1 /* Dead store elimination
2    Copyright (C) 2004-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-dfa.h"
34 #include "domwalk.h"
35 #include "tree-cfgcleanup.h"
36 #include "params.h"
37 #include "alias.h"
38 
39 /* This file implements dead store elimination.
40 
41    A dead store is a store into a memory location which will later be
42    overwritten by another store without any intervening loads.  In this
43    case the earlier store can be deleted.
44 
45    In our SSA + virtual operand world we use immediate uses of virtual
46    operands to detect dead stores.  If a store's virtual definition
47    is used precisely once by a later store to the same location which
48    post dominates the first store, then the first store is dead.
49 
50    The single use of the store's virtual definition ensures that
51    there are no intervening aliased loads and the requirement that
52    the second load post dominate the first ensures that if the earlier
53    store executes, then the later stores will execute before the function
54    exits.
55 
56    It may help to think of this as first moving the earlier store to
57    the point immediately before the later store.  Again, the single
58    use of the virtual definition and the post-dominance relationship
59    ensure that such movement would be safe.  Clearly if there are
60    back to back stores, then the second is redundant.
61 
62    Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
63    may also help in understanding this code since it discusses the
64    relationship between dead store and redundant load elimination.  In
65    fact, they are the same transformation applied to different views of
66    the CFG.  */
67 
68 
69 /* Bitmap of blocks that have had EH statements cleaned.  We should
70    remove their dead edges eventually.  */
71 static bitmap need_eh_cleanup;
72 
73 /* Return value from dse_classify_store */
74 enum dse_store_status
75 {
76   DSE_STORE_LIVE,
77   DSE_STORE_MAYBE_PARTIAL_DEAD,
78   DSE_STORE_DEAD
79 };
80 
81 /* STMT is a statement that may write into memory.  Analyze it and
82    initialize WRITE to describe how STMT affects memory.
83 
84    Return TRUE if the the statement was analyzed, FALSE otherwise.
85 
86    It is always safe to return FALSE.  But typically better optimziation
87    can be achieved by analyzing more statements.  */
88 
89 static bool
initialize_ao_ref_for_dse(gimple * stmt,ao_ref * write)90 initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
91 {
92   /* It's advantageous to handle certain mem* functions.  */
93   if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
94     {
95       switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
96 	{
97 	  case BUILT_IN_MEMCPY:
98 	  case BUILT_IN_MEMMOVE:
99 	  case BUILT_IN_MEMSET:
100 	    {
101 	      tree size = NULL_TREE;
102 	      if (gimple_call_num_args (stmt) == 3)
103 		size = gimple_call_arg (stmt, 2);
104 	      tree ptr = gimple_call_arg (stmt, 0);
105 	      ao_ref_init_from_ptr_and_size (write, ptr, size);
106 	      return true;
107 	    }
108 	  default:
109 	    break;
110 	}
111     }
112   else if (is_gimple_assign (stmt))
113     {
114       ao_ref_init (write, gimple_assign_lhs (stmt));
115       return true;
116     }
117   return false;
118 }
119 
120 /* Given REF from the the alias oracle, return TRUE if it is a valid
121    memory reference for dead store elimination, false otherwise.
122 
123    In particular, the reference must have a known base, known maximum
124    size, start at a byte offset and have a size that is one or more
125    bytes.  */
126 
127 static bool
valid_ao_ref_for_dse(ao_ref * ref)128 valid_ao_ref_for_dse (ao_ref *ref)
129 {
130   return (ao_ref_base (ref)
131 	  && known_size_p (ref->max_size)
132 	  && maybe_ne (ref->size, 0)
133 	  && known_eq (ref->max_size, ref->size)
134 	  && known_ge (ref->offset, 0)
135 	  && multiple_p (ref->offset, BITS_PER_UNIT)
136 	  && multiple_p (ref->size, BITS_PER_UNIT));
137 }
138 
139 /* Try to normalize COPY (an ao_ref) relative to REF.  Essentially when we are
140    done COPY will only refer bytes found within REF.  Return true if COPY
141    is known to intersect at least one byte of REF.  */
142 
143 static bool
normalize_ref(ao_ref * copy,ao_ref * ref)144 normalize_ref (ao_ref *copy, ao_ref *ref)
145 {
146   if (!ordered_p (copy->offset, ref->offset))
147     return false;
148 
149   /* If COPY starts before REF, then reset the beginning of
150      COPY to match REF and decrease the size of COPY by the
151      number of bytes removed from COPY.  */
152   if (maybe_lt (copy->offset, ref->offset))
153     {
154       poly_int64 diff = ref->offset - copy->offset;
155       if (maybe_le (copy->size, diff))
156 	return false;
157       copy->size -= diff;
158       copy->offset = ref->offset;
159     }
160 
161   poly_int64 diff = copy->offset - ref->offset;
162   if (maybe_le (ref->size, diff))
163     return false;
164 
165   /* If COPY extends beyond REF, chop off its size appropriately.  */
166   poly_int64 limit = ref->size - diff;
167   if (!ordered_p (limit, copy->size))
168     return false;
169 
170   if (maybe_gt (copy->size, limit))
171     copy->size = limit;
172   return true;
173 }
174 
175 /* Clear any bytes written by STMT from the bitmap LIVE_BYTES.  The base
176    address written by STMT must match the one found in REF, which must
177    have its base address previously initialized.
