1 //===-- tsan_interceptors.cc ----------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // FIXME: move as many interceptors as possible into
11 // sanitizer_common/sanitizer_common_interceptors.inc
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_libc.h"
17 #include "sanitizer_common/sanitizer_linux.h"
18 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
19 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_posix.h"
22 #include "sanitizer_common/sanitizer_stacktrace.h"
23 #include "sanitizer_common/sanitizer_tls_get_addr.h"
24 #include "interception/interception.h"
25 #include "tsan_interceptors.h"
26 #include "tsan_interface.h"
27 #include "tsan_platform.h"
28 #include "tsan_suppressions.h"
29 #include "tsan_rtl.h"
30 #include "tsan_mman.h"
31 #include "tsan_fd.h"
32 
33 
34 using namespace __tsan;  // NOLINT
35 
36 #if SANITIZER_FREEBSD || SANITIZER_MAC
37 #define stdout __stdoutp
38 #define stderr __stderrp
39 #endif
40 
41 #if SANITIZER_NETBSD
42 #define dirfd(dirp) (*(int *)(dirp))
43 #define fileno_unlocked fileno
44 #define stdout __sF[1]
45 #define stderr __sF[2]
46 #endif
47 
48 #if SANITIZER_ANDROID
49 #define mallopt(a, b)
50 #endif
51 
52 #ifdef __mips__
53 const int kSigCount = 129;
54 #else
55 const int kSigCount = 65;
56 #endif
57 
58 struct my_siginfo_t {
59   // The size is determined by looking at sizeof of real siginfo_t on linux.
60   u64 opaque[128 / sizeof(u64)];
61 };
62 
63 #ifdef __mips__
64 struct ucontext_t {
65   u64 opaque[768 / sizeof(u64) + 1];
66 };
67 #else
68 struct ucontext_t {
69   // The size is determined by looking at sizeof of real ucontext_t on linux.
70   u64 opaque[936 / sizeof(u64) + 1];
71 };
72 #endif
73 
74 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
75 #define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
76 #elif defined(__aarch64__) || SANITIZER_PPC64V2
77 #define PTHREAD_ABI_BASE  "GLIBC_2.17"
78 #endif
79 
80 extern "C" int pthread_attr_init(void *attr);
81 extern "C" int pthread_attr_destroy(void *attr);
82 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
83 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
84 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
85 extern "C" int pthread_setspecific(unsigned key, const void *v);
86 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
87 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
88 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
89 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
90 extern "C" void *pthread_self();
91 extern "C" void _exit(int status);
92 extern "C" int fileno_unlocked(void *stream);
93 #if !SANITIZER_NETBSD
94 extern "C" int dirfd(void *dirp);
95 #endif
96 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
97 extern "C" int mallopt(int param, int value);
98 #endif
99 #if SANITIZER_NETBSD
100 extern __sanitizer_FILE **__sF;
101 #else
102 extern __sanitizer_FILE *stdout, *stderr;
103 #endif
104 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
105 const int PTHREAD_MUTEX_RECURSIVE = 1;
106 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
107 #else
108 const int PTHREAD_MUTEX_RECURSIVE = 2;
109 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
110 #endif
111 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
112 const int EPOLL_CTL_ADD = 1;
113 #endif
114 const int SIGILL = 4;
115 const int SIGABRT = 6;
116 const int SIGFPE = 8;
117 const int SIGSEGV = 11;
118 const int SIGPIPE = 13;
119 const int SIGTERM = 15;
120 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
121 const int SIGBUS = 10;
122 const int SIGSYS = 12;
123 #else
124 const int SIGBUS = 7;
125 const int SIGSYS = 31;
126 #endif
127 void *const MAP_FAILED = (void*)-1;
128 #if SANITIZER_NETBSD
129 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
130 #elif !SANITIZER_MAC
131 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
132 #endif
133 const int MAP_FIXED = 0x10;
134 typedef long long_t;  // NOLINT
135 
136 // From /usr/include/unistd.h
137 # define F_ULOCK 0      /* Unlock a previously locked region.  */
138 # define F_LOCK  1      /* Lock a region for exclusive use.  */
139 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
140 # define F_TEST  3      /* Test a region for other processes locks.  */
141 
142 typedef void (*sighandler_t)(int sig);
143 typedef void (*sigactionhandler_t)(int sig, my_siginfo_t *siginfo, void *uctx);
144 
145 #if SANITIZER_ANDROID
146 struct sigaction_t {
147   u32 sa_flags;
148   union {
149     sighandler_t sa_handler;
150     sigactionhandler_t sa_sigaction;
151   };
152   __sanitizer_sigset_t sa_mask;
153   void (*sa_restorer)();
154 };
155 #elif SANITIZER_NETBSD
156 struct sigaction_t {
157   union {
158     sighandler_t sa_handler;
159     sigactionhandler_t sa_sigaction;
160   };
161   __sanitizer_sigset_t sa_mask;
162   int sa_flags;
163 };
164 #else
165 struct sigaction_t {
166 #ifdef __mips__
167   u32 sa_flags;
168 #endif
169   union {
170     sighandler_t sa_handler;
171     sigactionhandler_t sa_sigaction;
172   };
173 #if SANITIZER_FREEBSD
174   int sa_flags;
175   __sanitizer_sigset_t sa_mask;
176 #elif SANITIZER_MAC
177   __sanitizer_sigset_t sa_mask;
178   int sa_flags;
179 #else
180   __sanitizer_sigset_t sa_mask;
181 #ifndef __mips__
182   int sa_flags;
183 #endif
184   void (*sa_restorer)();
185 #endif
186 };
187 #endif
188 
189 const sighandler_t SIG_DFL = (sighandler_t)0;
190 const sighandler_t SIG_IGN = (sighandler_t)1;
191 const sighandler_t SIG_ERR = (sighandler_t)-1;
192 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
193 const int SA_SIGINFO = 0x40;
194 const int SIG_SETMASK = 3;
195 #elif defined(__mips__)
196 const int SA_SIGINFO = 8;
197 const int SIG_SETMASK = 3;
198 #else
199 const int SA_SIGINFO = 4;
200 const int SIG_SETMASK = 2;
201 #endif
202 
203 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
204   (!cur_thread()->is_inited)
205 
206 static sigaction_t sigactions[kSigCount];
207 
208 namespace __tsan {
209 struct SignalDesc {
210   bool armed;
211   bool sigaction;
212   my_siginfo_t siginfo;
213   ucontext_t ctx;
214 };
215 
216 struct ThreadSignalContext {
217   int int_signal_send;
218   atomic_uintptr_t in_blocking_func;
219   atomic_uintptr_t have_pending_signals;
220   SignalDesc pending_signals[kSigCount];
221   // emptyset and oldset are too big for stack.
222   __sanitizer_sigset_t emptyset;
223   __sanitizer_sigset_t oldset;
224 };
225 
226 // The object is 64-byte aligned, because we want hot data to be located in
227 // a single cache line if possible (it's accessed in every interceptor).
228 static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
libignore()229 LibIgnore *libignore() {
230   return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
231 }
232 
InitializeLibIgnore()233 void InitializeLibIgnore() {
234   const SuppressionContext &supp = *Suppressions();
235   const uptr n = supp.SuppressionCount();
236   for (uptr i = 0; i < n; i++) {
237     const Suppression *s = supp.SuppressionAt(i);
238     if (0 == internal_strcmp(s->type, kSuppressionLib))
239       libignore()->AddIgnoredLibrary(s->templ);
240   }
241   if (flags()->ignore_noninstrumented_modules)
242     libignore()->IgnoreNoninstrumentedModules(true);
243   libignore()->OnLibraryLoaded(0);
244 }
245 
246 }  // namespace __tsan
247 
SigCtx(ThreadState * thr)248 static ThreadSignalContext *SigCtx(ThreadState *thr) {
249   ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
250   if (ctx == 0 && !thr->is_dead) {
251     ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
252     MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
253     thr->signal_ctx = ctx;
254   }
255   return ctx;
256 }
257 
258 #if !SANITIZER_MAC
259 static unsigned g_thread_finalize_key;
260 #endif
261 
ScopedInterceptor(ThreadState * thr,const char * fname,uptr pc)262 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
263                                      uptr pc)
264     : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
265   Initialize(thr);
266   if (!thr_->is_inited) return;
267   if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
268   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
269   ignoring_ =
270       !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
271                                 libignore()->IsIgnored(pc, &in_ignored_lib_));
272   EnableIgnores();
273 }
274 
~ScopedInterceptor()275 ScopedInterceptor::~ScopedInterceptor() {
276   if (!thr_->is_inited) return;
277   DisableIgnores();
278   if (!thr_->ignore_interceptors) {
279     ProcessPendingSignals(thr_);
280     FuncExit(thr_);
281     CheckNoLocks(thr_);
282   }
283 }
284 
EnableIgnores()285 void ScopedInterceptor::EnableIgnores() {
286   if (ignoring_) {
287     ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
288     if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
289     if (in_ignored_lib_) {
290       DCHECK(!thr_->in_ignored_lib);
291       thr_->in_ignored_lib = true;
292     }
293   }
294 }
295 
DisableIgnores()296 void ScopedInterceptor::DisableIgnores() {
297   if (ignoring_) {
298     ThreadIgnoreEnd(thr_, pc_);
299     if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
300     if (in_ignored_lib_) {
301       DCHECK(thr_->in_ignored_lib);
302       thr_->in_ignored_lib = false;
303     }
304   }
305 }
306 
307 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
308 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
309 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
310 #else
311 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
312 #endif
313 
314 #define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
315   MemoryAccessRange((thr), (pc), (uptr)(s),                         \
316     common_flags()->strict_string_checks ? (len) + 1 : (n), false)
317 
318 #define READ_STRING(thr, pc, s, n)                             \
319     READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
320 
321 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
322 
323 struct BlockingCall {
BlockingCallBlockingCall324   explicit BlockingCall(ThreadState *thr)
325       : thr(thr)
326       , ctx(SigCtx(thr)) {
327     for (;;) {
328       atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
329       if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
330         break;
331       atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
332       ProcessPendingSignals(thr);
333     }
334     // When we are in a "blocking call", we process signals asynchronously
335     // (right when they arrive). In this context we do not expect to be
336     // executing any user/runtime code. The known interceptor sequence when
337     // this is not true is: pthread_join -> munmap(stack). It's fine
338     // to ignore munmap in this case -- we handle stack shadow separately.
339     thr->ignore_interceptors++;
340   }
341 
~BlockingCallBlockingCall342   ~BlockingCall() {
343     thr->ignore_interceptors--;
344     atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
345   }
346 
347   ThreadState *thr;
348   ThreadSignalContext *ctx;
349 };
350 
TSAN_INTERCEPTOR(unsigned,sleep,unsigned sec)351 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
352   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
353   unsigned res = BLOCK_REAL(sleep)(sec);
354   AfterSleep(thr, pc);
355   return res;
356 }
357 
TSAN_INTERCEPTOR(int,usleep,long_t usec)358 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
359   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
360   int res = BLOCK_REAL(usleep)(usec);
361   AfterSleep(thr, pc);
362   return res;
363 }
364 
TSAN_INTERCEPTOR(int,nanosleep,void * req,void * rem)365 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
366   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
367   int res = BLOCK_REAL(nanosleep)(req, rem);
368   AfterSleep(thr, pc);
369   return res;
370 }
371 
TSAN_INTERCEPTOR(int,pause)372 TSAN_INTERCEPTOR(int, pause) {
373   SCOPED_TSAN_INTERCEPTOR(pause);
374   return BLOCK_REAL(pause)();
375 }
376 
377 // The sole reason tsan wraps atexit callbacks is to establish synchronization
378 // between callback setup and callback execution.
