type mismatch in address expression");
4625 	    debug_generic_stmt (TREE_TYPE (rhs1));
4626 	    debug_generic_stmt (TREE_TYPE (op));
4627 	    return true;
4628 	  }
4629 
4630 	return verify_types_in_gimple_reference (op, true);
4631       }
4632 
4633     /* tcc_reference  */
4634     case INDIRECT_REF:
4635       error ("INDIRECT_REF in gimple IL");
4636       return true;
4637 
4638     case COMPONENT_REF:
4639     case BIT_FIELD_REF:
4640     case ARRAY_REF:
4641     case ARRAY_RANGE_REF:
4642     case VIEW_CONVERT_EXPR:
4643     case REALPART_EXPR:
4644     case IMAGPART_EXPR:
4645     case TARGET_MEM_REF:
4646     case MEM_REF:
4647       if (!is_gimple_reg (lhs)
4648 	  && is_gimple_reg_type (TREE_TYPE (lhs)))
4649 	{
4650 	  error ("invalid rhs for gimple memory store");
4651 	  debug_generic_stmt (lhs);
4652 	  debug_generic_stmt (rhs1);
4653 	  return true;
4654 	}
4655       return res || verify_types_in_gimple_reference (rhs1, false);
4656 
4657     /* tcc_constant  */
4658     case SSA_NAME:
4659     case INTEGER_CST:
4660     case REAL_CST:
4661     case FIXED_CST:
4662     case COMPLEX_CST:
4663     case VECTOR_CST:
4664     case STRING_CST:
4665       return res;
4666 
4667     /* tcc_declaration  */
4668     case CONST_DECL:
4669       return res;
4670     case VAR_DECL:
4671     case PARM_DECL:
4672       if (!is_gimple_reg (lhs)
4673 	  && !is_gimple_reg (rhs1)
4674 	  && is_gimple_reg_type (TREE_TYPE (lhs)))
4675 	{
4676 	  error ("invalid rhs for gimple memory store");
4677 	  debug_generic_stmt (lhs);
4678 	  debug_generic_stmt (rhs1);
4679 	  return true;
4680 	}
4681       return res;
4682 
4683     case CONSTRUCTOR:
4684       if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4685 	{
4686 	  unsigned int i;
4687 	  tree elt_i, elt_v, elt_t = NULL_TREE;
4688 
4689 	  if (CONSTRUCTOR_NELTS (rhs1) == 0)
4690 	    return res;
4691 	  /* For vector CONSTRUCTORs we require that either it is empty
4692 	     CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4693 	     (then the element count must be correct to cover the whole
4694 	     outer vector and index must be NULL on all elements, or it is
4695 	     a CONSTRUCTOR of scalar elements, where we as an exception allow
4696 	     smaller number of elements (assuming zero filling) and
4697 	     consecutive indexes as compared to NULL indexes (such
4698 	     CONSTRUCTORs can appear in the IL from FEs).  */
4699 	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4700 	    {
4701 	      if (elt_t == NULL_TREE)
4702 		{
4703 		  elt_t = TREE_TYPE (elt_v);
4704 		  if (TREE_CODE (elt_t) == VECTOR_TYPE)
4705 		    {
4706 		      tree elt_t = TREE_TYPE (elt_v);
4707 		      if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4708 						      TREE_TYPE (elt_t)))
4709 			{
4710 			  error ("incorrect type of vector CONSTRUCTOR"
4711 				 " elements");
4712 			  debug_generic_stmt (rhs1);
4713 			  return true;
4714 			}
4715 		      else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4716 					 * TYPE_VECTOR_SUBPARTS (elt_t),
4717 					 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4718 			{
4719 			  error ("incorrect number of vector CONSTRUCTOR"
4720 				 " elements");
4721 			  debug_generic_stmt (rhs1);
4722 			  return true;
4723 			}
4724 		    }
4725 		  else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4726 						       elt_t))
4727 		    {
4728 		      error ("incorrect type of vector CONSTRUCTOR elements");
4729 		      debug_generic_stmt (rhs1);
4730 		      return true;
4731 		    }
4732 		  else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4733 				     TYPE_VECTOR_SUBPARTS (rhs1_type)))
4734 		    {
4735 		      error ("incorrect number of vector CONSTRUCTOR elements");
4736 		      debug_generic_stmt (rhs1);
4737 		      return true;
4738 		    }
4739 		}
4740 	      else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4741 		{
4742 		  error ("incorrect type of vector CONSTRUCTOR elements");
4743 		  debug_generic_stmt (rhs1);
4744 		  return true;
4745 		}
4746 	      if (elt_i != NULL_TREE
4747 		  && (TREE_CODE (elt_t) == VECTOR_TYPE
4748 		      || TREE_CODE (elt_i) != INTEGER_CST
4749 		      || compare_tree_int (elt_i, i) != 0))
4750 		{
4751 		  error ("vector CONSTRUCTOR with non-NULL element index");
4752 		  debug_generic_stmt (rhs1);
4753 		  return true;
4754 		}
4755 	      if (!is_gimple_val (elt_v))
4756 		{
4757 		  error ("vector CONSTRUCTOR element is not a GIMPLE value");
4758 		  debug_generic_stmt (rhs1);
4759 		  return true;
4760 		}
4761 	    }
4762 	}
4763       else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4764 	{
4765 	  error ("non-vector CONSTRUCTOR with elements");
4766 	  debug_generic_stmt (rhs1);
4767 	  return true;
4768 	}
4769       return res;
4770     case OBJ_TYPE_REF:
4771     case ASSERT_EXPR:
4772     case WITH_SIZE_EXPR:
4773       /* FIXME.  */
4774       return res;
4775 
4776     default:;
4777     }
4778 
4779   return res;
4780 }
4781 
4782 /* Verify the contents of a GIMPLE_ASSIGN STMT.  Returns true when there
4783    is a problem, otherwise false.  */
4784 
4785 static bool
verify_gimple_assign(gassign * stmt)4786 verify_gimple_assign (gassign *stmt)
4787 {
4788   switch (gimple_assign_rhs_class (stmt))
4789     {
4790     case GIMPLE_SINGLE_RHS:
4791       return verify_gimple_assign_single (stmt);
4792 
4793     case GIMPLE_UNARY_RHS:
4794       return verify_gimple_assign_unary (stmt);
4795 
4796     case GIMPLE_BINARY_RHS:
4797       return verify_gimple_assign_binary (stmt);
4798 
4799     case GIMPLE_TERNARY_RHS:
4800       return verify_gimple_assign_ternary (stmt);
4801 
4802     default:
4803       gcc_unreachable ();
4804     }
4805 }
4806 
4807 /* Verify the contents of a GIMPLE_RETURN STMT.  Returns true when there
4808    is a problem, otherwise false.  */
4809 
4810 static bool
verify_gimple_return(greturn * stmt)4811 verify_gimple_return (greturn *stmt)
4812 {
4813   tree op = gimple_return_retval (stmt);
4814   tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4815 
4816   /* We cannot test for present return values as we do not fix up missing
4817      return values from the original source.  */
4818   if (op == NULL)
4819     return false;
4820 
4821   if (!is_gimple_val (op)
4822       && TREE_CODE (op) != RESULT_DECL)
4823     {
4824       error ("invalid operand in return statement");
4825       debug_generic_stmt (op);
4826       return true;
4827     }
4828 
4829   if ((TREE_CODE (op) == RESULT_DECL
4830        && DECL_BY_REFERENCE (op))
4831       || (TREE_CODE (op) == SSA_NAME
4832 	  && SSA_NAME_VAR (op)
4833 	  && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4834 	  && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4835     op = TREE_TYPE (op);
4836 
4837   if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4838     {
4839       error ("invalid conversion in return statement");
4840       debug_generic_stmt (restype);
4841       debug_generic_stmt (TREE_TYPE (op));
4842       return true;
4843     }
4844 
4845   return false;
4846 }
4847 
4848 
4849 /* Verify the contents of a GIMPLE_GOTO STMT.  Returns true when there
4850    is a problem, otherwise false.  */
4851 
4852 static bool
verify_gimple_goto(ggoto * stmt)4853 verify_gimple_goto (ggoto *stmt)
4854 {
4855   tree dest = gimple_goto_dest (stmt);
4856 
4857   /* ???  We have two canonical forms of direct goto destinations, a
4858      bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL.  */
4859   if (TREE_CODE (dest) != LABEL_DECL
4860       && (!is_gimple_val (dest)
4861 	  || !POINTER_TYPE_P (TREE_TYPE (dest))))
4862     {
4863       error ("goto destination is neither a label nor a pointer");
4864       return true;
4865     }
4866 
4867   return false;
4868 }
4869 
4870 /* Verify the contents of a GIMPLE_SWITCH STMT.  Returns true when there
4871    is a problem, otherwise false.  */
4872 
4873 static bool
verify_gimple_switch(gswitch * stmt)4874 verify_gimple_switch (gswitch *stmt)
4875 {
4876   unsigned int i, n;
4877   tree elt, prev_upper_bound = NULL_TREE;
4878   tree index_type, elt_type = NULL_TREE;
4879 
4880   if (!is_gimple_val (gimple_switch_index (stmt)))
4881     {
4882       error ("invalid operand to switch statement");
4883       debug_generic_stmt (gimple_switch_index (stmt));
4884       return true;
4885     }
4886 
4887   index_type = TREE_TYPE (gimple_switch_index (stmt));
4888   if (! INTEGRAL_TYPE_P (index_type))
4889     {
4890       error ("non-integral type switch statement");
4891       debug_generic_expr (index_type);
4892       return true;
4893     }
4894 
4895   elt = gimple_switch_label (stmt, 0);
4896   if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4897     {
4898       error ("invalid default case label in switch statement");
4899       debug_generic_expr (elt);
4900       return true;
4901     }
4902 
4903   n = gimple_switch_num_labels (stmt);
4904   for (i = 1; i < n; i++)
4905     {
4906       elt = gimple_switch_label (stmt, i);
4907 
4908       if (! CASE_LOW (elt))
4909 	{
4910 	  error ("invalid case label in switch statement");
4911 	  debug_generic_expr (elt);
4912 	  return true;
4913 	}
4914       if (CASE_HIGH (elt)
4915 	  && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4916 	{
4917 	  error ("invalid case range in switch statement");
4918 	  debug_generic_expr (elt);
4919 	  return true;
4920 	}
4921 
4922       if (elt_type)
4923 	{
4924 	  if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4925 	      || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4926 	    {
4927 	      error ("type mismatch for case label in switch statement");
4928 	      debug_generic_expr (elt);
4929 	      return true;
4930 	    }
4931 	}
4932       else
4933 	{
4934 	  elt_type = TREE_TYPE (CASE_LOW (elt));
4935 	  if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4936 	    {
4937 	      error ("type precision mismatch in switch statement");
4938 	      return true;
4939 	    }
4940 	}
4941 
4942       if (prev_upper_bound)
4943 	{
4944 	  if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4945 	    {
4946 	      error ("case labels not sorted in switch statement");
4947 	      return true;
4948 	    }
4949 	}
4950 
4951       prev_upper_bound = CASE_HIGH (elt);
4952       if (! prev_upper_bound)
4953 	prev_upper_bound = CASE_LOW (elt);
4954     }
4955 
4956   return false;
4957 }
4958 
4959 /* Verify a gimple debug statement STMT.
4960    Returns true if anything is wrong.  */
4961 
4962 static bool
verify_gimple_debug(gimple * stmt ATTRIBUTE_UNUSED)4963 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4964 {
4965   /* There isn't much that could be wrong in a gimple debug stmt.  A
4966      gimple debug bind stmt, for example, maps a tree, that's usually
4967      a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4968      component or member of an aggregate type, to another tree, that
4969      can be an arbitrary expression.  These stmts expand into debug
4970      insns, and are converted to debug notes by var-tracking.c.  */
4971   return false;
4972 }
4973 
4974 /* Verify a gimple label statement STMT.
4975    Returns true if anything is wrong.  */
4976 
4977 static bool
verify_gimple_label(glabel * stmt)4978 verify_gimple_label (glabel *stmt)
4979 {
4980   tree decl = gimple_label_label (stmt);
4981   int uid;
4982   bool err = false;
4983 
4984   if (TREE_CODE (decl) != LABEL_DECL)
4985     return true;
4986   if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4987       && DECL_CONTEXT (decl) != current_function_decl)
4988     {
4989       error ("label's context is not the current function decl");
4990       err |= true;
4991     }
4992 
4993   uid = LABEL_DECL_UID (decl);
4994   if (cfun->cfg
4995       && (uid == -1
4996 	  || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4997     {
4998       error ("incorrect entry in label_to_block_map");
4999       err |= true;
5000     }
5001 
5002   uid = EH_LANDING_PAD_NR (decl);
5003   if (uid)
5004     {
5005       eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
5006       if (decl != lp->post_landing_pad)
5007 	{
5008 	  error ("incorrect setting of landing pad number");
5009 	  err |= true;
5010 	}
5011     }
5012 
5013   return err;
5014 }
5015 
5016 /* Verify a gimple cond statement STMT.
5017    Returns true if anything is wrong.  */
5018 
5019 static bool
verify_gimple_cond(gcond * stmt)5020 verify_gimple_cond (gcond *stmt)
5021 {
5022   if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
5023     {
5024       error ("invalid comparison code in gimple cond");
5025       return true;
5026     }
5027   if (!(!gimple_cond_true_label (stmt)
5028 	|| TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
5029       || !(!gimple_cond_false_label (stmt)
5030 	   || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
5031     {
5032       error ("invalid labels in gimple cond");
5033       return true;
5034     }
5035 
5036   return verify_gimple_comparison (boolean_type_node,
5037 				   gimple_cond_lhs (stmt),
5038 				   gimple_cond_rhs (stmt),
5039 				   gimple_cond_code (stmt));
5040 }
5041 
5042 /* Verify the GIMPLE statement STMT.  Returns true if there is an
5043    error, otherwise false.  */
5044 
5045 static bool
verify_gimple_stmt(gimple * stmt)5046 verify_gimple_stmt (gimple *stmt)
5047 {
5048   switch (gimple_code (stmt))
5049     {
5050     case GIMPLE_ASSIGN:
5051       return verify_gimple_assign (as_a <gassign *> (stmt));
5052 
5053     case GIMPLE_LABEL:
5054       return verify_gimple_label (as_a <glabel *> (stmt));
5055 
5056     case GIMPLE_CALL:
5057       return verify_gimple_call (as_a <gcall *> (stmt));
5058 
5059     case GIMPLE_COND:
5060       return verify_gimple_cond (as_a <gcond *> (stmt));
5061 
5062     case GIMPLE_GOTO:
5063       return verify_gimple_goto (as_a <ggoto *> (stmt));
5064 
5065     case GIMPLE_SWITCH:
5066       return verify_gimple_switch (as_a <gswitch *> (stmt));
5067 
5068     case GIMPLE_RETURN:
5069       return verify_gimple_return (as_a <greturn *> (stmt));
5070 
5071     case GIMPLE_ASM:
5072       return false;
5073 
5074     case GIMPLE_TRANSACTION:
5075       return verify_gimple_transaction (as_a <gtransaction *> (stmt));
5076 
5077     /* Tuples that do not have tree operands.  */
5078     case GIMPLE_NOP:
5079     case GIMPLE_PREDICT:
5080     case GIMPLE_RESX:
5081     case GIMPLE_EH_DISPATCH:
5082     case GIMPLE_EH_MUST_NOT_THROW:
5083       return false;
5084 
5085     CASE_GIMPLE_OMP:
5086       /* OpenMP directives are validated by the FE and never operated
5087 	 on by the optimizers.  Furthermore, GIMPLE_OMP_FOR may contain
5088 	 non-gimple expressions when the main index variable has had
5089 	 its address taken.  This does not affect the loop itself
5090 	 because the header of an GIMPLE_OMP_FOR is merely used to determine
5091 	 how to setup the parallel iteration.  */
5092       return false;
5093 
5094     case GIMPLE_DEBUG:
5095       return verify_gimple_debug (stmt);
5096 
5097     default:
5098       gcc_unreachable ();
5099     }
5100 }
5101 
5102 /* Verify the contents of a GIMPLE_PHI.  Returns true if there is a problem,
5103    and false otherwise.  */
5104 
5105 static bool
verify_gimple_phi(gimple * phi)5106 verify_gimple_phi (gimple *phi)
5107 {
5108   bool err = false;
5109   unsigned i;
5110   tree phi_result = gimple_phi_result (phi);
5111   bool virtual_p;
5112 
5113   if (!phi_result)
5114     {
5115       error ("invalid PHI result");
5116       return true;
5117     }
5118 
5119   virtual_p = virtual_operand_p (phi_result);
5120   if (TREE_CODE (phi_result) != SSA_NAME
5121       || (virtual_p
5122 	  && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5123     {
5124       error ("invalid PHI result");
5125       err = true;
5126     }
5127 
5128   for (i = 0; i < gimple_phi_num_args (phi); i++)
5129     {
5130       tree t = gimple_phi_arg_def (phi, i);
5131 
5132       if (!t)
5133 	{
5134 	  error ("missing PHI def");
5135 	  err |= true;
5136 	  continue;
5137 	}
5138       /* Addressable variables do have SSA_NAMEs but they
5139 	 are not considered gimple values.  */
5140       else if ((TREE_CODE (t) == SSA_NAME
5141 		&& virtual_p != virtual_operand_p (t))
5142 	       || (virtual_p
5143 		   && (TREE_CODE (t) != SSA_NAME
5144 		       || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5145 	       || (!virtual_p
5146 		   && !is_gimple_val (t)))
5147 	{
5148 	  error ("invalid PHI argument");
5149 	  debug_generic_expr (t);
5150 	  err |= true;
5151 	}
5152 #ifdef ENABLE_TYPES_CHECKING
5153       if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5154 	{
5155 	  error ("incompatible types in PHI argument %u", i);
5156 	  debug_generic_stmt (TREE_TYPE (phi_result));
5157 	  debug_generic_stmt (TREE_TYPE (t));
5158 	  err |= true;
5159 	}
5160 #endif
5161     }
5162 
5163   return err;
5164 }
5165 
5166 /* Verify the GIMPLE statements inside the sequence STMTS.  */
5167 
5168 static bool
verify_gimple_in_seq_2(gimple_seq stmts)5169 verify_gimple_in_seq_2 (gimple_seq stmts)
5170 {
5171   gimple_stmt_iterator ittr;
5172   bool err = false;
5173 
5174   for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5175     {
5176       gimple *stmt = gsi_stmt (ittr);
5177 
5178       switch (gimple_code (stmt))
5179         {
5180 	case GIMPLE_BIND:
5181 	  err |= verify_gimple_in_seq_2 (
5182                    gimple_bind_body (as_a <gbind *> (stmt)));
5183 	  break;
5184 
5185 	case GIMPLE_TRY:
5186 	  err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5187 	  err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5188 	  break;
5189 
5190 	case GIMPLE_EH_FILTER:
5191 	  err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5192 	  break;
5193 
5194 	case GIMPLE_EH_ELSE:
5195 	  {
5196 	    geh_else *eh_else = as_a <geh_else *> (stmt);
5197 	    err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5198 	    err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5199 	  }
5200 	  break;
5201 
5202 	case GIMPLE_CATCH:
5203 	  err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5204 					   as_a <gcatch *> (stmt)));
5205 	  break;
5206 
5207 	case GIMPLE_TRANSACTION:
5208 	  err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5209 	  break;
5210 
5211 	default:
5212 	  {
5213 	    bool err2 = verify_gimple_stmt (stmt);
5214 	    if (err2)
5215 	      debug_gimple_stmt (stmt);
5216 	    err |= err2;
5217 	  }
5218 	}
5219     }
5220 
5221   return err;
5222 }
5223 
5224 /* Verify the contents of a GIMPLE_TRANSACTION.  Returns true if there
5225    is a problem, otherwise false.  */
5226 
5227 static bool
verify_gimple_transaction(gtransaction * stmt)5228 verify_gimple_transaction (gtransaction *stmt)
5229 {
5230   tree lab;
5231 
5232   lab = gimple_transaction_label_norm (stmt);
5233   if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5234     return true;
5235   lab = gimple_transaction_label_uninst (stmt);
5236   if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5237     return true;
5238   lab = gimple_transaction_label_over (stmt);
5239   if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5240     return true;
5241 
5242   return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5243 }
5244 
5245 
5246 /* Verify the GIMPLE statements inside the statement list STMTS.  */
5247 
5248 DEBUG_FUNCTION void
verify_gimple_in_seq(gimple_seq stmts)5249 verify_gimple_in_seq (gimple_seq stmts)
5250 {
5251   timevar_push (TV_TREE_STMT_VERIFY);
5252   if (verify_gimple_in_seq_2 (stmts))
5253     internal_error ("verify_gimple failed");
5254   timevar_pop (TV_TREE_STMT_VERIFY);
5255 }
5256 
5257 /* Return true when the T can be shared.  */
5258 
5259 static bool
tree_node_can_be_shared(tree t)5260 tree_node_can_be_shared (tree t)
5261 {
5262   if (IS_TYPE_OR_DECL_P (t)
5263       || is_gimple_min_invariant (t)
5264       || TREE_CODE (t) == SSA_NAME
5265       || t == error_mark_node
5266       || TREE_CODE (t) == IDENTIFIER_NODE)
5267     return true;
5268 
5269   if (TREE_CODE (t) == CASE_LABEL_EXPR)
5270     return true;
5271 
5272   if (DECL_P (t))
5273     return true;
5274 
5275   return false;
5276 }
5277 
5278 /* Called via walk_tree.  Verify tree sharing.  */
5279 
5280 static tree
verify_node_sharing_1(tree * tp,int * walk_subtrees,void * data)5281 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5282 {
5283   hash_set<void *> *visited = (hash_set<void *> *) data;
5284 
