1`/* Specific implementation of the PACK intrinsic 2 Copyright (C) 2002-2018 Free Software Foundation, Inc. 3 Contributed by Paul Brook <paul@nowt.org> 4 5This file is part of the GNU Fortran runtime library (libgfortran). 6 7Libgfortran is free software; you can redistribute it and/or 8modify it under the terms of the GNU General Public 9License as published by the Free Software Foundation; either 10version 3 of the License, or (at your option) any later version. 11 12Ligbfortran is distributed in the hope that it will be useful, 13but WITHOUT ANY WARRANTY; without even the implied warranty of 14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15GNU General Public License for more details. 16 17Under Section 7 of GPL version 3, you are granted additional 18permissions described in the GCC Runtime Library Exception, version 193.1, as published by the Free Software Foundation. 20 21You should have received a copy of the GNU General Public License and 22a copy of the GCC Runtime Library Exception along with this program; 23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24<http://www.gnu.org/licenses/>. */ 25 26#include "libgfortran.h" 27#include <string.h>' 28 29include(iparm.m4)dnl 30 31`#if defined (HAVE_'rtype_name`) 32 33/* PACK is specified as follows: 34 35 13.14.80 PACK (ARRAY, MASK, [VECTOR]) 36 37 Description: Pack an array into an array of rank one under the 38 control of a mask. 39 40 Class: Transformational function. 41 42 Arguments: 43 ARRAY may be of any type. It shall not be scalar. 44 MASK shall be of type LOGICAL. It shall be conformable with ARRAY. 45 VECTOR (optional) shall be of the same type and type parameters 46 as ARRAY. VECTOR shall have at least as many elements as 47 there are true elements in MASK. If MASK is a scalar 48 with the value true, VECTOR shall have at least as many 49 elements as there are in ARRAY. 50 51 Result Characteristics: The result is an array of rank one with the 52 same type and type parameters as ARRAY. If VECTOR is present, the 53 result size is that of VECTOR; otherwise, the result size is the 54 number /t/ of true elements in MASK unless MASK is scalar with the 55 value true, in which case the result size is the size of ARRAY. 56 57 Result Value: Element /i/ of the result is the element of ARRAY 58 that corresponds to the /i/th true element of MASK, taking elements 59 in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is 60 present and has size /n/ > /t/, element /i/ of the result has the 61 value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/. 62 63 Examples: The nonzero elements of an array M with the value 64 | 0 0 0 | 65 | 9 0 0 | may be "gathered" by the function PACK. The result of 66 | 0 0 7 | 67 PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0, 68 VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12]. 69 70There are two variants of the PACK intrinsic: one, where MASK is 71array valued, and the other one where MASK is scalar. */ 72 73void 74pack_'rtype_code` ('rtype` *ret, const 'rtype` *array, 75 const gfc_array_l1 *mask, const 'rtype` *vector) 76{ 77 /* r.* indicates the return array. */ 78 index_type rstride0; 79 'rtype_name` * restrict rptr; 80 /* s.* indicates the source array. */ 81 index_type sstride[GFC_MAX_DIMENSIONS]; 82 index_type sstride0; 83 const 'rtype_name` *sptr; 84 /* m.