178 
179    This routine must be conservative.  If we don't know the offset or
180    actual size written, assume nothing was written.  */
181 
182 static void
clear_bytes_written_by(sbitmap live_bytes,gimple * stmt,ao_ref * ref)183 clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
184 {
185   ao_ref write;
186   if (!initialize_ao_ref_for_dse (stmt, &write))
187     return;
188 
189   /* Verify we have the same base memory address, the write
190      has a known size and overlaps with REF.  */
191   HOST_WIDE_INT start, size;
192   if (valid_ao_ref_for_dse (&write)
193       && operand_equal_p (write.base, ref->base, OEP_ADDRESS_OF)
194       && known_eq (write.size, write.max_size)
195       && normalize_ref (&write, ref)
196       && (write.offset - ref->offset).is_constant (&start)
197       && write.size.is_constant (&size))
198     bitmap_clear_range (live_bytes, start / BITS_PER_UNIT,
199 			size / BITS_PER_UNIT);
200 }
201 
202 /* REF is a memory write.  Extract relevant information from it and
203    initialize the LIVE_BYTES bitmap.  If successful, return TRUE.
204    Otherwise return FALSE.  */
205 
206 static bool
setup_live_bytes_from_ref(ao_ref * ref,sbitmap live_bytes)207 setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
208 {
209   HOST_WIDE_INT const_size;
210   if (valid_ao_ref_for_dse (ref)
211       && ref->size.is_constant (&const_size)
212       && (const_size / BITS_PER_UNIT
213 	  <= PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)))
214     {
215       bitmap_clear (live_bytes);
216       bitmap_set_range (live_bytes, 0, const_size / BITS_PER_UNIT);
217       return true;
218     }
219   return false;
220 }
221 
222 /* Compute the number of elements that we can trim from the head and
223    tail of ORIG resulting in a bitmap that is a superset of LIVE.
224 
225    Store the number of elements trimmed from the head and tail in
226    TRIM_HEAD and TRIM_TAIL.
227 
228    STMT is the statement being trimmed and is used for debugging dump
229    output only.  */
230 
231 static void
compute_trims(ao_ref * ref,sbitmap live,int * trim_head,int * trim_tail,gimple * stmt)232 compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
233 	       gimple *stmt)
234 {
235   /* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
236      extends through ref->size.  So we know that in the original bitmap
237      bits 0..ref->size were true.  We don't actually need the bitmap, just
238      the REF to compute the trims.  */
239 
240   /* Now identify how much, if any of the tail we can chop off.  */
241   HOST_WIDE_INT const_size;
242   if (ref->size.is_constant (&const_size))
243     {
244       int last_orig = (const_size / BITS_PER_UNIT) - 1;
245       int last_live = bitmap_last_set_bit (live);
246       *trim_tail = (last_orig - last_live) & ~0x1;
247     }
248   else
249     *trim_tail = 0;
250 
251   /* Identify how much, if any of the head we can chop off.  */
252   int first_orig = 0;
253   int first_live = bitmap_first_set_bit (live);
254   *trim_head = (first_live - first_orig) & ~0x1;
255 
256   if ((*trim_head || *trim_tail)
257       && dump_file && (dump_flags & TDF_DETAILS))
258     {
259       fprintf (dump_file, "  Trimming statement (head = %d, tail = %d): ",
260 	       *trim_head, *trim_tail);
261       print_gimple_stmt (dump_file, stmt, 0, dump_flags);
262       fprintf (dump_file, "\n");
263     }
264 }
265 
266 /* STMT initializes an object from COMPLEX_CST where one or more of the
267    bytes written may be dead stores.  REF is a representation of the
268    memory written.  LIVE is the bitmap of stores that are actually live.