379 struct AtExitCtx {
380   void (*f)();
381   void *arg;
382 };
383 
at_exit_wrapper(void * arg)384 static void at_exit_wrapper(void *arg) {
385   ThreadState *thr = cur_thread();
386   uptr pc = 0;
387   Acquire(thr, pc, (uptr)arg);
388   AtExitCtx *ctx = (AtExitCtx*)arg;
389   ((void(*)(void *arg))ctx->f)(ctx->arg);
390   InternalFree(ctx);
391 }
392 
393 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
394       void *arg, void *dso);
395 
396 #if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,atexit,void (* f)())397 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
398   if (cur_thread()->in_symbolizer)
399     return 0;
400   // We want to setup the atexit callback even if we are in ignored lib
401   // or after fork.
402   SCOPED_INTERCEPTOR_RAW(atexit, f);
403   return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
404 }
405 #endif
406 
TSAN_INTERCEPTOR(int,__cxa_atexit,void (* f)(void * a),void * arg,void * dso)407 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
408   if (cur_thread()->in_symbolizer)
409     return 0;
410   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
411   return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
412 }
413 
setup_at_exit_wrapper(ThreadState * thr,uptr pc,void (* f)(),void * arg,void * dso)414 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
415       void *arg, void *dso) {
416   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
417   ctx->f = f;
418   ctx->arg = arg;
419   Release(thr, pc, (uptr)ctx);
420   // Memory allocation in __cxa_atexit will race with free during exit,
421   // because we do not see synchronization around atexit callback list.
422   ThreadIgnoreBegin(thr, pc);
423   int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
424   ThreadIgnoreEnd(thr, pc);
425   return res;
426 }
427 
428 #if !SANITIZER_MAC
on_exit_wrapper(int status,void * arg)429 static void on_exit_wrapper(int status, void *arg) {
430   ThreadState *thr = cur_thread();
431   uptr pc = 0;
432   Acquire(thr, pc, (uptr)arg);
433   AtExitCtx *ctx = (AtExitCtx*)arg;
434   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
435   InternalFree(ctx);
436 }
437 
TSAN_INTERCEPTOR(int,on_exit,void (* f)(int,void *),void * arg)438 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
439   if (cur_thread()->in_symbolizer)
440     return 0;
441   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
442   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
443   ctx->f = (void(*)())f;
444   ctx->arg = arg;
445   Release(thr, pc, (uptr)ctx);
446   // Memory allocation in __cxa_atexit will race with free during exit,
447   // because we do not see synchronization around atexit callback list.
448   ThreadIgnoreBegin(thr, pc);
449   int res = REAL(on_exit)(on_exit_wrapper, ctx);
450   ThreadIgnoreEnd(thr, pc);
451   return res;
452 }
453 #endif
454 
455 // Cleanup old bufs.
JmpBufGarbageCollect(ThreadState * thr,uptr sp)456 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
457   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
458     JmpBuf *buf = &thr->jmp_bufs[i];
459     if (buf->sp <= sp) {
460       uptr sz = thr->jmp_bufs.Size();
461       internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
462       thr->jmp_bufs.PopBack();
463       i--;
464     }
465   }
466 }
467 
SetJmp(ThreadState * thr,uptr sp,uptr mangled_sp)468 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
469   if (!thr->is_inited)  // called from libc guts during bootstrap
470     return;
471   // Cleanup old bufs.
472   JmpBufGarbageCollect(thr, sp);
473   // Remember the buf.
474   JmpBuf *buf = thr->jmp_bufs.PushBack();
475   buf->sp = sp;
476   buf->mangled_sp = mangled_sp;
477   buf->shadow_stack_pos = thr->shadow_stack_pos;
478   ThreadSignalContext *sctx = SigCtx(thr);
479   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
480   buf->in_blocking_func = sctx ?
481       atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
482       false;
483   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
484       memory_order_relaxed);
485 }
486 
LongJmp(ThreadState * thr,uptr * env)487 static void LongJmp(ThreadState *thr, uptr *env) {
488 #ifdef __powerpc__
489   uptr mangled_sp = env[0];
490 #elif SANITIZER_FREEBSD || SANITIZER_NETBSD
491   uptr mangled_sp = env[2];
492 #elif SANITIZER_MAC
493 # ifdef __aarch64__
494     uptr mangled_sp = env[13];
495 # else
496     uptr mangled_sp = env[2];
497 # endif
498 #elif defined(SANITIZER_LINUX)
499 # ifdef __aarch64__
500   uptr mangled_sp = env[13];
501 # elif defined(__mips64)
502   uptr mangled_sp = env[1];
503 # else
504   uptr mangled_sp = env[6];
505 # endif
506 #endif
507   // Find the saved buf by mangled_sp.
508   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
509     JmpBuf *buf = &thr->jmp_bufs[i];
510     if (buf->mangled_sp == mangled_sp) {
511       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
512       // Unwind the stack.
513       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
514         FuncExit(thr);
515       ThreadSignalContext *sctx = SigCtx(thr);
516       if (sctx) {
517         sctx->int_signal_send = buf->int_signal_send;
518         atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
519             memory_order_relaxed);
520       }
521       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
522           memory_order_relaxed);
523       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
524       return;
525     }
526   }
527   Printf("ThreadSanitizer: can't find longjmp buf\n");
528   CHECK(0);
529 }
530 
531 // FIXME: put everything below into a common extern "C" block?
__tsan_setjmp(uptr sp,uptr mangled_sp)532 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
533   SetJmp(cur_thread(), sp, mangled_sp);
534 }
535 
536 #if SANITIZER_MAC
537 TSAN_INTERCEPTOR(int, setjmp, void *env);
538 TSAN_INTERCEPTOR(int, _setjmp, void *env);
539 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
540 #else  // SANITIZER_MAC
541 // Not called.  Merely to satisfy TSAN_INTERCEPT().
542 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
543 int __interceptor_setjmp(void *env);
__interceptor_setjmp(void * env)544 extern "C" int __interceptor_setjmp(void *env) {
545   CHECK(0);
546   return 0;
547 }
548 
549 // FIXME: any reason to have a separate declaration?
550 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
551 int __interceptor__setjmp(void *env);
__interceptor__setjmp(void * env)552 extern "C" int __interceptor__setjmp(void *env) {
553   CHECK(0);
554   return 0;
555 }
556 
557 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
558 int __interceptor_sigsetjmp(void *env);
__interceptor_sigsetjmp(void * env)559 extern "C" int __interceptor_sigsetjmp(void *env) {
560   CHECK(0);
561   return 0;
562 }
563 
564 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
565 int __interceptor___sigsetjmp(void *env);
__interceptor___sigsetjmp(void * env)566 extern "C" int __interceptor___sigsetjmp(void *env) {
567   CHECK(0);
568   return 0;
569 }
570 
571 extern "C" int setjmp(void *env);
572 extern "C" int _setjmp(void *env);
573 extern "C" int sigsetjmp(void *env);
574 extern "C" int __sigsetjmp(void *env);
DEFINE_REAL(int,setjmp,void * env)575 DEFINE_REAL(int, setjmp, void *env)
576 DEFINE_REAL(int, _setjmp, void *env)
577 DEFINE_REAL(int, sigsetjmp, void *env)
578 DEFINE_REAL(int, __sigsetjmp, void *env)
579 #endif  // SANITIZER_MAC
580 
581 TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
582   // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
583   // bad things will happen. We will jump over ScopedInterceptor dtor and can
584   // leave thr->in_ignored_lib set.
585   {
586     SCOPED_INTERCEPTOR_RAW(longjmp, env, val);
587   }
588   LongJmp(cur_thread(), env);
589   REAL(longjmp)(env, val);
590 }
591 
TSAN_INTERCEPTOR(void,siglongjmp,uptr * env,int val)592 TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
593   {
594     SCOPED_INTERCEPTOR_RAW(siglongjmp, env, val);
595   }
596   LongJmp(cur_thread(), env);
597   REAL(siglongjmp)(env, val);
598 }
599 
600 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,malloc,uptr size)601 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
602   if (cur_thread()->in_symbolizer)
603     return InternalAlloc(size);
604   void *p = 0;
605   {
606     SCOPED_INTERCEPTOR_RAW(malloc, size);
607     p = user_alloc(thr, pc, size);
608   }
609   invoke_malloc_hook(p, size);
610   return p;
611 }
612 
TSAN_INTERCEPTOR(void *,__libc_memalign,uptr align,uptr sz)613 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
614   SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
615   return user_memalign(thr, pc, align, sz);
616 }
617 
TSAN_INTERCEPTOR(void *,calloc,uptr size,uptr n)618 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
619   if (cur_thread()->in_symbolizer)
620     return InternalCalloc(size, n);
621   void *p = 0;
622   {
623     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
624     p = user_calloc(thr, pc, size, n);
625   }
626   invoke_malloc_hook(p, n * size);
627   return p;
628 }
629 
TSAN_INTERCEPTOR(void *,realloc,void * p,uptr size)630 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
631   if (cur_thread()->in_symbolizer)
632     return InternalRealloc(p, size);
633   if (p)
634     invoke_free_hook(p);
635   {
636     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
637     p = user_realloc(thr, pc, p, size);
638   }
639   invoke_malloc_hook(p, size);
640   return p;
641 }
642 
TSAN_INTERCEPTOR(void,free,void * p)643 TSAN_INTERCEPTOR(void, free, void *p) {
644   if (p == 0)
645     return;
646   if (cur_thread()->in_symbolizer)
647     return InternalFree(p);
648   invoke_free_hook(p);
649   SCOPED_INTERCEPTOR_RAW(free, p);
650   user_free(thr, pc, p);
651 }
652 
TSAN_INTERCEPTOR(void,cfree,void * p)653 TSAN_INTERCEPTOR(void, cfree, void *p) {
654   if (p == 0)
655     return;
656   if (cur_thread()->in_symbolizer)
657     return InternalFree(p);
658   invoke_free_hook(p);
659   SCOPED_INTERCEPTOR_RAW(cfree, p);
660   user_free(thr, pc, p);
661 }
662 
TSAN_INTERCEPTOR(uptr,malloc_usable_size,void * p)663 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
664   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
665   return user_alloc_usable_size(p);
666 }
667 #endif
668 
TSAN_INTERCEPTOR(char *,strcpy,char * dst,const char * src)669 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) {  // NOLINT
670   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);  // NOLINT
671   uptr srclen = internal_strlen(src);
672   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
673   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
674   return REAL(strcpy)(dst, src);  // NOLINT
675 }
676 
TSAN_INTERCEPTOR(char *,strncpy,char * dst,char * src,uptr n)677 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
678   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
679   uptr srclen = internal_strnlen(src, n);
680   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
681   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
682   return REAL(strncpy)(dst, src, n);
683 }
684 
TSAN_INTERCEPTOR(char *,strdup,const char * str)685 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
686   SCOPED_TSAN_INTERCEPTOR(strdup, str);
687   // strdup will call malloc, so no instrumentation is required here.
