1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Package quick implements utility functions to help with black box testing. 6// 7// The testing/quick package is frozen and is not accepting new features. 8package quick 9 10import ( 11 "flag" 12 "fmt" 13 "math" 14 "math/rand" 15 "reflect" 16 "strings" 17 "time" 18) 19 20var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check") 21 22// A Generator can generate random values of its own type. 23type Generator interface { 24 // Generate returns a random instance of the type on which it is a 25 // method using the size as a size hint. 26 Generate(rand *rand.Rand, size int) reflect.Value 27} 28 29// randFloat32 generates a random float taking the full range of a float32. 30func randFloat32(rand *rand.Rand) float32 { 31 f := rand.Float64() * math.MaxFloat32 32 if rand.Int()&1 == 1 { 33 f = -f 34 } 35 return float32(f) 36} 37 38// randFloat64 generates a random float taking the full range of a float64. 39func randFloat64(rand *rand.Rand) float64 { 40 f := rand.Float64() * math.MaxFloat64 41 if rand.Int()&1 == 1 { 42 f = -f 43 } 44 return f 45} 46 47// randInt64 returns a random int64. 48func randInt64(rand *rand.Rand) int64 { 49 return int64(rand.Uint64()) 50} 51 52// complexSize is the maximum length of arbitrary values that contain other 53// values. 54const complexSize = 50 55 56// Value returns an arbitrary value of the given type. 57// If the type implements the Generator interface, that will be used. 58// Note: To create arbitrary values for structs, all the fields must be exported. 59func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) { 60 return sizedValue(t, rand, complexSize) 61} 62 63// sizedValue returns an arbitrary value of the given type. The size 64// hint is used for shrinking as a function of indirection level so 65// that recursive data structures will terminate. 66func sizedValue(t reflect.Type, rand *rand.Rand, size int) (value reflect.Value, ok bool) { 67 if m, ok := reflect.Zero(t).Interface().(Generator); ok { 68 return m.Generate(rand, size), true 69 } 70 71 v := reflect.New(t).Elem() 72 switch concrete := t; concrete.Kind() { 73 case reflect.Bool: 74 v.SetBool(rand.Int()&1 == 0) 75 case reflect.Float32: 76 v.SetFloat(float64(randFloat32(rand))) 77 case reflect.Float64: 78 v.SetFloat(randFloat64(rand)) 79 case reflect.Complex64: 80 v.SetComplex(complex(float64(randFloat32(rand)), float64(randFloat32(rand)))) 81 case reflect.Complex128: 82 v.SetComplex(complex(randFloat64(rand), randFloat64(rand))) 83 case reflect.Int16: 84 v.SetInt(randInt64(rand)) 85 case reflect.Int32: 86 v.SetInt(randInt64(rand)) 87 case reflect.Int64: 88 v.SetInt(randInt64(rand)) 89 case reflect.Int8: 90 v.SetInt(randInt64(rand)) 91 case reflect.Int: 92 v.SetInt(randInt64(rand)) 93 case reflect.Uint16: 94 v.SetUint(uint64(randInt64(rand))) 95 case reflect.Uint32: 96 v.SetUint(uint64(randInt64(rand))) 97 case reflect.Uint64: 98 v.SetUint(uint64(randInt64(rand))) 99 case reflect.Uint8: 100 v.SetUint(uint64(randInt64(rand))) 101 case reflect.Uint: 102 v.SetUint(uint64(randInt64(rand))) 103 case reflect.Uintptr: 104 v.SetUint(uint64(randInt64(rand))) 105 case reflect.Map: 106 numElems := rand.Intn(size) 107 v.Set(reflect.MakeMap(concrete)) 108 for i := 0; i < numElems; i++ { 109 key, ok1 := sizedValue(concrete.Key(), rand, size) 110 value, ok2 := sizedValue(concrete.Elem(), rand, size) 111 if !ok1 || !ok2 { 112 return reflect.Value{}, false 113 } 114 v.SetMapIndex(key, value) 115 } 116 case reflect.Ptr: 117 if rand.Intn(size) == 0 { 118 v.Set(reflect.Zero(concrete)) // Generate nil pointer. 