1 /* Alias analysis for GNU C
2    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3    Contributed by John Carr (jfc@mit.edu).
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 
43 /* The aliasing API provided here solves related but different problems:
44 
45    Say there exists (in c)
46 
47    struct X {
48      struct Y y1;
49      struct Z z2;
50    } x1, *px1,  *px2;
51 
52    struct Y y2, *py;
53    struct Z z2, *pz;
54 
55 
56    py = &x1.y1;
57    px2 = &x1;
58 
59    Consider the four questions:
60 
61    Can a store to x1 interfere with px2->y1?
62    Can a store to x1 interfere with px2->z2?
63    Can a store to x1 change the value pointed to by with py?
64    Can a store to x1 change the value pointed to by with pz?
65 
66    The answer to these questions can be yes, yes, yes, and maybe.
67 
68    The first two questions can be answered with a simple examination
69    of the type system.  If structure X contains a field of type Y then
70    a store through a pointer to an X can overwrite any field that is
71    contained (recursively) in an X (unless we know that px1 != px2).
72 
73    The last two questions can be solved in the same way as the first
74    two questions but this is too conservative.  The observation is
75    that in some cases we can know which (if any) fields are addressed
76    and if those addresses are used in bad ways.  This analysis may be
77    language specific.  In C, arbitrary operations may be applied to
78    pointers.  However, there is some indication that this may be too
79    conservative for some C++ types.
80 
81    The pass ipa-type-escape does this analysis for the types whose
82    instances do not escape across the compilation boundary.
83 
84    Historically in GCC, these two problems were combined and a single
85    data structure that was used to represent the solution to these
86    problems.  We now have two similar but different data structures,
87    The data structure to solve the last two questions is similar to
88    the first, but does not contain the fields whose address are never
89    taken.  For types that do escape the compilation unit, the data
90    structures will have identical information.
91 */
92 
93 /* The alias sets assigned to MEMs assist the back-end in determining
94    which MEMs can alias which other MEMs.  In general, two MEMs in
95    different alias sets cannot alias each other, with one important
96    exception.  Consider something like:
97 
98      struct S { int i; double d; };
99 
100    a store to an `S' can alias something of either type `int' or type
101    `double'.  (However, a store to an `int' cannot alias a `double'
102    and vice versa.)  We indicate this via a tree structure that looks
103    like:
104 	   struct S
105 	    /   \
106 	   /     \
107 	 |/_     _\|
108 	 int    double
109 
110    (The arrows are directed and point downwards.)
111     In this situation we say the alias set for `struct S' is the
112    `superset' and that those for `int' and `double' are `subsets'.
113 
114    To see whether two alias sets can point to the same memory, we must
115    see if either alias set is a subset of the other. We need not trace
116    past immediate descendants, however, since we propagate all
117    grandchildren up one level.
118 
119    Alias set zero is implicitly a superset of all other alias sets.
120    However, this is no actual entry for alias set zero.  It is an
121    error to attempt to explicitly construct a subset of zero.  */
122 
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
124 
125 struct GTY(()) alias_set_entry {
126   /* The alias set number, as stored in MEM_ALIAS_SET.  */
127   alias_set_type alias_set;
128 
129   /* Nonzero if would have a child of zero: this effectively makes this
130      alias set the same as alias set zero.  */
131   bool has_zero_child;
132   /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133      aggregate contaiing pointer.
134      This is used for a special case where we need an universal pointer type
135      compatible with all other pointer types.  */
136   bool is_pointer;
137   /* Nonzero if is_pointer or if one of childs have has_pointer set.  */
138   bool has_pointer;
139 
140   /* The children of the alias set.  These are not just the immediate
141      children, but, in fact, all descendants.  So, if we have:
142 
143        struct T { struct S s; float f; }
144 
145      continuing our example above, the children here will be all of
146      `int', `double', `float', and `struct S'.  */
147   hash_map<alias_set_hash, int> *children;
148 };
149 
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 			     machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 			       const_rtx, machine_mode, rtx,
160 			       bool, bool, bool);
161 static int compare_base_symbol_refs (const_rtx, const_rtx);
162 
163 static void memory_modified_1 (rtx, const_rtx, void *);
164 
165 /* Query statistics for the different low-level disambiguators.