688   return REAL(strdup)(str);
689 }
690 
fix_mmap_addr(void ** addr,long_t sz,int flags)691 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
692   if (*addr) {
693     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
694       if (flags & MAP_FIXED) {
695         errno = errno_EINVAL;
696         return false;
697       } else {
698         *addr = 0;
699       }
700     }
701   }
702   return true;
703 }
704 
TSAN_INTERCEPTOR(void *,mmap,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF_T off)705 TSAN_INTERCEPTOR(void *, mmap, void *addr, SIZE_T sz, int prot, int flags,
706                  int fd, OFF_T off) {
707   SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
708   if (!fix_mmap_addr(&addr, sz, flags))
709     return MAP_FAILED;
710   void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
711   if (res != MAP_FAILED) {
712     if (fd > 0)
713       FdAccess(thr, pc, fd);
714 
715     if (thr->ignore_reads_and_writes == 0)
716       MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
717     else
718       MemoryResetRange(thr, pc, (uptr)res, sz);
719   }
720   return res;
721 }
722 
723 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,mmap64,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF64_T off)724 TSAN_INTERCEPTOR(void *, mmap64, void *addr, SIZE_T sz, int prot, int flags,
725                  int fd, OFF64_T off) {
726   SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
727   if (!fix_mmap_addr(&addr, sz, flags))
728     return MAP_FAILED;
729   void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
730   if (res != MAP_FAILED) {
731     if (fd > 0)
732       FdAccess(thr, pc, fd);
733 
734     if (thr->ignore_reads_and_writes == 0)
735       MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
736     else
737       MemoryResetRange(thr, pc, (uptr)res, sz);
738   }
739   return res;
740 }
741 #define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
742 #else
743 #define TSAN_MAYBE_INTERCEPT_MMAP64
744 #endif
745 
TSAN_INTERCEPTOR(int,munmap,void * addr,long_t sz)746 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
747   SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
748   if (sz != 0) {
749     // If sz == 0, munmap will return EINVAL and don't unmap any memory.
750     DontNeedShadowFor((uptr)addr, sz);
751     ScopedGlobalProcessor sgp;
752     ctx->metamap.ResetRange(thr->proc(), (uptr)addr, (uptr)sz);
753   }
754   int res = REAL(munmap)(addr, sz);
755   return res;
756 }
757 
758 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,memalign,uptr align,uptr sz)759 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
760   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
761   return user_memalign(thr, pc, align, sz);
762 }
763 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
764 #else
765 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
766 #endif
767 
768 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,aligned_alloc,uptr align,uptr sz)769 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
770   SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
771   return user_aligned_alloc(thr, pc, align, sz);
772 }
773 
TSAN_INTERCEPTOR(void *,valloc,uptr sz)774 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
775   SCOPED_INTERCEPTOR_RAW(valloc, sz);
776   return user_valloc(thr, pc, sz);
777 }
778 #endif
779 
780 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,pvalloc,uptr sz)781 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
782   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
783   return user_pvalloc(thr, pc, sz);
784 }
785 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
786 #else
787 #define TSAN_MAYBE_INTERCEPT_PVALLOC
788 #endif
789 
790 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,posix_memalign,void ** memptr,uptr align,uptr sz)791 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
792   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
793   return user_posix_memalign(thr, pc, memptr, align, sz);
794 }
795 #endif
796 
797 // __cxa_guard_acquire and friends need to be intercepted in a special way -
798 // regular interceptors will break statically-linked libstdc++. Linux
799 // interceptors are especially defined as weak functions (so that they don't
800 // cause link errors when user defines them as well). So they silently
801 // auto-disable themselves when such symbol is already present in the binary. If
802 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
803 // will silently replace our interceptor.  That's why on Linux we simply export
804 // these interceptors with INTERFACE_ATTRIBUTE.
805 // On OS X, we don't support statically linking, so we just use a regular
806 // interceptor.
807 #if SANITIZER_MAC
808 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
809 #else
810 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
811   extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
812 #endif
813 
814 // Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int,__cxa_guard_acquire,atomic_uint32_t * g)815 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
816   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
817   for (;;) {
818     u32 cmp = atomic_load(g, memory_order_acquire);
819     if (cmp == 0) {
820       if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
821         return 1;
822     } else if (cmp == 1) {
823       Acquire(thr, pc, (uptr)g);
824       return 0;
825     } else {
826       internal_sched_yield();
827     }
828   }
829 }
830 
STDCXX_INTERCEPTOR(void,__cxa_guard_release,atomic_uint32_t * g)831 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
832   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
833   Release(thr, pc, (uptr)g);
834   atomic_store(g, 1, memory_order_release);
835 }
836 
STDCXX_INTERCEPTOR(void,__cxa_guard_abort,atomic_uint32_t * g)837 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
838   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
839   atomic_store(g, 0, memory_order_relaxed);
840 }
841 
842 namespace __tsan {
DestroyThreadState()843 void DestroyThreadState() {
844   ThreadState *thr = cur_thread();
845   Processor *proc = thr->proc();
846   ThreadFinish(thr);
847   ProcUnwire(proc, thr);
848   ProcDestroy(proc);
849   ThreadSignalContext *sctx = thr->signal_ctx;
850   if (sctx) {
851     thr->signal_ctx = 0;
852     UnmapOrDie(sctx, sizeof(*sctx));
853   }
854   DTLS_Destroy();
855   cur_thread_finalize();
856 }
857 }  // namespace __tsan
858 
859 #if !SANITIZER_MAC
thread_finalize(void * v)860 static void thread_finalize(void *v) {
861   uptr iter = (uptr)v;
862   if (iter > 1) {
863     if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
864       Printf("ThreadSanitizer: failed to set thread key\n");
865       Die();
866     }
867     return;
868   }
869   DestroyThreadState();
870 }
871 #endif
872 
873 
874 struct ThreadParam {
875   void* (*callback)(void *arg);
876   void *param;
877   atomic_uintptr_t tid;
878 };
879 
__tsan_thread_start_func(void * arg)880 extern "C" void *__tsan_thread_start_func(void *arg) {
881   ThreadParam *p = (ThreadParam*)arg;
882   void* (*callback)(void *arg) = p->callback;
883   void *param = p->param;
884   int tid = 0;
885   {
886     ThreadState *thr = cur_thread();
887     // Thread-local state is not initialized yet.
888     ScopedIgnoreInterceptors ignore;
889 #if !SANITIZER_MAC
890     ThreadIgnoreBegin(thr, 0);
891     if (pthread_setspecific(g_thread_finalize_key,
892                             (void *)GetPthreadDestructorIterations())) {
893       Printf("ThreadSanitizer: failed to set thread key\n");
894       Die();
895     }
896     ThreadIgnoreEnd(thr, 0);
897 #endif
898     while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
899       internal_sched_yield();
900     Processor *proc = ProcCreate();
901     ProcWire(proc, thr);
902     ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
903     atomic_store(&p->tid, 0, memory_order_release);
904   }
905   void *res = callback(param);
906   // Prevent the callback from being tail called,
907   // it mixes up stack traces.
908   volatile int foo = 42;
909   foo++;
910   return res;
911 }
912 
TSAN_INTERCEPTOR(int,pthread_create,void * th,void * attr,void * (* callback)(void *),void * param)913 TSAN_INTERCEPTOR(int, pthread_create,
914     void *th, void *attr, void *(*callback)(void*), void * param) {
915   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
916   if (ctx->after_multithreaded_fork) {
917     if (flags()->die_after_fork) {
918       Report("ThreadSanitizer: starting new threads after multi-threaded "
919           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
920       Die();
921     } else {
922       VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
923           "fork is not supported (pid %d). Continuing because of "
924           "die_after_fork=0, but you are on your own\n", internal_getpid());
925     }
926   }
927   __sanitizer_pthread_attr_t myattr;
928   if (attr == 0) {
929     pthread_attr_init(&myattr);
930     attr = &myattr;
931   }
932   int detached = 0;
933   REAL(pthread_attr_getdetachstate)(attr, &detached);
934   AdjustStackSize(attr);
935 
936   ThreadParam p;
937   p.callback = callback;
938   p.param = param;
939   atomic_store(&p.tid, 0, memory_order_relaxed);
940   int res = -1;
941   {
942     // Otherwise we see false positives in pthread stack manipulation.
943     ScopedIgnoreInterceptors ignore;
944     ThreadIgnoreBegin(thr, pc);
945     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
946     ThreadIgnoreEnd(thr, pc);
947   }
948   if (res == 0) {
949     int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
950     CHECK_NE(tid, 0);
951     // Synchronization on p.tid serves two purposes:
952     // 1. ThreadCreate must finish before the new thread starts.
953     //    Otherwise the new thread can call pthread_detach, but the pthread_t
954     //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
955     // 2. ThreadStart must finish before this thread continues.
956     //    Otherwise, this thread can call pthread_detach and reset thr->sync
957     //    before the new thread got a chance to acquire from it in ThreadStart.
958     atomic_store(&p.tid, tid, memory_order_release);
959     while (atomic_load(&p.tid, memory_order_acquire) != 0)
960       internal_sched_yield();
961   }
962   if (attr == &myattr)
963     pthread_attr_destroy(&myattr);
964   return res;
965 }
966 
TSAN_INTERCEPTOR(int,pthread_join,void * th,void ** ret)967 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
968   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
969   int tid = ThreadTid(thr, pc, (uptr)th);
970   ThreadIgnoreBegin(thr, pc);
971   int res = BLOCK_REAL(pthread_join)(th, ret);
972   ThreadIgnoreEnd(thr, pc);
973   if (res == 0) {
974     ThreadJoin(thr, pc, tid);
975   }
976   return res;
977 }
978 
979 DEFINE_REAL_PTHREAD_FUNCTIONS
980 
TSAN_INTERCEPTOR(int,pthread_detach,void * th)981 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
982   SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
983   int tid = ThreadTid(thr, pc, (uptr)th);
984   int res = REAL(pthread_detach)(th);
985   if (res == 0) {
986     ThreadDetach(thr, pc, tid);
987   }
988   return res;
989 }
990 
991 // Problem:
992 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
993 // pthread_cond_t has different size in the different versions.
994 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
995 // after pthread_cond_t (old cond is smaller).
996 // If we call old REAL functions for new pthread_cond_t, we will lose  some
997 // functionality (e.g. old functions do not support waiting against
998 // CLOCK_REALTIME).
999 // Proper handling would require to have 2 versions of interceptors as well.
1000 // But this is messy, in particular requires linker scripts when sanitizer
1001 // runtime is linked into a shared library.
1002 // Instead we assume we don't have dynamic libraries built against old
1003 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1004 // that allows to work with old libraries (but this mode does not support
1005 // some features, e.g. pthread_condattr_getpshared).
init_cond(void * c,bool force=false)1006 static void *init_cond(void *c, bool force = false) {
1007   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1008   // So we allocate additional memory on the side large enough to hold
1009   // any pthread_cond_t object. Always call new REAL functions, but pass
1010   // the aux object to them.
1011   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1012   // first word of pthread_cond_t to zero.
1013   // It's all relevant only for linux.