5285   if (tree_node_can_be_shared (*tp))
5286     {
5287       *walk_subtrees = false;
5288       return NULL;
5289     }
5290 
5291   if (visited->add (*tp))
5292     return *tp;
5293 
5294   return NULL;
5295 }
5296 
5297 /* Called via walk_gimple_stmt.  Verify tree sharing.  */
5298 
5299 static tree
verify_node_sharing(tree * tp,int * walk_subtrees,void * data)5300 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5301 {
5302   struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5303   return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5304 }
5305 
5306 static bool eh_error_found;
5307 bool
verify_eh_throw_stmt_node(gimple * const & stmt,const int &,hash_set<gimple * > * visited)5308 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5309 			   hash_set<gimple *> *visited)
5310 {
5311   if (!visited->contains (stmt))
5312     {
5313       error ("dead STMT in EH table");
5314       debug_gimple_stmt (stmt);
5315       eh_error_found = true;
5316     }
5317   return true;
5318 }
5319 
5320 /* Verify if the location LOCs block is in BLOCKS.  */
5321 
5322 static bool
verify_location(hash_set<tree> * blocks,location_t loc)5323 verify_location (hash_set<tree> *blocks, location_t loc)
5324 {
5325   tree block = LOCATION_BLOCK (loc);
5326   if (block != NULL_TREE
5327       && !blocks->contains (block))
5328     {
5329       error ("location references block not in block tree");
5330       return true;
5331     }
5332   if (block != NULL_TREE)
5333     return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5334   return false;
5335 }
5336 
5337 /* Called via walk_tree.  Verify that expressions have no blocks.  */
5338 
5339 static tree
verify_expr_no_block(tree * tp,int * walk_subtrees,void *)5340 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5341 {
5342   if (!EXPR_P (*tp))
5343     {
5344       *walk_subtrees = false;
5345       return NULL;
5346     }
5347 
5348   location_t loc = EXPR_LOCATION (*tp);
5349   if (LOCATION_BLOCK (loc) != NULL)
5350     return *tp;
5351 
5352   return NULL;
5353 }
5354 
5355 /* Called via walk_tree.  Verify locations of expressions.  */
5356 
5357 static tree
verify_expr_location_1(tree * tp,int * walk_subtrees,void * data)5358 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5359 {
5360   hash_set<tree> *blocks = (hash_set<tree> *) data;
5361 
5362   if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5363     {
5364       tree t = DECL_DEBUG_EXPR (*tp);
5365       tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5366       if (addr)
5367 	return addr;
5368     }
5369   if ((VAR_P (*tp)
5370        || TREE_CODE (*tp) == PARM_DECL
5371        || TREE_CODE (*tp) == RESULT_DECL)
5372       && DECL_HAS_VALUE_EXPR_P (*tp))
5373     {
5374       tree t = DECL_VALUE_EXPR (*tp);
5375       tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5376       if (addr)
5377 	return addr;
5378     }
5379 
5380   if (!EXPR_P (*tp))
5381     {
5382       *walk_subtrees = false;
5383       return NULL;
5384     }
5385 
5386   location_t loc = EXPR_LOCATION (*tp);
5387   if (verify_location (blocks, loc))
5388     return *tp;
5389 
5390   return NULL;
5391 }
5392 
5393 /* Called via walk_gimple_op.  Verify locations of expressions.  */
5394 
5395 static tree
verify_expr_location(tree * tp,int * walk_subtrees,void * data)5396 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5397 {
5398   struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5399   return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5400 }
5401 
5402 /* Insert all subblocks of BLOCK into BLOCKS and recurse.  */
5403 
5404 static void
collect_subblocks(hash_set<tree> * blocks,tree block)5405 collect_subblocks (hash_set<tree> *blocks, tree block)
5406 {
5407   tree t;
5408   for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5409     {
5410       blocks->add (t);
5411       collect_subblocks (blocks, t);
5412     }
5413 }
5414 
5415 /* Verify the GIMPLE statements in the CFG of FN.  */
5416 
5417 DEBUG_FUNCTION void
verify_gimple_in_cfg(struct function * fn,bool verify_nothrow)5418 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5419 {
5420   basic_block bb;
5421   bool err = false;
5422 
5423   timevar_push (TV_TREE_STMT_VERIFY);
5424   hash_set<void *> visited;
5425   hash_set<gimple *> visited_stmts;
5426 
5427   /* Collect all BLOCKs referenced by the BLOCK tree of FN.  */
5428   hash_set<tree> blocks;
5429   if (DECL_INITIAL (fn->decl))
5430     {
5431       blocks.add (DECL_INITIAL (fn->decl));
5432       collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5433     }
5434 
5435   FOR_EACH_BB_FN (bb, fn)
5436     {
5437       gimple_stmt_iterator gsi;
5438 
5439       for (gphi_iterator gpi = gsi_start_phis (bb);
5440 	   !gsi_end_p (gpi);
5441 	   gsi_next (&gpi))
5442 	{
5443 	  gphi *phi = gpi.phi ();
5444 	  bool err2 = false;
5445 	  unsigned i;
5446 
5447 	  visited_stmts.add (phi);
5448 
5449 	  if (gimple_bb (phi) != bb)
5450 	    {
5451 	      error ("gimple_bb (phi) is set to a wrong basic block");
5452 	      err2 = true;
5453 	    }
5454 
5455 	  err2 |= verify_gimple_phi (phi);
5456 
5457 	  /* Only PHI arguments have locations.  */
5458 	  if (gimple_location (phi) != UNKNOWN_LOCATION)
5459 	    {
5460 	      error ("PHI node with location");
5461 	      err2 = true;
5462 	    }
5463 
5464 	  for (i = 0; i < gimple_phi_num_args (phi); i++)
5465 	    {
5466 	      tree arg = gimple_phi_arg_def (phi, i);
5467 	      tree addr = walk_tree (&arg, verify_node_sharing_1,
5468 				     &visited, NULL);
5469 	      if (addr)
5470 		{
5471 		  error ("incorrect sharing of tree nodes");
5472 		  debug_generic_expr (addr);
5473 		  err2 |= true;
5474 		}
5475 	      location_t loc = gimple_phi_arg_location (phi, i);
5476 	      if (virtual_operand_p (gimple_phi_result (phi))
5477 		  && loc != UNKNOWN_LOCATION)
5478 		{
5479 		  error ("virtual PHI with argument locations");
5480 		  err2 = true;
5481 		}
5482 	      addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5483 	      if (addr)
5484 		{
5485 		  debug_generic_expr (addr);
5486 		  err2 = true;
5487 		}
5488 	      err2 |= verify_location (&blocks, loc);
5489 	    }
5490 
5491 	  if (err2)
5492 	    debug_gimple_stmt (phi);
5493 	  err |= err2;
5494 	}
5495 
5496       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5497 	{
5498 	  gimple *stmt = gsi_stmt (gsi);
5499 	  bool err2 = false;
5500 	  struct walk_stmt_info wi;
5501 	  tree addr;
5502 	  int lp_nr;
5503 
5504 	  visited_stmts.add (stmt);
5505 
5506 	  if (gimple_bb (stmt) != bb)
5507 	    {
5508 	      error ("gimple_bb (stmt) is set to a wrong basic block");
5509 	      err2 = true;
5510 	    }
5511 
5512 	  err2 |= verify_gimple_stmt (stmt);
5513 	  err2 |= verify_location (&blocks, gimple_location (stmt));
5514 
5515 	  memset (&wi, 0, sizeof (wi));
5516 	  wi.info = (void *) &visited;
5517 	  addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5518 	  if (addr)
5519 	    {
5520 	      error ("incorrect sharing of tree nodes");
5521 	      debug_generic_expr (addr);
5522 	      err2 |= true;
5523 	    }
5524 
5525 	  memset (&wi, 0, sizeof (wi));
5526 	  wi.info = (void *) &blocks;
5527 	  addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5528 	  if (addr)
5529 	    {
5530 	      debug_generic_expr (addr);
5531 	      err2 |= true;
5532 	    }
5533 
5534 	  /* ???  Instead of not checking these stmts at all the walker
5535 	     should know its context via wi.  */
5536 	  if (!is_gimple_debug (stmt)
5537 	      && !is_gimple_omp (stmt))
5538 	    {
5539 	      memset (&wi, 0, sizeof (wi));
5540 	      addr = walk_gimple_op (stmt, verify_expr, &wi);
5541 	      if (addr)
5542 		{
5543 		  debug_generic_expr (addr);
5544 		  inform (gimple_location (stmt), "in statement");
5545 		  err2 |= true;
5546 		}
5547 	    }
5548 
5549 	  /* If the statement is marked as part of an EH region, then it is
5550 	     expected that the statement could throw.  Verify that when we
5551 	     have optimizations that simplify statements such that we prove
5552 	     that they cannot throw, that we update other data structures
5553 	     to match.  */
5554 	  lp_nr = lookup_stmt_eh_lp (stmt);
5555 	  if (lp_nr > 0)
5556 	    {
5557 	      if (!stmt_could_throw_p (stmt))
5558 		{
5559 		  if (verify_nothrow)
5560 		    {
5561 		      error ("statement marked for throw, but doesn%'t");
5562 		      err2 |= true;
5563 		    }
5564 		}
5565 	      else if (!gsi_one_before_end_p (gsi))
5566 		{
5567 		  error ("statement marked for throw in middle of block");
5568 		  err2 |= true;
5569 		}
5570 	    }
5571 
5572 	  if (err2)
5573 	    debug_gimple_stmt (stmt);
5574 	  err |= err2;
5575 	}
5576     }
5577 
5578   eh_error_found = false;
5579   hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5580   if (eh_table)
5581     eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5582       (&visited_stmts);
5583 
5584   if (err || eh_error_found)
5585     internal_error ("verify_gimple failed");
5586 
5587   verify_histograms ();
5588   timevar_pop (TV_TREE_STMT_VERIFY);
5589 }
5590 
5591 
5592 /* Verifies that the flow information is OK.  */
5593 
5594 static int
gimple_verify_flow_info(void)5595 gimple_verify_flow_info (void)
5596 {
5597   int err = 0;
5598   basic_block bb;
5599   gimple_stmt_iterator gsi;
5600   gimple *stmt;
5601   edge e;
5602   edge_iterator ei;
5603 
5604   if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5605       || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5606     {
5607       error ("ENTRY_BLOCK has IL associated with it");
5608       err = 1;
5609     }
5610 
5611   if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5612       || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5613     {
5614       error ("EXIT_BLOCK has IL associated with it");
5615       err = 1;
5616     }
5617 
5618   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5619     if (e->flags & EDGE_FALLTHRU)
5620       {
5621 	error ("fallthru to exit from bb %d", e->src->index);
5622 	err = 1;
5623       }
5624 
5625   FOR_EACH_BB_FN (bb, cfun)
5626     {
5627       bool found_ctrl_stmt = false;
5628 
5629       stmt = NULL;
5630 
5631       /* Skip labels on the start of basic block.  */
5632       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5633 	{
5634 	  tree label;
5635 	  gimple *prev_stmt = stmt;
5636 
5637 	  stmt = gsi_stmt (gsi);
5638 
5639 	  if (gimple_code (stmt) != GIMPLE_LABEL)
5640 	    break;
5641 
5642 	  label = gimple_label_label (as_a <glabel *> (stmt));
5643 	  if (prev_stmt && DECL_NONLOCAL (label))
5644 	    {
5645 	      error ("nonlocal label ");
5646 	      print_generic_expr (stderr, label);
5647 	      fprintf (stderr, " is not first in a sequence of labels in bb %d",
5648 		       bb->index);
5649 	      err = 1;
5650 	    }
5651 
5652 	  if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5653 	    {
5654 	      error ("EH landing pad label ");
5655 	      print_generic_expr (stderr, label);
5656 	      fprintf (stderr, " is not first in a sequence of labels in bb %d",
5657 		       bb->index);
5658 	      err = 1;
5659 	    }
5660 
5661 	  if (label_to_block (label) != bb)
5662 	    {
5663 	      error ("label ");
5664 	      print_generic_expr (stderr, label);
5665 	      fprintf (stderr, " to block does not match in bb %d",
5666 		       bb->index);
5667 	      err = 1;
5668 	    }
5669 
5670 	  if (decl_function_context (label) != current_function_decl)
5671 	    {
5672 	      error ("label ");
5673 	      print_generic_expr (stderr, label);
5674 	      fprintf (stderr, " has incorrect context in bb %d",
5675 		       bb->index);
5676 	      err = 1;
5677 	    }
5678 	}
5679 
5680       /* Verify that body of basic block BB is free of control flow.  */
5681       for (; !gsi_end_p (gsi); gsi_next (&gsi))
5682 	{
5683 	  gimple *stmt = gsi_stmt (gsi);
5684 
5685 	  if (found_ctrl_stmt)
5686 	    {
5687 	      error ("control flow in the middle of basic block %d",
5688 		     bb->index);
5689 	      err = 1;
5690 	    }
5691 
5692 	  if (stmt_ends_bb_p (stmt))
5693 	    found_ctrl_stmt = true;
5694 
5695 	  if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5696 	    {
5697 	      error ("label ");
5698 	      print_generic_expr (stderr, gimple_label_label (label_stmt));
5699 	      fprintf (stderr, " in the middle of basic block %d", bb->index);
5700 	      err = 1;
5701 	    }
5702 	}
5703 
5704       gsi = gsi_last_nondebug_bb (bb);
5705       if (gsi_end_p (gsi))
5706 	continue;
5707 
5708       stmt = gsi_stmt (gsi);
5709 
5710       if (gimple_code (stmt) == GIMPLE_LABEL)
5711 	continue;
5712 
5713       err |= verify_eh_edges (stmt);
5714 
5715       if (is_ctrl_stmt (stmt))
5716 	{
5717 	  FOR_EACH_EDGE (e, ei, bb->succs)
5718 	    if (e->flags & EDGE_FALLTHRU)
5719 	      {
5720 		error ("fallthru edge after a control statement in bb %d",
5721 		       bb->index);
5722 		err = 1;
5723 	      }
5724 	}
5725 
5726       if (gimple_code (stmt) != GIMPLE_COND)
5727 	{
5728 	  /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5729 	     after anything else but if statement.  */
5730 	  FOR_EACH_EDGE (e, ei, bb->succs)
5731 	    if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5732 	      {
5733 		error ("true/false edge after a non-GIMPLE_COND in bb %d",
5734 		       bb->index);
5735 		err = 1;
5736 	      }
5737 	}
5738 
5739       switch (gimple_code (stmt))
5740 	{
5741 	case GIMPLE_COND:
5742 	  {
5743 	    edge true_edge;
5744 	    edge false_edge;
5745 
5746 	    extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5747 
5748 	    if (!true_edge
5749 		|| !false_edge
5750 		|| !(true_edge->flags & EDGE_TRUE_VALUE)
5751 		|| !(false_edge->flags & EDGE_FALSE_VALUE)
5752 		|| (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5753 		|| (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5754 		|| EDGE_COUNT (bb->succs) >= 3)
5755 	      {
5756 		error ("wrong outgoing edge flags at end of bb %d",
5757 		       bb->index);
5758 		err = 1;
5759 	      }
5760 	  }
5761 	  break;
5762 
5763 	case GIMPLE_GOTO:
5764 	  if (simple_goto_p (stmt))
5765 	    {
5766 	      error ("explicit goto at end of bb %d", bb->index);
5767 	      err = 1;
5768 	    }
5769 	  else
5770 	    {
5771 	      /* FIXME.  We should double check that the labels in the
5772 		 destination blocks have their address taken.  */
5773 	      FOR_EACH_EDGE (e, ei, bb->succs)
5774 		if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5775 				 | EDGE_FALSE_VALUE))
5776 		    || !(e->flags & EDGE_ABNORMAL))
5777 		  {
5778 		    error ("wrong outgoing edge flags at end of bb %d",
5779 			   bb->index);
5780 		    err = 1;
5781 		  }
5782 	    }
5783 	  break;
5784 
5785 	case GIMPLE_CALL:
5786 	  if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5787 	    break;
5788 	  /* fallthru */
5789 	case GIMPLE_RETURN:
5790 	  if (!single_succ_p (bb)
5791 	      || (single_succ_edge (bb)->flags
5792 		  & (EDGE_FALLTHRU | EDGE_ABNORMAL
5793 		     | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5794 	    {
5795 	      error ("wrong outgoing edge flags at end of bb %d", bb->index);
5796 	      err = 1;
5797 	    }
5798 	  if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5799 	    {
5800 	      error ("return edge does not point to exit in bb %d",
5801 		     bb->index);
5802 	      err = 1;
5803 	    }
5804 	  break;
5805 
5806 	case GIMPLE_SWITCH:
5807 	  {
5808 	    gswitch *switch_stmt = as_a <gswitch *> (stmt);
5809 	    tree prev;
5810 	    edge e;
5811 	    size_t i, n;
5812 
5813 	    n = gimple_switch_num_labels (switch_stmt);
5814 
5815 	    /* Mark all the destination basic blocks.  */
5816 	    for (i = 0; i < n; ++i)
5817 	      {
5818 		tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5819 		basic_block label_bb = label_to_block (lab);
5820 		gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5821 		label_bb->aux = (void *)1;
5822 	      }
5823 
5824 	    /* Verify that the case labels are sorted.  */
5825 	    prev = gimple_switch_label (switch_stmt, 0);
5826 	    for (i = 1; i < n; ++i)
5827 	      {
5828 		tree c = gimple_switch_label (switch_stmt, i);
5829 		if (!CASE_LOW (c))
5830 		  {
5831 		    error ("found default case not at the start of "
5832 			   "case vector");
5833 		    err = 1;
5834 		    continue;
5835 		  }
5836 		if (CASE_LOW (prev)
5837 		    && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5838 		  {
5839 		    error ("case labels not sorted: ");
5840 		    print_generic_expr (stderr, prev);
5841 		    fprintf (stderr," is greater than ");
5842 		    print_generic_expr (stderr, c);
5843 		    fprintf (stderr," but comes before it.\n");
5844 		    err = 1;
5845 		  }
5846 		prev = c;
5847 	      }
5848 	    /* VRP will remove the default case if it can prove it will
5849 	       never be executed.  So do not verify there always exists
5850 	       a default case here.  */
5851 
5852 	    FOR_EACH_EDGE (e, ei, bb->succs)
5853 	      {
5854 		if (!e->dest->aux)
5855 		  {
5856 		    error ("extra outgoing edge %d->%d",
5857 			   bb->index, e->dest->index);
5858 		    err = 1;
5859 		  }
5860 
5861 		e->dest->aux = (void *)2;
5862 		if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5863 				 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5864 		  {
5865 		    error ("wrong outgoing edge flags at end of bb %d",
5866 			   bb->index);
5867 		    err = 1;
5868 		  }
5869 	      }
5870 
5871 	    /* Check that we have all of them.  */
5872 	    for (i = 0; i < n; ++i)
5873 	      {
5874 		tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5875 		basic_block label_bb = label_to_block (lab);
5876 
5877 		if (label_bb->aux != (void *)2)
5878 		  {
5879 		    error ("missing edge %i->%i", bb->index, label_bb->index);
5880 		    err = 1;
5881 		  }
5882 	      }
5883 
5884 	    FOR_EACH_EDGE (e, ei, bb->succs)
5885 	      e->dest->aux = (void *)0;
5886 	  }
5887 	  break;
5888 
5889 	case GIMPLE_EH_DISPATCH:
5890 	  err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5891 	  break;
5892 
5893 	default:
5894 	  break;
5895 	}
5896     }
5897 
5898   if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5899     verify_dominators (CDI_DOMINATORS);
5900 
5901   return err;
5902 }
5903 
5904 
5905 /* Updates phi nodes after creating a forwarder block joined
5906    by edge FALLTHRU.  */
5907 
5908 static void
gimple_make_forwarder_block(edge fallthru)5909 gimple_make_forwarder_block (edge fallthru)
5910 {
5911   edge e;
5912   edge_iterator ei;
5913   basic_block dummy, bb;
5914   tree var;
5915   gphi_iterator gsi;
5916 
5917   dummy = fallthru->src;
5918   bb = fallthru->dest;
5919 
5920   if (single_pred_p (bb))
5921     return;
5922 
5923   /* If we redirected a branch we must create new PHI nodes at the
5924      start of BB.  */
5925   for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5926     {
5927       gphi *phi, *new_phi;
5928 
5929       phi = gsi.phi ();
5930       var = gimple_phi_result (phi);
5931       new_phi = create_phi_node (var, bb);
5932       gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5933       add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5934 		   UNKNOWN_LOCATION);
5935     }
5936 
5937   /* Add the arguments we have stored on edges.  */
5938   FOR_EACH_EDGE (e, ei, bb->preds)
5939     {
5940       if (e == fallthru)
5941 	continue;
5942 
5943       flush_pending_stmts (e);
5944     }
5945 }
5946 
5947 
5948 /* Return a non-special label in the head of basic block BLOCK.
5949    Create one if it doesn't exist.  */
5950 
5951 tree
gimple_block_label(basic_block bb)5952 gimple_block_label (basic_block bb)
5953 {
5954   gimple_stmt_iterator i, s = gsi_start_bb (bb);
5955   bool first = true;
5956   tree label;
5957   glabel *stmt;
5958 
5959   for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5960     {
5961       stmt = dyn_cast <glabel *> (gsi_stmt (i));
5962       if (!stmt)
5963 	break;
5964       label = gimple_label_label (stmt);
5965       if (!DECL_NONLOCAL (label))
5966 	{
5967 	  if (!first)
5968 	    gsi_move_before (&i, &s);
5969 	  return label;
5970 	}
5971     }
5972 
5973   label = create_artificial_label (UNKNOWN_LOCATION);
5974   stmt = gimple_build_label (label);
5975   gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5976   return label;
5977 }
5978 
5979 
5980 /* Attempt to perform edge redirection by replacing a possibly complex
5981    jump instruction by a goto or by removing the jump completely.