166    A high-level query may trigger multiple of them.  */
167 
168 static struct {
169   unsigned long long num_alias_zero;
170   unsigned long long num_same_alias_set;
171   unsigned long long num_same_objects;
172   unsigned long long num_volatile;
173   unsigned long long num_dag;
174   unsigned long long num_universal;
175   unsigned long long num_disambiguated;
176 } alias_stats;
177 
178 
179 /* Set up all info needed to perform alias analysis on memory references.  */
180 
181 /* Returns the size in bytes of the mode of X.  */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
183 
184 /* Cap the number of passes we make over the insns propagating alias
185    information through set chains.
186    ??? 10 is a completely arbitrary choice.  This should be based on the
187    maximum loop depth in the CFG, but we do not have this information
188    available (even if current_loops _is_ available).  */
189 #define MAX_ALIAS_LOOP_PASSES 10
190 
191 /* reg_base_value[N] gives an address to which register N is related.
192    If all sets after the first add or subtract to the current value
193    or otherwise modify it so it does not point to a different top level
194    object, reg_base_value[N] is equal to the address part of the source
195    of the first set.
196 
197    A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
198    expressions represent three types of base:
199 
200      1. incoming arguments.  There is just one ADDRESS to represent all
201 	arguments, since we do not know at this level whether accesses
202 	based on different arguments can alias.  The ADDRESS has id 0.
203 
204      2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 	(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 	Each of these rtxes has a separate ADDRESS associated with it,
207 	each with a negative id.
208 
209 	GCC is (and is required to be) precise in which register it
210 	chooses to access a particular region of stack.  We can therefore
211 	assume that accesses based on one of these rtxes do not alias
212 	accesses based on another of these rtxes.
213 
214      3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 	Each such piece of memory has a separate ADDRESS associated
216 	with it, each with an id greater than 0.
217 
218    Accesses based on one ADDRESS do not alias accesses based on other
219    ADDRESSes.  Accesses based on ADDRESSes in groups (2) and (3) do not
220    alias globals either; the ADDRESSes have Pmode to indicate this.
221    The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222    indicate this.  */
223 
224 static GTY(()) vec<rtx, va_gc> *reg_base_value;
225 static rtx *new_reg_base_value;
226 
227 /* The single VOIDmode ADDRESS that represents all argument bases.
228    It has id 0.  */
229 static GTY(()) rtx arg_base_value;
230 
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS.  */
232 static int unique_id;
233 
234 /* We preserve the copy of old array around to avoid amount of garbage
235    produced.  About 8% of garbage produced were attributed to this
236    array.  */
237 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
238 
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240    registers.  */
241 #define UNIQUE_BASE_VALUE_SP	-1
242 #define UNIQUE_BASE_VALUE_ARGP	-2
243 #define UNIQUE_BASE_VALUE_FP	-3
244 #define UNIQUE_BASE_VALUE_HFP	-4
245 
246 #define static_reg_base_value \
247   (this_target_rtl->x_static_reg_base_value)
248 
249 #define REG_BASE_VALUE(X)					\
250   (REGNO (X) < vec_safe_length (reg_base_value)			\
251    ? (*reg_base_value)[REGNO (X)] : 0)
252 
253 /* Vector indexed by N giving the initial (unchanging) value known for
254    pseudo-register N.  This vector is initialized in init_alias_analysis,
255    and does not change until end_alias_analysis is called.  */
256 static GTY(()) vec<rtx, va_gc> *reg_known_value;
257 
258 /* Vector recording for each reg_known_value whether it is due to a
259    REG_EQUIV note.  Future passes (viz., reload) may replace the
260    pseudo with the equivalent expression and so we account for the
261    dependences that would be introduced if that happens.
262 
263    The REG_EQUIV notes created in assign_parms may mention the arg
264    pointer, and there are explicit insns in the RTL that modify the
265    arg pointer.  Thus we must ensure that such insns don't get
266    scheduled across each other because that would invalidate the
267    REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
268    wrong, but solving the problem in the scheduler will likely give
269    better code, so we do it here.  */
270 static sbitmap reg_known_equiv_p;
271 
272 /* True when scanning insns from the start of the rtl to the
273    NOTE_INSN_FUNCTION_BEG note.  */
274 static bool copying_arguments;
275 
276 
277 /* The splay-tree used to store the various alias set entries.  */
278 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
279 
280 /* Build a decomposed reference object for querying the alias-oracle
281    from the MEM rtx and store it in *REF.