269 
270    Attempt to rewrite STMT so that only the real or imaginary part of
271    the object is actually stored.  */
272 
273 static void
maybe_trim_complex_store(ao_ref * ref,sbitmap live,gimple * stmt)274 maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
275 {
276   int trim_head, trim_tail;
277   compute_trims (ref, live, &trim_head, &trim_tail, stmt);
278 
279   /* The amount of data trimmed from the head or tail must be at
280      least half the size of the object to ensure we're trimming
281      the entire real or imaginary half.  By writing things this
282      way we avoid more O(n) bitmap operations.  */
283   if (known_ge (trim_tail * 2 * BITS_PER_UNIT, ref->size))
284     {
285       /* TREE_REALPART is live */
286       tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
287       tree y = gimple_assign_lhs (stmt);
288       y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
289       gimple_assign_set_lhs (stmt, y);
290       gimple_assign_set_rhs1 (stmt, x);
291     }
292   else if (known_ge (trim_head * 2 * BITS_PER_UNIT, ref->size))
293     {
294       /* TREE_IMAGPART is live */
295       tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
296       tree y = gimple_assign_lhs (stmt);
297       y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
298       gimple_assign_set_lhs (stmt, y);
299       gimple_assign_set_rhs1 (stmt, x);
300     }
301 
302   /* Other cases indicate parts of both the real and imag subobjects
303      are live.  We do not try to optimize those cases.  */
304 }
305 
306 /* STMT initializes an object using a CONSTRUCTOR where one or more of the
307    bytes written are dead stores.  ORIG is the bitmap of bytes stored by
308    STMT.  LIVE is the bitmap of stores that are actually live.
309 
310    Attempt to rewrite STMT so that only the real or imaginary part of
311    the object is actually stored.
312 
313    The most common case for getting here is a CONSTRUCTOR with no elements
314    being used to zero initialize an object.  We do not try to handle other
315    cases as those would force us to fully cover the object with the
316    CONSTRUCTOR node except for the components that are dead.  */
317 
318 static void
maybe_trim_constructor_store(ao_ref * ref,sbitmap live,gimple * stmt)319 maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
320 {
321   tree ctor = gimple_assign_rhs1 (stmt);
322 
323   /* This is the only case we currently handle.  It actually seems to
324      catch most cases of actual interest.  */
325   gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);
326 
327   int head_trim = 0;
328   int tail_trim = 0;
329   compute_trims (ref, live, &head_trim, &tail_trim, stmt);
330 
331   /* Now we want to replace the constructor initializer
332      with memset (object + head_trim, 0, size - head_trim - tail_trim).  */
333   if (head_trim || tail_trim)
334     {
335       /* We want &lhs for the MEM_REF expression.  */
336       tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));
337 
338       if (! is_gimple_min_invariant (lhs_addr))
339 	return;
340 
341       /* The number of bytes for the new constructor.  */
342       poly_int64 ref_bytes = exact_div (ref->size, BITS_PER_UNIT);
343       poly_int64 count = ref_bytes - head_trim - tail_trim;
344 
345       /* And the new type for the CONSTRUCTOR.  Essentially it's just
346 	 a char array large enough to cover the non-trimmed parts of
347 	 the original CONSTRUCTOR.  Note we want explicit bounds here
348 	 so that we know how many bytes to clear when expanding the
349 	 CONSTRUCTOR.  */
350       tree type = build_array_type_nelts (char_type_node, count);
351 
352       /* Build a suitable alias type rather than using alias set zero
353 	 to avoid pessimizing.  */
354       tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));
355 
356       /* Build a MEM_REF representing the whole accessed area, starting
357 	 at the first byte not trimmed.  */
358       tree exp = fold_build2 (MEM_REF, type, lhs_addr,
359 			      build_int_cst (alias_type, head_trim));
360 
361       /* Now update STMT with a new RHS and LHS.  */
362       gimple_assign_set_lhs (stmt, exp);
363       gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
364     }
365 }
366 
367 /* STMT is a memcpy, memmove or memset.  Decrement the number of bytes
368    copied/set by DECREMENT.  */
369 static void
decrement_count(gimple * stmt,int decrement)370 decrement_count (gimple *stmt, int decrement)
371 {
372   tree *countp = gimple_call_arg_ptr (stmt, 2);
373   gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
374   *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
375 						    - decrement));
376 
377 }
378 
379 static void
increment_start_addr(gimple * stmt,tree * where,int increment)380 increment_start_addr (gimple *stmt, tree *where, int increment)
381 {
382   if (TREE_CODE (*where) == SSA_NAME)
383     {
384       tree tem = make_ssa_name (TREE_TYPE (*where));
385       gassign *newop
386         = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
387 			       build_int_cst (sizetype, increment));
388       gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
389       gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
390       *where = tem;
391       update_stmt (gsi_stmt (gsi));
392       return;
393     }
394 
395   *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
396                                              *where,
397                                              build_int_cst (ptr_type_node,
398                                                             increment)));
399 }
400 
401 /* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
402    (ORIG & ~NEW) and need not be stored.  Try to rewrite STMT to reduce
403    the amount of data it actually writes.