1014   if (!common_flags()->legacy_pthread_cond)
1015     return c;
1016   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1017   uptr cond = atomic_load(p, memory_order_acquire);
1018   if (!force && cond != 0)
1019     return (void*)cond;
1020   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1021   internal_memset(newcond, 0, pthread_cond_t_sz);
1022   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1023       memory_order_acq_rel))
1024     return newcond;
1025   WRAP(free)(newcond);
1026   return (void*)cond;
1027 }
1028 
1029 struct CondMutexUnlockCtx {
1030   ScopedInterceptor *si;
1031   ThreadState *thr;
1032   uptr pc;
1033   void *m;
1034 };
1035 
cond_mutex_unlock(CondMutexUnlockCtx * arg)1036 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1037   // pthread_cond_wait interceptor has enabled async signal delivery
1038   // (see BlockingCall below). Disable async signals since we are running
1039   // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1040   // since the thread is cancelled, so we have to manually execute them
1041   // (the thread still can run some user code due to pthread_cleanup_push).
1042   ThreadSignalContext *ctx = SigCtx(arg->thr);
1043   CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1044   atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1045   MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
1046   // Undo BlockingCall ctor effects.
1047   arg->thr->ignore_interceptors--;
1048   arg->si->~ScopedInterceptor();
1049 }
1050 
INTERCEPTOR(int,pthread_cond_init,void * c,void * a)1051 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1052   void *cond = init_cond(c, true);
1053   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1054   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1055   return REAL(pthread_cond_init)(cond, a);
1056 }
1057 
cond_wait(ThreadState * thr,uptr pc,ScopedInterceptor * si,int (* fn)(void * c,void * m,void * abstime),void * c,void * m,void * t)1058 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
1059                      int (*fn)(void *c, void *m, void *abstime), void *c,
1060                      void *m, void *t) {
1061   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1062   MutexUnlock(thr, pc, (uptr)m);
1063   CondMutexUnlockCtx arg = {si, thr, pc, m};
1064   int res = 0;
1065   // This ensures that we handle mutex lock even in case of pthread_cancel.
1066   // See test/tsan/cond_cancel.cc.
1067   {
1068     // Enable signal delivery while the thread is blocked.
1069     BlockingCall bc(thr);
1070     res = call_pthread_cancel_with_cleanup(
1071         fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
1072   }
1073   if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1074   MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1075   return res;
1076 }
1077 
INTERCEPTOR(int,pthread_cond_wait,void * c,void * m)1078 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1079   void *cond = init_cond(c);
1080   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1081   return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
1082                                      pthread_cond_wait),
1083                    cond, m, 0);
1084 }
1085 
INTERCEPTOR(int,pthread_cond_timedwait,void * c,void * m,void * abstime)1086 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1087   void *cond = init_cond(c);
1088   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1089   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
1090                    abstime);
1091 }
1092 
1093 #if SANITIZER_MAC
INTERCEPTOR(int,pthread_cond_timedwait_relative_np,void * c,void * m,void * reltime)1094 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1095             void *reltime) {
1096   void *cond = init_cond(c);
1097   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1098   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
1099                    m, reltime);
1100 }
1101 #endif
1102 
INTERCEPTOR(int,pthread_cond_signal,void * c)1103 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1104   void *cond = init_cond(c);
1105   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1106   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1107   return REAL(pthread_cond_signal)(cond);
1108 }
1109 
INTERCEPTOR(int,pthread_cond_broadcast,void * c)1110 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1111   void *cond = init_cond(c);
1112   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1113   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1114   return REAL(pthread_cond_broadcast)(cond);
1115 }
1116 
INTERCEPTOR(int,pthread_cond_destroy,void * c)1117 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1118   void *cond = init_cond(c);
1119   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1120   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1121   int res = REAL(pthread_cond_destroy)(cond);
1122   if (common_flags()->legacy_pthread_cond) {
1123     // Free our aux cond and zero the pointer to not leave dangling pointers.
1124     WRAP(free)(cond);
1125     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1126   }
1127   return res;
1128 }
1129 
TSAN_INTERCEPTOR(int,pthread_mutex_init,void * m,void * a)1130 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1131   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1132   int res = REAL(pthread_mutex_init)(m, a);
1133   if (res == 0) {
1134     u32 flagz = 0;
1135     if (a) {
1136       int type = 0;
1137       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1138         if (type == PTHREAD_MUTEX_RECURSIVE ||
1139             type == PTHREAD_MUTEX_RECURSIVE_NP)
1140           flagz |= MutexFlagWriteReentrant;
1141     }
1142     MutexCreate(thr, pc, (uptr)m, flagz);
1143   }
1144   return res;
1145 }
1146 
TSAN_INTERCEPTOR(int,pthread_mutex_destroy,void * m)1147 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1148   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1149   int res = REAL(pthread_mutex_destroy)(m);
1150   if (res == 0 || res == errno_EBUSY) {
1151     MutexDestroy(thr, pc, (uptr)m);
1152   }
1153   return res;
1154 }
1155 
TSAN_INTERCEPTOR(int,pthread_mutex_trylock,void * m)1156 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1157   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1158   int res = REAL(pthread_mutex_trylock)(m);
1159   if (res == errno_EOWNERDEAD)
1160     MutexRepair(thr, pc, (uptr)m);
1161   if (res == 0 || res == errno_EOWNERDEAD)
1162     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1163   return res;
1164 }
1165 
1166 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_mutex_timedlock,void * m,void * abstime)1167 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1168   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1169   int res = REAL(pthread_mutex_timedlock)(m, abstime);
1170   if (res == 0) {
1171     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1172   }
1173   return res;
1174 }
1175 #endif
1176 
1177 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_spin_init,void * m,int pshared)1178 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1179   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1180   int res = REAL(pthread_spin_init)(m, pshared);
1181   if (res == 0) {
1182     MutexCreate(thr, pc, (uptr)m);
1183   }
1184   return res;
1185 }
1186 
TSAN_INTERCEPTOR(int,pthread_spin_destroy,void * m)1187 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1188   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1189   int res = REAL(pthread_spin_destroy)(m);
1190   if (res == 0) {
1191     MutexDestroy(thr, pc, (uptr)m);
1192   }
1193   return res;
1194 }
1195 
TSAN_INTERCEPTOR(int,pthread_spin_lock,void * m)1196 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1197   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1198   MutexPreLock(thr, pc, (uptr)m);
1199   int res = REAL(pthread_spin_lock)(m);
1200   if (res == 0) {
1201     MutexPostLock(thr, pc, (uptr)m);
1202   }
1203   return res;
1204 }
1205 
TSAN_INTERCEPTOR(int,pthread_spin_trylock,void * m)1206 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1207   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1208   int res = REAL(pthread_spin_trylock)(m);
1209   if (res == 0) {
1210     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1211   }
1212   return res;
1213 }
1214 
TSAN_INTERCEPTOR(int,pthread_spin_unlock,void * m)1215 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1216   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1217   MutexUnlock(thr, pc, (uptr)m);
1218   int res = REAL(pthread_spin_unlock)(m);
1219   return res;
1220 }
1221 #endif
1222 
TSAN_INTERCEPTOR(int,pthread_rwlock_init,void * m,void * a)1223 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1224   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1225   int res = REAL(pthread_rwlock_init)(m, a);
1226   if (res == 0) {
1227     MutexCreate(thr, pc, (uptr)m);
1228   }
1229   return res;
1230 }
1231 
TSAN_INTERCEPTOR(int,pthread_rwlock_destroy,void * m)1232 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1233   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1234   int res = REAL(pthread_rwlock_destroy)(m);
1235   if (res == 0) {
1236     MutexDestroy(thr, pc, (uptr)m);
1237   }
1238   return res;
1239 }
1240 
TSAN_INTERCEPTOR(int,pthread_rwlock_rdlock,void * m)1241 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1242   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1243   MutexPreReadLock(thr, pc, (uptr)m);
1244   int res = REAL(pthread_rwlock_rdlock)(m);
1245   if (res == 0) {
1246     MutexPostReadLock(thr, pc, (uptr)m);
1247   }
1248   return res;
1249 }
1250 
TSAN_INTERCEPTOR(int,pthread_rwlock_tryrdlock,void * m)1251 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1252   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1253   int res = REAL(pthread_rwlock_tryrdlock)(m);
1254   if (res == 0) {
1255     MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1256   }
1257   return res;
1258 }
1259 
1260 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedrdlock,void * m,void * abstime)1261 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1262   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1263   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1264   if (res == 0) {
1265     MutexPostReadLock(thr, pc, (uptr)m);
1266   }
1267   return res;
1268 }
1269 #endif
1270 
TSAN_INTERCEPTOR(int,pthread_rwlock_wrlock,void * m)1271 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1272   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1273   MutexPreLock(thr, pc, (uptr)m);
1274   int res = REAL(pthread_rwlock_wrlock)(m);
1275   if (res == 0) {
1276     MutexPostLock(thr, pc, (uptr)m);
1277   }
1278   return res;
1279 }
1280 
TSAN_INTERCEPTOR(int,pthread_rwlock_trywrlock,void * m)1281 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1282   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1283   int res = REAL(pthread_rwlock_trywrlock)(m);
1284   if (res == 0) {
1285     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1286   }
1287   return res;
1288 }
1289 
1290 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedwrlock,void * m,void * abstime)1291 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1292   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1293   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1294   if (res == 0) {
1295     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1296   }
1297   return res;
1298 }
1299 #endif
1300 
TSAN_INTERCEPTOR(int,pthread_rwlock_unlock,void * m)1301 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1302   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1303   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1304   int res = REAL(pthread_rwlock_unlock)(m);
1305   return res;
1306 }
1307 
1308 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_barrier_init,void * b,void * a,unsigned count)1309 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1310   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1311   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1312   int res = REAL(pthread_barrier_init)(b, a, count);
1313   return res;
1314 }
1315 
TSAN_INTERCEPTOR(int,pthread_barrier_destroy,void * b)1316 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1317   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1318   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1319   int res = REAL(pthread_barrier_destroy)(b);
1320   return res;
1321 }
1322 
TSAN_INTERCEPTOR(int,pthread_barrier_wait,void * b)1323 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1324   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1325   Release(thr, pc, (uptr)b);
1326   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1327   int res = REAL(pthread_barrier_wait)(b);
1328   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1329   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1330     Acquire(thr, pc, (uptr)b);
1331   }
1332   return res;
1333 }
1334 #endif
1335 
TSAN_INTERCEPTOR(int,pthread_once,void * o,void (* f)())1336 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1337   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1338   if (o == 0 || f == 0)
1339     return errno_EINVAL;
1340   atomic_uint32_t *a;
1341   if (!SANITIZER_MAC)
1342     a = static_cast<atomic_uint32_t*>(o);
1343   else  // On OS X, pthread_once_t has a header with a long-sized signature.