282    Returns false if MEM is not suitable for the alias-oracle.  */
283 
284 static bool
ao_ref_from_mem(ao_ref * ref,const_rtx mem)285 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
286 {
287   tree expr = MEM_EXPR (mem);
288   tree base;
289 
290   if (!expr)
291     return false;
292 
293   ao_ref_init (ref, expr);
294 
295   /* Get the base of the reference and see if we have to reject or
296      adjust it.  */
297   base = ao_ref_base (ref);
298   if (base == NULL_TREE)
299     return false;
300 
301   /* The tree oracle doesn't like bases that are neither decls
302      nor indirect references of SSA names.  */
303   if (!(DECL_P (base)
304 	|| (TREE_CODE (base) == MEM_REF
305 	    && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 	|| (TREE_CODE (base) == TARGET_MEM_REF
307 	    && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
308     return false;
309 
310   /* If this is a reference based on a partitioned decl replace the
311      base with a MEM_REF of the pointer representative we
312      created during stack slot partitioning.  */
313   if (VAR_P (base)
314       && ! is_global_var (base)
315       && cfun->gimple_df->decls_to_pointers != NULL)
316     {
317       tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
318       if (namep)
319 	ref->base = build_simple_mem_ref (*namep);
320     }
321 
322   ref->ref_alias_set = MEM_ALIAS_SET (mem);
323 
324   /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325      is conservative, so trust it.  */
326   if (!MEM_OFFSET_KNOWN_P (mem)
327       || !MEM_SIZE_KNOWN_P (mem))
328     return true;
329 
330   /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331      drop ref->ref.  */
332   if (maybe_lt (MEM_OFFSET (mem), 0)
333       || (ref->max_size_known_p ()
334 	  && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
335 		       ref->max_size)))
336     ref->ref = NULL_TREE;
337 
338   /* Refine size and offset we got from analyzing MEM_EXPR by using
339      MEM_SIZE and MEM_OFFSET.  */
340 
341   ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
342   ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
343 
344   /* The MEM may extend into adjacent fields, so adjust max_size if
345      necessary.  */
346   if (ref->max_size_known_p ())
347     ref->max_size = upper_bound (ref->max_size, ref->size);
348 
349   /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
350      the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
351   if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352       && (maybe_lt (ref->offset, 0)
353 	  || (DECL_P (ref->base)
354 	      && (DECL_SIZE (ref->base) == NULL_TREE
355 		  || !poly_int_tree_p (DECL_SIZE (ref->base))
356 		  || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
357 			       ref->offset + ref->size)))))
358     return false;
359 
360   return true;
361 }
362 
363 /* Query the alias-oracle on whether the two memory rtx X and MEM may
364    alias.  If TBAA_P is set also apply TBAA.  Returns true if the
365    two rtxen may alias, false otherwise.  */
366 
367 static bool
rtx_refs_may_alias_p(const_rtx x,const_rtx mem,bool tbaa_p)368 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
369 {
370   ao_ref ref1, ref2;
371 
372   if (!ao_ref_from_mem (&ref1, x)
373       || !ao_ref_from_mem (&ref2, mem))
374     return true;
375 
376   return refs_may_alias_p_1 (&ref1, &ref2,
377 			     tbaa_p
378 			     && MEM_ALIAS_SET (x) != 0
379 			     && MEM_ALIAS_SET (mem) != 0);
380 }
381 
382 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383    such an entry, or NULL otherwise.  */
384 
385 static inline alias_set_entry *
get_alias_set_entry(alias_set_type alias_set)386 get_alias_set_entry (alias_set_type alias_set)
387 {
388   return (*alias_sets)[alias_set];
389 }
390 
391 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392    the two MEMs cannot alias each other.  */
393 
394 static inline int
mems_in_disjoint_alias_sets_p(const_rtx mem1,const_rtx mem2)395 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
396 {
397   return (flag_strict_aliasing
398 	  && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 				      MEM_ALIAS_SET (mem2)));
400 }
401 
402 /* Return true if the first alias set is a subset of the second.  */
403 
404 bool
alias_set_subset_of(alias_set_type set1,alias_set_type set2)405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
406 {
407   alias_set_entry *ase2;
408 
409   /* Disable TBAA oracle with !flag_strict_aliasing.  */
410   if (!flag_strict_aliasing)
411     return true;
412 
413   /* Everything is a subset of the "aliases everything" set.  */
414   if (set2 == 0)
415     return true;
416 
417   /* Check if set1 is a subset of set2.  */
418   ase2 = get_alias_set_entry (set2);
419   if (ase2 != 0
420       && (ase2->has_zero_child
421 	  || (ase2->children && ase2->children->get (set1))))
422     return true;
423 
424   /* As a special case we consider alias set of "void *" to be both subset
425      and superset of every alias set of a pointer.  This extra symmetry does
426      not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427      to return true on the following testcase:
428 
429      void *ptr;
430      char **ptr2=(char **)&ptr;
431      *ptr2 = ...