404 
405    Right now we only support trimming from the head or the tail of the
406    memory region.  In theory we could split the mem* call, but it's
407    likely of marginal value.  */
408 
409 static void
maybe_trim_memstar_call(ao_ref * ref,sbitmap live,gimple * stmt)410 maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
411 {
412   switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
413     {
414     case BUILT_IN_MEMCPY:
415     case BUILT_IN_MEMMOVE:
416       {
417 	int head_trim, tail_trim;
418 	compute_trims (ref, live, &head_trim, &tail_trim, stmt);
419 
420 	/* Tail trimming is easy, we can just reduce the count.  */
421         if (tail_trim)
422 	  decrement_count (stmt, tail_trim);
423 
424 	/* Head trimming requires adjusting all the arguments.  */
425         if (head_trim)
426           {
427 	    tree *dst = gimple_call_arg_ptr (stmt, 0);
428 	    increment_start_addr (stmt, dst, head_trim);
429 	    tree *src = gimple_call_arg_ptr (stmt, 1);
430 	    increment_start_addr (stmt, src, head_trim);
431 	    decrement_count (stmt, head_trim);
432 	  }
433         break;
434       }
435 
436     case BUILT_IN_MEMSET:
437       {
438 	int head_trim, tail_trim;
439 	compute_trims (ref, live, &head_trim, &tail_trim, stmt);
440 
441 	/* Tail trimming is easy, we can just reduce the count.  */
442         if (tail_trim)
443 	  decrement_count (stmt, tail_trim);
444 
445 	/* Head trimming requires adjusting all the arguments.  */
446         if (head_trim)
447           {
448 	    tree *dst = gimple_call_arg_ptr (stmt, 0);
449 	    increment_start_addr (stmt, dst, head_trim);
450 	    decrement_count (stmt, head_trim);
451 	  }
452 	break;
453       }
454 
455       default:
456 	break;
457     }
458 }
459 
460 /* STMT is a memory write where one or more bytes written are dead
461    stores.  ORIG is the bitmap of bytes stored by STMT.  LIVE is the
462    bitmap of stores that are actually live.
463 
464    Attempt to rewrite STMT so that it writes fewer memory locations.  Right
465    now we only support trimming at the start or end of the memory region.
466    It's not clear how much there is to be gained by trimming from the middle
467    of the region.  */
468 
469 static void
maybe_trim_partially_dead_store(ao_ref * ref,sbitmap live,gimple * stmt)470 maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
471 {
472   if (is_gimple_assign (stmt)
473       && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
474     {
475       switch (gimple_assign_rhs_code (stmt))
476 	{
477 	case CONSTRUCTOR:
478 	  maybe_trim_constructor_store (ref, live, stmt);
479 	  break;
480 	case COMPLEX_CST:
481 	  maybe_trim_complex_store (ref, live, stmt);
482 	  break;
483 	default:
484 	  break;
485 	}
486     }
487 }
488 
489 /* Return TRUE if USE_REF reads bytes from LIVE where live is
490    derived from REF, a write reference.