5982    This can apply only if all edges now point to the same block.  The
5983    parameters and return values are equivalent to
5984    redirect_edge_and_branch.  */
5985 
5986 static edge
gimple_try_redirect_by_replacing_jump(edge e,basic_block target)5987 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5988 {
5989   basic_block src = e->src;
5990   gimple_stmt_iterator i;
5991   gimple *stmt;
5992 
5993   /* We can replace or remove a complex jump only when we have exactly
5994      two edges.  */
5995   if (EDGE_COUNT (src->succs) != 2
5996       /* Verify that all targets will be TARGET.  Specifically, the
5997 	 edge that is not E must also go to TARGET.  */
5998       || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5999     return NULL;
6000 
6001   i = gsi_last_bb (src);
6002   if (gsi_end_p (i))
6003     return NULL;
6004 
6005   stmt = gsi_stmt (i);
6006 
6007   if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
6008     {
6009       gsi_remove (&i, true);
6010       e = ssa_redirect_edge (e, target);
6011       e->flags = EDGE_FALLTHRU;
6012       return e;
6013     }
6014 
6015   return NULL;
6016 }
6017 
6018 
6019 /* Redirect E to DEST.  Return NULL on failure.  Otherwise, return the
6020    edge representing the redirected branch.  */
6021 
6022 static edge
gimple_redirect_edge_and_branch(edge e,basic_block dest)6023 gimple_redirect_edge_and_branch (edge e, basic_block dest)
6024 {
6025   basic_block bb = e->src;
6026   gimple_stmt_iterator gsi;
6027   edge ret;
6028   gimple *stmt;
6029 
6030   if (e->flags & EDGE_ABNORMAL)
6031     return NULL;
6032 
6033   if (e->dest == dest)
6034     return NULL;
6035 
6036   if (e->flags & EDGE_EH)
6037     return redirect_eh_edge (e, dest);
6038 
6039   if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
6040     {
6041       ret = gimple_try_redirect_by_replacing_jump (e, dest);
6042       if (ret)
6043 	return ret;
6044     }
6045 
6046   gsi = gsi_last_nondebug_bb (bb);
6047   stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6048 
6049   switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6050     {
6051     case GIMPLE_COND:
6052       /* For COND_EXPR, we only need to redirect the edge.  */
6053       break;
6054 
6055     case GIMPLE_GOTO:
6056       /* No non-abnormal edges should lead from a non-simple goto, and
6057 	 simple ones should be represented implicitly.  */
6058       gcc_unreachable ();
6059 
6060     case GIMPLE_SWITCH:
6061       {
6062 	gswitch *switch_stmt = as_a <gswitch *> (stmt);
6063 	tree label = gimple_block_label (dest);
6064         tree cases = get_cases_for_edge (e, switch_stmt);
6065 
6066 	/* If we have a list of cases associated with E, then use it
6067 	   as it's a lot faster than walking the entire case vector.  */
6068 	if (cases)
6069 	  {
6070 	    edge e2 = find_edge (e->src, dest);
6071 	    tree last, first;
6072 
6073 	    first = cases;
6074 	    while (cases)
6075 	      {
6076 		last = cases;
6077 		CASE_LABEL (cases) = label;
6078 		cases = CASE_CHAIN (cases);
6079 	      }
6080 
6081 	    /* If there was already an edge in the CFG, then we need
6082 	       to move all the cases associated with E to E2.  */
6083 	    if (e2)
6084 	      {
6085 		tree cases2 = get_cases_for_edge (e2, switch_stmt);
6086 
6087 		CASE_CHAIN (last) = CASE_CHAIN (cases2);
6088 		CASE_CHAIN (cases2) = first;
6089 	      }
6090 	    bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6091 	  }
6092 	else
6093 	  {
6094 	    size_t i, n = gimple_switch_num_labels (switch_stmt);
6095 
6096 	    for (i = 0; i < n; i++)
6097 	      {
6098 		tree elt = gimple_switch_label (switch_stmt, i);
6099 		if (label_to_block (CASE_LABEL (elt)) == e->dest)
6100 		  CASE_LABEL (elt) = label;
6101 	      }
6102 	  }
6103       }
6104       break;
6105 
6106     case GIMPLE_ASM:
6107       {
6108 	gasm *asm_stmt = as_a <gasm *> (stmt);
6109 	int i, n = gimple_asm_nlabels (asm_stmt);
6110 	tree label = NULL;
6111 
6112 	for (i = 0; i < n; ++i)
6113 	  {
6114 	    tree cons = gimple_asm_label_op (asm_stmt, i);
6115 	    if (label_to_block (TREE_VALUE (cons)) == e->dest)
6116 	      {
6117 		if (!label)
6118 		  label = gimple_block_label (dest);
6119 		TREE_VALUE (cons) = label;
6120 	      }
6121 	  }
6122 
6123 	/* If we didn't find any label matching the former edge in the
6124 	   asm labels, we must be redirecting the fallthrough
6125 	   edge.  */
6126 	gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6127       }
6128       break;
6129 
6130     case GIMPLE_RETURN:
6131       gsi_remove (&gsi, true);
6132       e->flags |= EDGE_FALLTHRU;
6133       break;
6134 
6135     case GIMPLE_OMP_RETURN:
6136     case GIMPLE_OMP_CONTINUE:
6137     case GIMPLE_OMP_SECTIONS_SWITCH:
6138     case GIMPLE_OMP_FOR:
6139       /* The edges from OMP constructs can be simply redirected.  */
6140       break;
6141 
6142     case GIMPLE_EH_DISPATCH:
6143       if (!(e->flags & EDGE_FALLTHRU))
6144 	redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6145       break;
6146 
6147     case GIMPLE_TRANSACTION:
6148       if (e->flags & EDGE_TM_ABORT)
6149 	gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6150 				           gimple_block_label (dest));
6151       else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6152 	gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6153 				             gimple_block_label (dest));
6154       else
6155 	gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6156 				           gimple_block_label (dest));
6157       break;
6158 
6159     default:
6160       /* Otherwise it must be a fallthru edge, and we don't need to
6161 	 do anything besides redirecting it.  */
6162       gcc_assert (e->flags & EDGE_FALLTHRU);
6163       break;
6164     }
6165 
6166   /* Update/insert PHI nodes as necessary.  */
6167 
6168   /* Now update the edges in the CFG.  */
6169   e = ssa_redirect_edge (e, dest);
6170 
6171   return e;
6172 }
6173 
6174 /* Returns true if it is possible to remove edge E by redirecting
6175    it to the destination of the other edge from E->src.  */
6176 
6177 static bool
gimple_can_remove_branch_p(const_edge e)6178 gimple_can_remove_branch_p (const_edge e)
6179 {
6180   if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6181     return false;
6182 
6183   return true;
6184 }
6185 
6186 /* Simple wrapper, as we can always redirect fallthru edges.  */
6187 
6188 static basic_block
gimple_redirect_edge_and_branch_force(edge e,basic_block dest)6189 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6190 {
6191   e = gimple_redirect_edge_and_branch (e, dest);
6192   gcc_assert (e);
6193 
6194   return NULL;
6195 }
6196 
6197 
6198 /* Splits basic block BB after statement STMT (but at least after the
6199    labels).  If STMT is NULL, BB is split just after the labels.  */
6200 
6201 static basic_block
gimple_split_block(basic_block bb,void * stmt)6202 gimple_split_block (basic_block bb, void *stmt)
6203 {
6204   gimple_stmt_iterator gsi;
6205   gimple_stmt_iterator gsi_tgt;
6206   gimple_seq list;
6207   basic_block new_bb;
6208   edge e;
6209   edge_iterator ei;
6210 
6211   new_bb = create_empty_bb (bb);
6212 
6213   /* Redirect the outgoing edges.  */
6214   new_bb->succs = bb->succs;
6215   bb->succs = NULL;
6216   FOR_EACH_EDGE (e, ei, new_bb->succs)
6217     e->src = new_bb;
6218 
6219   /* Get a stmt iterator pointing to the first stmt to move.  */
6220   if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6221     gsi = gsi_after_labels (bb);
6222   else
6223     {
6224       gsi = gsi_for_stmt ((gimple *) stmt);
6225       gsi_next (&gsi);
6226     }
6227 
6228   /* Move everything from GSI to the new basic block.  */
6229   if (gsi_end_p (gsi))
6230     return new_bb;
6231 
6232   /* Split the statement list - avoid re-creating new containers as this
6233      brings ugly quadratic memory consumption in the inliner.
6234      (We are still quadratic since we need to update stmt BB pointers,
6235      sadly.)  */
6236   gsi_split_seq_before (&gsi, &list);
6237   set_bb_seq (new_bb, list);
6238   for (gsi_tgt = gsi_start (list);
6239        !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6240     gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6241 
6242   return new_bb;
6243 }
6244 
6245 
6246 /* Moves basic block BB after block AFTER.  */
6247 
6248 static bool
gimple_move_block_after(basic_block bb,basic_block after)6249 gimple_move_block_after (basic_block bb, basic_block after)
6250 {
6251   if (bb->prev_bb == after)
6252     return true;
6253 
6254   unlink_block (bb);
6255   link_block (bb, after);
6256 
6257   return true;
6258 }
6259 
6260 
6261 /* Return TRUE if block BB has no executable statements, otherwise return
6262    FALSE.  */
6263 
6264 static bool
gimple_empty_block_p(basic_block bb)6265 gimple_empty_block_p (basic_block bb)
6266 {
6267   /* BB must have no executable statements.  */
6268   gimple_stmt_iterator gsi = gsi_after_labels (bb);
6269   if (phi_nodes (bb))
6270     return false;
6271   if (gsi_end_p (gsi))
6272     return true;
6273   if (is_gimple_debug (gsi_stmt (gsi)))
6274     gsi_next_nondebug (&gsi);
6275   return gsi_end_p (gsi);
6276 }
6277 
6278 
6279 /* Split a basic block if it ends with a conditional branch and if the
6280    other part of the block is not empty.  */
6281 
6282 static basic_block
gimple_split_block_before_cond_jump(basic_block bb)6283 gimple_split_block_before_cond_jump (basic_block bb)
6284 {
6285   gimple *last, *split_point;
6286   gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6287   if (gsi_end_p (gsi))
6288     return NULL;
6289   last = gsi_stmt (gsi);
6290   if (gimple_code (last) != GIMPLE_COND
6291       && gimple_code (last) != GIMPLE_SWITCH)
6292     return NULL;
6293   gsi_prev (&gsi);
6294   split_point = gsi_stmt (gsi);
6295   return split_block (bb, split_point)->dest;
6296 }
6297 
6298 
6299 /* Return true if basic_block can be duplicated.  */
6300 
6301 static bool
gimple_can_duplicate_bb_p(const_basic_block bb ATTRIBUTE_UNUSED)6302 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6303 {
6304   return true;
6305 }
6306 
6307 /* Create a duplicate of the basic block BB.  NOTE: This does not
6308    preserve SSA form.  */
6309 
6310 static basic_block
gimple_duplicate_bb(basic_block bb,copy_bb_data * id)6311 gimple_duplicate_bb (basic_block bb, copy_bb_data *id)
6312 {
6313   basic_block new_bb;
6314   gimple_stmt_iterator gsi_tgt;
6315 
6316   new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6317 
6318   /* Copy the PHI nodes.  We ignore PHI node arguments here because
6319      the incoming edges have not been setup yet.  */
6320   for (gphi_iterator gpi = gsi_start_phis (bb);
6321        !gsi_end_p (gpi);
6322        gsi_next (&gpi))
6323     {
6324       gphi *phi, *copy;
6325       phi = gpi.phi ();
6326       copy = create_phi_node (NULL_TREE, new_bb);
6327       create_new_def_for (gimple_phi_result (phi), copy,
6328 			  gimple_phi_result_ptr (copy));
6329       gimple_set_uid (copy, gimple_uid (phi));
6330     }
6331 
6332   gsi_tgt = gsi_start_bb (new_bb);
6333   for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6334        !gsi_end_p (gsi);
6335        gsi_next (&gsi))
6336     {
6337       def_operand_p def_p;
6338       ssa_op_iter op_iter;
6339       tree lhs;
6340       gimple *stmt, *copy;
6341 
6342       stmt = gsi_stmt (gsi);
6343       if (gimple_code (stmt) == GIMPLE_LABEL)
6344 	continue;
6345 
6346       /* Don't duplicate label debug stmts.  */
6347       if (gimple_debug_bind_p (stmt)
6348 	  && TREE_CODE (gimple_debug_bind_get_var (stmt))
6349 	     == LABEL_DECL)
6350 	continue;
6351 
6352       /* Create a new copy of STMT and duplicate STMT's virtual
6353 	 operands.  */
6354       copy = gimple_copy (stmt);
6355       gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6356 
6357       maybe_duplicate_eh_stmt (copy, stmt);
6358       gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6359 
6360       /* When copying around a stmt writing into a local non-user
6361 	 aggregate, make sure it won't share stack slot with other
6362 	 vars.  */
6363       lhs = gimple_get_lhs (stmt);
6364       if (lhs && TREE_CODE (lhs) != SSA_NAME)
6365 	{
6366 	  tree base = get_base_address (lhs);
6367 	  if (base
6368 	      && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6369 	      && DECL_IGNORED_P (base)
6370 	      && !TREE_STATIC (base)
6371 	      && !DECL_EXTERNAL (base)
6372 	      && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6373 	    DECL_NONSHAREABLE (base) = 1;
6374 	}
6375 
6376       /* If requested remap dependence info of cliques brought in
6377          via inlining.  */
6378       if (id)
6379 	for (unsigned i = 0; i < gimple_num_ops (copy); ++i)
6380 	  {
6381 	    tree op = gimple_op (copy, i);
6382 	    if (!op)
6383 	      continue;
6384 	    if (TREE_CODE (op) == ADDR_EXPR
6385 		|| TREE_CODE (op) == WITH_SIZE_EXPR)
6386 	      op = TREE_OPERAND (op, 0);
6387 	    while (handled_component_p (op))
6388 	      op = TREE_OPERAND (op, 0);
6389 	    if ((TREE_CODE (op) == MEM_REF
6390 		 || TREE_CODE (op) == TARGET_MEM_REF)
6391 		&& MR_DEPENDENCE_CLIQUE (op) > 1
6392 		&& MR_DEPENDENCE_CLIQUE (op) != bb->loop_father->owned_clique)
6393 	      {
6394 		if (!id->dependence_map)
6395 		  id->dependence_map = new hash_map<dependence_hash,
6396 						    unsigned short>;
6397 		bool existed;
6398 		unsigned short &newc = id->dependence_map->get_or_insert
6399 		    (MR_DEPENDENCE_CLIQUE (op), &existed);
6400 		if (!existed)
6401 		  {
6402 		    gcc_assert (MR_DEPENDENCE_CLIQUE (op) <= cfun->last_clique);
6403 		    newc = ++cfun->last_clique;
6404 		  }
6405 		MR_DEPENDENCE_CLIQUE (op) = newc;
6406 	      }
6407 	  }
6408 
6409       /* Create new names for all the definitions created by COPY and
6410 	 add replacement mappings for each new name.  */
6411       FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6412 	create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6413     }
6414 
6415   return new_bb;
6416 }
6417 
6418 /* Adds phi node arguments for edge E_COPY after basic block duplication.  */
6419 
6420 static void
add_phi_args_after_copy_edge(edge e_copy)6421 add_phi_args_after_copy_edge (edge e_copy)
6422 {
6423   basic_block bb, bb_copy = e_copy->src, dest;
6424   edge e;
6425   edge_iterator ei;
6426   gphi *phi, *phi_copy;
6427   tree def;
6428   gphi_iterator psi, psi_copy;
6429 
6430   if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6431     return;
6432 
6433   bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6434 
6435   if (e_copy->dest->flags & BB_DUPLICATED)
6436     dest = get_bb_original (e_copy->dest);
6437   else
6438     dest = e_copy->dest;
6439 
6440   e = find_edge (bb, dest);
6441   if (!e)
6442     {
6443       /* During loop unrolling the target of the latch edge is copied.
6444 	 In this case we are not looking for edge to dest, but to
6445 	 duplicated block whose original was dest.  */
6446       FOR_EACH_EDGE (e, ei, bb->succs)
6447 	{
6448 	  if ((e->dest->flags & BB_DUPLICATED)
6449 	      && get_bb_original (e->dest) == dest)
6450 	    break;
6451 	}
6452 
6453       gcc_assert (e != NULL);
6454     }
6455 
6456   for (psi = gsi_start_phis (e->dest),
6457        psi_copy = gsi_start_phis (e_copy->dest);
6458        !gsi_end_p (psi);
6459        gsi_next (&psi), gsi_next (&psi_copy))
6460     {
6461       phi = psi.phi ();
6462       phi_copy = psi_copy.phi ();
6463       def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6464       add_phi_arg (phi_copy, def, e_copy,
6465 		   gimple_phi_arg_location_from_edge (phi, e));
6466     }
6467 }
6468 
6469 
6470 /* Basic block BB_COPY was created by code duplication.  Add phi node
6471    arguments for edges going out of BB_COPY.  The blocks that were
6472    duplicated have BB_DUPLICATED set.  */
6473 
6474 void
add_phi_args_after_copy_bb(basic_block bb_copy)6475 add_phi_args_after_copy_bb (basic_block bb_copy)
6476 {
6477   edge e_copy;
6478   edge_iterator ei;
6479 
6480   FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6481     {
6482       add_phi_args_after_copy_edge (e_copy);
6483     }
6484 }
6485 
6486 /* Blocks in REGION_COPY array of length N_REGION were created by
6487    duplication of basic blocks.  Add phi node arguments for edges
6488    going from these blocks.  If E_COPY is not NULL, also add
6489    phi node arguments for its destination.*/
6490 
6491 void
add_phi_args_after_copy(basic_block * region_copy,unsigned n_region,edge e_copy)6492 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6493 			 edge e_copy)
6494 {
6495   unsigned i;
6496 
6497   for (i = 0; i < n_region; i++)
6498     region_copy[i]->flags |= BB_DUPLICATED;
6499 
6500   for (i = 0; i < n_region; i++)
6501     add_phi_args_after_copy_bb (region_copy[i]);
6502   if (e_copy)
6503     add_phi_args_after_copy_edge (e_copy);
6504 
6505   for (i = 0; i < n_region; i++)
6506     region_copy[i]->flags &= ~BB_DUPLICATED;
6507 }
6508 
6509 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6510    important exit edge EXIT.  By important we mean that no SSA name defined
6511    inside region is live over the other exit edges of the region.  All entry
6512    edges to the region must go to ENTRY->dest.  The edge ENTRY is redirected
6513    to the duplicate of the region.  Dominance and loop information is
6514    updated if UPDATE_DOMINANCE is true, but not the SSA web.  If
6515    UPDATE_DOMINANCE is false then we assume that the caller will update the
6516    dominance information after calling this function.  The new basic
6517    blocks are stored to REGION_COPY in the same order as they had in REGION,
6518    provided that REGION_COPY is not NULL.
6519    The function returns false if it is unable to copy the region,
6520    true otherwise.  */
6521 
6522 bool
gimple_duplicate_sese_region(edge entry,edge exit,basic_block * region,unsigned n_region,basic_block * region_copy,bool update_dominance)6523 gimple_duplicate_sese_region (edge entry, edge exit,
6524 			    basic_block *region, unsigned n_region,
6525 			    basic_block *region_copy,
6526 			    bool update_dominance)
6527 {
6528   unsigned i;
6529   bool free_region_copy = false, copying_header = false;
6530   struct loop *loop = entry->dest->loop_father;
6531   edge exit_copy;
6532   vec<basic_block> doms = vNULL;
6533   edge redirected;
6534   profile_count total_count = profile_count::uninitialized ();
6535   profile_count entry_count = profile_count::uninitialized ();
6536 
6537   if (!can_copy_bbs_p (region, n_region))
6538     return false;
6539 
6540   /* Some sanity checking.  Note that we do not check for all possible
6541      missuses of the functions.  I.e. if you ask to copy something weird,
6542      it will work, but the state of structures probably will not be
6543      correct.  */
6544   for (i = 0; i < n_region; i++)
6545     {
6546       /* We do not handle subloops, i.e. all the blocks must belong to the
6547 	 same loop.  */
6548       if (region[i]->loop_father != loop)
6549 	return false;
6550 
6551       if (region[i] != entry->dest
6552 	  && region[i] == loop->header)
6553 	return false;
6554     }
6555 
6556   /* In case the function is used for loop header copying (which is the primary
6557      use), ensure that EXIT and its copy will be new latch and entry edges.  */
6558   if (loop->header == entry->dest)
6559     {
6560       copying_header = true;
6561 
6562       if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6563 	return false;
6564 
6565       for (i = 0; i < n_region; i++)
6566 	if (region[i] != exit->src
6567 	    && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6568 	  return false;
6569     }
6570 
6571   initialize_original_copy_tables ();
6572 
6573   if (copying_header)
6574     set_loop_copy (loop, loop_outer (loop));
6575   else
6576     set_loop_copy (loop, loop);
6577 
6578   if (!region_copy)
6579     {
6580       region_copy = XNEWVEC (basic_block, n_region);
6581       free_region_copy = true;
6582     }
6583 
6584   /* Record blocks outside the region that are dominated by something
6585      inside.  */
6586   if (update_dominance)
6587     {
6588       doms.create (0);
6589       doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6590     }
6591 
6592   if (entry->dest->count.initialized_p ())
6593     {
6594       total_count = entry->dest->count;
6595       entry_count = entry->count ();
6596       /* Fix up corner cases, to avoid division by zero or creation of negative
6597 	 frequencies.  */
6598       if (entry_count > total_count)
6599 	entry_count = total_count;
6600     }
6601 
6602   copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6603 	    split_edge_bb_loc (entry), update_dominance);
6604   if (total_count.initialized_p () && entry_count.initialized_p ())
6605     {
6606       scale_bbs_frequencies_profile_count (region, n_region,
6607 				           total_count - entry_count,
6608 				           total_count);
6609       scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6610 				           total_count);
6611     }
6612 
6613   if (copying_header)
6614     {
6615       loop->header = exit->dest;
6616       loop->latch = exit->src;
6617     }
6618 
6619   /* Redirect the entry and add the phi node arguments.  */
6620   redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6621   gcc_assert (redirected != NULL);
6622   flush_pending_stmts (entry);
6623 
6624   /* Concerning updating of dominators:  We must recount dominators
6625      for entry block and its copy.  Anything that is outside of the
6626      region, but was dominated by something inside needs recounting as
6627      well.  */
6628   if (update_dominance)
6629     {
6630       set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6631       doms.safe_push (get_bb_original (entry->dest));
6632       iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6633       doms.release ();
6634     }
6635 
6636   /* Add the other PHI node arguments.  */
6637   add_phi_args_after_copy (region_copy, n_region, NULL);
6638 
6639   if (free_region_copy)
6640     free (region_copy);
6641 
6642   free_original_copy_tables ();
6643   return true;
6644 }
6645 
6646 /* Checks if BB is part of the region defined by N_REGION BBS.  */
6647 static bool
bb_part_of_region_p(basic_block bb,basic_block * bbs,unsigned n_region)6648 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6649 {
6650   unsigned int n;
6651 
6652   for (n = 0; n < n_region; n++)
6653     {
6654      if (bb == bbs[n])
6655        return true;
6656     }
6657   return false;
6658 }
6659 
6660 /* Duplicates REGION consisting of N_REGION blocks.  The new blocks
6661    are stored to REGION_COPY in the same order in that they appear
6662    in REGION, if REGION_COPY is not NULL.  ENTRY is the entry to
6663    the region, EXIT an exit from it.  The condition guarding EXIT
6664    is moved to ENTRY.  Returns true if duplication succeeds, false
6665    otherwise.