432 
433      Additionally if a set contains universal pointer, we consider every pointer
434      to be a subset of it, but we do not represent this explicitely - doing so
435      would require us to update transitive closure each time we introduce new
436      pointer type.  This makes aliasing_component_refs_p to return true
437      on the following testcase:
438 
439      struct a {void *ptr;}
440      char **ptr = (char **)&a.ptr;
441      ptr = ...
442 
443      This makes void * truly universal pointer type.  See pointer handling in
444      get_alias_set for more details.  */
445   if (ase2 && ase2->has_pointer)
446     {
447       alias_set_entry *ase1 = get_alias_set_entry (set1);
448 
449       if (ase1 && ase1->is_pointer)
450 	{
451           alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 	  /* If one is ptr_type_node and other is pointer, then we consider
453  	     them subset of each other.  */
454 	  if (set1 == voidptr_set || set2 == voidptr_set)
455 	    return true;
456 	  /* If SET2 contains universal pointer's alias set, then we consdier
457  	     every (non-universal) pointer.  */
458 	  if (ase2->children && set1 != voidptr_set
459 	      && ase2->children->get (voidptr_set))
460 	    return true;
461 	}
462     }
463   return false;
464 }
465 
466 /* Return 1 if the two specified alias sets may conflict.  */
467 
468 int
alias_sets_conflict_p(alias_set_type set1,alias_set_type set2)469 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
470 {
471   alias_set_entry *ase1;
472   alias_set_entry *ase2;
473 
474   /* The easy case.  */
475   if (alias_sets_must_conflict_p (set1, set2))
476     return 1;
477 
478   /* See if the first alias set is a subset of the second.  */
479   ase1 = get_alias_set_entry (set1);
480   if (ase1 != 0
481       && ase1->children && ase1->children->get (set2))
482     {
483       ++alias_stats.num_dag;
484       return 1;
485     }
486 
487   /* Now do the same, but with the alias sets reversed.  */
488   ase2 = get_alias_set_entry (set2);
489   if (ase2 != 0
490       && ase2->children && ase2->children->get (set1))
491     {
492       ++alias_stats.num_dag;
493       return 1;
494     }
495 
496   /* We want void * to be compatible with any other pointer without
497      really dropping it to alias set 0. Doing so would make it
498      compatible with all non-pointer types too.
499 
500      This is not strictly necessary by the C/C++ language
501      standards, but avoids common type punning mistakes.  In
502      addition to that, we need the existence of such universal
503      pointer to implement Fortran's C_PTR type (which is defined as
504      type compatible with all C pointers).  */
505   if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
506     {
507       alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
508 
509       /* If one of the sets corresponds to universal pointer,
510  	 we consider it to conflict with anything that is
511 	 or contains pointer.  */
512       if (set1 == voidptr_set || set2 == voidptr_set)
513 	{
514 	  ++alias_stats.num_universal;
515 	  return true;
516 	}
517      /* If one of sets is (non-universal) pointer and the other
518  	contains universal pointer, we also get conflict.  */
519      if (ase1->is_pointer && set2 != voidptr_set
520 	 && ase2->children && ase2->children->get (voidptr_set))
521 	{
522 	  ++alias_stats.num_universal;
523 	  return true;
524 	}
525      if (ase2->is_pointer && set1 != voidptr_set
526 	 && ase1->children && ase1->children->get (voidptr_set))
527 	{
528 	  ++alias_stats.num_universal;
529 	  return true;
530 	}
531     }
532 
533   ++alias_stats.num_disambiguated;
534 
535   /* The two alias sets are distinct and neither one is the
536      child of the other.  Therefore, they cannot conflict.  */
537   return 0;
538 }
539 
540 /* Return 1 if the two specified alias sets will always conflict.  */
541 
542 int
alias_sets_must_conflict_p(alias_set_type set1,alias_set_type set2)543 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
544 {
545   /* Disable TBAA oracle with !flag_strict_aliasing.  */
546   if (!flag_strict_aliasing)
547     return 1;
548   if (set1 == 0 || set2 == 0)
549     {
550       ++alias_stats.num_alias_zero;
551       return 1;
552     }
553   if (set1 == set2)
554     {
555       ++alias_stats.num_same_alias_set;
556       return 1;
557     }
558 
559   return 0;
560 }
561 
562 /* Return 1 if any MEM object of type T1 will always conflict (using the
563    dependency routines in this file) with any MEM object of type T2.