1344     a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1345   u32 v = atomic_load(a, memory_order_acquire);
1346   if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1347                                                memory_order_relaxed)) {
1348     (*f)();
1349     if (!thr->in_ignored_lib)
1350       Release(thr, pc, (uptr)o);
1351     atomic_store(a, 2, memory_order_release);
1352   } else {
1353     while (v != 2) {
1354       internal_sched_yield();
1355       v = atomic_load(a, memory_order_acquire);
1356     }
1357     if (!thr->in_ignored_lib)
1358       Acquire(thr, pc, (uptr)o);
1359   }
1360   return 0;
1361 }
1362 
1363 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat,int version,int fd,void * buf)1364 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1365   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1366   if (fd > 0)
1367     FdAccess(thr, pc, fd);
1368   return REAL(__fxstat)(version, fd, buf);
1369 }
1370 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1371 #else
1372 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1373 #endif
1374 
TSAN_INTERCEPTOR(int,fstat,int fd,void * buf)1375 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1376 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1377   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1378   if (fd > 0)
1379     FdAccess(thr, pc, fd);
1380   return REAL(fstat)(fd, buf);
1381 #else
1382   SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1383   if (fd > 0)
1384     FdAccess(thr, pc, fd);
1385   return REAL(__fxstat)(0, fd, buf);
1386 #endif
1387 }
1388 
1389 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat64,int version,int fd,void * buf)1390 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1391   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1392   if (fd > 0)
1393     FdAccess(thr, pc, fd);
1394   return REAL(__fxstat64)(version, fd, buf);
1395 }
1396 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1397 #else
1398 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1399 #endif
1400 
1401 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,fstat64,int fd,void * buf)1402 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1403   SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1404   if (fd > 0)
1405     FdAccess(thr, pc, fd);
1406   return REAL(__fxstat64)(0, fd, buf);
1407 }
1408 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1409 #else
1410 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1411 #endif
1412 
TSAN_INTERCEPTOR(int,open,const char * name,int flags,int mode)1413 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1414   SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1415   READ_STRING(thr, pc, name, 0);
1416   int fd = REAL(open)(name, flags, mode);
1417   if (fd >= 0)
1418     FdFileCreate(thr, pc, fd);
1419   return fd;
1420 }
1421 
1422 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,open64,const char * name,int flags,int mode)1423 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1424   SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1425   READ_STRING(thr, pc, name, 0);
1426   int fd = REAL(open64)(name, flags, mode);
1427   if (fd >= 0)
1428     FdFileCreate(thr, pc, fd);
1429   return fd;
1430 }
1431 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1432 #else
1433 #define TSAN_MAYBE_INTERCEPT_OPEN64
1434 #endif
1435 
TSAN_INTERCEPTOR(int,creat,const char * name,int mode)1436 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1437   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1438   READ_STRING(thr, pc, name, 0);
1439   int fd = REAL(creat)(name, mode);
1440   if (fd >= 0)
1441     FdFileCreate(thr, pc, fd);
1442   return fd;
1443 }
1444 
1445 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,creat64,const char * name,int mode)1446 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1447   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1448   READ_STRING(thr, pc, name, 0);
1449   int fd = REAL(creat64)(name, mode);
1450   if (fd >= 0)
1451     FdFileCreate(thr, pc, fd);
1452   return fd;
1453 }
1454 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1455 #else
1456 #define TSAN_MAYBE_INTERCEPT_CREAT64
1457 #endif
1458 
TSAN_INTERCEPTOR(int,dup,int oldfd)1459 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1460   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1461   int newfd = REAL(dup)(oldfd);
1462   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1463     FdDup(thr, pc, oldfd, newfd, true);
1464   return newfd;
1465 }
1466 
TSAN_INTERCEPTOR(int,dup2,int oldfd,int newfd)1467 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1468   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1469   int newfd2 = REAL(dup2)(oldfd, newfd);
1470   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1471     FdDup(thr, pc, oldfd, newfd2, false);
1472   return newfd2;
1473 }
1474 
1475 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,dup3,int oldfd,int newfd,int flags)1476 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1477   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1478   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1479   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1480     FdDup(thr, pc, oldfd, newfd2, false);
1481   return newfd2;
1482 }
1483 #endif
1484 
1485 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,eventfd,unsigned initval,int flags)1486 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1487   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1488   int fd = REAL(eventfd)(initval, flags);
1489   if (fd >= 0)
1490     FdEventCreate(thr, pc, fd);
1491   return fd;
1492 }
1493 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1494 #else
1495 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1496 #endif
1497 
1498 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,signalfd,int fd,void * mask,int flags)1499 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1500   SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1501   if (fd >= 0)
1502     FdClose(thr, pc, fd);
1503   fd = REAL(signalfd)(fd, mask, flags);
1504   if (fd >= 0)
1505     FdSignalCreate(thr, pc, fd);
1506   return fd;
1507 }
1508 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1509 #else
1510 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1511 #endif
1512 
1513 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init,int fake)1514 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1515   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1516   int fd = REAL(inotify_init)(fake);
1517   if (fd >= 0)
1518     FdInotifyCreate(thr, pc, fd);
1519   return fd;
1520 }
1521 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1522 #else
1523 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1524 #endif
1525 
1526 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init1,int flags)1527 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1528   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1529   int fd = REAL(inotify_init1)(flags);
1530   if (fd >= 0)
1531     FdInotifyCreate(thr, pc, fd);
1532   return fd;
1533 }
1534 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1535 #else
1536 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1537 #endif
1538 
TSAN_INTERCEPTOR(int,socket,int domain,int type,int protocol)1539 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1540   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1541   int fd = REAL(socket)(domain, type, protocol);
1542   if (fd >= 0)
1543     FdSocketCreate(thr, pc, fd);
1544   return fd;
1545 }
1546 
TSAN_INTERCEPTOR(int,socketpair,int domain,int type,int protocol,int * fd)1547 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1548   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1549   int res = REAL(socketpair)(domain, type, protocol, fd);
1550   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1551     FdPipeCreate(thr, pc, fd[0], fd[1]);
1552   return res;
1553 }
1554 
TSAN_INTERCEPTOR(int,connect,int fd,void * addr,unsigned addrlen)1555 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1556   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1557   FdSocketConnecting(thr, pc, fd);
1558   int res = REAL(connect)(fd, addr, addrlen);
1559   if (res == 0 && fd >= 0)
1560     FdSocketConnect(thr, pc, fd);
1561   return res;
1562 }
1563 
TSAN_INTERCEPTOR(int,bind,int fd,void * addr,unsigned addrlen)1564 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1565   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1566   int res = REAL(bind)(fd, addr, addrlen);
1567   if (fd > 0 && res == 0)
1568     FdAccess(thr, pc, fd);
1569   return res;
1570 }
1571 
TSAN_INTERCEPTOR(int,listen,int fd,int backlog)1572 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1573   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1574   int res = REAL(listen)(fd, backlog);
1575   if (fd > 0 && res == 0)
1576     FdAccess(thr, pc, fd);
1577   return res;
1578 }
1579 
TSAN_INTERCEPTOR(int,close,int fd)1580 TSAN_INTERCEPTOR(int, close, int fd) {
1581   SCOPED_TSAN_INTERCEPTOR(close, fd);
1582   if (fd >= 0)
1583     FdClose(thr, pc, fd);
1584   return REAL(close)(fd);
1585 }
1586 
1587 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,__close,int fd)1588 TSAN_INTERCEPTOR(int, __close, int fd) {
1589   SCOPED_TSAN_INTERCEPTOR(__close, fd);
1590   if (fd >= 0)
1591     FdClose(thr, pc, fd);
1592   return REAL(__close)(fd);
1593 }
1594 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1595 #else
1596 #define TSAN_MAYBE_INTERCEPT___CLOSE
1597 #endif
1598 
1599 // glibc guts
1600 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void,__res_iclose,void * state,bool free_addr)1601 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1602   SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1603   int fds[64];
1604   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1605   for (int i = 0; i < cnt; i++) {
1606     if (fds[i] > 0)
1607       FdClose(thr, pc, fds[i]);
1608   }
1609   REAL(__res_iclose)(state, free_addr);
1610 }
1611 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1612 #else
1613 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1614 #endif
1615 
TSAN_INTERCEPTOR(int,pipe,int * pipefd)1616 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1617   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1618   int res = REAL(pipe)(pipefd);
1619   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1620     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1621   return res;
1622 }
1623 
1624 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pipe2,int * pipefd,int flags)1625 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1626   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1627   int res = REAL(pipe2)(pipefd, flags);
1628   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1629     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1630   return res;
1631 }
1632 #endif
1633 
TSAN_INTERCEPTOR(int,unlink,char * path)1634 TSAN_INTERCEPTOR(int, unlink, char *path) {
1635   SCOPED_TSAN_INTERCEPTOR(unlink, path);
1636   Release(thr, pc, File2addr(path));
1637   int res = REAL(unlink)(path);
1638   return res;
1639 }
1640 
TSAN_INTERCEPTOR(void *,tmpfile,int fake)1641 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1642   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1643   void *res = REAL(tmpfile)(fake);
1644   if (res) {
1645     int fd = fileno_unlocked(res);
1646     if (fd >= 0)
1647       FdFileCreate(thr, pc, fd);
1648   }
1649   return res;
1650 }
1651 
1652 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,tmpfile64,int fake)1653 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1654   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1655   void *res = REAL(tmpfile64)(fake);
1656   if (res) {
1657     int fd = fileno_unlocked(res);
1658     if (fd >= 0)
1659       FdFileCreate(thr, pc, fd);
1660   }
1661   return res;
1662 }
1663 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1664 #else
1665 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1666 #endif
1667 
FlushStreams()1668 static void FlushStreams() {
1669   // Flushing all the streams here may freeze the process if a child thread is
1670   // performing file stream operations at the same time.
1671   REAL(fflush)(stdout);
1672   REAL(fflush)(stderr);
1673 }
1674 
TSAN_INTERCEPTOR(void,abort,int fake)1675 TSAN_INTERCEPTOR(void, abort, int fake) {
1676   SCOPED_TSAN_INTERCEPTOR(abort, fake);
1677   FlushStreams();
1678   REAL(abort)(fake);
1679 }
1680 
TSAN_INTERCEPTOR(int,puts,const char * s)1681 TSAN_INTERCEPTOR(int, puts, const char *s) {
1682   SCOPED_TSAN_INTERCEPTOR(puts, s);
1683   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
1684   return REAL(puts)(s);
1685 }
1686 
TSAN_INTERCEPTOR(int,rmdir,char * path)1687 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1688   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1689   Release(thr, pc, Dir2addr(path));
1690   int res = REAL(rmdir)(path);
1691   return res;
1692 }
1693 
TSAN_INTERCEPTOR(int,closedir,void * dirp)1694 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1695   SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1696   if (dirp) {
1697     int fd = dirfd(dirp);
1698     FdClose(thr, pc, fd);
1699   }
1700   return REAL(closedir)(dirp);
1701 }
1702 
1703 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create,int size)1704 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1705   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1706   int fd = REAL(epoll_create)(size);
1707   if (fd >= 0)
1708     FdPollCreate(thr, pc, fd);
1709   return fd;
1710 }
1711 
TSAN_INTERCEPTOR(int,epoll_create1,int flags)1712 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1713   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1714   int fd = REAL(epoll_create1)(flags);
1715   if (fd >= 0)
1716     FdPollCreate(thr, pc, fd);
1717   return fd;
1718 }
1719 
TSAN_INTERCEPTOR(int,epoll_ctl,int epfd,int op,int fd,void * ev)1720 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1721   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1722   if (epfd >= 0)
1723     FdAccess(thr, pc, epfd);
1724   if (epfd >= 0 && fd >= 0)
1725     FdAccess(thr, pc, fd);
1726   if (op == EPOLL_CTL_ADD && epfd >= 0)
1727     FdRelease(thr, pc, epfd);
1728   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1729   return res;
1730 }
1731 
TSAN_INTERCEPTOR(int,epoll_wait,int epfd,void * ev,int cnt,int timeout)1732 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1733   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1734   if (epfd >= 0)
1735     FdAccess(thr, pc, epfd);
1736   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1737   if (res > 0 && epfd >= 0)
1738     FdAcquire(thr, pc, epfd);
1739   return res;
1740 }
1741 
TSAN_INTERCEPTOR(int,epoll_pwait,int epfd,void * ev,int cnt,int timeout,void * sigmask)1742 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1743                  void *sigmask) {
1744   SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1745   if (epfd >= 0)
1746     FdAccess(thr, pc, epfd);
1747   int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1748   if (res > 0 && epfd >= 0)
1749     FdAcquire(thr, pc, epfd);
1750   return res;
1751 }
1752 
1753 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1754     TSAN_INTERCEPT(epoll_create); \
1755     TSAN_INTERCEPT(epoll_create1); \
1756     TSAN_INTERCEPT(epoll_ctl); \
1757     TSAN_INTERCEPT(epoll_wait); \
1758     TSAN_INTERCEPT(epoll_pwait)
1759 #else
1760 #define TSAN_MAYBE_INTERCEPT_EPOLL
1761 #endif
1762 
1763 // The following functions are intercepted merely to process pending signals.