6666 
6667    For example,
6668 
6669    some_code;
6670    if (cond)
6671      A;
6672    else
6673      B;
6674 
6675    is transformed to
6676 
6677    if (cond)
6678      {
6679        some_code;
6680        A;
6681      }
6682    else
6683      {
6684        some_code;
6685        B;
6686      }
6687 */
6688 
6689 bool
gimple_duplicate_sese_tail(edge entry,edge exit,basic_block * region,unsigned n_region,basic_block * region_copy)6690 gimple_duplicate_sese_tail (edge entry, edge exit,
6691 			  basic_block *region, unsigned n_region,
6692 			  basic_block *region_copy)
6693 {
6694   unsigned i;
6695   bool free_region_copy = false;
6696   struct loop *loop = exit->dest->loop_father;
6697   struct loop *orig_loop = entry->dest->loop_father;
6698   basic_block switch_bb, entry_bb, nentry_bb;
6699   vec<basic_block> doms;
6700   profile_count total_count = profile_count::uninitialized (),
6701 		exit_count = profile_count::uninitialized ();
6702   edge exits[2], nexits[2], e;
6703   gimple_stmt_iterator gsi;
6704   gimple *cond_stmt;
6705   edge sorig, snew;
6706   basic_block exit_bb;
6707   gphi_iterator psi;
6708   gphi *phi;
6709   tree def;
6710   struct loop *target, *aloop, *cloop;
6711 
6712   gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6713   exits[0] = exit;
6714   exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6715 
6716   if (!can_copy_bbs_p (region, n_region))
6717     return false;
6718 
6719   initialize_original_copy_tables ();
6720   set_loop_copy (orig_loop, loop);
6721 
6722   target= loop;
6723   for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6724     {
6725       if (bb_part_of_region_p (aloop->header, region, n_region))
6726 	{
6727 	  cloop = duplicate_loop (aloop, target);
6728 	  duplicate_subloops (aloop, cloop);
6729 	}
6730     }
6731 
6732   if (!region_copy)
6733     {
6734       region_copy = XNEWVEC (basic_block, n_region);
6735       free_region_copy = true;
6736     }
6737 
6738   gcc_assert (!need_ssa_update_p (cfun));
6739 
6740   /* Record blocks outside the region that are dominated by something
6741      inside.  */
6742   doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6743 
6744   total_count = exit->src->count;
6745   exit_count = exit->count ();
6746   /* Fix up corner cases, to avoid division by zero or creation of negative
6747      frequencies.  */
6748   if (exit_count > total_count)
6749     exit_count = total_count;
6750 
6751   copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6752 	    split_edge_bb_loc (exit), true);
6753   if (total_count.initialized_p () && exit_count.initialized_p ())
6754     {
6755       scale_bbs_frequencies_profile_count (region, n_region,
6756 				           total_count - exit_count,
6757 				           total_count);
6758       scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6759 				           total_count);
6760     }
6761 
6762   /* Create the switch block, and put the exit condition to it.  */
6763   entry_bb = entry->dest;
6764   nentry_bb = get_bb_copy (entry_bb);
6765   if (!last_stmt (entry->src)
6766       || !stmt_ends_bb_p (last_stmt (entry->src)))
6767     switch_bb = entry->src;
6768   else
6769     switch_bb = split_edge (entry);
6770   set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6771 
6772   gsi = gsi_last_bb (switch_bb);
6773   cond_stmt = last_stmt (exit->src);
6774   gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6775   cond_stmt = gimple_copy (cond_stmt);
6776 
6777   gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6778 
6779   sorig = single_succ_edge (switch_bb);
6780   sorig->flags = exits[1]->flags;
6781   sorig->probability = exits[1]->probability;
6782   snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6783   snew->probability = exits[0]->probability;
6784 
6785 
6786   /* Register the new edge from SWITCH_BB in loop exit lists.  */
6787   rescan_loop_exit (snew, true, false);
6788 
6789   /* Add the PHI node arguments.  */
6790   add_phi_args_after_copy (region_copy, n_region, snew);
6791 
6792   /* Get rid of now superfluous conditions and associated edges (and phi node
6793      arguments).  */
6794   exit_bb = exit->dest;
6795 
6796   e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6797   PENDING_STMT (e) = NULL;
6798 
6799   /* The latch of ORIG_LOOP was copied, and so was the backedge
6800      to the original header.  We redirect this backedge to EXIT_BB.  */
6801   for (i = 0; i < n_region; i++)
6802     if (get_bb_original (region_copy[i]) == orig_loop->latch)
6803       {
6804 	gcc_assert (single_succ_edge (region_copy[i]));
6805 	e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6806 	PENDING_STMT (e) = NULL;
6807 	for (psi = gsi_start_phis (exit_bb);
6808 	     !gsi_end_p (psi);
6809 	     gsi_next (&psi))
6810 	  {
6811 	    phi = psi.phi ();
6812 	    def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6813 	    add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6814 	  }
6815       }
6816   e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6817   PENDING_STMT (e) = NULL;
6818 
6819   /* Anything that is outside of the region, but was dominated by something
6820      inside needs to update dominance info.  */
6821   iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6822   doms.release ();
6823   /* Update the SSA web.  */
6824   update_ssa (TODO_update_ssa);
6825 
6826   if (free_region_copy)
6827     free (region_copy);
6828 
6829   free_original_copy_tables ();
6830   return true;
6831 }
6832 
6833 /* Add all the blocks dominated by ENTRY to the array BBS_P.  Stop
6834    adding blocks when the dominator traversal reaches EXIT.  This
6835    function silently assumes that ENTRY strictly dominates EXIT.  */
6836 
6837 void
gather_blocks_in_sese_region(basic_block entry,basic_block exit,vec<basic_block> * bbs_p)6838 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6839 			      vec<basic_block> *bbs_p)
6840 {
6841   basic_block son;
6842 
6843   for (son = first_dom_son (CDI_DOMINATORS, entry);
6844        son;
6845        son = next_dom_son (CDI_DOMINATORS, son))
6846     {
6847       bbs_p->safe_push (son);
6848       if (son != exit)
6849 	gather_blocks_in_sese_region (son, exit, bbs_p);
6850     }
6851 }
6852 
6853 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6854    The duplicates are recorded in VARS_MAP.  */
6855 
6856 static void
replace_by_duplicate_decl(tree * tp,hash_map<tree,tree> * vars_map,tree to_context)6857 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6858 			   tree to_context)
6859 {
6860   tree t = *tp, new_t;
6861   struct function *f = DECL_STRUCT_FUNCTION (to_context);
6862 
6863   if (DECL_CONTEXT (t) == to_context)
6864     return;
6865 
6866   bool existed;
6867   tree &loc = vars_map->get_or_insert (t, &existed);
6868 
6869   if (!existed)
6870     {
6871       if (SSA_VAR_P (t))
6872 	{
6873 	  new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6874 	  add_local_decl (f, new_t);
6875 	}
6876       else
6877 	{
6878 	  gcc_assert (TREE_CODE (t) == CONST_DECL);
6879 	  new_t = copy_node (t);
6880 	}
6881       DECL_CONTEXT (new_t) = to_context;
6882 
6883       loc = new_t;
6884     }
6885   else
6886     new_t = loc;
6887 
6888   *tp = new_t;
6889 }
6890 
6891 
6892 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6893    VARS_MAP maps old ssa names and var_decls to the new ones.  */
6894 
6895 static tree
replace_ssa_name(tree name,hash_map<tree,tree> * vars_map,tree to_context)6896 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6897 		  tree to_context)
6898 {
6899   tree new_name;
6900 
6901   gcc_assert (!virtual_operand_p (name));
6902 
6903   tree *loc = vars_map->get (name);
6904 
6905   if (!loc)
6906     {
6907       tree decl = SSA_NAME_VAR (name);
6908       if (decl)
6909 	{
6910 	  gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6911 	  replace_by_duplicate_decl (&decl, vars_map, to_context);
6912 	  new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6913 				       decl, SSA_NAME_DEF_STMT (name));
6914 	}
6915       else
6916 	new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6917 				     name, SSA_NAME_DEF_STMT (name));
6918 
6919       /* Now that we've used the def stmt to define new_name, make sure it
6920 	 doesn't define name anymore.  */
6921       SSA_NAME_DEF_STMT (name) = NULL;
6922 
6923       vars_map->put (name, new_name);
6924     }
6925   else
6926     new_name = *loc;
6927 
6928   return new_name;
6929 }
6930 
6931 struct move_stmt_d
6932 {
6933   tree orig_block;
6934   tree new_block;
6935   tree from_context;
6936   tree to_context;
6937   hash_map<tree, tree> *vars_map;
6938   htab_t new_label_map;
6939   hash_map<void *, void *> *eh_map;
6940   bool remap_decls_p;
6941 };
6942 
6943 /* Helper for move_block_to_fn.  Set TREE_BLOCK in every expression
6944    contained in *TP if it has been ORIG_BLOCK previously and change the
6945    DECL_CONTEXT of every local variable referenced in *TP.  */
6946 
6947 static tree
move_stmt_op(tree * tp,int * walk_subtrees,void * data)6948 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6949 {
6950   struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6951   struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6952   tree t = *tp;
6953 
6954   if (EXPR_P (t))
6955     {
6956       tree block = TREE_BLOCK (t);
6957       if (block == NULL_TREE)
6958 	;
6959       else if (block == p->orig_block
6960 	       || p->orig_block == NULL_TREE)
6961 	{
6962 	  /* tree_node_can_be_shared says we can share invariant
6963 	     addresses but unshare_expr copies them anyways.  Make sure
6964 	     to unshare before adjusting the block in place - we do not
6965 	     always see a copy here.  */
6966 	  if (TREE_CODE (t) == ADDR_EXPR
6967 	      && is_gimple_min_invariant (t))
6968 	    *tp = t = unshare_expr (t);
6969 	  TREE_SET_BLOCK (t, p->new_block);
6970 	}
6971       else if (flag_checking)
6972 	{
6973 	  while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6974 	    block = BLOCK_SUPERCONTEXT (block);
6975 	  gcc_assert (block == p->orig_block);
6976 	}
6977     }
6978   else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6979     {
6980       if (TREE_CODE (t) == SSA_NAME)
6981 	*tp = replace_ssa_name (t, p->vars_map, p->to_context);
6982       else if (TREE_CODE (t) == PARM_DECL
6983 	       && gimple_in_ssa_p (cfun))
6984 	*tp = *(p->vars_map->get (t));
6985       else if (TREE_CODE (t) == LABEL_DECL)
6986 	{
6987 	  if (p->new_label_map)
6988 	    {
6989 	      struct tree_map in, *out;
6990 	      in.base.from = t;
6991 	      out = (struct tree_map *)
6992 		htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6993 	      if (out)
6994 		*tp = t = out->to;
6995 	    }
6996 
6997 	  /* For FORCED_LABELs we can end up with references from other
6998 	     functions if some SESE regions are outlined.  It is UB to
6999 	     jump in between them, but they could be used just for printing
7000 	     addresses etc.  In that case, DECL_CONTEXT on the label should
7001 	     be the function containing the glabel stmt with that LABEL_DECL,
7002 	     rather than whatever function a reference to the label was seen
7003 	     last time.  */
7004 	  if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
7005 	    DECL_CONTEXT (t) = p->to_context;
7006 	}
7007       else if (p->remap_decls_p)
7008 	{
7009 	  /* Replace T with its duplicate.  T should no longer appear in the
7010 	     parent function, so this looks wasteful; however, it may appear
7011 	     in referenced_vars, and more importantly, as virtual operands of
7012 	     statements, and in alias lists of other variables.  It would be
7013 	     quite difficult to expunge it from all those places.  ??? It might
7014 	     suffice to do this for addressable variables.  */
7015 	  if ((VAR_P (t) && !is_global_var (t))
7016 	      || TREE_CODE (t) == CONST_DECL)
7017 	    replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
7018 	}
7019       *walk_subtrees = 0;
7020     }
7021   else if (TYPE_P (t))
7022     *walk_subtrees = 0;
7023 
7024   return NULL_TREE;
7025 }
7026 
7027 /* Helper for move_stmt_r.  Given an EH region number for the source
7028    function, map that to the duplicate EH regio number in the dest.  */
7029 
7030 static int
move_stmt_eh_region_nr(int old_nr,struct move_stmt_d * p)7031 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
7032 {
7033   eh_region old_r, new_r;
7034 
7035   old_r = get_eh_region_from_number (old_nr);
7036   new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
7037 
7038   return new_r->index;
7039 }
7040 
7041 /* Similar, but operate on INTEGER_CSTs.  */
7042 
7043 static tree
move_stmt_eh_region_tree_nr(tree old_t_nr,struct move_stmt_d * p)7044 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
7045 {
7046   int old_nr, new_nr;
7047 
7048   old_nr = tree_to_shwi (old_t_nr);
7049   new_nr = move_stmt_eh_region_nr (old_nr, p);
7050 
7051   return build_int_cst (integer_type_node, new_nr);
7052 }
7053 
7054 /* Like move_stmt_op, but for gimple statements.
7055 
7056    Helper for move_block_to_fn.  Set GIMPLE_BLOCK in every expression
7057    contained in the current statement in *GSI_P and change the
7058    DECL_CONTEXT of every local variable referenced in the current
7059    statement.  */
7060 
7061 static tree
move_stmt_r(gimple_stmt_iterator * gsi_p,bool * handled_ops_p,struct walk_stmt_info * wi)7062 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
7063 	     struct walk_stmt_info *wi)
7064 {
7065   struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
7066   gimple *stmt = gsi_stmt (*gsi_p);
7067   tree block = gimple_block (stmt);
7068 
7069   if (block == p->orig_block
7070       || (p->orig_block == NULL_TREE
7071 	  && block != NULL_TREE))
7072     gimple_set_block (stmt, p->new_block);
7073 
7074   switch (gimple_code (stmt))
7075     {
7076     case GIMPLE_CALL:
7077       /* Remap the region numbers for __builtin_eh_{pointer,filter}.  */
7078       {
7079 	tree r, fndecl = gimple_call_fndecl (stmt);
7080 	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
7081 	  switch (DECL_FUNCTION_CODE (fndecl))
7082 	    {
7083 	    case BUILT_IN_EH_COPY_VALUES:
7084 	      r = gimple_call_arg (stmt, 1);
7085 	      r = move_stmt_eh_region_tree_nr (r, p);
7086 	      gimple_call_set_arg (stmt, 1, r);
7087 	      /* FALLTHRU */
7088 
7089 	    case BUILT_IN_EH_POINTER:
7090 	    case BUILT_IN_EH_FILTER:
7091 	      r = gimple_call_arg (stmt, 0);
7092 	      r = move_stmt_eh_region_tree_nr (r, p);
7093 	      gimple_call_set_arg (stmt, 0, r);
7094 	      break;
7095 
7096 	    default:
7097 	      break;
7098 	    }
7099       }
7100       break;
7101 
7102     case GIMPLE_RESX:
7103       {
7104 	gresx *resx_stmt = as_a <gresx *> (stmt);
7105 	int r = gimple_resx_region (resx_stmt);
7106 	r = move_stmt_eh_region_nr (r, p);
7107 	gimple_resx_set_region (resx_stmt, r);
7108       }
7109       break;
7110 
7111     case GIMPLE_EH_DISPATCH:
7112       {
7113 	geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7114 	int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7115 	r = move_stmt_eh_region_nr (r, p);
7116 	gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7117       }
7118       break;
7119 
7120     case GIMPLE_OMP_RETURN:
7121     case GIMPLE_OMP_CONTINUE:
7122       break;
7123 
7124     case GIMPLE_LABEL:
7125       {
7126 	/* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7127 	   so that such labels can be referenced from other regions.
7128 	   Make sure to update it when seeing a GIMPLE_LABEL though,
7129 	   that is the owner of the label.  */
7130 	walk_gimple_op (stmt, move_stmt_op, wi);
7131 	*handled_ops_p = true;
7132 	tree label = gimple_label_label (as_a <glabel *> (stmt));
7133 	if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7134 	  DECL_CONTEXT (label) = p->to_context;
7135       }
7136       break;
7137 
7138     default:
7139       if (is_gimple_omp (stmt))
7140 	{
7141 	  /* Do not remap variables inside OMP directives.  Variables
7142 	     referenced in clauses and directive header belong to the
7143 	     parent function and should not be moved into the child
7144 	     function.  */
7145 	  bool save_remap_decls_p = p->remap_decls_p;
7146 	  p->remap_decls_p = false;
7147 	  *handled_ops_p = true;
7148 
7149 	  walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7150 			       move_stmt_op, wi);
7151 
7152 	  p->remap_decls_p = save_remap_decls_p;
7153 	}
7154       break;
7155     }
7156 
7157   return NULL_TREE;
7158 }
7159 
7160 /* Move basic block BB from function CFUN to function DEST_FN.  The
7161    block is moved out of the original linked list and placed after
7162    block AFTER in the new list.  Also, the block is removed from the
7163    original array of blocks and placed in DEST_FN's array of blocks.
7164    If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7165    updated to reflect the moved edges.
7166 
7167    The local variables are remapped to new instances, VARS_MAP is used
7168    to record the mapping.  */
7169 
7170 static void
move_block_to_fn(struct function * dest_cfun,basic_block bb,basic_block after,bool update_edge_count_p,struct move_stmt_d * d)7171 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7172 		  basic_block after, bool update_edge_count_p,
7173 		  struct move_stmt_d *d)
7174 {
7175   struct control_flow_graph *cfg;
7176   edge_iterator ei;
7177   edge e;
7178   gimple_stmt_iterator si;
7179   unsigned old_len, new_len;
7180 
7181   /* Remove BB from dominance structures.  */
7182   delete_from_dominance_info (CDI_DOMINATORS, bb);
7183 
7184   /* Move BB from its current loop to the copy in the new function.  */
7185   if (current_loops)
7186     {
7187       struct loop *new_loop = (struct loop *)bb->loop_father->aux;
7188       if (new_loop)
7189 	bb->loop_father = new_loop;
7190     }
7191 
7192   /* Link BB to the new linked list.  */
7193   move_block_after (bb, after);
7194 
7195   /* Update the edge count in the corresponding flowgraphs.  */
7196   if (update_edge_count_p)
7197     FOR_EACH_EDGE (e, ei, bb->succs)
7198       {
7199 	cfun->cfg->x_n_edges--;
7200 	dest_cfun->cfg->x_n_edges++;
7201       }
7202 
7203   /* Remove BB from the original basic block array.  */
7204   (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7205   cfun->cfg->x_n_basic_blocks--;
7206 
7207   /* Grow DEST_CFUN's basic block array if needed.  */
7208   cfg = dest_cfun->cfg;
7209   cfg->x_n_basic_blocks++;
7210   if (bb->index >= cfg->x_last_basic_block)
7211     cfg->x_last_basic_block = bb->index + 1;
7212 
7213   old_len = vec_safe_length (cfg->x_basic_block_info);
7214   if ((unsigned) cfg->x_last_basic_block >= old_len)
7215     {
7216       new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7217       vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7218     }
7219 
7220   (*cfg->x_basic_block_info)[bb->index] = bb;
7221 
7222   /* Remap the variables in phi nodes.  */
7223   for (gphi_iterator psi = gsi_start_phis (bb);
7224        !gsi_end_p (psi); )
7225     {
7226       gphi *phi = psi.phi ();
7227       use_operand_p use;
7228       tree op = PHI_RESULT (phi);
7229       ssa_op_iter oi;
7230       unsigned i;
7231 
7232       if (virtual_operand_p (op))
7233 	{
7234 	  /* Remove the phi nodes for virtual operands (alias analysis will be
7235 	     run for the new function, anyway).  But replace all uses that
7236 	     might be outside of the region we move.  */
7237 	  use_operand_p use_p;
7238 	  imm_use_iterator iter;
7239 	  gimple *use_stmt;
7240 	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, op)
7241 	    FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7242 	      SET_USE (use_p, SSA_NAME_VAR (op));
7243           remove_phi_node (&psi, true);
7244 	  continue;
7245 	}
7246 
7247       SET_PHI_RESULT (phi,
7248 		      replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7249       FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7250 	{
7251 	  op = USE_FROM_PTR (use);
7252 	  if (TREE_CODE (op) == SSA_NAME)
7253 	    SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7254 	}
7255 
7256       for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7257 	{
7258 	  location_t locus = gimple_phi_arg_location (phi, i);
7259 	  tree block = LOCATION_BLOCK (locus);
7260 
7261 	  if (locus == UNKNOWN_LOCATION)
7262 	    continue;
7263 	  if (d->orig_block == NULL_TREE || block == d->orig_block)
7264 	    {
7265 	      locus = set_block (locus, d->new_block);
7266 	      gimple_phi_arg_set_location (phi, i, locus);
7267 	    }
7268 	}
7269 
7270       gsi_next (&psi);
7271     }
7272 
7273   for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7274     {
7275       gimple *stmt = gsi_stmt (si);
7276       struct walk_stmt_info wi;
7277 
7278       memset (&wi, 0, sizeof (wi));
7279       wi.info = d;
7280       walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7281 
7282       if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7283 	{
7284 	  tree label = gimple_label_label (label_stmt);
7285 	  int uid = LABEL_DECL_UID (label);
7286 
7287 	  gcc_assert (uid > -1);
7288 
7289 	  old_len = vec_safe_length (cfg->x_label_to_block_map);
7290 	  if (old_len <= (unsigned) uid)
7291 	    {
7292 	      new_len = 3 * uid / 2 + 1;
7293 	      vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7294 	    }
7295 
7296 	  (*cfg->x_label_to_block_map)[uid] = bb;
7297 	  (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7298 
7299 	  gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7300 
7301 	  if (uid >= dest_cfun->cfg->last_label_uid)
7302 	    dest_cfun->cfg->last_label_uid = uid + 1;
7303 	}
7304 
7305       maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7306       remove_stmt_from_eh_lp_fn (cfun, stmt);
7307 
7308       gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7309       gimple_remove_stmt_histograms (cfun, stmt);
7310 
7311       /* We cannot leave any operands allocated from the operand caches of
7312 	 the current function.  */
7313       free_stmt_operands (cfun, stmt);
7314       push_cfun (dest_cfun);
7315       update_stmt (stmt);
7316       pop_cfun ();
7317     }
7318 
7319   FOR_EACH_EDGE (e, ei, bb->succs)
7320     if (e->goto_locus != UNKNOWN_LOCATION)
7321       {
7322 	tree block = LOCATION_BLOCK (e->goto_locus);
7323 	if (d->orig_block == NULL_TREE
7324 	    || block == d->orig_block)
7325 	  e->goto_locus = set_block (e->goto_locus, d->new_block);
7326       }
7327 }
7328 
7329 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7330    the outermost EH region.  Use REGION as the incoming base EH region.