491 
492    While this routine may modify USE_REF, it's passed by value, not
493    location.  So callers do not see those modifications.  */
494 
495 static bool
live_bytes_read(ao_ref use_ref,ao_ref * ref,sbitmap live)496 live_bytes_read (ao_ref use_ref, ao_ref *ref, sbitmap live)
497 {
498   /* We have already verified that USE_REF and REF hit the same object.
499      Now verify that there's actually an overlap between USE_REF and REF.  */
500   HOST_WIDE_INT start, size;
501   if (normalize_ref (&use_ref, ref)
502       && (use_ref.offset - ref->offset).is_constant (&start)
503       && use_ref.size.is_constant (&size))
504     {
505       /* If USE_REF covers all of REF, then it will hit one or more
506 	 live bytes.   This avoids useless iteration over the bitmap
507 	 below.  */
508       if (start == 0 && known_eq (size, ref->size))
509 	return true;
510 
511       /* Now check if any of the remaining bits in use_ref are set in LIVE.  */
512       return bitmap_bit_in_range_p (live, start / BITS_PER_UNIT,
513 				    (start + size - 1) / BITS_PER_UNIT);
514     }
515   return true;
516 }
517 
518 /* A helper of dse_optimize_stmt.
519    Given a GIMPLE_ASSIGN in STMT that writes to REF, find a candidate
520    statement *USE_STMT that may prove STMT to be dead.
521    Return TRUE if the above conditions are met, otherwise FALSE.  */
522 
523 static dse_store_status
dse_classify_store(ao_ref * ref,gimple * stmt,gimple ** use_stmt,bool byte_tracking_enabled,sbitmap live_bytes)524 dse_classify_store (ao_ref *ref, gimple *stmt, gimple **use_stmt,
525 		    bool byte_tracking_enabled, sbitmap live_bytes)
526 {
527   gimple *temp;
528   unsigned cnt = 0;
529 
530   *use_stmt = NULL;
531 
532   /* Find the first dominated statement that clobbers (part of) the
533      memory stmt stores to with no intermediate statement that may use
534      part of the memory stmt stores.  That is, find a store that may
535      prove stmt to be a dead store.  */
536   temp = stmt;
537   do
538     {
539       gimple *use_stmt, *defvar_def;
540       imm_use_iterator ui;
541       bool fail = false;
542       tree defvar;
543 
544       /* Limit stmt walking to be linear in the number of possibly
545          dead stores.  */
546       if (++cnt > 256)
547 	return DSE_STORE_LIVE;
548 
549       if (gimple_code (temp) == GIMPLE_PHI)
550 	defvar = PHI_RESULT (temp);
551       else
552 	defvar = gimple_vdef (temp);
553       defvar_def = temp;
554       temp = NULL;
555       FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
556 	{
557 	  cnt++;
558 
559 	  /* If we ever reach our DSE candidate stmt again fail.  We
560 	     cannot handle dead stores in loops.  */
561 	  if (use_stmt == stmt)
562 	    {
563 	      fail = true;
564 	      BREAK_FROM_IMM_USE_STMT (ui);
565 	    }
566 	  /* In simple cases we can look through PHI nodes, but we
567 	     have to be careful with loops and with memory references
568 	     containing operands that are also operands of PHI nodes.