* indicates the mask array. */ 85 index_type mstride[GFC_MAX_DIMENSIONS]; 86 index_type mstride0; 87 const GFC_LOGICAL_1 *mptr; 88 89 index_type count[GFC_MAX_DIMENSIONS]; 90 index_type extent[GFC_MAX_DIMENSIONS]; 91 int zero_sized; 92 index_type n; 93 index_type dim; 94 index_type nelem; 95 index_type total; 96 int mask_kind; 97 98 dim = GFC_DESCRIPTOR_RANK (array); 99 100 mptr = mask->base_addr; 101 102 /* Use the same loop for all logical types, by using GFC_LOGICAL_1 103 and using shifting to address size and endian issues. */ 104 105 mask_kind = GFC_DESCRIPTOR_SIZE (mask); 106 107 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 108#ifdef HAVE_GFC_LOGICAL_16 109 || mask_kind == 16 110#endif 111 ) 112 { 113 /* Do not convert a NULL pointer as we use test for NULL below. */ 114 if (mptr) 115 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); 116 } 117 else 118 runtime_error ("Funny sized logical array"); 119 120 zero_sized = 0; 121 for (n = 0; n < dim; n++) 122 { 123 count[n] = 0; 124 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); 125 if (extent[n] <= 0) 126 zero_sized = 1; 127 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); 128 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); 129 } 130 if (sstride[0] == 0) 131 sstride[0] = 1; 132 if (mstride[0] == 0) 133 mstride[0] = mask_kind; 134 135 if (zero_sized) 136 sptr = NULL; 137 else 138 sptr = array->base_addr; 139 140 if (ret->base_addr == NULL || unlikely (compile_options.bounds_check)) 141 { 142 /* Count the elements, either for allocating memory or 143 for bounds checking. */ 144 145 if (vector != NULL) 146 { 147 /* The return array will have as many 148 elements as there are in VECTOR. */ 149 total = GFC_DESCRIPTOR_EXTENT(vector,0); 150 if (total < 0) 151 { 152 total = 0; 153 vector = NULL; 154 } 155 } 156 else 157 { 158 /* We have to count the true elements in MASK. */ 159 total = count_0 (mask); 160 } 161 162 if (ret->base_addr == NULL) 163 { 164 /* Setup the array descriptor. */ 165 GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1); 166 167 ret->offset = 0; 168 169 /* xmallocarray allocates a single byte for zero size. */ 170 ret->base_addr = xmallocarray (total, sizeof ('rtype_name`)); 171 172 if (total == 0) 173 return; 174 } 175 else 176 { 177 /* We come here because of range checking. */ 178 index_type ret_extent; 179 180 ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0); 181 if (total != ret_extent) 182 runtime_error ("Incorrect extent in return value of PACK intrinsic;" 183 " is %ld, should be %ld", (long int) total, 184 (long int) ret_extent); 185 } 186 } 187 188 rstride0 = GFC_DESCRIPTOR_STRIDE(ret,0); 189 if (rstride0 == 0) 190 rstride0 = 1; 191 sstride0 = sstride[0]; 192 mstride0 = mstride[0]; 193 rptr = ret->base_addr; 194 195 while (sptr && mptr) 196 { 197 /* Test this element. */ 198 if (*mptr) 199 { 200 /* Add it. */ 201 *rptr = *sptr; 202 rptr += rstride0; 203 } 204 /* Advance to the next element. */ 205 sptr += sstride0; 206 mptr += mstride0; 207 count[0]++; 208 n = 0; 209 while (count[n] == extent[n]) 210 { 211 /* When we get to the end of a dimension, reset it and increment 212 the next dimension. */ 213 count[n] = 0; 214 /* We could precalculate these products, but this is a less 215 frequently used path so probably not worth it. */ 216 sptr -= sstride[n] * extent[n]; 217 mptr -= mstride[n] * extent[n]; 218 n++; 219 if (n >= dim) 220 { 221 /* Break out of the loop. */ 222 sptr = NULL; 223 break; 224 } 225 else 226 { 227 count[n]++; 228 sptr += sstride[n]; 229 mptr += mstride[n]; 230 } 231 } 232 } 233 234 /* Add any remaining elements from VECTOR. */ 235 if (vector) 236 { 237 n = GFC_DESCRIPTOR_EXTENT(vector,0); 238 nelem = ((rptr - ret->base_addr) / rstride0); 239 if (n > nelem) 240 { 241 sstride0 = GFC_DESCRIPTOR_STRIDE(vector,0); 242 if (sstride0 == 0) 243 sstride0 = 1; 244 245 sptr = vector->base_addr + sstride0 * nelem; 246 n -= nelem; 247 while (n--) 248 { 249 *rptr = *sptr; 250 rptr += rstride0; 251 sptr += sstride0; 252 } 253 } 254 } 255} 256 257#endif 258' 259