7331    If there is no single outermost region, return NULL and set *ALL to
7332    true.  */
7333 
7334 static eh_region
find_outermost_region_in_block(struct function * src_cfun,basic_block bb,eh_region region,bool * all)7335 find_outermost_region_in_block (struct function *src_cfun,
7336 				basic_block bb, eh_region region,
7337 				bool *all)
7338 {
7339   gimple_stmt_iterator si;
7340 
7341   for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7342     {
7343       gimple *stmt = gsi_stmt (si);
7344       eh_region stmt_region;
7345       int lp_nr;
7346 
7347       lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7348       stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7349       if (stmt_region)
7350 	{
7351 	  if (region == NULL)
7352 	    region = stmt_region;
7353 	  else if (stmt_region != region)
7354 	    {
7355 	      region = eh_region_outermost (src_cfun, stmt_region, region);
7356 	      if (region == NULL)
7357 		{
7358 		  *all = true;
7359 		  return NULL;
7360 		}
7361 	    }
7362 	}
7363     }
7364 
7365   return region;
7366 }
7367 
7368 static tree
new_label_mapper(tree decl,void * data)7369 new_label_mapper (tree decl, void *data)
7370 {
7371   htab_t hash = (htab_t) data;
7372   struct tree_map *m;
7373   void **slot;
7374 
7375   gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7376 
7377   m = XNEW (struct tree_map);
7378   m->hash = DECL_UID (decl);
7379   m->base.from = decl;
7380   m->to = create_artificial_label (UNKNOWN_LOCATION);
7381   LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7382   if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7383     cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7384 
7385   slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7386   gcc_assert (*slot == NULL);
7387 
7388   *slot = m;
7389 
7390   return m->to;
7391 }
7392 
7393 /* Tree walker to replace the decls used inside value expressions by
7394    duplicates.  */
7395 
7396 static tree
replace_block_vars_by_duplicates_1(tree * tp,int * walk_subtrees,void * data)7397 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7398 {
7399   struct replace_decls_d *rd = (struct replace_decls_d *)data;
7400 
7401   switch (TREE_CODE (*tp))
7402     {
7403     case VAR_DECL:
7404     case PARM_DECL:
7405     case RESULT_DECL:
7406       replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7407       break;
7408     default:
7409       break;
7410     }
7411 
7412   if (IS_TYPE_OR_DECL_P (*tp))
7413     *walk_subtrees = false;
7414 
7415   return NULL;
7416 }
7417 
7418 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7419    subblocks.  */
7420 
7421 static void
replace_block_vars_by_duplicates(tree block,hash_map<tree,tree> * vars_map,tree to_context)7422 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7423 				  tree to_context)
7424 {
7425   tree *tp, t;
7426 
7427   for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7428     {
7429       t = *tp;
7430       if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7431 	continue;
7432       replace_by_duplicate_decl (&t, vars_map, to_context);
7433       if (t != *tp)
7434 	{
7435 	  if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7436 	    {
7437 	      tree x = DECL_VALUE_EXPR (*tp);
7438 	      struct replace_decls_d rd = { vars_map, to_context };
7439 	      unshare_expr (x);
7440 	      walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7441 	      SET_DECL_VALUE_EXPR (t, x);
7442 	      DECL_HAS_VALUE_EXPR_P (t) = 1;
7443 	    }
7444 	  DECL_CHAIN (t) = DECL_CHAIN (*tp);
7445 	  *tp = t;
7446 	}
7447     }
7448 
7449   for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7450     replace_block_vars_by_duplicates (block, vars_map, to_context);
7451 }
7452 
7453 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7454    from FN1 to FN2.  */
7455 
7456 static void
fixup_loop_arrays_after_move(struct function * fn1,struct function * fn2,struct loop * loop)7457 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7458 			      struct loop *loop)
7459 {
7460   /* Discard it from the old loop array.  */
7461   (*get_loops (fn1))[loop->num] = NULL;
7462 
7463   /* Place it in the new loop array, assigning it a new number.  */
7464   loop->num = number_of_loops (fn2);
7465   vec_safe_push (loops_for_fn (fn2)->larray, loop);
7466 
7467   /* Recurse to children.  */
7468   for (loop = loop->inner; loop; loop = loop->next)
7469     fixup_loop_arrays_after_move (fn1, fn2, loop);
7470 }
7471 
7472 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7473    delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks.  */
7474 
7475 DEBUG_FUNCTION void
verify_sese(basic_block entry,basic_block exit,vec<basic_block> * bbs_p)7476 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7477 {
7478   basic_block bb;
7479   edge_iterator ei;
7480   edge e;
7481   bitmap bbs = BITMAP_ALLOC (NULL);
7482   int i;
7483 
7484   gcc_assert (entry != NULL);
7485   gcc_assert (entry != exit);
7486   gcc_assert (bbs_p != NULL);
7487 
7488   gcc_assert (bbs_p->length () > 0);
7489 
7490   FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7491     bitmap_set_bit (bbs, bb->index);
7492 
7493   gcc_assert (bitmap_bit_p (bbs, entry->index));
7494   gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7495 
7496   FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7497     {
7498       if (bb == entry)
7499 	{
7500 	  gcc_assert (single_pred_p (entry));
7501 	  gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7502 	}
7503       else
7504 	for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7505 	  {
7506 	    e = ei_edge (ei);
7507 	    gcc_assert (bitmap_bit_p (bbs, e->src->index));
7508 	  }
7509 
7510       if (bb == exit)
7511 	{
7512 	  gcc_assert (single_succ_p (exit));
7513 	  gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7514 	}
7515       else
7516 	for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7517 	  {
7518 	    e = ei_edge (ei);
7519 	    gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7520 	  }
7521     }
7522 
7523   BITMAP_FREE (bbs);
7524 }
7525 
7526 /* If FROM is an SSA_NAME, mark the version in bitmap DATA.  */
7527 
7528 bool
gather_ssa_name_hash_map_from(tree const & from,tree const &,void * data)7529 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7530 {
7531   bitmap release_names = (bitmap)data;
7532 
7533   if (TREE_CODE (from) != SSA_NAME)
7534     return true;
7535 
7536   bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7537   return true;
7538 }
7539 
7540 /* Return LOOP_DIST_ALIAS call if present in BB.  */
7541 
7542 static gimple *
find_loop_dist_alias(basic_block bb)7543 find_loop_dist_alias (basic_block bb)
7544 {
7545   gimple *g = last_stmt (bb);
7546   if (g == NULL || gimple_code (g) != GIMPLE_COND)
7547     return NULL;
7548 
7549   gimple_stmt_iterator gsi = gsi_for_stmt (g);
7550   gsi_prev (&gsi);
7551   if (gsi_end_p (gsi))
7552     return NULL;
7553 
7554   g = gsi_stmt (gsi);
7555   if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7556     return g;
7557   return NULL;
7558 }
7559 
7560 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7561    to VALUE and update any immediate uses of it's LHS.  */
7562 
7563 void
fold_loop_internal_call(gimple * g,tree value)7564 fold_loop_internal_call (gimple *g, tree value)
7565 {
7566   tree lhs = gimple_call_lhs (g);
7567   use_operand_p use_p;
7568   imm_use_iterator iter;
7569   gimple *use_stmt;
7570   gimple_stmt_iterator gsi = gsi_for_stmt (g);
7571 
7572   update_call_from_tree (&gsi, value);
7573   FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7574     {
7575       FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7576 	SET_USE (use_p, value);
7577       update_stmt (use_stmt);
7578     }
7579 }
7580 
7581 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7582    EXIT_BB to function DEST_CFUN.  The whole region is replaced by a
7583    single basic block in the original CFG and the new basic block is
7584    returned.  DEST_CFUN must not have a CFG yet.
7585 
7586    Note that the region need not be a pure SESE region.  Blocks inside
7587    the region may contain calls to abort/exit.  The only restriction
7588    is that ENTRY_BB should be the only entry point and it must
7589    dominate EXIT_BB.
7590 
7591    Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7592    functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7593    to the new function.
7594 
7595    All local variables referenced in the region are assumed to be in
7596    the corresponding BLOCK_VARS and unexpanded variable lists
7597    associated with DEST_CFUN.
7598 
7599    TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7600    reimplement move_sese_region_to_fn by duplicating the region rather than
7601    moving it.  */
7602 
7603 basic_block
move_sese_region_to_fn(struct function * dest_cfun,basic_block entry_bb,basic_block exit_bb,tree orig_block)7604 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7605 		        basic_block exit_bb, tree orig_block)
7606 {
7607   vec<basic_block> bbs, dom_bbs;
7608   basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7609   basic_block after, bb, *entry_pred, *exit_succ, abb;
7610   struct function *saved_cfun = cfun;
7611   int *entry_flag, *exit_flag;
7612   profile_probability *entry_prob, *exit_prob;
7613   unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7614   edge e;
7615   edge_iterator ei;
7616   htab_t new_label_map;
7617   hash_map<void *, void *> *eh_map;
7618   struct loop *loop = entry_bb->loop_father;
7619   struct loop *loop0 = get_loop (saved_cfun, 0);
7620   struct move_stmt_d d;
7621 
7622   /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7623      region.  */
7624   gcc_assert (entry_bb != exit_bb
7625               && (!exit_bb
7626 		  || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7627 
7628   /* Collect all the blocks in the region.  Manually add ENTRY_BB
7629      because it won't be added by dfs_enumerate_from.  */
7630   bbs.create (0);
7631   bbs.safe_push (entry_bb);
7632   gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7633 
7634   if (flag_checking)
7635     verify_sese (entry_bb, exit_bb, &bbs);
7636 
7637   /* The blocks that used to be dominated by something in BBS will now be
7638      dominated by the new block.  */
7639   dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7640 				     bbs.address (),
7641 				     bbs.length ());
7642 
7643   /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG.  We need to remember
7644      the predecessor edges to ENTRY_BB and the successor edges to
7645      EXIT_BB so that we can re-attach them to the new basic block that
7646      will replace the region.  */
7647   num_entry_edges = EDGE_COUNT (entry_bb->preds);
7648   entry_pred = XNEWVEC (basic_block, num_entry_edges);
7649   entry_flag = XNEWVEC (int, num_entry_edges);
7650   entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7651   i = 0;
7652   for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7653     {
7654       entry_prob[i] = e->probability;
7655       entry_flag[i] = e->flags;
7656       entry_pred[i++] = e->src;
7657       remove_edge (e);
7658     }
7659 
7660   if (exit_bb)
7661     {
7662       num_exit_edges = EDGE_COUNT (exit_bb->succs);
7663       exit_succ = XNEWVEC (basic_block, num_exit_edges);
7664       exit_flag = XNEWVEC (int, num_exit_edges);
7665       exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7666       i = 0;
7667       for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7668 	{
7669 	  exit_prob[i] = e->probability;
7670 	  exit_flag[i] = e->flags;
7671 	  exit_succ[i++] = e->dest;
7672 	  remove_edge (e);
7673 	}
7674     }
7675   else
7676     {
7677       num_exit_edges = 0;
7678       exit_succ = NULL;
7679       exit_flag = NULL;
7680       exit_prob = NULL;
7681     }
7682 
7683   /* Switch context to the child function to initialize DEST_FN's CFG.  */
7684   gcc_assert (dest_cfun->cfg == NULL);
7685   push_cfun (dest_cfun);
7686 
7687   init_empty_tree_cfg ();
7688 
7689   /* Initialize EH information for the new function.  */
7690   eh_map = NULL;
7691   new_label_map = NULL;
7692   if (saved_cfun->eh)
7693     {
7694       eh_region region = NULL;
7695       bool all = false;
7696 
7697       FOR_EACH_VEC_ELT (bbs, i, bb)
7698 	{
7699 	  region = find_outermost_region_in_block (saved_cfun, bb, region, &all);
7700 	  if (all)
7701 	    break;
7702 	}
7703 
7704       init_eh_for_function ();
7705       if (region != NULL || all)
7706 	{
7707 	  new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7708 	  eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7709 					 new_label_mapper, new_label_map);
7710 	}
7711     }
7712 
7713   /* Initialize an empty loop tree.  */
7714   struct loops *loops = ggc_cleared_alloc<struct loops> ();
7715   init_loops_structure (dest_cfun, loops, 1);
7716   loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7717   set_loops_for_fn (dest_cfun, loops);
7718 
7719   vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7720 
7721   /* Move the outlined loop tree part.  */
7722   num_nodes = bbs.length ();
7723   FOR_EACH_VEC_ELT (bbs, i, bb)
7724     {
7725       if (bb->loop_father->header == bb)
7726 	{
7727 	  struct loop *this_loop = bb->loop_father;
7728 	  struct loop *outer = loop_outer (this_loop);
7729 	  if (outer == loop
7730 	      /* If the SESE region contains some bbs ending with
7731 		 a noreturn call, those are considered to belong
7732 		 to the outermost loop in saved_cfun, rather than
7733 		 the entry_bb's loop_father.  */
7734 	      || outer == loop0)
7735 	    {
7736 	      if (outer != loop)
7737 		num_nodes -= this_loop->num_nodes;
7738 	      flow_loop_tree_node_remove (bb->loop_father);
7739 	      flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7740 	      fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7741 	    }
7742 	}
7743       else if (bb->loop_father == loop0 && loop0 != loop)
7744 	num_nodes--;
7745 
7746       /* Remove loop exits from the outlined region.  */
7747       if (loops_for_fn (saved_cfun)->exits)
7748 	FOR_EACH_EDGE (e, ei, bb->succs)
7749 	  {
7750 	    struct loops *l = loops_for_fn (saved_cfun);
7751 	    loop_exit **slot
7752 	      = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7753 					       NO_INSERT);
7754 	    if (slot)
7755 	      l->exits->clear_slot (slot);
7756 	  }
7757     }
7758 
7759   /* Adjust the number of blocks in the tree root of the outlined part.  */
7760   get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7761 
7762   /* Setup a mapping to be used by move_block_to_fn.  */
7763   loop->aux = current_loops->tree_root;
7764   loop0->aux = current_loops->tree_root;
7765 
7766   /* Fix up orig_loop_num.  If the block referenced in it has been moved
7767      to dest_cfun, update orig_loop_num field, otherwise clear it.  */
7768   struct loop *dloop;
7769   signed char *moved_orig_loop_num = NULL;
7770   FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7771     if (dloop->orig_loop_num)
7772       {
7773 	if (moved_orig_loop_num == NULL)
7774 	  moved_orig_loop_num
7775 	    = XCNEWVEC (signed char, vec_safe_length (larray));
7776 	if ((*larray)[dloop->orig_loop_num] != NULL
7777 	    && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7778 	  {
7779 	    if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7780 		&& moved_orig_loop_num[dloop->orig_loop_num] < 2)
7781 	      moved_orig_loop_num[dloop->orig_loop_num]++;
7782 	    dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7783 	  }
7784 	else
7785 	  {
7786 	    moved_orig_loop_num[dloop->orig_loop_num] = -1;
7787 	    dloop->orig_loop_num = 0;
7788 	  }
7789       }
7790   pop_cfun ();
7791 
7792   if (moved_orig_loop_num)
7793     {
7794       FOR_EACH_VEC_ELT (bbs, i, bb)
7795 	{
7796 	  gimple *g = find_loop_dist_alias (bb);
7797 	  if (g == NULL)
7798 	    continue;
7799 
7800 	  int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7801 	  gcc_assert (orig_loop_num
7802 		      && (unsigned) orig_loop_num < vec_safe_length (larray));
7803 	  if (moved_orig_loop_num[orig_loop_num] == 2)
7804 	    {
7805 	      /* If we have moved both loops with this orig_loop_num into
7806 		 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7807 		 too, update the first argument.  */
7808 	      gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7809 			  && (get_loop (saved_cfun, dloop->orig_loop_num)
7810 			      == NULL));
7811 	      tree t = build_int_cst (integer_type_node,
7812 				      (*larray)[dloop->orig_loop_num]->num);
7813 	      gimple_call_set_arg (g, 0, t);
7814 	      update_stmt (g);
7815 	      /* Make sure the following loop will not update it.  */
7816 	      moved_orig_loop_num[orig_loop_num] = 0;
7817 	    }
7818 	  else
7819 	    /* Otherwise at least one of the loops stayed in saved_cfun.
7820 	       Remove the LOOP_DIST_ALIAS call.  */
7821 	    fold_loop_internal_call (g, gimple_call_arg (g, 1));
7822 	}
7823       FOR_EACH_BB_FN (bb, saved_cfun)
7824 	{
7825 	  gimple *g = find_loop_dist_alias (bb);
7826 	  if (g == NULL)
7827 	    continue;
7828 	  int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7829 	  gcc_assert (orig_loop_num
7830 		      && (unsigned) orig_loop_num < vec_safe_length (larray));
7831 	  if (moved_orig_loop_num[orig_loop_num])
7832 	    /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7833 	       of the corresponding loops was moved, remove it.  */
7834 	    fold_loop_internal_call (g, gimple_call_arg (g, 1));
7835 	}
7836       XDELETEVEC (moved_orig_loop_num);
7837     }
7838   ggc_free (larray);
7839 
7840   /* Move blocks from BBS into DEST_CFUN.  */
7841   gcc_assert (bbs.length () >= 2);
7842   after = dest_cfun->cfg->x_entry_block_ptr;
7843   hash_map<tree, tree> vars_map;
7844 
7845   memset (&d, 0, sizeof (d));
7846   d.orig_block = orig_block;
7847   d.new_block = DECL_INITIAL (dest_cfun->decl);
7848   d.from_context = cfun->decl;
7849   d.to_context = dest_cfun->decl;
7850   d.vars_map = &vars_map;
7851   d.new_label_map = new_label_map;
7852   d.eh_map = eh_map;
7853   d.remap_decls_p = true;
7854 
7855   if (gimple_in_ssa_p (cfun))
7856     for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7857       {
7858 	tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7859 	set_ssa_default_def (dest_cfun, arg, narg);
7860 	vars_map.put (arg, narg);
7861       }
7862 
7863   FOR_EACH_VEC_ELT (bbs, i, bb)
7864     {
7865       /* No need to update edge counts on the last block.  It has
7866 	 already been updated earlier when we detached the region from
7867 	 the original CFG.  */
7868       move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7869       after = bb;
7870     }
7871 
7872   loop->aux = NULL;
7873   loop0->aux = NULL;
7874   /* Loop sizes are no longer correct, fix them up.  */
7875   loop->num_nodes -= num_nodes;
7876   for (struct loop *outer = loop_outer (loop);
7877        outer; outer = loop_outer (outer))
7878     outer->num_nodes -= num_nodes;
7879   loop0->num_nodes -= bbs.length () - num_nodes;
7880 
7881   if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7882     {
7883       struct loop *aloop;
7884       for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7885 	if (aloop != NULL)
7886 	  {
7887 	    if (aloop->simduid)
7888 	      {
7889 		replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7890 					   d.to_context);
7891 		dest_cfun->has_simduid_loops = true;
7892 	      }
7893 	    if (aloop->force_vectorize)
7894 	      dest_cfun->has_force_vectorize_loops = true;
7895 	  }
7896     }
7897 
7898   /* Rewire BLOCK_SUBBLOCKS of orig_block.  */
7899   if (orig_block)
7900     {
7901       tree block;
7902       gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7903 		  == NULL_TREE);
7904       BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7905 	= BLOCK_SUBBLOCKS (orig_block);
7906       for (block = BLOCK_SUBBLOCKS (orig_block);
7907 	   block; block = BLOCK_CHAIN (block))
7908 	BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7909       BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7910     }
7911 
7912   replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7913 				    &vars_map, dest_cfun->decl);
7914 
7915   if (new_label_map)
7916     htab_delete (new_label_map);
7917   if (eh_map)
7918     delete eh_map;
7919 
7920   if (gimple_in_ssa_p (cfun))
7921     {
7922       /* We need to release ssa-names in a defined order, so first find them,
7923 	 and then iterate in ascending version order.  */
7924       bitmap release_names = BITMAP_ALLOC (NULL);
7925       vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7926       bitmap_iterator bi;
7927       unsigned i;
7928       EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7929 	release_ssa_name (ssa_name (i));
7930       BITMAP_FREE (release_names);
7931     }
7932 
7933   /* Rewire the entry and exit blocks.  The successor to the entry
7934      block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7935      the child function.  Similarly, the predecessor of DEST_FN's
7936      EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR.  We
7937      need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7938      various CFG manipulation function get to the right CFG.