1764 // If program blocks signal X, we must deliver the signal before the function
1765 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1766 // it's better to deliver the signal straight away.
TSAN_INTERCEPTOR(int,sigsuspend,const __sanitizer_sigset_t * mask)1767 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1768   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1769   return REAL(sigsuspend)(mask);
1770 }
1771 
TSAN_INTERCEPTOR(int,sigblock,int mask)1772 TSAN_INTERCEPTOR(int, sigblock, int mask) {
1773   SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1774   return REAL(sigblock)(mask);
1775 }
1776 
TSAN_INTERCEPTOR(int,sigsetmask,int mask)1777 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1778   SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1779   return REAL(sigsetmask)(mask);
1780 }
1781 
TSAN_INTERCEPTOR(int,pthread_sigmask,int how,const __sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)1782 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1783     __sanitizer_sigset_t *oldset) {
1784   SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1785   return REAL(pthread_sigmask)(how, set, oldset);
1786 }
1787 
1788 namespace __tsan {
1789 
CallUserSignalHandler(ThreadState * thr,bool sync,bool acquire,bool sigact,int sig,my_siginfo_t * info,void * uctx)1790 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1791     bool sigact, int sig, my_siginfo_t *info, void *uctx) {
1792   if (acquire)
1793     Acquire(thr, 0, (uptr)&sigactions[sig]);
1794   // Signals are generally asynchronous, so if we receive a signals when
1795   // ignores are enabled we should disable ignores. This is critical for sync
1796   // and interceptors, because otherwise we can miss syncronization and report
1797   // false races.
1798   int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1799   int ignore_interceptors = thr->ignore_interceptors;
1800   int ignore_sync = thr->ignore_sync;
1801   if (!ctx->after_multithreaded_fork) {
1802     thr->ignore_reads_and_writes = 0;
1803     thr->fast_state.ClearIgnoreBit();
1804     thr->ignore_interceptors = 0;
1805     thr->ignore_sync = 0;
1806   }
1807   // Ensure that the handler does not spoil errno.
1808   const int saved_errno = errno;
1809   errno = 99;
1810   // This code races with sigaction. Be careful to not read sa_sigaction twice.
1811   // Also need to remember pc for reporting before the call,
1812   // because the handler can reset it.
1813   volatile uptr pc = sigact ?
1814      (uptr)sigactions[sig].sa_sigaction :
1815      (uptr)sigactions[sig].sa_handler;
1816   if (pc != (uptr)SIG_DFL && pc != (uptr)SIG_IGN) {
1817     if (sigact)
1818       ((sigactionhandler_t)pc)(sig, info, uctx);
1819     else
1820       ((sighandler_t)pc)(sig);
1821   }
1822   if (!ctx->after_multithreaded_fork) {
1823     thr->ignore_reads_and_writes = ignore_reads_and_writes;
1824     if (ignore_reads_and_writes)
1825       thr->fast_state.SetIgnoreBit();
1826     thr->ignore_interceptors = ignore_interceptors;
1827     thr->ignore_sync = ignore_sync;
1828   }
1829   // We do not detect errno spoiling for SIGTERM,
1830   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1831   // tsan reports false positive in such case.
1832   // It's difficult to properly detect this situation (reraise),
1833   // because in async signal processing case (when handler is called directly
1834   // from rtl_generic_sighandler) we have not yet received the reraised
1835   // signal; and it looks too fragile to intercept all ways to reraise a signal.
1836   if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1837     VarSizeStackTrace stack;
1838     // StackTrace::GetNestInstructionPc(pc) is used because return address is
1839     // expected, OutputReport() will undo this.
1840     ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1841     ThreadRegistryLock l(ctx->thread_registry);
1842     ScopedReport rep(ReportTypeErrnoInSignal);
1843     if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1844       rep.AddStack(stack, true);
1845       OutputReport(thr, rep);
1846     }
1847   }
1848   errno = saved_errno;
1849 }
1850 
ProcessPendingSignals(ThreadState * thr)1851 void ProcessPendingSignals(ThreadState *thr) {
1852   ThreadSignalContext *sctx = SigCtx(thr);
1853   if (sctx == 0 ||
1854       atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1855     return;
1856   atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1857   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1858   internal_sigfillset(&sctx->emptyset);
1859   int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
1860   CHECK_EQ(res, 0);
1861   for (int sig = 0; sig < kSigCount; sig++) {
1862     SignalDesc *signal = &sctx->pending_signals[sig];
1863     if (signal->armed) {
1864       signal->armed = false;
1865       CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1866           &signal->siginfo, &signal->ctx);
1867     }
1868   }
1869   res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
1870   CHECK_EQ(res, 0);
1871   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1872 }
1873 
1874 }  // namespace __tsan
1875 
is_sync_signal(ThreadSignalContext * sctx,int sig)1876 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1877   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1878       sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1879       // If we are sending signal to ourselves, we must process it now.
1880       (sctx && sig == sctx->int_signal_send);
1881 }
1882 
rtl_generic_sighandler(bool sigact,int sig,my_siginfo_t * info,void * ctx)1883 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1884     my_siginfo_t *info, void *ctx) {
1885   ThreadState *thr = cur_thread();
1886   ThreadSignalContext *sctx = SigCtx(thr);
1887   if (sig < 0 || sig >= kSigCount) {
1888     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1889     return;
1890   }
1891   // Don't mess with synchronous signals.
1892   const bool sync = is_sync_signal(sctx, sig);
1893   if (sync ||
1894       // If we are in blocking function, we can safely process it now
1895       // (but check if we are in a recursive interceptor,
1896       // i.e. pthread_join()->munmap()).
1897       (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1898     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1899     if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1900       atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1901       CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
1902       atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
1903     } else {
1904       // Be very conservative with when we do acquire in this case.
1905       // It's unsafe to do acquire in async handlers, because ThreadState
1906       // can be in inconsistent state.
1907       // SIGSYS looks relatively safe -- it's synchronous and can actually
1908       // need some global state.
1909       bool acq = (sig == SIGSYS);
1910       CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
1911     }
1912     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1913     return;
1914   }
1915 
1916   if (sctx == 0)
1917     return;
1918   SignalDesc *signal = &sctx->pending_signals[sig];
1919   if (signal->armed == false) {
1920     signal->armed = true;
1921     signal->sigaction = sigact;
1922     if (info)
1923       internal_memcpy(&signal->siginfo, info, sizeof(*info));
1924     if (ctx)
1925       internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
1926     atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
1927   }
1928 }
1929 
rtl_sighandler(int sig)1930 static void rtl_sighandler(int sig) {
1931   rtl_generic_sighandler(false, sig, 0, 0);
1932 }
1933 
rtl_sigaction(int sig,my_siginfo_t * info,void * ctx)1934 static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
1935   rtl_generic_sighandler(true, sig, info, ctx);
1936 }
1937 
TSAN_INTERCEPTOR(int,sigaction,int sig,sigaction_t * act,sigaction_t * old)1938 TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
1939   // Note: if we call REAL(sigaction) directly for any reason without proxying
1940   // the signal handler through rtl_sigaction, very bad things will happen.
1941   // The handler will run synchronously and corrupt tsan per-thread state.
1942   SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
1943   if (old)
1944     internal_memcpy(old, &sigactions[sig], sizeof(*old));
1945   if (act == 0)
1946     return 0;
1947   // Copy act into sigactions[sig].
1948   // Can't use struct copy, because compiler can emit call to memcpy.
1949   // Can't use internal_memcpy, because it copies byte-by-byte,
1950   // and signal handler reads the sa_handler concurrently. It it can read
1951   // some bytes from old value and some bytes from new value.
1952   // Use volatile to prevent insertion of memcpy.
1953   sigactions[sig].sa_handler = *(volatile sighandler_t*)&act->sa_handler;
1954   sigactions[sig].sa_flags = *(volatile int*)&act->sa_flags;
1955   internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
1956       sizeof(sigactions[sig].sa_mask));
1957 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
1958   sigactions[sig].sa_restorer = act->sa_restorer;
1959 #endif
1960   sigaction_t newact;
1961   internal_memcpy(&newact, act, sizeof(newact));
1962   internal_sigfillset(&newact.sa_mask);
1963   if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
1964     if (newact.sa_flags & SA_SIGINFO)
1965       newact.sa_sigaction = rtl_sigaction;
1966     else
1967       newact.sa_handler = rtl_sighandler;
1968   }
1969   ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
1970   int res = REAL(sigaction)(sig, &newact, 0);
1971   return res;
1972 }
1973 
TSAN_INTERCEPTOR(sighandler_t,signal,int sig,sighandler_t h)1974 TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
1975   sigaction_t act;
1976   act.sa_handler = h;
1977   internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
1978   act.sa_flags = 0;
1979   sigaction_t old;
1980   int res = sigaction(sig, &act, &old);
1981   if (res)
1982     return SIG_ERR;
1983   return old.sa_handler;
1984 }
1985 
TSAN_INTERCEPTOR(int,raise,int sig)1986 TSAN_INTERCEPTOR(int, raise, int sig) {
1987   SCOPED_TSAN_INTERCEPTOR(raise, sig);
1988   ThreadSignalContext *sctx = SigCtx(thr);
1989   CHECK_NE(sctx, 0);
1990   int prev = sctx->int_signal_send;
1991   sctx->int_signal_send = sig;
1992   int res = REAL(raise)(sig);
1993   CHECK_EQ(sctx->int_signal_send, sig);
1994   sctx->int_signal_send = prev;
1995   return res;
1996 }
1997 
TSAN_INTERCEPTOR(int,kill,int pid,int sig)1998 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
1999   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2000   ThreadSignalContext *sctx = SigCtx(thr);
2001   CHECK_NE(sctx, 0);
2002   int prev = sctx->int_signal_send;
2003   if (pid == (int)internal_getpid()) {
2004     sctx->int_signal_send = sig;
2005   }
2006   int res = REAL(kill)(pid, sig);
2007   if (pid == (int)internal_getpid()) {
2008     CHECK_EQ(sctx->int_signal_send, sig);
2009     sctx->int_signal_send = prev;
2010   }
2011   return res;
2012 }
2013 
TSAN_INTERCEPTOR(int,pthread_kill,void * tid,int sig)2014 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2015   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2016   ThreadSignalContext *sctx = SigCtx(thr);
2017   CHECK_NE(sctx, 0);
2018   int prev = sctx->int_signal_send;
2019   if (tid == pthread_self()) {
2020     sctx->int_signal_send = sig;
2021   }
2022   int res = REAL(pthread_kill)(tid, sig);
2023   if (tid == pthread_self()) {
2024     CHECK_EQ(sctx->int_signal_send, sig);
2025     sctx->int_signal_send = prev;
2026   }
2027   return res;
2028 }
2029 
TSAN_INTERCEPTOR(int,gettimeofday,void * tv,void * tz)2030 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2031   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2032   // It's intercepted merely to process pending signals.
