1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: uniform_int_distribution.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header defines a class for representing a uniform integer distribution
20 // over the closed (inclusive) interval [a,b]. You use this distribution in
21 // combination with an Abseil random bit generator to produce random values
22 // according to the rules of the distribution.
23 //
24 // `absl::uniform_int_distribution` is a drop-in replacement for the C++11
25 // `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably
26 // faster than the libstdc++ implementation.
27 
28 #ifndef ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
29 #define ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
30 
31 #include <cassert>
32 #include <istream>
33 #include <limits>
34 #include <type_traits>
35 
36 #include "absl/base/optimization.h"
37 #include "absl/random/internal/fast_uniform_bits.h"
38 #include "absl/random/internal/iostream_state_saver.h"
39 #include "absl/random/internal/traits.h"
40 #include "absl/random/internal/wide_multiply.h"
41 
42 namespace absl {
43 ABSL_NAMESPACE_BEGIN
44 
45 // absl::uniform_int_distribution<T>
46 //
47 // This distribution produces random integer values uniformly distributed in the
48 // closed (inclusive) interval [a, b].
49 //
50 // Example:
51 //
52 //   absl::BitGen gen;
53 //
54 //   // Use the distribution to produce a value between 1 and 6, inclusive.
55 //   int die_roll = absl::uniform_int_distribution<int>(1, 6)(gen);
56 //
57 template <typename IntType = int>
58 class uniform_int_distribution {
59  private:
60   using unsigned_type =
61       typename random_internal::make_unsigned_bits<IntType>::type;
62 
63  public:
64   using result_type = IntType;
65 
66   class param_type {
67    public:
68     using distribution_type = uniform_int_distribution;
69 
70     explicit param_type(
71         result_type lo = 0,
72         result_type hi = (std::numeric_limits<result_type>::max)())
lo_(lo)73         : lo_(lo),
74           range_(static_cast<unsigned_type>(hi) -
75                  static_cast<unsigned_type>(lo)) {
76       // [rand.dist.uni.int] precondition 2
77       assert(lo <= hi);
78     }
79 
a()80     result_type a() const { return lo_; }
b()81     result_type b() const {
82       return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_);
83     }
84 
85     friend bool operator==(const param_type& a, const param_type& b) {
86       return a.lo_ == b.lo_ && a.range_ == b.range_;
87     }
88 
89     friend bool operator!=(const param_type& a, const param_type& b) {
90       return !(a == b);
91     }
92 
93    private:
94     friend class uniform_int_distribution;
range()95     unsigned_type range() const { return range_; }
96 
97     result_type lo_;
98     unsigned_type range_;
99 
100     static_assert(std::is_integral<result_type>::value,
101                   "Class-template absl::uniform_int_distribution<> must be "
102                   "parameterized using an integral type.");
103   };  // param_type
104 
uniform_int_distribution()105   uniform_int_distribution() : uniform_int_distribution(0) {}
106 
107   explicit uniform_int_distribution(
108       result_type lo,
109       result_type hi = (std::numeric_limits<result_type>::max)())
param_(lo,hi)110       : param_(lo, hi) {}
111 
uniform_int_distribution(const param_type & param)112   explicit uniform_int_distribution(const param_type& param) : param_(param) {}
113 
114   // uniform_int_distribution<T>::reset()
115   //
116   // Resets the uniform int distribution. Note that this function has no effect
117   // because the distribution already produces independent values.
reset()118   void reset() {}
119 
120   template <typename URBG>
operator()121   result_type operator()(URBG& gen) {  // NOLINT(runtime/references)
122     return (*this)(gen, param());
123   }
124 
125   template <typename URBG>
operator()126   result_type operator()(
127       URBG& gen, const param_type& param) {  // NOLINT(runtime/references)
128     return param.a() + Generate(gen, param.range());
129   }
130 
a()131   result_type a() const { return param_.a(); }
b()132   result_type b() const { return param_.b(); }
133 
param()134   param_type param() const { return param_; }
param(const param_type & params)135   void param(const param_type& params) { param_ = params; }
136 
result_type(min)137   result_type(min)() const { return a(); }
result_type(max)138   result_type(max)() const { return b(); }
139 
140   friend bool operator==(const uniform_int_distribution& a,
141                          const uniform_int_distribution& b) {
142     return a.param_ == b.param_;
143   }
144   friend bool operator!=(const uniform_int_distribution& a,
145                          const uniform_int_distribution& b) {
146     return !(a == b);
147   }
148 
149  private:
150   // Generates a value in the *closed* interval [0, R]
151   template <typename URBG>
152   unsigned_type Generate(URBG& g,  // NOLINT(runtime/references)
153                          unsigned_type R);
154   param_type param_;
155 };
156 
157 // -----------------------------------------------------------------------------
158 // Implementation details follow
159 // -----------------------------------------------------------------------------
160 template <typename CharT, typename Traits, typename IntType>
161 std::basic_ostream<CharT, Traits>& operator<<(