7939 
7940      FIXME, this is silly.  The CFG ought to become a parameter to
7941      these helpers.  */
7942   push_cfun (dest_cfun);
7943   ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7944   make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7945   if (exit_bb)
7946     {
7947       make_single_succ_edge (exit_bb,  EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7948       EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7949     }
7950   else
7951     EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7952   pop_cfun ();
7953 
7954   /* Back in the original function, the SESE region has disappeared,
7955      create a new basic block in its place.  */
7956   bb = create_empty_bb (entry_pred[0]);
7957   if (current_loops)
7958     add_bb_to_loop (bb, loop);
7959   for (i = 0; i < num_entry_edges; i++)
7960     {
7961       e = make_edge (entry_pred[i], bb, entry_flag[i]);
7962       e->probability = entry_prob[i];
7963     }
7964 
7965   for (i = 0; i < num_exit_edges; i++)
7966     {
7967       e = make_edge (bb, exit_succ[i], exit_flag[i]);
7968       e->probability = exit_prob[i];
7969     }
7970 
7971   set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7972   FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7973     set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7974   dom_bbs.release ();
7975 
7976   if (exit_bb)
7977     {
7978       free (exit_prob);
7979       free (exit_flag);
7980       free (exit_succ);
7981     }
7982   free (entry_prob);
7983   free (entry_flag);
7984   free (entry_pred);
7985   bbs.release ();
7986 
7987   return bb;
7988 }
7989 
7990 /* Dump default def DEF to file FILE using FLAGS and indentation
7991    SPC.  */
7992 
7993 static void
dump_default_def(FILE * file,tree def,int spc,dump_flags_t flags)7994 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7995 {
7996   for (int i = 0; i < spc; ++i)
7997     fprintf (file, " ");
7998   dump_ssaname_info_to_file (file, def, spc);
7999 
8000   print_generic_expr (file, TREE_TYPE (def), flags);
8001   fprintf (file, " ");
8002   print_generic_expr (file, def, flags);
8003   fprintf (file, " = ");
8004   print_generic_expr (file, SSA_NAME_VAR (def), flags);
8005   fprintf (file, ";\n");
8006 }
8007 
8008 /* Print no_sanitize attribute to FILE for a given attribute VALUE.  */
8009 
8010 static void
print_no_sanitize_attr_value(FILE * file,tree value)8011 print_no_sanitize_attr_value (FILE *file, tree value)
8012 {
8013   unsigned int flags = tree_to_uhwi (value);
8014   bool first = true;
8015   for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
8016     {
8017       if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
8018 	{
8019 	  if (!first)
8020 	    fprintf (file, " | ");
8021 	  fprintf (file, "%s", sanitizer_opts[i].name);
8022 	  first = false;
8023 	}
8024     }
8025 }
8026 
8027 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
8028    */
8029 
8030 void
dump_function_to_file(tree fndecl,FILE * file,dump_flags_t flags)8031 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
8032 {
8033   tree arg, var, old_current_fndecl = current_function_decl;
8034   struct function *dsf;
8035   bool ignore_topmost_bind = false, any_var = false;
8036   basic_block bb;
8037   tree chain;
8038   bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
8039 		  && decl_is_tm_clone (fndecl));
8040   struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
8041 
8042   if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
8043     {
8044       fprintf (file, "__attribute__((");
8045 
8046       bool first = true;
8047       tree chain;
8048       for (chain = DECL_ATTRIBUTES (fndecl); chain;
8049 	   first = false, chain = TREE_CHAIN (chain))
8050 	{
8051 	  if (!first)
8052 	    fprintf (file, ", ");
8053 
8054 	  tree name = get_attribute_name (chain);
8055 	  print_generic_expr (file, name, dump_flags);
8056 	  if (TREE_VALUE (chain) != NULL_TREE)
8057 	    {
8058 	      fprintf (file, " (");
8059 
8060 	      if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
8061 		print_no_sanitize_attr_value (file, TREE_VALUE (chain));
8062 	      else
8063 		print_generic_expr (file, TREE_VALUE (chain), dump_flags);
8064 	      fprintf (file, ")");
8065 	    }
8066 	}
8067 
8068       fprintf (file, "))\n");
8069     }
8070 
8071   current_function_decl = fndecl;
8072   if (flags & TDF_GIMPLE)
8073     {
8074       print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
8075 			  dump_flags | TDF_SLIM);
8076       fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
8077     }
8078   else
8079     fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
8080 
8081   arg = DECL_ARGUMENTS (fndecl);
8082   while (arg)
8083     {
8084       print_generic_expr (file, TREE_TYPE (arg), dump_flags);
8085       fprintf (file, " ");
8086       print_generic_expr (file, arg, dump_flags);
8087       if (DECL_CHAIN (arg))
8088 	fprintf (file, ", ");
8089       arg = DECL_CHAIN (arg);
8090     }
8091   fprintf (file, ")\n");
8092 
8093   dsf = DECL_STRUCT_FUNCTION (fndecl);
8094   if (dsf && (flags & TDF_EH))
8095     dump_eh_tree (file, dsf);
8096 
8097   if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
8098     {
8099       dump_node (fndecl, TDF_SLIM | flags, file);
8100       current_function_decl = old_current_fndecl;
8101       return;
8102     }
8103 
8104   /* When GIMPLE is lowered, the variables are no longer available in
8105      BIND_EXPRs, so display them separately.  */
8106   if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
8107     {
8108       unsigned ix;
8109       ignore_topmost_bind = true;
8110 
8111       fprintf (file, "{\n");
8112       if (gimple_in_ssa_p (fun)
8113 	  && (flags & TDF_ALIAS))
8114 	{
8115 	  for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8116 	       arg = DECL_CHAIN (arg))
8117 	    {
8118 	      tree def = ssa_default_def (fun, arg);
8119 	      if (def)
8120 		dump_default_def (file, def, 2, flags);
8121 	    }
8122 
8123 	  tree res = DECL_RESULT (fun->decl);
8124 	  if (res != NULL_TREE
8125 	      && DECL_BY_REFERENCE (res))
8126 	    {
8127 	      tree def = ssa_default_def (fun, res);
8128 	      if (def)
8129 		dump_default_def (file, def, 2, flags);
8130 	    }
8131 
8132 	  tree static_chain = fun->static_chain_decl;
8133 	  if (static_chain != NULL_TREE)
8134 	    {
8135 	      tree def = ssa_default_def (fun, static_chain);
8136 	      if (def)
8137 		dump_default_def (file, def, 2, flags);
8138 	    }
8139 	}
8140 
8141       if (!vec_safe_is_empty (fun->local_decls))
8142 	FOR_EACH_LOCAL_DECL (fun, ix, var)
8143 	  {
8144 	    print_generic_decl (file, var, flags);
8145 	    fprintf (file, "\n");
8146 
8147 	    any_var = true;
8148 	  }
8149 
8150       tree name;
8151 
8152       if (gimple_in_ssa_p (cfun))
8153 	FOR_EACH_SSA_NAME (ix, name, cfun)
8154 	  {
8155 	    if (!SSA_NAME_VAR (name))
8156 	      {
8157 		fprintf (file, "  ");
8158 		print_generic_expr (file, TREE_TYPE (name), flags);
8159 		fprintf (file, " ");
8160 		print_generic_expr (file, name, flags);
8161 		fprintf (file, ";\n");
8162 
8163 		any_var = true;
8164 	      }
8165 	  }
8166     }
8167 
8168   if (fun && fun->decl == fndecl
8169       && fun->cfg
8170       && basic_block_info_for_fn (fun))
8171     {
8172       /* If the CFG has been built, emit a CFG-based dump.  */
8173       if (!ignore_topmost_bind)
8174 	fprintf (file, "{\n");
8175 
8176       if (any_var && n_basic_blocks_for_fn (fun))
8177 	fprintf (file, "\n");
8178 
8179       FOR_EACH_BB_FN (bb, fun)
8180 	dump_bb (file, bb, 2, flags);
8181 
8182       fprintf (file, "}\n");
8183     }
8184   else if (fun->curr_properties & PROP_gimple_any)
8185     {
8186       /* The function is now in GIMPLE form but the CFG has not been
8187 	 built yet.  Emit the single sequence of GIMPLE statements
8188 	 that make up its body.  */
8189       gimple_seq body = gimple_body (fndecl);
8190 
8191       if (gimple_seq_first_stmt (body)
8192 	  && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8193 	  && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8194 	print_gimple_seq (file, body, 0, flags);
8195       else
8196 	{
8197 	  if (!ignore_topmost_bind)
8198 	    fprintf (file, "{\n");
8199 
8200 	  if (any_var)
8201 	    fprintf (file, "\n");
8202 
8203 	  print_gimple_seq (file, body, 2, flags);
8204 	  fprintf (file, "}\n");
8205 	}
8206     }
8207   else
8208     {
8209       int indent;
8210 
8211       /* Make a tree based dump.  */
8212       chain = DECL_SAVED_TREE (fndecl);
8213       if (chain && TREE_CODE (chain) == BIND_EXPR)
8214 	{
8215 	  if (ignore_topmost_bind)
8216 	    {
8217 	      chain = BIND_EXPR_BODY (chain);
8218 	      indent = 2;
8219 	    }
8220 	  else
8221 	    indent = 0;
8222 	}
8223       else
8224 	{
8225 	  if (!ignore_topmost_bind)
8226 	    {
8227 	      fprintf (file, "{\n");
8228 	      /* No topmost bind, pretend it's ignored for later.  */
8229 	      ignore_topmost_bind = true;
8230 	    }
8231 	  indent = 2;
8232 	}
8233 
8234       if (any_var)
8235 	fprintf (file, "\n");
8236 
8237       print_generic_stmt_indented (file, chain, flags, indent);
8238       if (ignore_topmost_bind)
8239 	fprintf (file, "}\n");
8240     }
8241 
8242   if (flags & TDF_ENUMERATE_LOCALS)
8243     dump_enumerated_decls (file, flags);
8244   fprintf (file, "\n\n");
8245 
8246   current_function_decl = old_current_fndecl;
8247 }
8248 
8249 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h)  */
8250 
8251 DEBUG_FUNCTION void
debug_function(tree fn,dump_flags_t flags)8252 debug_function (tree fn, dump_flags_t flags)
8253 {
8254   dump_function_to_file (fn, stderr, flags);
8255 }
8256 
8257 
8258 /* Print on FILE the indexes for the predecessors of basic_block BB.  */
8259 
8260 static void
print_pred_bbs(FILE * file,basic_block bb)8261 print_pred_bbs (FILE *file, basic_block bb)
8262 {
8263   edge e;
8264   edge_iterator ei;
8265 
8266   FOR_EACH_EDGE (e, ei, bb->preds)
8267     fprintf (file, "bb_%d ", e->src->index);
8268 }
8269 
8270 
8271 /* Print on FILE the indexes for the successors of basic_block BB.  */
8272 
8273 static void
print_succ_bbs(FILE * file,basic_block bb)8274 print_succ_bbs (FILE *file, basic_block bb)
8275 {
8276   edge e;
8277   edge_iterator ei;
8278 
8279   FOR_EACH_EDGE (e, ei, bb->succs)
8280     fprintf (file, "bb_%d ", e->dest->index);
8281 }
8282 
8283 /* Print to FILE the basic block BB following the VERBOSITY level.  */
8284 
8285 void
print_loops_bb(FILE * file,basic_block bb,int indent,int verbosity)8286 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8287 {
8288   char *s_indent = (char *) alloca ((size_t) indent + 1);
8289   memset ((void *) s_indent, ' ', (size_t) indent);
8290   s_indent[indent] = '\0';
8291 
8292   /* Print basic_block's header.  */
8293   if (verbosity >= 2)
8294     {
8295       fprintf (file, "%s  bb_%d (preds = {", s_indent, bb->index);
8296       print_pred_bbs (file, bb);
8297       fprintf (file, "}, succs = {");
8298       print_succ_bbs (file, bb);
8299       fprintf (file, "})\n");
8300     }
8301 
8302   /* Print basic_block's body.  */
8303   if (verbosity >= 3)
8304     {
8305       fprintf (file, "%s  {\n", s_indent);
8306       dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8307       fprintf (file, "%s  }\n", s_indent);
8308     }
8309 }
8310 
8311 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8312 
8313 /* Pretty print LOOP on FILE, indented INDENT spaces.  Following
8314    VERBOSITY level this outputs the contents of the loop, or just its
8315    structure.  */
8316 
8317 static void
print_loop(FILE * file,struct loop * loop,int indent,int verbosity)8318 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8319 {
8320   char *s_indent;
8321   basic_block bb;
8322 
8323   if (loop == NULL)
8324     return;
8325 
8326   s_indent = (char *) alloca ((size_t) indent + 1);
8327   memset ((void *) s_indent, ' ', (size_t) indent);
8328   s_indent[indent] = '\0';
8329 
8330   /* Print loop's header.  */
8331   fprintf (file, "%sloop_%d (", s_indent, loop->num);
8332   if (loop->header)
8333     fprintf (file, "header = %d", loop->header->index);
8334   else
8335     {
8336       fprintf (file, "deleted)\n");
8337       return;
8338     }
8339   if (loop->latch)
8340     fprintf (file, ", latch = %d", loop->latch->index);
8341   else
8342     fprintf (file, ", multiple latches");
8343   fprintf (file, ", niter = ");
8344   print_generic_expr (file, loop->nb_iterations);
8345 
8346   if (loop->any_upper_bound)
8347     {
8348       fprintf (file, ", upper_bound = ");
8349       print_decu (loop->nb_iterations_upper_bound, file);
8350     }
8351   if (loop->any_likely_upper_bound)
8352     {
8353       fprintf (file, ", likely_upper_bound = ");
8354       print_decu (loop->nb_iterations_likely_upper_bound, file);
8355     }
8356 
8357   if (loop->any_estimate)
8358     {
8359       fprintf (file, ", estimate = ");
8360       print_decu (loop->nb_iterations_estimate, file);
8361     }
8362   if (loop->unroll)
8363     fprintf (file, ", unroll = %d", loop->unroll);
8364   fprintf (file, ")\n");
8365 
8366   /* Print loop's body.  */
8367   if (verbosity >= 1)
8368     {
8369       fprintf (file, "%s{\n", s_indent);
8370       FOR_EACH_BB_FN (bb, cfun)
8371 	if (bb->loop_father == loop)
8372 	  print_loops_bb (file, bb, indent, verbosity);
8373 
8374       print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8375       fprintf (file, "%s}\n", s_indent);
8376     }
8377 }
8378 
8379 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8380    spaces.  Following VERBOSITY level this outputs the contents of the
8381    loop, or just its structure.  */
8382 
8383 static void
print_loop_and_siblings(FILE * file,struct loop * loop,int indent,int verbosity)8384 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8385 			 int verbosity)
8386 {
8387   if (loop == NULL)
8388     return;
8389 
8390   print_loop (file, loop, indent, verbosity);
8391   print_loop_and_siblings (file, loop->next, indent, verbosity);
8392 }
8393 
8394 /* Follow a CFG edge from the entry point of the program, and on entry
8395    of a loop, pretty print the loop structure on FILE.  */
8396 
8397 void
print_loops(FILE * file,int verbosity)8398 print_loops (FILE *file, int verbosity)
8399 {
8400   basic_block bb;
8401 
8402   bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8403   fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8404   if (bb && bb->loop_father)
8405     print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8406 }
8407 
8408 /* Dump a loop.  */
8409 
8410 DEBUG_FUNCTION void
debug(struct loop & ref)8411 debug (struct loop &ref)
8412 {
8413   print_loop (stderr, &ref, 0, /*verbosity*/0);
8414 }
8415 
8416 DEBUG_FUNCTION void
debug(struct loop * ptr)8417 debug (struct loop *ptr)
8418 {
8419   if (ptr)
8420     debug (*ptr);
8421   else
8422     fprintf (stderr, "<nil>\n");
8423 }
8424 
8425 /* Dump a loop verbosely.  */
8426 
8427 DEBUG_FUNCTION void
debug_verbose(struct loop & ref)8428 debug_verbose (struct loop &ref)
8429 {
8430   print_loop (stderr, &ref, 0, /*verbosity*/3);
8431 }
8432 
8433 DEBUG_FUNCTION void
debug_verbose(struct loop * ptr)8434 debug_verbose (struct loop *ptr)
8435 {
8436   if (ptr)
8437     debug (*ptr);
8438   else
8439     fprintf (stderr, "<nil>\n");
8440 }
8441 
8442 
8443 /* Debugging loops structure at tree level, at some VERBOSITY level.  */
8444 
8445 DEBUG_FUNCTION void
debug_loops(int verbosity)8446 debug_loops (int verbosity)
8447 {
8448   print_loops (stderr, verbosity);
8449 }
8450 
8451 /* Print on stderr the code of LOOP, at some VERBOSITY level.  */
8452 
8453 DEBUG_FUNCTION void
debug_loop(struct loop * loop,int verbosity)8454 debug_loop (struct loop *loop, int verbosity)
8455 {
8456   print_loop (stderr, loop, 0, verbosity);
8457 }
8458 
8459 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8460    level.  */
8461 
8462 DEBUG_FUNCTION void
debug_loop_num(unsigned num,int verbosity)8463 debug_loop_num (unsigned num, int verbosity)
8464 {
8465   debug_loop (get_loop (cfun, num), verbosity);
8466 }
8467 
8468 /* Return true if BB ends with a call, possibly followed by some
8469    instructions that must stay with the call.  Return false,
8470    otherwise.  */
8471 
8472 static bool
gimple_block_ends_with_call_p(basic_block bb)8473 gimple_block_ends_with_call_p (basic_block bb)
8474 {
8475   gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8476   return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8477 }
8478 
8479 
8480 /* Return true if BB ends with a conditional branch.  Return false,
8481    otherwise.  */
8482 
8483 static bool
gimple_block_ends_with_condjump_p(const_basic_block bb)8484 gimple_block_ends_with_condjump_p (const_basic_block bb)
8485 {
8486   gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8487   return (stmt && gimple_code (stmt) == GIMPLE_COND);
8488 }
8489 
8490 
8491 /* Return true if statement T may terminate execution of BB in ways not
8492    explicitly represtented in the CFG.  */
8493 
8494 bool
stmt_can_terminate_bb_p(gimple * t)8495 stmt_can_terminate_bb_p (gimple *t)
8496 {
8497   tree fndecl = NULL_TREE;
8498   int call_flags = 0;
8499 
8500   /* Eh exception not handled internally terminates execution of the whole
8501      function.  */
8502   if (stmt_can_throw_external (t))
8503     return true;
8504 
8505   /* NORETURN and LONGJMP calls already have an edge to exit.
8506      CONST and PURE calls do not need one.
8507      We don't currently check for CONST and PURE here, although
8508      it would be a good idea, because those attributes are
8509      figured out from the RTL in mark_constant_function, and
8510      the counter incrementation code from -fprofile-arcs
8511      leads to different results from -fbranch-probabilities.  */
8512   if (is_gimple_call (t))
8513     {
8514       fndecl = gimple_call_fndecl (t);
8515       call_flags = gimple_call_flags (t);
8516     }
8517 
8518   if (is_gimple_call (t)
8519       && fndecl
8520       && DECL_BUILT_IN (fndecl)
8521       && (call_flags & ECF_NOTHROW)
8522       && !(call_flags & ECF_RETURNS_TWICE)
8523       /* fork() doesn't really return twice, but the effect of
8524          wrapping it in __gcov_fork() which calls __gcov_flush()
8525 	 and clears the counters before forking has the same
8526 	 effect as returning twice.  Force a fake edge.  */
8527       && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8528 	   && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8529     return false;
8530 
8531   if (is_gimple_call (t))
8532     {
8533       edge_iterator ei;
8534       edge e;
8535       basic_block bb;
8536 
8537       if (call_flags & (ECF_PURE | ECF_CONST)
8538 	  && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8539 	return false;
8540 
8541       /* Function call may do longjmp, terminate program or do other things.
8542 	 Special case noreturn that have non-abnormal edges out as in this case
8543 	 the fact is sufficiently represented by lack of edges out of T.  */
8544       if (!(call_flags & ECF_NORETURN))
8545 	return true;
8546 
8547       bb = gimple_bb (t);
8548       FOR_EACH_EDGE (e, ei, bb->succs)
8549 	if ((e->flags & EDGE_FAKE) == 0)
8550 	  return true;
8551     }
8552 
8553   if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8554     if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8555       return true;
8556 
8557   return false;
8558 }
8559 
8560 
8561 /* Add fake edges to the function exit for any non constant and non
8562    noreturn calls (or noreturn calls with EH/abnormal edges),
8563    volatile inline assembly in the bitmap of blocks specified by BLOCKS
8564    or to the whole CFG if BLOCKS is zero.  Return the number of blocks
8565    that were split.
8566 
8567    The goal is to expose cases in which entering a basic block does
8568    not imply that all subsequent instructions must be executed.  */
8569 
8570 static int
gimple_flow_call_edges_add(sbitmap blocks)8571 gimple_flow_call_edges_add (sbitmap blocks)
8572 {
8573   int i;
8574   int blocks_split = 0;
8575   int last_bb = last_basic_block_for_fn (cfun);
8576   bool check_last_block = false;
8577 
8578   if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8579     return 0;
8580 
8581   if (! blocks)
8582     check_last_block = true;
8583   else
8584     check_last_block = bitmap_bit_p (blocks,
8585 				     EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8586 
8587   /* In the last basic block, before epilogue generation, there will be
8588      a fallthru edge to EXIT.  Special care is required if the last insn
8589      of the last basic block is a call because make_edge folds duplicate
8590      edges, which would result in the fallthru edge also being marked
8591      fake, which would result in the fallthru edge being removed by
8592      remove_fake_edges, which would result in an invalid CFG.
8593 
8594      Moreover, we can't elide the outgoing fake edge, since the block
8595      profiler needs to take this into account in order to solve the minimal
8596      spanning tree in the case that the call doesn't return.
8597 
8598      Handle this by adding a dummy instruction in a new last basic block.  */
8599   if (check_last_block)
8600     {
8601       basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8602       gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8603       gimple *t = NULL;
8604 
8605       if (!gsi_end_p (gsi))
8606 	t = gsi_stmt (gsi);
8607 
8608       if (t && stmt_can_terminate_bb_p (t))
8609 	{
8610 	  edge e;
8611 
8612 	  e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8613 	  if (e)
8614 	    {
8615 	      gsi_insert_on_edge (e, gimple_build_nop ());
8616 	      gsi_commit_edge_inserts ();
8617 	    }
8618 	}
8619     }
8620 
8621   /* Now add fake edges to the function exit for any non constant
8622      calls since there is no way that we can determine if they will
8623      return or not...  */
8624   for (i = 0; i < last_bb; i++)
8625     {
8626       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8627       gimple_stmt_iterator gsi;
8628       gimple *stmt, *last_stmt;
8629 
8630       if (!bb)
8631 	continue;
8632 
8633       if (blocks && !bitmap_bit_p (blocks, i))
8634 	continue;
8635 
8636       gsi = gsi_last_nondebug_bb (bb);
8637       if (!gsi_end_p (gsi))
8638 	{
8639 	  last_stmt = gsi_stmt (gsi);
8640 	  do
8641 	    {
8642 	      stmt = gsi_stmt (gsi);
8643 	      if (stmt_can_terminate_bb_p (stmt))
8644 		{
8645 		  edge e;
8646 
8647 		  /* The handling above of the final block before the
8648 		     epilogue should be enough to verify that there is
8649 		     no edge to the exit block in CFG already.
8650 		     Calling make_edge in such case would cause us to
8651 		     mark that edge as fake and remove it later.  */
8652 		  if (flag_checking && stmt == last_stmt)
8653 		    {
8654 		      e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8655 		      gcc_assert (e == NULL);
8656 		    }
8657 
8658 		  /* Note that the following may create a new basic block
8659 		     and renumber the existing basic blocks.  */
8660 		  if (stmt != last_stmt)
8661 		    {
8662 		      e = split_block (bb, stmt);
8663 		      if (e)
8664 			blocks_split++;
8665 		    }
8666 		  e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8667 		  e->probability = profile_probability::guessed_never ();
8668 		}
8669 	      gsi_prev (&gsi);
8670 	    }
8671 	  while (!gsi_end_p (gsi));
8672 	}
8673     }
8674 
8675   if (blocks_split)
8676     checking_verify_flow_info ();
8677 
8678   return blocks_split;
8679 }
8680 
8681 /* Removes edge E and all the blocks dominated by it, and updates dominance
8682    information.  The IL in E->src needs to be updated separately.
8683    If dominance info is not available, only the edge E is removed.*/
8684 
8685 void
remove_edge_and_dominated_blocks(edge e)8686 remove_edge_and_dominated_blocks (edge e)
8687 {
8688   vec<basic_block> bbs_to_remove = vNULL;
8689   vec<basic_block> bbs_to_fix_dom = vNULL;
8690   edge f;
8691   edge_iterator ei;
8692   bool none_removed = false;
8693   unsigned i;
8694   basic_block bb, dbb;
8695   bitmap_iterator bi;
8696 
8697   /* If we are removing a path inside a non-root loop that may change
8698      loop ownership of blocks or remove loops.  Mark loops for fixup.  */
8699   if (current_loops
8700       && loop_outer (e->src->loop_father) != NULL
8701       && e->src->loop_father == e->dest->loop_father)
8702     loops_state_set (LOOPS_NEED_FIXUP);
8703 
8704   if (!dom_info_available_p (CDI_DOMINATORS))
8705     {
8706       remove_edge (e);
8707       return;
8708     }
8709 
8710   /* No updating is needed for edges to exit.  */
8711   if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8712     {
8713       if (cfgcleanup_altered_bbs)
8714 	bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8715       remove_edge (e);
8716       return;
8717     }
8718 
8719   /* First, we find the basic blocks to remove.  If E->dest has a predecessor
8720      that is not dominated by E->dest, then this set is empty.  Otherwise,
8721      all the basic blocks dominated by E->dest are removed.