2033   return REAL(gettimeofday)(tv, tz);
2034 }
2035 
TSAN_INTERCEPTOR(int,getaddrinfo,void * node,void * service,void * hints,void * rv)2036 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2037     void *hints, void *rv) {
2038   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2039   // We miss atomic synchronization in getaddrinfo,
2040   // and can report false race between malloc and free
2041   // inside of getaddrinfo. So ignore memory accesses.
2042   ThreadIgnoreBegin(thr, pc);
2043   int res = REAL(getaddrinfo)(node, service, hints, rv);
2044   ThreadIgnoreEnd(thr, pc);
2045   return res;
2046 }
2047 
TSAN_INTERCEPTOR(int,fork,int fake)2048 TSAN_INTERCEPTOR(int, fork, int fake) {
2049   if (cur_thread()->in_symbolizer)
2050     return REAL(fork)(fake);
2051   SCOPED_INTERCEPTOR_RAW(fork, fake);
2052   ForkBefore(thr, pc);
2053   int pid;
2054   {
2055     // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2056     // we'll assert in CheckNoLocks() unless we ignore interceptors.
2057     ScopedIgnoreInterceptors ignore;
2058     pid = REAL(fork)(fake);
2059   }
2060   if (pid == 0) {
2061     // child
2062     ForkChildAfter(thr, pc);
2063     FdOnFork(thr, pc);
2064   } else if (pid > 0) {
2065     // parent
2066     ForkParentAfter(thr, pc);
2067   } else {
2068     // error
2069     ForkParentAfter(thr, pc);
2070   }
2071   return pid;
2072 }
2073 
TSAN_INTERCEPTOR(int,vfork,int fake)2074 TSAN_INTERCEPTOR(int, vfork, int fake) {
2075   // Some programs (e.g. openjdk) call close for all file descriptors
2076   // in the child process. Under tsan it leads to false positives, because
2077   // address space is shared, so the parent process also thinks that
2078   // the descriptors are closed (while they are actually not).
2079   // This leads to false positives due to missed synchronization.
2080   // Strictly saying this is undefined behavior, because vfork child is not
2081   // allowed to call any functions other than exec/exit. But this is what
2082   // openjdk does, so we want to handle it.
2083   // We could disable interceptors in the child process. But it's not possible
2084   // to simply intercept and wrap vfork, because vfork child is not allowed
2085   // to return from the function that calls vfork, and that's exactly what
2086   // we would do. So this would require some assembly trickery as well.
2087   // Instead we simply turn vfork into fork.
2088   return WRAP(fork)(fake);
2089 }
2090 
2091 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2092 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2093                                     void *data);
2094 struct dl_iterate_phdr_data {
2095   ThreadState *thr;
2096   uptr pc;
2097   dl_iterate_phdr_cb_t cb;
2098   void *data;
2099 };
2100 
IsAppNotRodata(uptr addr)2101 static bool IsAppNotRodata(uptr addr) {
2102   return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2103 }
2104 
dl_iterate_phdr_cb(__sanitizer_dl_phdr_info * info,SIZE_T size,void * data)2105 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2106                               void *data) {
2107   dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2108   // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2109   // accessible in dl_iterate_phdr callback. But we don't see synchronization
2110   // inside of dynamic linker, so we "unpoison" it here in order to not
2111   // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2112   // because some libc functions call __libc_dlopen.
2113   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2114     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2115                      internal_strlen(info->dlpi_name));
2116   int res = cbdata->cb(info, size, cbdata->data);
2117   // Perform the check one more time in case info->dlpi_name was overwritten
2118   // by user callback.
2119   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2120     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2121                      internal_strlen(info->dlpi_name));
2122   return res;
2123 }
2124 
TSAN_INTERCEPTOR(int,dl_iterate_phdr,dl_iterate_phdr_cb_t cb,void * data)2125 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2126   SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2127   dl_iterate_phdr_data cbdata;
2128   cbdata.thr = thr;
2129   cbdata.pc = pc;
2130   cbdata.cb = cb;
2131   cbdata.data = data;
2132   int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2133   return res;
2134 }
2135 #endif
2136 
OnExit(ThreadState * thr)2137 static int OnExit(ThreadState *thr) {
2138   int status = Finalize(thr);
2139   FlushStreams();
2140   return status;
2141 }
2142 
2143 struct TsanInterceptorContext {
2144   ThreadState *thr;
2145   const uptr caller_pc;
2146   const uptr pc;
2147 };
2148 
2149 #if !SANITIZER_MAC
HandleRecvmsg(ThreadState * thr,uptr pc,__sanitizer_msghdr * msg)2150 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2151     __sanitizer_msghdr *msg) {
2152   int fds[64];
2153   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2154   for (int i = 0; i < cnt; i++)
2155     FdEventCreate(thr, pc, fds[i]);
2156 }
2157 #endif
2158 
2159 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2160 // Causes interceptor recursion (getaddrinfo() and fopen())
2161 #undef SANITIZER_INTERCEPT_GETADDRINFO
2162 // There interceptors do not seem to be strictly necessary for tsan.
2163 // But we see cases where the interceptors consume 70% of execution time.
2164 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2165 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2166 // function "writes to" the buffer. Then, the same memory is "written to"
2167 // twice, first as buf and then as pwbufp (both of them refer to the same
2168 // addresses).
2169 #undef SANITIZER_INTERCEPT_GETPWENT
2170 #undef SANITIZER_INTERCEPT_GETPWENT_R
2171 #undef SANITIZER_INTERCEPT_FGETPWENT
2172 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2173 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2174 // We define our own.
2175 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2176 #define NEED_TLS_GET_ADDR
2177 #endif
2178 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2179 
2180 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2181 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
2182   INTERCEPT_FUNCTION_VER(name, ver)
2183 
2184 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
2185   MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
2186                     ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2187                     true)
2188 
2189 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
2190   MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
2191                     ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2192                     false)
2193 
2194 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
2195   SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
2196   TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2197   ctx = (void *)&_ctx;                                \
2198   (void) ctx;
2199 
2200 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2201   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
2202   TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
2203   ctx = (void *)&_ctx;                                    \
2204   (void) ctx;
2205 
2206 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2207   Acquire(thr, pc, File2addr(path));                  \
2208   if (file) {                                         \
2209     int fd = fileno_unlocked(file);                   \
2210     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
2211   }
2212 
2213 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2214   if (file) {                                    \
2215     int fd = fileno_unlocked(file);              \
2216     if (fd >= 0) FdClose(thr, pc, fd);           \
2217   }
2218 
2219 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2220   libignore()->OnLibraryLoaded(filename)
2221 
2222 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2223   libignore()->OnLibraryUnloaded()
2224 
2225 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2226   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2227 
2228 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2229   Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2230 
2231 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2232   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2233 
2234 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2235   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2236 
2237 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2238   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2239 
2240 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2241   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2242 
2243 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2244   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2245 
2246 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2247   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2248 
2249 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2250   __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2251 
2252 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2253 
2254 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2255   OnExit(((TsanInterceptorContext *) ctx)->thr)
2256 
2257 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2258   MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2259             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2260 
2261 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2262   MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2263             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2264 
2265 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2266   MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2267             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2268 
2269 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2270   MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2271             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2272 
2273 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2274   MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2275                      ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2276 
2277 #if !SANITIZER_MAC
2278 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2279   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2280       ((TsanInterceptorContext *)ctx)->pc, msg)
2281 #endif
2282 
2283 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
2284   if (TsanThread *t = GetCurrentThread()) {                                    \
2285     *begin = t->tls_begin();                                                   \
2286     *end = t->tls_end();                                                       \
2287   } else {                                                                     \
2288     *begin = *end = 0;                                                         \
2289   }
2290 
2291 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2292   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2293 
2294 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2295   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2296 
2297 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2298 
2299 #define TSAN_SYSCALL() \
2300   ThreadState *thr = cur_thread(); \
2301   if (thr->ignore_interceptors) \
2302     return; \
2303   ScopedSyscall scoped_syscall(thr) \
2304 /**/
2305 
2306 struct ScopedSyscall {
2307   ThreadState *thr;
2308 
ScopedSyscallScopedSyscall2309   explicit ScopedSyscall(ThreadState *thr)
2310       : thr(thr) {
2311     Initialize(thr);
2312   }
2313 
~ScopedSyscallScopedSyscall2314   ~ScopedSyscall() {
2315     ProcessPendingSignals(thr);
2316   }
2317 };
2318 
2319 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
syscall_access_range(uptr pc,uptr p,uptr s,bool write)2320 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2321   TSAN_SYSCALL();
2322   MemoryAccessRange(thr, pc, p, s, write);
2323 }
2324 
syscall_acquire(uptr pc,uptr addr)2325 static void syscall_acquire(uptr pc, uptr addr) {
2326   TSAN_SYSCALL();
2327   Acquire(thr, pc, addr);
2328   DPrintf("syscall_acquire(%p)\n", addr);
2329 }
2330 
syscall_release(uptr pc,uptr addr)2331 static void syscall_release(uptr pc, uptr addr) {
2332   TSAN_SYSCALL();
2333   DPrintf("syscall_release(%p)\n", addr);
2334   Release(thr, pc, addr);
2335 }
2336 
syscall_fd_close(uptr pc,int fd)2337 static void syscall_fd_close(uptr pc, int fd) {
2338   TSAN_SYSCALL();
2339   FdClose(thr, pc, fd);
2340 }
2341 
syscall_fd_acquire(uptr pc,int fd)2342 static USED void syscall_fd_acquire(uptr pc, int fd) {
2343   TSAN_SYSCALL();
2344   FdAcquire(thr, pc, fd);
2345   DPrintf("syscall_fd_acquire(%p)\n", fd);
2346 }
2347 
syscall_fd_release(uptr pc,int fd)2348 static USED void syscall_fd_release(uptr pc, int fd) {
2349   TSAN_SYSCALL();
2350   DPrintf("syscall_fd_release(%p)\n", fd);
2351   FdRelease(thr, pc, fd);
2352 }
2353 
syscall_pre_fork(uptr pc)2354 static void syscall_pre_fork(uptr pc) {
2355   TSAN_SYSCALL();
2356   ForkBefore(thr, pc);
2357 }
2358 
syscall_post_fork(uptr pc,int pid)2359 static void syscall_post_fork(uptr pc, int pid) {
2360   TSAN_SYSCALL();
2361   if (pid == 0) {
2362     // child
2363     ForkChildAfter(thr, pc);
2364     FdOnFork(thr, pc);
2365   } else if (pid > 0) {
2366     // parent
2367     ForkParentAfter(thr, pc);
2368   } else {
2369     // error
2370     ForkParentAfter(thr, pc);
2371   }
2372 }
2373 #endif
2374 
2375 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2376   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2377 
2378 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2379   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2380 
2381 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2382   do {                                       \
2383     (void)(p);                               \
2384     (void)(s);                               \
2385   } while (false)
2386 
2387 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2388   do {                                        \
2389     (void)(p);                                \
2390     (void)(s);                                \
2391   } while (false)
2392 
2393 #define COMMON_SYSCALL_ACQUIRE(addr) \
2394     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2395 
2396 #define COMMON_SYSCALL_RELEASE(addr) \
2397     syscall_release(GET_CALLER_PC(), (uptr)(addr))
2398 
2399 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2400 
2401 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2402 
2403 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2404 
2405 #define COMMON_SYSCALL_PRE_FORK() \
2406   syscall_pre_fork(GET_CALLER_PC())
2407 
2408 #define COMMON_SYSCALL_POST_FORK(res) \
2409   syscall_post_fork(GET_CALLER_PC(), res)
2410 
2411 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2412 
2413 #ifdef NEED_TLS_GET_ADDR
2414 // Define own interceptor instead of sanitizer_common's for three reasons:
2415 // 1. It must not process pending signals.