162     std::basic_ostream<CharT, Traits>& os,
163     const uniform_int_distribution<IntType>& x) {
164   using stream_type =
165       typename random_internal::stream_format_type<IntType>::type;
166   auto saver = random_internal::make_ostream_state_saver(os);
167   os << static_cast<stream_type>(x.a()) << os.fill()
168      << static_cast<stream_type>(x.b());
169   return os;
170 }
171 
172 template <typename CharT, typename Traits, typename IntType>
173 std::basic_istream<CharT, Traits>& operator>>(
174     std::basic_istream<CharT, Traits>& is,
175     uniform_int_distribution<IntType>& x) {
176   using param_type = typename uniform_int_distribution<IntType>::param_type;
177   using result_type = typename uniform_int_distribution<IntType>::result_type;
178   using stream_type =
179       typename random_internal::stream_format_type<IntType>::type;
180 
181   stream_type a;
182   stream_type b;
183 
184   auto saver = random_internal::make_istream_state_saver(is);
185   is >> a >> b;
186   if (!is.fail()) {
187     x.param(
188         param_type(static_cast<result_type>(a), static_cast<result_type>(b)));
189   }
190   return is;
191 }
192 
193 template <typename IntType>
194 template <typename URBG>
195 typename random_internal::make_unsigned_bits<IntType>::type
Generate(URBG & g,typename random_internal::make_unsigned_bits<IntType>::type R)196 uniform_int_distribution<IntType>::Generate(
197     URBG& g,  // NOLINT(runtime/references)
198     typename random_internal::make_unsigned_bits<IntType>::type R) {
199   random_internal::FastUniformBits<unsigned_type> fast_bits;
200   unsigned_type bits = fast_bits(g);
201   const unsigned_type Lim = R + 1;
202   if ((R & Lim) == 0) {
203     // If the interval's length is a power of two range, just take the low bits.
204     return bits & R;
205   }
206 
207   // Generates a uniform variate on [0, Lim) using fixed-point multiplication.
208   // The above fast-path guarantees that Lim is representable in unsigned_type.
209   //
210   // Algorithm adapted from
211   // http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added
212   // explanation.
213   //
214   // The algorithm creates a uniform variate `bits` in the interval [0, 2^N),
215   // and treats it as the fractional part of a fixed-point real value in [0, 1),
216   // multiplied by 2^N.  For example, 0.25 would be represented as 2^(N - 2),
217   // because 2^N * 0.25 == 2^(N - 2).
218   //
219   // Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the
220   // value into the range [0, Lim).  The integral part (the high word of the
221   // multiplication result) is then very nearly the desired result.  However,
222   // this is not quite accurate; viewing the multiplication result as one
223   // double-width integer, the resulting values for the sample are mapped as
224   // follows:
225   //
226   // If the result lies in this interval:       Return this value:
227   //        [0, 2^N)                                    0
228   //        [2^N, 2 * 2^N)                              1
229   //        ...                                         ...
230   //        [K * 2^N, (K + 1) * 2^N)                    K
231   //        ...                                         ...
232   //        [(Lim - 1) * 2^N, Lim * 2^N)                Lim - 1
233   //
234   // While all of these intervals have the same size, the result of `bits * Lim`
235   // must be a multiple of `Lim`, and not all of these intervals contain the
236   // same number of multiples of `Lim`.  In particular, some contain
237   // `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`.  This
238   // difference produces a small nonuniformity, which is corrected by applying
239   // rejection sampling to one of the values in the "larger intervals" (i.e.,
240   // the intervals containing `F + 1` multiples of `Lim`.
241   //
242   // An interval contains `F + 1` multiples of `Lim` if and only if its smallest
243   // value modulo 2^N is less than `2^N % Lim`.  The unique value satisfying
244   // this property is used as the one for rejection.  That is, a value of
245   // `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`.
246 
247   using helper = random_internal::wide_multiply<unsigned_type>;
248   auto product = helper::multiply(bits, Lim);
249 
250   // Two optimizations here:
251   // * Rejection occurs with some probability less than 1/2, and for reasonable
252   //   ranges considerably less (in particular, less than 1/(F+1)), so
253   //   ABSL_PREDICT_FALSE is apt.
254   // * `Lim` is an overestimate of `threshold`, and doesn't require a divide.
255   if (ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) {
256     // This quantity is exactly equal to `2^N % Lim`, but does not require high
257     // precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`.
258     // Ideally this could be expressed simply as `-X` rather than `2^N - X`, but
259     // for types smaller than int, this calculation is incorrect due to integer
260     // promotion rules.
261     const unsigned_type threshold =
262         ((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim;
263     while (helper::lo(product) < threshold) {
264       bits = fast_bits(g);
265       product = helper::multiply(bits, Lim);
266     }
267   }
268 
269   return helper::hi(product);
270 }
271 
272 ABSL_NAMESPACE_END
273 }  // namespace absl
274 
275 #endif  // ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
276