569 	     See gcc.c-torture/execute/20051110-*.c.  */
570 	  else if (gimple_code (use_stmt) == GIMPLE_PHI)
571 	    {
572 	      if (temp
573 		  /* Make sure we are not in a loop latch block.  */
574 		  || gimple_bb (stmt) == gimple_bb (use_stmt)
575 		  || dominated_by_p (CDI_DOMINATORS,
576 				     gimple_bb (stmt), gimple_bb (use_stmt))
577 		  /* We can look through PHIs to regions post-dominating
578 		     the DSE candidate stmt.  */
579 		  || !dominated_by_p (CDI_POST_DOMINATORS,
580 				      gimple_bb (stmt), gimple_bb (use_stmt)))
581 		{
582 		  fail = true;
583 		  BREAK_FROM_IMM_USE_STMT (ui);
584 		}
585 	      /* Do not consider the PHI as use if it dominates the
586 	         stmt defining the virtual operand we are processing,
587 		 we have processed it already in this case.  */
588 	      if (gimple_bb (defvar_def) != gimple_bb (use_stmt)
589 		  && !dominated_by_p (CDI_DOMINATORS,
590 				      gimple_bb (defvar_def),
591 				      gimple_bb (use_stmt)))
592 		temp = use_stmt;
593 	    }
594 	  /* If the statement is a use the store is not dead.  */
595 	  else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
596 	    {
597 	      /* Handle common cases where we can easily build an ao_ref
598 		 structure for USE_STMT and in doing so we find that the
599 		 references hit non-live bytes and thus can be ignored.  */
600 	      if (byte_tracking_enabled && (!gimple_vdef (use_stmt) || !temp))
601 		{
602 		  if (is_gimple_assign (use_stmt))
603 		    {
604 		      /* Other cases were noted as non-aliasing by
605 			 the call to ref_maybe_used_by_stmt_p.  */
606 		      ao_ref use_ref;
607 		      ao_ref_init (&use_ref, gimple_assign_rhs1 (use_stmt));
608 		      if (valid_ao_ref_for_dse (&use_ref)
609 			  && use_ref.base == ref->base
610 			  && known_eq (use_ref.size, use_ref.max_size)
611 			  && !live_bytes_read (use_ref, ref, live_bytes))
612 			{
613 			  /* If this statement has a VDEF, then it is the
614 			     first store we have seen, so walk through it.  */
615 			  if (gimple_vdef (use_stmt))
616 			    temp = use_stmt;
617 			  continue;
618 			}
619 		    }
620 		}
621 
622 	      fail = true;
623 	      BREAK_FROM_IMM_USE_STMT (ui);
624 	    }
625 	  /* If this is a store, remember it or bail out if we have
626 	     multiple ones (the will be in different CFG parts then).  */
627 	  else if (gimple_vdef (use_stmt))
628 	    {
629 	      if (temp)
630 		{
631 		  fail = true;
632 		  BREAK_FROM_IMM_USE_STMT (ui);
633 		}
634 	      temp = use_stmt;
635 	    }
636 	}
637 
638       if (fail)
639 	{
640 	  /* STMT might be partially dead and we may be able to reduce
641 	     how many memory locations it stores into.  */
642 	  if (byte_tracking_enabled && !gimple_clobber_p (stmt))
643 	    return DSE_STORE_MAYBE_PARTIAL_DEAD;
644 	  return DSE_STORE_LIVE;
645 	}
646 
647       /* If we didn't find any definition this means the store is dead
648          if it isn't a store to global reachable memory.  In this case
649 	 just pretend the stmt makes itself dead.  Otherwise fail.  */
650       if (!temp)
651 	{
652 	  if (ref_may_alias_global_p (ref))
653 	    return DSE_STORE_LIVE;
654 
655 	  temp = stmt;
656 	  break;
657 	}
658 
659       if (byte_tracking_enabled && temp)
660 	clear_bytes_written_by (live_bytes, temp, ref);
661     }
662   /* Continue walking until we reach a full kill as a single statement
663      or there are no more live bytes.  */
664   while (!stmt_kills_ref_p (temp, ref)
665 	 && !(byte_tracking_enabled && bitmap_empty_p (live_bytes)));
666 
667   *use_stmt = temp;
668   return DSE_STORE_DEAD;
669 }
670 
671 
672 class dse_dom_walker : public dom_walker
673 {
674 public:
dse_dom_walker(cdi_direction direction)675   dse_dom_walker (cdi_direction direction)
676     : dom_walker (direction),
677     m_live_bytes (PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)),
678     m_byte_tracking_enabled (false) {}
679 
680   virtual edge before_dom_children (basic_block);
681 
682 private:
683   auto_sbitmap m_live_bytes;
684   bool m_byte_tracking_enabled;
685   void dse_optimize_stmt (gimple_stmt_iterator *);
686 };