8722 
8723      Also, to DF_IDOM we store the immediate dominators of the blocks in
8724      the dominance frontier of E (i.e., of the successors of the
8725      removed blocks, if there are any, and of E->dest otherwise).  */
8726   FOR_EACH_EDGE (f, ei, e->dest->preds)
8727     {
8728       if (f == e)
8729 	continue;
8730 
8731       if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8732 	{
8733 	  none_removed = true;
8734 	  break;
8735 	}
8736     }
8737 
8738   auto_bitmap df, df_idom;
8739   if (none_removed)
8740     bitmap_set_bit (df_idom,
8741 		    get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8742   else
8743     {
8744       bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8745       FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8746 	{
8747 	  FOR_EACH_EDGE (f, ei, bb->succs)
8748 	    {
8749 	      if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8750 		bitmap_set_bit (df, f->dest->index);
8751 	    }
8752 	}
8753       FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8754 	bitmap_clear_bit (df, bb->index);
8755 
8756       EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8757 	{
8758 	  bb = BASIC_BLOCK_FOR_FN (cfun, i);
8759 	  bitmap_set_bit (df_idom,
8760 			  get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8761 	}
8762     }
8763 
8764   if (cfgcleanup_altered_bbs)
8765     {
8766       /* Record the set of the altered basic blocks.  */
8767       bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8768       bitmap_ior_into (cfgcleanup_altered_bbs, df);
8769     }
8770 
8771   /* Remove E and the cancelled blocks.  */
8772   if (none_removed)
8773     remove_edge (e);
8774   else
8775     {
8776       /* Walk backwards so as to get a chance to substitute all
8777 	 released DEFs into debug stmts.  See
8778 	 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8779 	 details.  */
8780       for (i = bbs_to_remove.length (); i-- > 0; )
8781 	delete_basic_block (bbs_to_remove[i]);
8782     }
8783 
8784   /* Update the dominance information.  The immediate dominator may change only
8785      for blocks whose immediate dominator belongs to DF_IDOM:
8786 
8787      Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8788      removal.  Let Z the arbitrary block such that idom(Z) = Y and
8789      Z dominates X after the removal.  Before removal, there exists a path P
8790      from Y to X that avoids Z.  Let F be the last edge on P that is
8791      removed, and let W = F->dest.  Before removal, idom(W) = Y (since Y
8792      dominates W, and because of P, Z does not dominate W), and W belongs to
8793      the dominance frontier of E.  Therefore, Y belongs to DF_IDOM.  */
8794   EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8795     {
8796       bb = BASIC_BLOCK_FOR_FN (cfun, i);
8797       for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8798 	   dbb;
8799 	   dbb = next_dom_son (CDI_DOMINATORS, dbb))
8800 	bbs_to_fix_dom.safe_push (dbb);
8801     }
8802 
8803   iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8804 
8805   bbs_to_remove.release ();
8806   bbs_to_fix_dom.release ();
8807 }
8808 
8809 /* Purge dead EH edges from basic block BB.  */
8810 
8811 bool
gimple_purge_dead_eh_edges(basic_block bb)8812 gimple_purge_dead_eh_edges (basic_block bb)
8813 {
8814   bool changed = false;
8815   edge e;
8816   edge_iterator ei;
8817   gimple *stmt = last_stmt (bb);
8818 
8819   if (stmt && stmt_can_throw_internal (stmt))
8820     return false;
8821 
8822   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8823     {
8824       if (e->flags & EDGE_EH)
8825 	{
8826 	  remove_edge_and_dominated_blocks (e);
8827 	  changed = true;
8828 	}
8829       else
8830 	ei_next (&ei);
8831     }
8832 
8833   return changed;
8834 }
8835 
8836 /* Purge dead EH edges from basic block listed in BLOCKS.  */
8837 
8838 bool
gimple_purge_all_dead_eh_edges(const_bitmap blocks)8839 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8840 {
8841   bool changed = false;
8842   unsigned i;
8843   bitmap_iterator bi;
8844 
8845   EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8846     {
8847       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8848 
8849       /* Earlier gimple_purge_dead_eh_edges could have removed
8850 	 this basic block already.  */
8851       gcc_assert (bb || changed);
8852       if (bb != NULL)
8853 	changed |= gimple_purge_dead_eh_edges (bb);
8854     }
8855 
8856   return changed;
8857 }
8858 
8859 /* Purge dead abnormal call edges from basic block BB.  */
8860 
8861 bool
gimple_purge_dead_abnormal_call_edges(basic_block bb)8862 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8863 {
8864   bool changed = false;
8865   edge e;
8866   edge_iterator ei;
8867   gimple *stmt = last_stmt (bb);
8868 
8869   if (!cfun->has_nonlocal_label
8870       && !cfun->calls_setjmp)
8871     return false;
8872 
8873   if (stmt && stmt_can_make_abnormal_goto (stmt))
8874     return false;
8875 
8876   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8877     {
8878       if (e->flags & EDGE_ABNORMAL)
8879 	{
8880 	  if (e->flags & EDGE_FALLTHRU)
8881 	    e->flags &= ~EDGE_ABNORMAL;
8882 	  else
8883 	    remove_edge_and_dominated_blocks (e);
8884 	  changed = true;
8885 	}
8886       else
8887 	ei_next (&ei);
8888     }
8889 
8890   return changed;
8891 }
8892 
8893 /* Purge dead abnormal call edges from basic block listed in BLOCKS.  */
8894 
8895 bool
gimple_purge_all_dead_abnormal_call_edges(const_bitmap blocks)8896 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8897 {
8898   bool changed = false;
8899   unsigned i;
8900   bitmap_iterator bi;
8901 
8902   EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8903     {
8904       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8905 
8906       /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8907 	 this basic block already.  */
8908       gcc_assert (bb || changed);
8909       if (bb != NULL)
8910 	changed |= gimple_purge_dead_abnormal_call_edges (bb);
8911     }
8912 
8913   return changed;
8914 }
8915 
8916 /* This function is called whenever a new edge is created or
8917    redirected.  */
8918 
8919 static void
gimple_execute_on_growing_pred(edge e)8920 gimple_execute_on_growing_pred (edge e)
8921 {
8922   basic_block bb = e->dest;
8923 
8924   if (!gimple_seq_empty_p (phi_nodes (bb)))
8925     reserve_phi_args_for_new_edge (bb);
8926 }
8927 
8928 /* This function is called immediately before edge E is removed from
8929    the edge vector E->dest->preds.  */
8930 
8931 static void
gimple_execute_on_shrinking_pred(edge e)8932 gimple_execute_on_shrinking_pred (edge e)
8933 {
8934   if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8935     remove_phi_args (e);
8936 }
8937 
8938 /*---------------------------------------------------------------------------
8939   Helper functions for Loop versioning
8940   ---------------------------------------------------------------------------*/
8941 
8942 /* Adjust phi nodes for 'first' basic block.  'second' basic block is a copy
8943    of 'first'. Both of them are dominated by 'new_head' basic block. When
8944    'new_head' was created by 'second's incoming edge it received phi arguments
8945    on the edge by split_edge(). Later, additional edge 'e' was created to
8946    connect 'new_head' and 'first'. Now this routine adds phi args on this
8947    additional edge 'e' that new_head to second edge received as part of edge
8948    splitting.  */
8949 
8950 static void
gimple_lv_adjust_loop_header_phi(basic_block first,basic_block second,basic_block new_head,edge e)8951 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8952 				  basic_block new_head, edge e)
8953 {
8954   gphi *phi1, *phi2;
8955   gphi_iterator psi1, psi2;
8956   tree def;
8957   edge e2 = find_edge (new_head, second);
8958 
8959   /* Because NEW_HEAD has been created by splitting SECOND's incoming
8960      edge, we should always have an edge from NEW_HEAD to SECOND.  */
8961   gcc_assert (e2 != NULL);
8962 
8963   /* Browse all 'second' basic block phi nodes and add phi args to
8964      edge 'e' for 'first' head. PHI args are always in correct order.  */
8965 
8966   for (psi2 = gsi_start_phis (second),
8967        psi1 = gsi_start_phis (first);
8968        !gsi_end_p (psi2) && !gsi_end_p (psi1);
8969        gsi_next (&psi2),  gsi_next (&psi1))
8970     {
8971       phi1 = psi1.phi ();
8972       phi2 = psi2.phi ();
8973       def = PHI_ARG_DEF (phi2, e2->dest_idx);
8974       add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8975     }
8976 }
8977 
8978 
8979 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8980    SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8981    the destination of the ELSE part.  */
8982 
8983 static void
gimple_lv_add_condition_to_bb(basic_block first_head ATTRIBUTE_UNUSED,basic_block second_head ATTRIBUTE_UNUSED,basic_block cond_bb,void * cond_e)8984 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8985 			       basic_block second_head ATTRIBUTE_UNUSED,
8986 			       basic_block cond_bb, void *cond_e)
8987 {
8988   gimple_stmt_iterator gsi;
8989   gimple *new_cond_expr;
8990   tree cond_expr = (tree) cond_e;
8991   edge e0;
8992 
8993   /* Build new conditional expr */
8994   new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8995 					       NULL_TREE, NULL_TREE);
8996 
8997   /* Add new cond in cond_bb.  */
8998   gsi = gsi_last_bb (cond_bb);
8999   gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
9000 
9001   /* Adjust edges appropriately to connect new head with first head
9002      as well as second head.  */
9003   e0 = single_succ_edge (cond_bb);
9004   e0->flags &= ~EDGE_FALLTHRU;
9005   e0->flags |= EDGE_FALSE_VALUE;
9006 }
9007 
9008 
9009 /* Do book-keeping of basic block BB for the profile consistency checker.
9010    If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
9011    then do post-pass accounting.  Store the counting in RECORD.  */
9012 static void
gimple_account_profile_record(basic_block bb,int after_pass,struct profile_record * record)9013 gimple_account_profile_record (basic_block bb, int after_pass,
9014 			       struct profile_record *record)
9015 {
9016   gimple_stmt_iterator i;
9017   for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
9018     {
9019       record->size[after_pass]
9020 	+= estimate_num_insns (gsi_stmt (i), &eni_size_weights);
9021       if (bb->count.initialized_p ())
9022 	record->time[after_pass]
9023 	  += estimate_num_insns (gsi_stmt (i),
9024 				 &eni_time_weights) * bb->count.to_gcov_type ();
9025       else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
9026 	record->time[after_pass]
9027 	  += estimate_num_insns (gsi_stmt (i),
9028 				 &eni_time_weights) * bb->count.to_frequency (cfun);
9029     }
9030 }
9031 
9032 struct cfg_hooks gimple_cfg_hooks = {
9033   "gimple",
9034   gimple_verify_flow_info,
9035   gimple_dump_bb,		/* dump_bb  */
9036   gimple_dump_bb_for_graph,	/* dump_bb_for_graph  */
9037   create_bb,			/* create_basic_block  */
9038   gimple_redirect_edge_and_branch, /* redirect_edge_and_branch  */
9039   gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force  */
9040   gimple_can_remove_branch_p,	/* can_remove_branch_p  */
9041   remove_bb,			/* delete_basic_block  */
9042   gimple_split_block,		/* split_block  */
9043   gimple_move_block_after,	/* move_block_after  */
9044   gimple_can_merge_blocks_p,	/* can_merge_blocks_p  */
9045   gimple_merge_blocks,		/* merge_blocks  */
9046   gimple_predict_edge,		/* predict_edge  */
9047   gimple_predicted_by_p,	/* predicted_by_p  */
9048   gimple_can_duplicate_bb_p,	/* can_duplicate_block_p  */
9049   gimple_duplicate_bb,		/* duplicate_block  */
9050   gimple_split_edge,		/* split_edge  */
9051   gimple_make_forwarder_block,	/* make_forward_block  */
9052   NULL,				/* tidy_fallthru_edge  */
9053   NULL,				/* force_nonfallthru */
9054   gimple_block_ends_with_call_p,/* block_ends_with_call_p */
9055   gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
9056   gimple_flow_call_edges_add,   /* flow_call_edges_add */
9057   gimple_execute_on_growing_pred,	/* execute_on_growing_pred */
9058   gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
9059   gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
9060   gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
9061   gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
9062   extract_true_false_edges_from_block, /* extract_cond_bb_edges */
9063   flush_pending_stmts, 		/* flush_pending_stmts */
9064   gimple_empty_block_p,           /* block_empty_p */
9065   gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
9066   gimple_account_profile_record,
9067 };
9068 
9069 
9070 /* Split all critical edges.  */
9071 
9072 unsigned int
split_critical_edges(void)9073 split_critical_edges (void)
9074 {
9075   basic_block bb;
9076   edge e;
9077   edge_iterator ei;
9078 
9079   /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9080      expensive.  So we want to enable recording of edge to CASE_LABEL_EXPR
9081      mappings around the calls to split_edge.  */
9082   start_recording_case_labels ();
9083   FOR_ALL_BB_FN (bb, cfun)
9084     {
9085       FOR_EACH_EDGE (e, ei, bb->succs)
9086         {
9087 	  if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
9088 	    split_edge (e);
9089 	  /* PRE inserts statements to edges and expects that
9090 	     since split_critical_edges was done beforehand, committing edge
9091 	     insertions will not split more edges.  In addition to critical
9092 	     edges we must split edges that have multiple successors and
9093 	     end by control flow statements, such as RESX.
9094 	     Go ahead and split them too.  This matches the logic in
9095 	     gimple_find_edge_insert_loc.  */
9096 	  else if ((!single_pred_p (e->dest)
9097 	            || !gimple_seq_empty_p (phi_nodes (e->dest))
9098 		    || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
9099 		   && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
9100 	           && !(e->flags & EDGE_ABNORMAL))
9101 	    {
9102 	      gimple_stmt_iterator gsi;
9103 
9104 	      gsi = gsi_last_bb (e->src);
9105 	      if (!gsi_end_p (gsi)
9106 		  && stmt_ends_bb_p (gsi_stmt (gsi))
9107 		  && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
9108 		      && !gimple_call_builtin_p (gsi_stmt (gsi),
9109 						 BUILT_IN_RETURN)))
9110 		split_edge (e);
9111 	    }
9112 	}
9113     }
9114   end_recording_case_labels ();
9115   return 0;
9116 }
9117 
9118 namespace {
9119 
9120 const pass_data pass_data_split_crit_edges =
9121 {
9122   GIMPLE_PASS, /* type */
9123   "crited", /* name */
9124   OPTGROUP_NONE, /* optinfo_flags */
9125   TV_TREE_SPLIT_EDGES, /* tv_id */
9126   PROP_cfg, /* properties_required */
9127   PROP_no_crit_edges, /* properties_provided */
9128   0, /* properties_destroyed */
9129   0, /* todo_flags_start */
9130   0, /* todo_flags_finish */
9131 };
9132 
9133 class pass_split_crit_edges : public gimple_opt_pass
9134 {
9135 public:
pass_split_crit_edges(gcc::context * ctxt)9136   pass_split_crit_edges (gcc::context *ctxt)
9137     : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9138   {}
9139 
9140   /* opt_pass methods: */
execute(function *)9141   virtual unsigned int execute (function *) { return split_critical_edges (); }
9142 
clone()9143   opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9144 }; // class pass_split_crit_edges
9145 
9146 } // anon namespace
9147 
9148 gimple_opt_pass *
make_pass_split_crit_edges(gcc::context * ctxt)9149 make_pass_split_crit_edges (gcc::context *ctxt)
9150 {
9151   return new pass_split_crit_edges (ctxt);
9152 }
9153 
9154 
9155 /* Insert COND expression which is GIMPLE_COND after STMT
9156    in basic block BB with appropriate basic block split
9157    and creation of a new conditionally executed basic block.
9158    Update profile so the new bb is visited with probability PROB.
9159    Return created basic block.  */
9160 basic_block
insert_cond_bb(basic_block bb,gimple * stmt,gimple * cond,profile_probability prob)9161 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9162 	        profile_probability prob)
9163 {
9164   edge fall = split_block (bb, stmt);
9165   gimple_stmt_iterator iter = gsi_last_bb (bb);
9166   basic_block new_bb;
9167 
9168   /* Insert cond statement.  */
9169   gcc_assert (gimple_code (cond) == GIMPLE_COND);
9170   if (gsi_end_p (iter))
9171     gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9172   else
9173     gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9174 
9175   /* Create conditionally executed block.  */
9176   new_bb = create_empty_bb (bb);
9177   edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9178   e->probability = prob;
9179   new_bb->count = e->count ();
9180   make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9181 
9182   /* Fix edge for split bb.  */
9183   fall->flags = EDGE_FALSE_VALUE;
9184   fall->probability -= e->probability;
9185 
9186   /* Update dominance info.  */
9187   if (dom_info_available_p (CDI_DOMINATORS))
9188     {
9189       set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9190       set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9191     }
9192 
9193   /* Update loop info.  */
9194   if (current_loops)
9195     add_bb_to_loop (new_bb, bb->loop_father);
9196 
9197   return new_bb;
9198 }
9199 
9200 /* Build a ternary operation and gimplify it.  Emit code before GSI.
9201    Return the gimple_val holding the result.  */
9202 
9203 tree
gimplify_build3(gimple_stmt_iterator * gsi,enum tree_code code,tree type,tree a,tree b,tree c)9204 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
9205 		 tree type, tree a, tree b, tree c)
9206 {
9207   tree ret;
9208   location_t loc = gimple_location (gsi_stmt (*gsi));
9209 
9210   ret = fold_build3_loc (loc, code, type, a, b, c);
9211   STRIP_NOPS (ret);
9212 
9213   return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9214                                    GSI_SAME_STMT);
9215 }
9216 
9217 /* Build a binary operation and gimplify it.  Emit code before GSI.
9218    Return the gimple_val holding the result.  */
9219 
9220 tree
gimplify_build2(gimple_stmt_iterator * gsi,enum tree_code code,tree type,tree a,tree b)9221 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9222 		 tree type, tree a, tree b)
9223 {
9224   tree ret;
9225 
9226   ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9227   STRIP_NOPS (ret);
9228 
9229   return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9230                                    GSI_SAME_STMT);
9231 }
9232 
9233 /* Build a unary operation and gimplify it.  Emit code before GSI.
9234    Return the gimple_val holding the result.  */
9235 
9236 tree
gimplify_build1(gimple_stmt_iterator * gsi,enum tree_code code,tree type,tree a)9237 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9238 		 tree a)
9239 {
9240   tree ret;
9241 
9242   ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9243   STRIP_NOPS (ret);
9244 
9245   return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9246                                    GSI_SAME_STMT);
9247 }
9248 
9249 
9250 
9251 /* Given a basic block B which ends with a conditional and has
9252    precisely two successors, determine which of the edges is taken if
9253    the conditional is true and which is taken if the conditional is
9254    false.  Set TRUE_EDGE and FALSE_EDGE appropriately.  */
9255 
9256 void
extract_true_false_edges_from_block(basic_block b,edge * true_edge,edge * false_edge)9257 extract_true_false_edges_from_block (basic_block b,
9258 				     edge *true_edge,
9259 				     edge *false_edge)
9260 {
9261   edge e = EDGE_SUCC (b, 0);
9262 
9263   if (e->flags & EDGE_TRUE_VALUE)
9264     {
9265       *true_edge = e;
9266       *false_edge = EDGE_SUCC (b, 1);
9267     }
9268   else
9269     {
9270       *false_edge = e;
9271       *true_edge = EDGE_SUCC (b, 1);
9272     }
9273 }
9274 
9275 
9276 /* From a controlling predicate in the immediate dominator DOM of
9277    PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9278    predicate evaluates to true and false and store them to
9279    *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9280    they are non-NULL.  Returns true if the edges can be determined,
9281    else return false.  */
9282 
9283 bool
extract_true_false_controlled_edges(basic_block dom,basic_block phiblock,edge * true_controlled_edge,edge * false_controlled_edge)9284 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9285 				     edge *true_controlled_edge,
9286 				     edge *false_controlled_edge)
9287 {
9288   basic_block bb = phiblock;
9289   edge true_edge, false_edge, tem;
9290   edge e0 = NULL, e1 = NULL;
9291 
9292   /* We have to verify that one edge into the PHI node is dominated
9293      by the true edge of the predicate block and the other edge
9294      dominated by the false edge.  This ensures that the PHI argument
9295      we are going to take is completely determined by the path we
9296      take from the predicate block.
9297      We can only use BB dominance checks below if the destination of
9298      the true/false edges are dominated by their edge, thus only
9299      have a single predecessor.  */
9300   extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9301   tem = EDGE_PRED (bb, 0);
9302   if (tem == true_edge
9303       || (single_pred_p (true_edge->dest)
9304 	  && (tem->src == true_edge->dest
9305 	      || dominated_by_p (CDI_DOMINATORS,
9306 				 tem->src, true_edge->dest))))
9307     e0 = tem;
9308   else if (tem == false_edge
9309 	   || (single_pred_p (false_edge->dest)
9310 	       && (tem->src == false_edge->dest
9311 		   || dominated_by_p (CDI_DOMINATORS,
9312 				      tem->src, false_edge->dest))))
9313     e1 = tem;
9314   else
9315     return false;
9316   tem = EDGE_PRED (bb, 1);
9317   if (tem == true_edge
9318       || (single_pred_p (true_edge->dest)
9319 	  && (tem->src == true_edge->dest
9320 	      || dominated_by_p (CDI_DOMINATORS,
9321 				 tem->src, true_edge->dest))))
9322     e0 = tem;
9323   else if (tem == false_edge
9324 	   || (single_pred_p (false_edge->dest)
9325 	       && (tem->src == false_edge->dest
9326 		   || dominated_by_p (CDI_DOMINATORS,
9327 				      tem->src, false_edge->dest))))
9328     e1 = tem;
9329   else
9330     return false;
9331   if (!e0 || !e1)
9332     return false;
9333 
9334   if (true_controlled_edge)
9335     *true_controlled_edge = e0;
9336   if (false_controlled_edge)
9337     *false_controlled_edge = e1;
9338 
9339   return true;
9340 }
9341 
9342 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9343     range [low, high].  Place associated stmts before *GSI.  */
9344 
9345 void
generate_range_test(basic_block bb,tree index,tree low,tree high,tree * lhs,tree * rhs)9346 generate_range_test (basic_block bb, tree index, tree low, tree high,
9347 		     tree *lhs, tree *rhs)
9348 {
9349   tree type = TREE_TYPE (index);
9350   tree utype = unsigned_type_for (type);
9351 
9352   low = fold_convert (utype, low);
9353   high = fold_convert (utype, high);
9354 
9355   gimple_seq seq = NULL;
9356   index = gimple_convert (&seq, utype, index);
9357   *lhs = gimple_build (&seq, MINUS_EXPR, utype, index, low);
9358   *rhs = const_binop (MINUS_EXPR, utype, high, low);
9359 
9360   gimple_stmt_iterator gsi = gsi_last_bb (bb);
9361   gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
9362 }
9363 
9364 /* Emit return warnings.  */
9365 
9366 namespace {
9367 
9368 const pass_data pass_data_warn_function_return =
9369 {
9370   GIMPLE_PASS, /* type */
9371   "*warn_function_return", /* name */
9372   OPTGROUP_NONE, /* optinfo_flags */
9373   TV_NONE, /* tv_id */
9374   PROP_cfg, /* properties_required */
9375   0, /* properties_provided */
9376   0, /* properties_destroyed */
9377   0, /* todo_flags_start */
9378   0, /* todo_flags_finish */
9379 };
9380 
9381 class pass_warn_function_return : public gimple_opt_pass
9382 {
9383 public:
pass_warn_function_return(gcc::context * ctxt)9384   pass_warn_function_return (gcc::context *ctxt)
9385     : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9386   {}
9387 
9388   /* opt_pass methods: */
9389   virtual unsigned int execute (function *);
9390 
9391 }; // class pass_warn_function_return
9392 
9393 unsigned int
execute(function * fun)9394 pass_warn_function_return::execute (function *fun)
9395 {
9396   source_location location;
9397   gimple *last;
9398   edge e;
9399   edge_iterator ei;
9400 
9401   if (!targetm.warn_func_return (fun->decl))
9402     return 0;
9403 
9404   /* If we have a path to EXIT, then we do return.  */
9405   if (TREE_THIS_VOLATILE (fun->decl)
9406       && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9407     {
9408       location = UNKNOWN_LOCATION;
9409       for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9410 	   (e = ei_safe_edge (ei)); )
9411 	{
9412 	  last = last_stmt (e->src);
9413 	  if ((gimple_code (last) == GIMPLE_RETURN
9414 	       || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9415 	      && location == UNKNOWN_LOCATION
9416 	      && ((location = LOCATION_LOCUS (gimple_location (last)))
9417 		  != UNKNOWN_LOCATION)
9418 	      && !optimize)
9419 	    break;
9420 	  /* When optimizing, replace return stmts in noreturn functions
9421 	     with __builtin_unreachable () call.  */
9422 	  if (optimize && gimple_code (last) == GIMPLE_RETURN)
9423 	    {
9424 	      tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9425 	      gimple *new_stmt = gimple_build_call (fndecl, 0);
9426 	      gimple_set_location (new_stmt, gimple_location (last));
9427 	      gimple_stmt_iterator gsi = gsi_for_stmt (last);
9428 	      gsi_replace (&gsi, new_stmt, true);
9429 	      remove_edge (e);
9430 	    }
9431 	  else
9432 	    ei_next (&ei);
9433 	}
9434       if (location == UNKNOWN_LOCATION)
9435 	location = cfun->function_end_locus;
9436       warning_at (location, 0, "%<noreturn%> function does return");
9437     }
9438 
9439   /* If we see "return;" in some basic block, then we do reach the end
9440      without returning a value.  */
9441   else if (warn_return_type > 0
9442 	   && !TREE_NO_WARNING (fun->decl)
9443 	   && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9444     {
9445       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9446 	{
9447 	  gimple *last = last_stmt (e->src);
9448 	  greturn *return_stmt = dyn_cast <greturn *> (last);
9449 	  if (return_stmt
9450 	      && gimple_return_retval (return_stmt) == NULL
9451 	      && !gimple_no_warning_p (last))
9452 	    {
9453 	      location = gimple_location (last);
9454 	      if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9455 		location = fun->function_end_locus;
9456 	      warning_at (location, OPT_Wreturn_type,
9457 			  "control reaches end of non-void function");
9458 	      TREE_NO_WARNING (fun->decl) = 1;
9459 	      break;
9460 	    }
9461 	}
9462       /* The C++ FE turns fallthrough from the end of non-void function
9463 	 into __builtin_unreachable () call with BUILTINS_LOCATION.