119 } else { 120 elem, ok := sizedValue(concrete.Elem(), rand, size) 121 if !ok { 122 return reflect.Value{}, false 123 } 124 v.Set(reflect.New(concrete.Elem())) 125 v.Elem().Set(elem) 126 } 127 case reflect.Slice: 128 numElems := rand.Intn(size) 129 sizeLeft := size - numElems 130 v.Set(reflect.MakeSlice(concrete, numElems, numElems)) 131 for i := 0; i < numElems; i++ { 132 elem, ok := sizedValue(concrete.Elem(), rand, sizeLeft) 133 if !ok { 134 return reflect.Value{}, false 135 } 136 v.Index(i).Set(elem) 137 } 138 case reflect.Array: 139 for i := 0; i < v.Len(); i++ { 140 elem, ok := sizedValue(concrete.Elem(), rand, size) 141 if !ok { 142 return reflect.Value{}, false 143 } 144 v.Index(i).Set(elem) 145 } 146 case reflect.String: 147 numChars := rand.Intn(complexSize) 148 codePoints := make([]rune, numChars) 149 for i := 0; i < numChars; i++ { 150 codePoints[i] = rune(rand.Intn(0x10ffff)) 151 } 152 v.SetString(string(codePoints)) 153 case reflect.Struct: 154 n := v.NumField() 155 // Divide sizeLeft evenly among the struct fields. 156 sizeLeft := size 157 if n > sizeLeft { 158 sizeLeft = 1 159 } else if n > 0 { 160 sizeLeft /= n 161 } 162 for i := 0; i < n; i++ { 163 elem, ok := sizedValue(concrete.Field(i).Type, rand, sizeLeft) 164 if !ok { 165 return reflect.Value{}, false 166 } 167 v.Field(i).Set(elem) 168 } 169 default: 170 return reflect.Value{}, false 171 } 172 173 return v, true 174} 175 176// A Config structure contains options for running a test. 177type Config struct { 178 // MaxCount sets the maximum number of iterations. 179 // If zero, MaxCountScale is used. 180 MaxCount int 181 // MaxCountScale is a non-negative scale factor applied to the 182 // default maximum. 183 // If zero, the default is unchanged. 184 MaxCountScale float64 185 // Rand specifies a source of random numbers. 186 // If nil, a default pseudo-random source will be used. 187 Rand *rand.Rand 188 // Values specifies a function to generate a slice of 189 // arbitrary reflect.Values that are congruent with the 190 // arguments to the function being tested. 191 // If nil, the top-level Value function is used to generate them. 192 Values func([]reflect.Value, *rand.Rand) 193} 194 195var defaultConfig Config 196 197// getRand returns the *rand.Rand to use for a given Config. 198func (c *Config) getRand() *rand.Rand { 199 if c.Rand == nil { 200 return rand.New(rand.NewSource(time.Now().UnixNano())) 201 } 202 return c.Rand 203} 204 205// getMaxCount returns the maximum number of iterations to run for a given 206// Config. 207func (c *Config) getMaxCount() (maxCount int) { 208 maxCount = c.MaxCount 209 if maxCount == 0 { 210 if c.MaxCountScale != 0 { 211 maxCount = int(c.MaxCountScale * float64(*defaultMaxCount)) 212 } else { 213 maxCount = *defaultMaxCount 214 } 215 } 216 217 return 218} 219 220// A SetupError is the result of an error in the way that check is being 221// used, independent of the functions being tested. 222type SetupError string 223 224func (s SetupError) Error() string { return string(s) } 225 226// A CheckError is the result of Check finding an error. 227type CheckError struct { 228 Count int 229 In []interface{} 230} 231 232func (s *CheckError) Error() string { 233 return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In)) 234} 235 236// A CheckEqualError is the result CheckEqual finding an error. 237type CheckEqualError struct { 238 CheckError 239 Out1 []interface{} 240 Out2 []interface{} 241} 242 243func (s *CheckEqualError) Error() string { 244 return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2)) 245} 246 247// Check looks for an input to f, any function that returns bool, 248// such that f returns false. It calls f repeatedly, with arbitrary 249// values for each argument. If f returns false on a given input, 250// Check returns that input as a *CheckError. 