687 
688 /* Delete a dead call at GSI, which is mem* call of some kind.  */
689 static void
delete_dead_call(gimple_stmt_iterator * gsi)690 delete_dead_call (gimple_stmt_iterator *gsi)
691 {
692   gimple *stmt = gsi_stmt (*gsi);
693   if (dump_file && (dump_flags & TDF_DETAILS))
694     {
695       fprintf (dump_file, "  Deleted dead call: ");
696       print_gimple_stmt (dump_file, stmt, 0, dump_flags);
697       fprintf (dump_file, "\n");
698     }
699 
700   tree lhs = gimple_call_lhs (stmt);
701   if (lhs)
702     {
703       tree ptr = gimple_call_arg (stmt, 0);
704       gimple *new_stmt = gimple_build_assign (lhs, ptr);
705       unlink_stmt_vdef (stmt);
706       if (gsi_replace (gsi, new_stmt, true))
707         bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
708     }
709   else
710     {
711       /* Then we need to fix the operand of the consuming stmt.  */
712       unlink_stmt_vdef (stmt);
713 
714       /* Remove the dead store.  */
715       if (gsi_remove (gsi, true))
716 	bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
717       release_defs (stmt);
718     }
719 }
720 
721 /* Delete a dead store at GSI, which is a gimple assignment. */
722 
723 static void
delete_dead_assignment(gimple_stmt_iterator * gsi)724 delete_dead_assignment (gimple_stmt_iterator *gsi)
725 {
726   gimple *stmt = gsi_stmt (*gsi);
727   if (dump_file && (dump_flags & TDF_DETAILS))
728     {
729       fprintf (dump_file, "  Deleted dead store: ");
730       print_gimple_stmt (dump_file, stmt, 0, dump_flags);
731       fprintf (dump_file, "\n");
732     }
733 
734   /* Then we need to fix the operand of the consuming stmt.  */
735   unlink_stmt_vdef (stmt);
736 
737   /* Remove the dead store.  */
738   basic_block bb = gimple_bb (stmt);
739   if (gsi_remove (gsi, true))
740     bitmap_set_bit (need_eh_cleanup, bb->index);
741 
742   /* And release any SSA_NAMEs set in this statement back to the
743      SSA_NAME manager.  */
744   release_defs (stmt);
745 }
746 
747 /* Attempt to eliminate dead stores in the statement referenced by BSI.
748 
749    A dead store is a store into a memory location which will later be
750    overwritten by another store without any intervening loads.  In this
751    case the earlier store can be deleted.
752 
753    In our SSA + virtual operand world we use immediate uses of virtual
754    operands to detect dead stores.  If a store's virtual definition
755    is used precisely once by a later store to the same location which
756    post dominates the first store, then the first store is dead.  */
757 
758 void
dse_optimize_stmt(gimple_stmt_iterator * gsi)759 dse_dom_walker::dse_optimize_stmt (gimple_stmt_iterator *gsi)
760 {
761   gimple *stmt = gsi_stmt (*gsi);
762 
763   /* If this statement has no virtual defs, then there is nothing
764      to do.  */
765   if (!gimple_vdef (stmt))
766     return;
767 
768   /* Don't return early on *this_2(D) ={v} {CLOBBER}.  */
769   if (gimple_has_volatile_ops (stmt)
770       && (!gimple_clobber_p (stmt)
771 	  || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
772     return;
773 
774   ao_ref ref;
775   if (!initialize_ao_ref_for_dse (stmt, &ref))
776     return;
777 
778   /* We know we have virtual definitions.  We can handle assignments and
779      some builtin calls.  */
780   if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
781     {
782       switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
783 	{
784 	  case BUILT_IN_MEMCPY:
785 	  case BUILT_IN_MEMMOVE:
786 	  case BUILT_IN_MEMSET:
787 	    {
788 	      /* Occasionally calls with an explicit length of zero
789 		 show up in the IL.  It's pointless to do analysis
790 		 on them, they're trivially dead.  */
791 	      tree size = gimple_call_arg (stmt, 2);
792 	      if (integer_zerop (size))
793 		{
794 		  delete_dead_call (gsi);
795 		  return;
796 		}
797 
798 	      gimple *use_stmt;
799 	      enum dse_store_status store_status;
800 	      m_byte_tracking_enabled
801 		= setup_live_bytes_from_ref (&ref, m_live_bytes);
802 	      store_status = dse_classify_store (&ref, stmt, &use_stmt,
803 						 m_byte_tracking_enabled,