2416 //    Signal handlers may contain MOVDQA instruction (see below).
2417 // 2. It must be as simple as possible to not contain MOVDQA.
2418 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2419 //    is empty for tsan (meant only for msan).
2420 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2421 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2422 // So the interceptor must work with mis-aligned stack, in particular, does not
2423 // execute MOVDQA with stack addresses.
TSAN_INTERCEPTOR(void *,__tls_get_addr,void * arg)2424 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2425   void *res = REAL(__tls_get_addr)(arg);
2426   ThreadState *thr = cur_thread();
2427   if (!thr)
2428     return res;
2429   DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr, thr->tls_size);
2430   if (!dtv)
2431     return res;
2432   // New DTLS block has been allocated.
2433   MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2434   return res;
2435 }
2436 #endif
2437 
2438 namespace __tsan {
2439 
finalize(void * arg)2440 static void finalize(void *arg) {
2441   ThreadState *thr = cur_thread();
2442   int status = Finalize(thr);
2443   // Make sure the output is not lost.
2444   FlushStreams();
2445   if (status)
2446     Die();
2447 }
2448 
2449 #if !SANITIZER_MAC && !SANITIZER_ANDROID
unreachable()2450 static void unreachable() {
2451   Report("FATAL: ThreadSanitizer: unreachable called\n");
2452   Die();
2453 }
2454 #endif
2455 
InitializeInterceptors()2456 void InitializeInterceptors() {
2457 #if !SANITIZER_MAC
2458   // We need to setup it early, because functions like dlsym() can call it.
2459   REAL(memset) = internal_memset;
2460   REAL(memcpy) = internal_memcpy;
2461 #endif
2462 
2463   // Instruct libc malloc to consume less memory.
2464 #if SANITIZER_LINUX
2465   mallopt(1, 0);  // M_MXFAST
2466   mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
2467 #endif
2468 
2469   InitializeCommonInterceptors();
2470 
2471 #if !SANITIZER_MAC
2472   // We can not use TSAN_INTERCEPT to get setjmp addr,
2473   // because it does &setjmp and setjmp is not present in some versions of libc.
2474   using __interception::GetRealFunctionAddress;
2475   GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0);
2476   GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2477   GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0);
2478   GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2479 #endif
2480 
2481   TSAN_INTERCEPT(longjmp);
2482   TSAN_INTERCEPT(siglongjmp);
2483 
2484   TSAN_INTERCEPT(malloc);
2485   TSAN_INTERCEPT(__libc_memalign);
2486   TSAN_INTERCEPT(calloc);
2487   TSAN_INTERCEPT(realloc);
2488   TSAN_INTERCEPT(free);
2489   TSAN_INTERCEPT(cfree);
2490   TSAN_INTERCEPT(mmap);
2491   TSAN_MAYBE_INTERCEPT_MMAP64;
2492   TSAN_INTERCEPT(munmap);
2493   TSAN_MAYBE_INTERCEPT_MEMALIGN;
2494   TSAN_INTERCEPT(valloc);
2495   TSAN_MAYBE_INTERCEPT_PVALLOC;
2496   TSAN_INTERCEPT(posix_memalign);
2497 
2498   TSAN_INTERCEPT(strcpy);  // NOLINT
2499   TSAN_INTERCEPT(strncpy);
2500   TSAN_INTERCEPT(strdup);
2501 
2502   TSAN_INTERCEPT(pthread_create);
2503   TSAN_INTERCEPT(pthread_join);
2504   TSAN_INTERCEPT(pthread_detach);
2505 
2506   TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2507   TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2508   TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2509   TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2510   TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2511   TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2512 
2513   TSAN_INTERCEPT(pthread_mutex_init);
2514   TSAN_INTERCEPT(pthread_mutex_destroy);
2515   TSAN_INTERCEPT(pthread_mutex_trylock);
2516   TSAN_INTERCEPT(pthread_mutex_timedlock);
2517 
2518   TSAN_INTERCEPT(pthread_spin_init);
2519   TSAN_INTERCEPT(pthread_spin_destroy);
2520   TSAN_INTERCEPT(pthread_spin_lock);
2521   TSAN_INTERCEPT(pthread_spin_trylock);
2522   TSAN_INTERCEPT(pthread_spin_unlock);
2523 
2524   TSAN_INTERCEPT(pthread_rwlock_init);
2525   TSAN_INTERCEPT(pthread_rwlock_destroy);
2526   TSAN_INTERCEPT(pthread_rwlock_rdlock);
2527   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2528   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2529   TSAN_INTERCEPT(pthread_rwlock_wrlock);
2530   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2531   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2532   TSAN_INTERCEPT(pthread_rwlock_unlock);
2533 
2534   TSAN_INTERCEPT(pthread_barrier_init);
2535   TSAN_INTERCEPT(pthread_barrier_destroy);
2536   TSAN_INTERCEPT(pthread_barrier_wait);
2537 
2538   TSAN_INTERCEPT(pthread_once);
2539 
2540   TSAN_INTERCEPT(fstat);
2541   TSAN_MAYBE_INTERCEPT___FXSTAT;
2542   TSAN_MAYBE_INTERCEPT_FSTAT64;
2543   TSAN_MAYBE_INTERCEPT___FXSTAT64;
2544   TSAN_INTERCEPT(open);
2545   TSAN_MAYBE_INTERCEPT_OPEN64;
2546   TSAN_INTERCEPT(creat);
2547   TSAN_MAYBE_INTERCEPT_CREAT64;
2548   TSAN_INTERCEPT(dup);
2549   TSAN_INTERCEPT(dup2);
2550   TSAN_INTERCEPT(dup3);
2551   TSAN_MAYBE_INTERCEPT_EVENTFD;
2552   TSAN_MAYBE_INTERCEPT_SIGNALFD;
2553   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2554   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2555   TSAN_INTERCEPT(socket);
2556   TSAN_INTERCEPT(socketpair);
2557   TSAN_INTERCEPT(connect);
2558   TSAN_INTERCEPT(bind);
2559   TSAN_INTERCEPT(listen);
2560   TSAN_MAYBE_INTERCEPT_EPOLL;
2561   TSAN_INTERCEPT(close);
2562   TSAN_MAYBE_INTERCEPT___CLOSE;
2563   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2564   TSAN_INTERCEPT(pipe);
2565   TSAN_INTERCEPT(pipe2);
2566 
2567   TSAN_INTERCEPT(unlink);
2568   TSAN_INTERCEPT(tmpfile);
2569   TSAN_MAYBE_INTERCEPT_TMPFILE64;
2570   TSAN_INTERCEPT(fread);
2571   TSAN_INTERCEPT(fwrite);
2572   TSAN_INTERCEPT(abort);
2573   TSAN_INTERCEPT(puts);
2574   TSAN_INTERCEPT(rmdir);
2575   TSAN_INTERCEPT(closedir);
2576 
2577   TSAN_INTERCEPT(sigaction);
2578   TSAN_INTERCEPT(signal);
2579   TSAN_INTERCEPT(sigsuspend);
2580   TSAN_INTERCEPT(sigblock);
2581   TSAN_INTERCEPT(sigsetmask);
2582   TSAN_INTERCEPT(pthread_sigmask);
2583   TSAN_INTERCEPT(raise);
2584   TSAN_INTERCEPT(kill);
2585   TSAN_INTERCEPT(pthread_kill);
2586   TSAN_INTERCEPT(sleep);
2587   TSAN_INTERCEPT(usleep);
2588   TSAN_INTERCEPT(nanosleep);
2589   TSAN_INTERCEPT(pause);
2590   TSAN_INTERCEPT(gettimeofday);
2591   TSAN_INTERCEPT(getaddrinfo);
2592 
2593   TSAN_INTERCEPT(fork);
2594   TSAN_INTERCEPT(vfork);
2595 #if !SANITIZER_ANDROID
2596   TSAN_INTERCEPT(dl_iterate_phdr);
2597 #endif
2598   TSAN_INTERCEPT(on_exit);
2599   TSAN_INTERCEPT(__cxa_atexit);
2600   TSAN_INTERCEPT(_exit);
2601 
2602 #ifdef NEED_TLS_GET_ADDR
2603   TSAN_INTERCEPT(__tls_get_addr);
2604 #endif
2605 
2606 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2607   // Need to setup it, because interceptors check that the function is resolved.
2608   // But atexit is emitted directly into the module, so can't be resolved.
2609   REAL(atexit) = (int(*)(void(*)()))unreachable;
2610 #endif
2611 
2612   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2613     Printf("ThreadSanitizer: failed to setup atexit callback\n");
2614     Die();
2615   }
2616 
2617 #if !SANITIZER_MAC
2618   if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
2619     Printf("ThreadSanitizer: failed to create thread key\n");
2620     Die();
2621   }
2622 #endif
2623 
2624   FdInit();
2625 }
2626 
2627 }  // namespace __tsan
2628 
2629 // Invisible barrier for tests.
2630 // There were several unsuccessful iterations for this functionality:
2631 // 1. Initially it was implemented in user code using
2632 //    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2633 //    MacOS. Futexes are linux-specific for this matter.
2634 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2635 //    "as-if synchronized via sleep" messages in reports which failed some
2636 //    output tests.
2637 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2638 //    visible events, which lead to "failed to restore stack trace" failures.
2639 // Note that no_sanitize_thread attribute does not turn off atomic interception
2640 // so attaching it to the function defined in user code does not help.
2641 // That's why we now have what we have.
2642 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_init(u64 * barrier,u32 count)2643 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2644   if (count >= (1 << 8)) {
2645       Printf("barrier_init: count is too large (%d)\n", count);
2646       Die();
2647   }
2648   // 8 lsb is thread count, the remaining are count of entered threads.
2649   *barrier = count;
2650 }
2651 
2652 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_wait(u64 * barrier)2653 void __tsan_testonly_barrier_wait(u64 *barrier) {
2654   unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2655   unsigned old_epoch = (old >> 8) / (old & 0xff);
2656   for (;;) {
2657     unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2658     unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2659     if (cur_epoch != old_epoch)
2660       return;
2661     internal_sched_yield();
2662   }
2663 }
2664