251// For example: 252// 253// func TestOddMultipleOfThree(t *testing.T) { 254// f := func(x int) bool { 255// y := OddMultipleOfThree(x) 256// return y%2 == 1 && y%3 == 0 257// } 258// if err := quick.Check(f, nil); err != nil { 259// t.Error(err) 260// } 261// } 262func Check(f interface{}, config *Config) error { 263 if config == nil { 264 config = &defaultConfig 265 } 266 267 fVal, fType, ok := functionAndType(f) 268 if !ok { 269 return SetupError("argument is not a function") 270 } 271 272 if fType.NumOut() != 1 { 273 return SetupError("function does not return one value") 274 } 275 if fType.Out(0).Kind() != reflect.Bool { 276 return SetupError("function does not return a bool") 277 } 278 279 arguments := make([]reflect.Value, fType.NumIn()) 280 rand := config.getRand() 281 maxCount := config.getMaxCount() 282 283 for i := 0; i < maxCount; i++ { 284 err := arbitraryValues(arguments, fType, config, rand) 285 if err != nil { 286 return err 287 } 288 289 if !fVal.Call(arguments)[0].Bool() { 290 return &CheckError{i + 1, toInterfaces(arguments)} 291 } 292 } 293 294 return nil 295} 296 297// CheckEqual looks for an input on which f and g return different results. 298// It calls f and g repeatedly with arbitrary values for each argument. 299// If f and g return different answers, CheckEqual returns a *CheckEqualError 300// describing the input and the outputs. 301func CheckEqual(f, g interface{}, config *Config) error { 302 if config == nil { 303 config = &defaultConfig 304 } 305 306 x, xType, ok := functionAndType(f) 307 if !ok { 308 return SetupError("f is not a function") 309 } 310 y, yType, ok := functionAndType(g) 311 if !ok { 312 return SetupError("g is not a function") 313 } 314 315 if xType != yType { 316 return SetupError("functions have different types") 317 } 318 319 arguments := make([]reflect.Value, xType.NumIn()) 320 rand := config.getRand() 321 maxCount := config.getMaxCount() 322 323 for i := 0; i < maxCount; i++ { 324 err := arbitraryValues(arguments, xType, config, rand) 325 if err != nil { 326 return err 327 } 328 329 xOut := toInterfaces(x.Call(arguments)) 330 yOut := toInterfaces(y.Call(arguments)) 331 332 if !reflect.DeepEqual(xOut, yOut) { 333 return &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut} 334 } 335 } 336 337 return nil 338} 339 340// arbitraryValues writes Values to args such that args contains Values 341// suitable for calling f. 342func arbitraryValues(args []reflect.Value, f reflect.Type, config *Config, rand *rand.Rand) (err error) { 343 if config.Values != nil { 344 config.Values(args, rand) 345 return 346 } 347 348 for j := 0; j < len(args); j++ { 349 var ok bool 350 args[j], ok = Value(f.In(j), rand) 351 if !ok { 352 err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j)) 353 return 354 } 355 } 356 357 return 358} 359 360func functionAndType(f interface{}) (v reflect.Value, t reflect.Type, ok bool) { 361 v = reflect.ValueOf(f) 362 ok = v.Kind() == reflect.Func 363 if !ok { 364 return 365 } 366 t = v.Type() 367 return 368} 369 370func toInterfaces(values []reflect.Value) []interface{} { 371 ret := make([]interface{}, len(values)) 372 for i, v := range values { 373 ret[i] = v.Interface() 374 } 375 return ret 376} 377 378func toString(interfaces []interface{}) string { 379 s := make([]string, len(interfaces)) 380 for i, v := range interfaces { 381 s[i] = fmt.Sprintf("%#v", v) 382 } 383 return strings.Join(s, ", ") 384} 385