9464 	 Recognize those too.  */
9465       basic_block bb;
9466       if (!TREE_NO_WARNING (fun->decl))
9467 	FOR_EACH_BB_FN (bb, fun)
9468 	  if (EDGE_COUNT (bb->succs) == 0)
9469 	    {
9470 	      gimple *last = last_stmt (bb);
9471 	      const enum built_in_function ubsan_missing_ret
9472 		= BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9473 	      if (last
9474 		  && ((LOCATION_LOCUS (gimple_location (last))
9475 		       == BUILTINS_LOCATION
9476 		       && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9477 		      || gimple_call_builtin_p (last, ubsan_missing_ret)))
9478 		{
9479 		  gimple_stmt_iterator gsi = gsi_for_stmt (last);
9480 		  gsi_prev_nondebug (&gsi);
9481 		  gimple *prev = gsi_stmt (gsi);
9482 		  if (prev == NULL)
9483 		    location = UNKNOWN_LOCATION;
9484 		  else
9485 		    location = gimple_location (prev);
9486 		  if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9487 		    location = fun->function_end_locus;
9488 		  warning_at (location, OPT_Wreturn_type,
9489 			      "control reaches end of non-void function");
9490 		  TREE_NO_WARNING (fun->decl) = 1;
9491 		  break;
9492 		}
9493 	    }
9494     }
9495   return 0;
9496 }
9497 
9498 } // anon namespace
9499 
9500 gimple_opt_pass *
make_pass_warn_function_return(gcc::context * ctxt)9501 make_pass_warn_function_return (gcc::context *ctxt)
9502 {
9503   return new pass_warn_function_return (ctxt);
9504 }
9505 
9506 /* Walk a gimplified function and warn for functions whose return value is
9507    ignored and attribute((warn_unused_result)) is set.  This is done before
9508    inlining, so we don't have to worry about that.  */
9509 
9510 static void
do_warn_unused_result(gimple_seq seq)9511 do_warn_unused_result (gimple_seq seq)
9512 {
9513   tree fdecl, ftype;
9514   gimple_stmt_iterator i;
9515 
9516   for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9517     {
9518       gimple *g = gsi_stmt (i);
9519 
9520       switch (gimple_code (g))
9521 	{
9522 	case GIMPLE_BIND:
9523 	  do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9524 	  break;
9525 	case GIMPLE_TRY:
9526 	  do_warn_unused_result (gimple_try_eval (g));
9527 	  do_warn_unused_result (gimple_try_cleanup (g));
9528 	  break;
9529 	case GIMPLE_CATCH:
9530 	  do_warn_unused_result (gimple_catch_handler (
9531 				   as_a <gcatch *> (g)));
9532 	  break;
9533 	case GIMPLE_EH_FILTER:
9534 	  do_warn_unused_result (gimple_eh_filter_failure (g));
9535 	  break;
9536 
9537 	case GIMPLE_CALL:
9538 	  if (gimple_call_lhs (g))
9539 	    break;
9540 	  if (gimple_call_internal_p (g))
9541 	    break;
9542 
9543 	  /* This is a naked call, as opposed to a GIMPLE_CALL with an
9544 	     LHS.  All calls whose value is ignored should be
9545 	     represented like this.  Look for the attribute.  */
9546 	  fdecl = gimple_call_fndecl (g);
9547 	  ftype = gimple_call_fntype (g);
9548 
9549 	  if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9550 	    {
9551 	      location_t loc = gimple_location (g);
9552 
9553 	      if (fdecl)
9554 		warning_at (loc, OPT_Wunused_result,
9555 			    "ignoring return value of %qD, "
9556 			    "declared with attribute warn_unused_result",
9557 			    fdecl);
9558 	      else
9559 		warning_at (loc, OPT_Wunused_result,
9560 			    "ignoring return value of function "
9561 			    "declared with attribute warn_unused_result");
9562 	    }
9563 	  break;
9564 
9565 	default:
9566 	  /* Not a container, not a call, or a call whose value is used.  */
9567 	  break;
9568 	}
9569     }
9570 }
9571 
9572 namespace {
9573 
9574 const pass_data pass_data_warn_unused_result =
9575 {
9576   GIMPLE_PASS, /* type */
9577   "*warn_unused_result", /* name */
9578   OPTGROUP_NONE, /* optinfo_flags */
9579   TV_NONE, /* tv_id */
9580   PROP_gimple_any, /* properties_required */
9581   0, /* properties_provided */
9582   0, /* properties_destroyed */
9583   0, /* todo_flags_start */
9584   0, /* todo_flags_finish */
9585 };
9586 
9587 class pass_warn_unused_result : public gimple_opt_pass
9588 {
9589 public:
pass_warn_unused_result(gcc::context * ctxt)9590   pass_warn_unused_result (gcc::context *ctxt)
9591     : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9592   {}
9593 
9594   /* opt_pass methods: */
gate(function *)9595   virtual bool gate (function *) { return flag_warn_unused_result; }
execute(function *)9596   virtual unsigned int execute (function *)
9597     {
9598       do_warn_unused_result (gimple_body (current_function_decl));
9599       return 0;
9600     }
9601 
9602 }; // class pass_warn_unused_result
9603 
9604 } // anon namespace
9605 
9606 gimple_opt_pass *
make_pass_warn_unused_result(gcc::context * ctxt)9607 make_pass_warn_unused_result (gcc::context *ctxt)
9608 {
9609   return new pass_warn_unused_result (ctxt);
9610 }
9611 
9612 /* IPA passes, compilation of earlier functions or inlining
9613    might have changed some properties, such as marked functions nothrow,
9614    pure, const or noreturn.
9615    Remove redundant edges and basic blocks, and create new ones if necessary.
9616 
9617    This pass can't be executed as stand alone pass from pass manager, because
9618    in between inlining and this fixup the verify_flow_info would fail.  */
9619 
9620 unsigned int
execute_fixup_cfg(void)9621 execute_fixup_cfg (void)
9622 {
9623   basic_block bb;
9624   gimple_stmt_iterator gsi;
9625   int todo = 0;
9626   cgraph_node *node = cgraph_node::get (current_function_decl);
9627   profile_count num = node->count;
9628   profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9629   bool scale = num.initialized_p () && !(num == den);
9630 
9631   if (scale)
9632     {
9633       profile_count::adjust_for_ipa_scaling (&num, &den);
9634       ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9635       EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9636         = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9637     }
9638 
9639   FOR_EACH_BB_FN (bb, cfun)
9640     {
9641       if (scale)
9642         bb->count = bb->count.apply_scale (num, den);
9643       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9644 	{
9645 	  gimple *stmt = gsi_stmt (gsi);
9646 	  tree decl = is_gimple_call (stmt)
9647 		      ? gimple_call_fndecl (stmt)
9648 		      : NULL;
9649 	  if (decl)
9650 	    {
9651 	      int flags = gimple_call_flags (stmt);
9652 	      if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9653 		{
9654 		  if (gimple_purge_dead_abnormal_call_edges (bb))
9655 		    todo |= TODO_cleanup_cfg;
9656 
9657 		  if (gimple_in_ssa_p (cfun))
9658 		    {
9659 		      todo |= TODO_update_ssa | TODO_cleanup_cfg;
9660 		      update_stmt (stmt);
9661 		    }
9662 		}
9663 
9664 	      if (flags & ECF_NORETURN
9665 		  && fixup_noreturn_call (stmt))
9666 		todo |= TODO_cleanup_cfg;
9667 	     }
9668 
9669 	  /* Remove stores to variables we marked write-only.
9670 	     Keep access when store has side effect, i.e. in case when source
9671 	     is volatile.  */
9672 	  if (gimple_store_p (stmt)
9673 	      && !gimple_has_side_effects (stmt))
9674 	    {
9675 	      tree lhs = get_base_address (gimple_get_lhs (stmt));
9676 
9677 	      if (VAR_P (lhs)
9678 		  && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9679 		  && varpool_node::get (lhs)->writeonly)
9680 		{
9681 		  unlink_stmt_vdef (stmt);
9682 		  gsi_remove (&gsi, true);
9683 		  release_defs (stmt);
9684 	          todo |= TODO_update_ssa | TODO_cleanup_cfg;
9685 	          continue;
9686 		}
9687 	    }
9688 	  /* For calls we can simply remove LHS when it is known
9689 	     to be write-only.  */
9690 	  if (is_gimple_call (stmt)
9691 	      && gimple_get_lhs (stmt))
9692 	    {
9693 	      tree lhs = get_base_address (gimple_get_lhs (stmt));
9694 
9695 	      if (VAR_P (lhs)
9696 		  && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9697 		  && varpool_node::get (lhs)->writeonly)
9698 		{
9699 		  gimple_call_set_lhs (stmt, NULL);
9700 		  update_stmt (stmt);
9701 	          todo |= TODO_update_ssa | TODO_cleanup_cfg;
9702 		}
9703 	    }
9704 
9705 	  if (maybe_clean_eh_stmt (stmt)
9706 	      && gimple_purge_dead_eh_edges (bb))
9707 	    todo |= TODO_cleanup_cfg;
9708 	  gsi_next (&gsi);
9709 	}
9710 
9711       /* If we have a basic block with no successors that does not
9712 	 end with a control statement or a noreturn call end it with
9713 	 a call to __builtin_unreachable.  This situation can occur
9714 	 when inlining a noreturn call that does in fact return.  */
9715       if (EDGE_COUNT (bb->succs) == 0)
9716 	{
9717 	  gimple *stmt = last_stmt (bb);
9718 	  if (!stmt
9719 	      || (!is_ctrl_stmt (stmt)
9720 		  && (!is_gimple_call (stmt)
9721 		      || !gimple_call_noreturn_p (stmt))))
9722 	    {
9723 	      if (stmt && is_gimple_call (stmt))
9724 		gimple_call_set_ctrl_altering (stmt, false);
9725 	      tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9726 	      stmt = gimple_build_call (fndecl, 0);
9727 	      gimple_stmt_iterator gsi = gsi_last_bb (bb);
9728 	      gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9729 	      if (!cfun->after_inlining)
9730 		{
9731 		  gcall *call_stmt = dyn_cast <gcall *> (stmt);
9732 		  node->create_edge (cgraph_node::get_create (fndecl),
9733 				     call_stmt, bb->count);
9734 		}
9735 	    }
9736 	}
9737     }
9738   if (scale)
9739     compute_function_frequency ();
9740 
9741   if (current_loops
9742       && (todo & TODO_cleanup_cfg))
9743     loops_state_set (LOOPS_NEED_FIXUP);
9744 
9745   return todo;
9746 }
9747 
9748 namespace {
9749 
9750 const pass_data pass_data_fixup_cfg =
9751 {
9752   GIMPLE_PASS, /* type */
9753   "fixup_cfg", /* name */
9754   OPTGROUP_NONE, /* optinfo_flags */
9755   TV_NONE, /* tv_id */
9756   PROP_cfg, /* properties_required */
9757   0, /* properties_provided */
9758   0, /* properties_destroyed */
9759   0, /* todo_flags_start */
9760   0, /* todo_flags_finish */
9761 };
9762 
9763 class pass_fixup_cfg : public gimple_opt_pass
9764 {
9765 public:
pass_fixup_cfg(gcc::context * ctxt)9766   pass_fixup_cfg (gcc::context *ctxt)
9767     : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9768   {}
9769 
9770   /* opt_pass methods: */
clone()9771   opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
execute(function *)9772   virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9773 
9774 }; // class pass_fixup_cfg
9775 
9776 } // anon namespace
9777 
9778 gimple_opt_pass *
make_pass_fixup_cfg(gcc::context * ctxt)9779 make_pass_fixup_cfg (gcc::context *ctxt)
9780 {
9781   return new pass_fixup_cfg (ctxt);
9782 }
9783 
9784 /* Garbage collection support for edge_def.  */
9785 
9786 extern void gt_ggc_mx (tree&);
9787 extern void gt_ggc_mx (gimple *&);
9788 extern void gt_ggc_mx (rtx&);
9789 extern void gt_ggc_mx (basic_block&);
9790 
9791 static void
gt_ggc_mx(rtx_insn * & x)9792 gt_ggc_mx (rtx_insn *& x)
9793 {
9794   if (x)
9795     gt_ggc_mx_rtx_def ((void *) x);
9796 }
9797 
9798 void
gt_ggc_mx(edge_def * e)9799 gt_ggc_mx (edge_def *e)
9800 {
9801   tree block = LOCATION_BLOCK (e->goto_locus);
9802   gt_ggc_mx (e->src);
9803   gt_ggc_mx (e->dest);
9804   if (current_ir_type () == IR_GIMPLE)
9805     gt_ggc_mx (e->insns.g);
9806   else
9807     gt_ggc_mx (e->insns.r);
9808   gt_ggc_mx (block);
9809 }
9810 
9811 /* PCH support for edge_def.  */
9812 
9813 extern void gt_pch_nx (tree&);
9814 extern void gt_pch_nx (gimple *&);
9815 extern void gt_pch_nx (rtx&);
9816 extern void gt_pch_nx (basic_block&);
9817 
9818 static void
gt_pch_nx(rtx_insn * & x)9819 gt_pch_nx (rtx_insn *& x)
9820 {
9821   if (x)
9822     gt_pch_nx_rtx_def ((void *) x);
9823 }
9824 
9825 void
gt_pch_nx(edge_def * e)9826 gt_pch_nx (edge_def *e)
9827 {
9828   tree block = LOCATION_BLOCK (e->goto_locus);
9829   gt_pch_nx (e->src);
9830   gt_pch_nx (e->dest);
9831   if (current_ir_type () == IR_GIMPLE)
9832     gt_pch_nx (e->insns.g);
9833   else
9834     gt_pch_nx (e->insns.r);
9835   gt_pch_nx (block);
9836 }
9837 
9838 void
gt_pch_nx(edge_def * e,gt_pointer_operator op,void * cookie)9839 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9840 {
9841   tree block = LOCATION_BLOCK (e->goto_locus);
9842   op (&(e->src), cookie);
9843   op (&(e->dest), cookie);
9844   if (current_ir_type () == IR_GIMPLE)
9845     op (&(e->insns.g), cookie);
9846   else
9847     op (&(e->insns.r), cookie);
9848   op (&(block), cookie);
9849 }
9850 
9851 #if CHECKING_P
9852 
9853 namespace selftest {
9854 
9855 /* Helper function for CFG selftests: create a dummy function decl
9856    and push it as cfun.  */
9857 
9858 static tree
push_fndecl(const char * name)9859 push_fndecl (const char *name)
9860 {
9861   tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9862   /* FIXME: this uses input_location: */
9863   tree fndecl = build_fn_decl (name, fn_type);
9864   tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9865 			    NULL_TREE, integer_type_node);
9866   DECL_RESULT (fndecl) = retval;
9867   push_struct_function (fndecl);
9868   function *fun = DECL_STRUCT_FUNCTION (fndecl);
9869   ASSERT_TRUE (fun != NULL);
9870   init_empty_tree_cfg_for_function (fun);
9871   ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9872   ASSERT_EQ (0, n_edges_for_fn (fun));
9873   return fndecl;
9874 }
9875 
9876 /* These tests directly create CFGs.
9877    Compare with the static fns within tree-cfg.c:
9878      - build_gimple_cfg
9879      - make_blocks: calls create_basic_block (seq, bb);
9880      - make_edges.   */
9881 
9882 /* Verify a simple cfg of the form:
9883      ENTRY -> A -> B -> C -> EXIT.  */
9884 
9885 static void
test_linear_chain()9886 test_linear_chain ()
9887 {
9888   gimple_register_cfg_hooks ();
9889 
9890   tree fndecl = push_fndecl ("cfg_test_linear_chain");
9891   function *fun = DECL_STRUCT_FUNCTION (fndecl);
9892 
9893   /* Create some empty blocks.  */
9894   basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9895   basic_block bb_b = create_empty_bb (bb_a);
9896   basic_block bb_c = create_empty_bb (bb_b);
9897 
9898   ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9899   ASSERT_EQ (0, n_edges_for_fn (fun));
9900 
9901   /* Create some edges: a simple linear chain of BBs.  */
9902   make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9903   make_edge (bb_a, bb_b, 0);
9904   make_edge (bb_b, bb_c, 0);
9905   make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9906 
9907   /* Verify the edges.  */
9908   ASSERT_EQ (4, n_edges_for_fn (fun));
9909   ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9910   ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9911   ASSERT_EQ (1, bb_a->preds->length ());
9912   ASSERT_EQ (1, bb_a->succs->length ());
9913   ASSERT_EQ (1, bb_b->preds->length ());
9914   ASSERT_EQ (1, bb_b->succs->length ());
9915   ASSERT_EQ (1, bb_c->preds->length ());
9916   ASSERT_EQ (1, bb_c->succs->length ());
9917   ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9918   ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9919 
9920   /* Verify the dominance information
9921      Each BB in our simple chain should be dominated by the one before
9922      it.  */
9923   calculate_dominance_info (CDI_DOMINATORS);
9924   ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9925   ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9926   vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9927   ASSERT_EQ (1, dom_by_b.length ());
9928   ASSERT_EQ (bb_c, dom_by_b[0]);
9929   free_dominance_info (CDI_DOMINATORS);
9930   dom_by_b.release ();
9931 
9932   /* Similarly for post-dominance: each BB in our chain is post-dominated
9933      by the one after it.  */
9934   calculate_dominance_info (CDI_POST_DOMINATORS);
9935   ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9936   ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9937   vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9938   ASSERT_EQ (1, postdom_by_b.length ());
9939   ASSERT_EQ (bb_a, postdom_by_b[0]);
9940   free_dominance_info (CDI_POST_DOMINATORS);
9941   postdom_by_b.release ();
9942 
9943   pop_cfun ();
9944 }
9945 
9946 /* Verify a simple CFG of the form:
9947      ENTRY
9948        |
9949        A
9950       / \
9951      /t  \f
9952     B     C
9953      \   /
9954       \ /
9955        D
9956        |
9957       EXIT.  */
9958 
9959 static void
test_diamond()9960 test_diamond ()
9961 {
9962   gimple_register_cfg_hooks ();
9963 
9964   tree fndecl = push_fndecl ("cfg_test_diamond");
9965   function *fun = DECL_STRUCT_FUNCTION (fndecl);
9966 
9967   /* Create some empty blocks.  */
9968   basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9969   basic_block bb_b = create_empty_bb (bb_a);
9970   basic_block bb_c = create_empty_bb (bb_a);
9971   basic_block bb_d = create_empty_bb (bb_b);
9972 
9973   ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9974   ASSERT_EQ (0, n_edges_for_fn (fun));
9975 
9976   /* Create the edges.  */
9977   make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9978   make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9979   make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9980   make_edge (bb_b, bb_d, 0);
9981   make_edge (bb_c, bb_d, 0);
9982   make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9983 
9984   /* Verify the edges.  */
9985   ASSERT_EQ (6, n_edges_for_fn (fun));
9986   ASSERT_EQ (1, bb_a->preds->length ());
9987   ASSERT_EQ (2, bb_a->succs->length ());
9988   ASSERT_EQ (1, bb_b->preds->length ());
9989   ASSERT_EQ (1, bb_b->succs->length ());
9990   ASSERT_EQ (1, bb_c->preds->length ());
9991   ASSERT_EQ (1, bb_c->succs->length ());
9992   ASSERT_EQ (2, bb_d->preds->length ());
9993   ASSERT_EQ (1, bb_d->succs->length ());
9994 
9995   /* Verify the dominance information.  */
9996   calculate_dominance_info (CDI_DOMINATORS);
9997   ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9998   ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9999   ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
10000   vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
10001   ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order.  */
10002   dom_by_a.release ();
10003   vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
10004   ASSERT_EQ (0, dom_by_b.length ());
10005   dom_by_b.release ();
10006   free_dominance_info (CDI_DOMINATORS);
10007 
10008   /* Similarly for post-dominance.  */
10009   calculate_dominance_info (CDI_POST_DOMINATORS);
10010   ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
10011   ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
10012   ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
10013   vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
10014   ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order.  */
10015   postdom_by_d.release ();
10016   vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
10017   ASSERT_EQ (0, postdom_by_b.length ());
10018   postdom_by_b.release ();
10019   free_dominance_info (CDI_POST_DOMINATORS);
10020 
10021   pop_cfun ();
10022 }
10023 
10024 /* Verify that we can handle a CFG containing a "complete" aka
10025    fully-connected subgraph (where A B C D below all have edges
10026    pointing to each other node, also to themselves).
10027    e.g.:
10028      ENTRY  EXIT
10029        |    ^
10030        |   /
10031        |  /
10032        | /
10033        V/
10034        A<--->B
10035        ^^   ^^
10036        | \ / |
10037        |  X  |
10038        | / \ |
10039        VV   VV
10040        C<--->D
10041 */
10042 
10043 static void
test_fully_connected()10044 test_fully_connected ()
10045 {
10046   gimple_register_cfg_hooks ();
10047 
10048   tree fndecl = push_fndecl ("cfg_fully_connected");
10049   function *fun = DECL_STRUCT_FUNCTION (fndecl);
10050 
10051   const int n = 4;
10052 
10053   /* Create some empty blocks.  */
10054   auto_vec <basic_block> subgraph_nodes;
10055   for (int i = 0; i < n; i++)
10056     subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
10057 
10058   ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
10059   ASSERT_EQ (0, n_edges_for_fn (fun));
10060 
10061   /* Create the edges.  */
10062   make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
10063   make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10064   for (int i = 0; i < n; i++)
10065     for (int j = 0; j < n; j++)
10066       make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
10067 
10068   /* Verify the edges.  */
10069   ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
10070   /* The first one is linked to ENTRY/EXIT as well as itself and
10071      everything else.  */
10072   ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
10073   ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
10074   /* The other ones in the subgraph are linked to everything in
10075      the subgraph (including themselves).  */
10076   for (int i = 1; i < n; i++)
10077     {
10078       ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
10079       ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
10080     }
10081 
10082   /* Verify the dominance information.  */
10083   calculate_dominance_info (CDI_DOMINATORS);
10084   /* The initial block in the subgraph should be dominated by ENTRY.  */
10085   ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
10086 	     get_immediate_dominator (CDI_DOMINATORS,
10087 				      subgraph_nodes[0]));
10088   /* Every other block in the subgraph should be dominated by the
10089      initial block.  */
10090   for (int i = 1; i < n; i++)
10091     ASSERT_EQ (subgraph_nodes[0],
10092 	       get_immediate_dominator (CDI_DOMINATORS,
10093 					subgraph_nodes[i]));
10094   free_dominance_info (CDI_DOMINATORS);
10095 
10096   /* Similarly for post-dominance.  */
10097   calculate_dominance_info (CDI_POST_DOMINATORS);
10098   /* The initial block in the subgraph should be postdominated by EXIT.  */
10099   ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
10100 	     get_immediate_dominator (CDI_POST_DOMINATORS,
10101 				      subgraph_nodes[0]));
10102   /* Every other block in the subgraph should be postdominated by the
10103      initial block, since that leads to EXIT.  */
10104   for (int i = 1; i < n; i++)
10105     ASSERT_EQ (subgraph_nodes[0],
10106 	       get_immediate_dominator (CDI_POST_DOMINATORS,
10107 					subgraph_nodes[i]));
10108   free_dominance_info (CDI_POST_DOMINATORS);
10109 
10110   pop_cfun ();
10111 }
10112 
10113 /* Run all of the selftests within this file.  */
10114 
10115 void
tree_cfg_c_tests()10116 tree_cfg_c_tests ()
10117 {
10118   test_linear_chain ();
10119   test_diamond ();
10120   test_fully_connected ();
10121 }
10122 
10123 } // namespace selftest
10124 
10125 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10126    - loop
10127    - nested loops
10128    - switch statement (a block with many out-edges)
10129    - something that jumps to itself
10130    - etc  */
10131 
10132 #endif /* CHECKING_P */
10133