804 						 m_live_bytes);
805 	      if (store_status == DSE_STORE_LIVE)
806 		return;
807 
808 	      if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
809 		{
810 		  maybe_trim_memstar_call (&ref, m_live_bytes, stmt);
811 		  return;
812 		}
813 
814 	      if (store_status == DSE_STORE_DEAD)
815 		delete_dead_call (gsi);
816 	      return;
817 	    }
818 
819 	  default:
820 	    return;
821 	}
822     }
823 
824   if (is_gimple_assign (stmt))
825     {
826       gimple *use_stmt;
827 
828       /* Self-assignments are zombies.  */
829       if (operand_equal_p (gimple_assign_rhs1 (stmt),
830 			   gimple_assign_lhs (stmt), 0))
831 	use_stmt = stmt;
832       else
833 	{
834 	  m_byte_tracking_enabled
835 	    = setup_live_bytes_from_ref (&ref, m_live_bytes);
836 	  enum dse_store_status store_status;
837 	  store_status = dse_classify_store (&ref, stmt, &use_stmt,
838 					     m_byte_tracking_enabled,
839 					     m_live_bytes);
840 	  if (store_status == DSE_STORE_LIVE)
841 	    return;
842 
843 	  if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
844 	    {
845 	      maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
846 	      return;
847 	    }
848 	}
849 
850       /* Now we know that use_stmt kills the LHS of stmt.  */
851 
852       /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
853 	 another clobber stmt.  */
854       if (gimple_clobber_p (stmt)
855 	  && !gimple_clobber_p (use_stmt))
856 	return;
857 
858       delete_dead_assignment (gsi);
859     }
860 }
861 
862 edge
before_dom_children(basic_block bb)863 dse_dom_walker::before_dom_children (basic_block bb)
864 {
865   gimple_stmt_iterator gsi;
866 
867   for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
868     {
869       dse_optimize_stmt (&gsi);
870       if (gsi_end_p (gsi))
871 	gsi = gsi_last_bb (bb);
872       else
873 	gsi_prev (&gsi);
874     }
875   return NULL;
876 }
877 
878 namespace {
879 
880 const pass_data pass_data_dse =
881 {
882   GIMPLE_PASS, /* type */
883   "dse", /* name */
884   OPTGROUP_NONE, /* optinfo_flags */
885   TV_TREE_DSE, /* tv_id */
886   ( PROP_cfg | PROP_ssa ), /* properties_required */
887   0, /* properties_provided */
888   0, /* properties_destroyed */
889   0, /* todo_flags_start */
890   0, /* todo_flags_finish */
891 };
892 
893 class pass_dse : public gimple_opt_pass
894 {
895 public:
pass_dse(gcc::context * ctxt)896   pass_dse (gcc::context *ctxt)
897     : gimple_opt_pass (pass_data_dse, ctxt)
898   {}
899 
900   /* opt_pass methods: */
clone()901   opt_pass * clone () { return new pass_dse (m_ctxt); }
gate(function *)902   virtual bool gate (function *) { return flag_tree_dse != 0; }
903   virtual unsigned int execute (function *);
904 
905 }; // class pass_dse
906 
907 unsigned int
execute(function * fun)908 pass_dse::execute (function *fun)
909 {
910   need_eh_cleanup = BITMAP_ALLOC (NULL);
911 
912   renumber_gimple_stmt_uids ();
913 
914   /* We might consider making this a property of each pass so that it
915      can be [re]computed on an as-needed basis.  Particularly since
916      this pass could be seen as an extension of DCE which needs post
917      dominators.  */
918   calculate_dominance_info (CDI_POST_DOMINATORS);
919   calculate_dominance_info (CDI_DOMINATORS);
920 
921   /* Dead store elimination is fundamentally a walk of the post-dominator
922      tree and a backwards walk of statements within each block.  */
923   dse_dom_walker (CDI_POST_DOMINATORS).walk (fun->cfg->x_exit_block_ptr);
924 
925   /* Removal of stores may make some EH edges dead.  Purge such edges from
926      the CFG as needed.  */
927   if (!bitmap_empty_p (need_eh_cleanup))
928     {
929       gimple_purge_all_dead_eh_edges (need_eh_cleanup);
930       cleanup_tree_cfg ();
931     }
932 
933   BITMAP_FREE (need_eh_cleanup);
934 
935   /* For now, just wipe the post-dominator information.  */
936   free_dominance_info (CDI_POST_DOMINATORS);
937   return 0;
938 }
939 
940 } // anon namespace
941 
942 gimple_opt_pass *
make_pass_dse(gcc::context * ctxt)943 make_pass_dse (gcc::context *ctxt)
944 {
945   return new pass_dse (ctxt);
946 }
947