564    This is used when allocating temporary storage.  If T1 and/or T2 are
565    NULL_TREE, it means we know nothing about the storage.  */
566 
567 int
objects_must_conflict_p(tree t1,tree t2)568 objects_must_conflict_p (tree t1, tree t2)
569 {
570   alias_set_type set1, set2;
571 
572   /* If neither has a type specified, we don't know if they'll conflict
573      because we may be using them to store objects of various types, for
574      example the argument and local variables areas of inlined functions.  */
575   if (t1 == 0 && t2 == 0)
576     return 0;
577 
578   /* If they are the same type, they must conflict.  */
579   if (t1 == t2)
580     {
581       ++alias_stats.num_same_objects;
582       return 1;
583     }
584   /* Likewise if both are volatile.  */
585   if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
586     {
587       ++alias_stats.num_volatile;
588       return 1;
589     }
590 
591   set1 = t1 ? get_alias_set (t1) : 0;
592   set2 = t2 ? get_alias_set (t2) : 0;
593 
594   /* We can't use alias_sets_conflict_p because we must make sure
595      that every subtype of t1 will conflict with every subtype of
596      t2 for which a pair of subobjects of these respective subtypes
597      overlaps on the stack.  */
598   return alias_sets_must_conflict_p (set1, set2);
599 }
600 
601 /* Return the outermost parent of component present in the chain of
602    component references handled by get_inner_reference in T with the
603    following property:
604      - the component is non-addressable, or
605      - the parent has alias set zero,
606    or NULL_TREE if no such parent exists.  In the former cases, the alias
607    set of this parent is the alias set that must be used for T itself.  */
608 
609 tree
component_uses_parent_alias_set_from(const_tree t)610 component_uses_parent_alias_set_from (const_tree t)
611 {
612   const_tree found = NULL_TREE;
613 
614   if (AGGREGATE_TYPE_P (TREE_TYPE (t))
615       && TYPE_TYPELESS_STORAGE (TREE_TYPE (t)))
616     return const_cast <tree> (t);
617 
618   while (handled_component_p (t))
619     {
620       switch (TREE_CODE (t))
621 	{
622 	case COMPONENT_REF:
623 	  if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
624 	    found = t;
625 	  /* Permit type-punning when accessing a union, provided the access
626 	     is directly through the union.  For example, this code does not
627 	     permit taking the address of a union member and then storing
628 	     through it.  Even the type-punning allowed here is a GCC
629 	     extension, albeit a common and useful one; the C standard says
630 	     that such accesses have implementation-defined behavior.  */
631 	  else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
632 	    found = t;
633 	  break;
634 
635 	case ARRAY_REF:
636 	case ARRAY_RANGE_REF:
637 	  if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
638 	    found = t;
639 	  break;
640 
641 	case REALPART_EXPR:
642 	case IMAGPART_EXPR:
643 	  break;
644 
645 	case BIT_FIELD_REF:
646 	case VIEW_CONVERT_EXPR:
647 	  /* Bitfields and casts are never addressable.  */
648 	  found = t;
649 	  break;
650 
651 	default:
652 	  gcc_unreachable ();
653 	}
654 
655       if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
656 	found = t;
657 
658       t = TREE_OPERAND (t, 0);
659     }
660 
661   if (found)
662     return TREE_OPERAND (found, 0);
663 
664   return NULL_TREE;
665 }
666 
667 
668 /* Return whether the pointer-type T effective for aliasing may
669    access everything and thus the reference has to be assigned
670    alias-set zero.  */
671 
672 static bool
ref_all_alias_ptr_type_p(const_tree t)673 ref_all_alias_ptr_type_p (const_tree t)
674 {
675   return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
676 	  || TYPE_REF_CAN_ALIAS_ALL (t));
677 }
678 
679 /* Return the alias set for the memory pointed to by T, which may be
680    either a type or an expression.  Return -1 if there is nothing
681    special about dereferencing T.  */
682 
683 static alias_set_type
get_deref_alias_set_1(tree t)684 get_deref_alias_set_1 (tree t)
685 {
686   /* All we care about is the type.  */
687   if (! TYPE_P (t))
688     t = TREE_TYPE (t);
689 
690   /* If we have an INDIRECT_REF via a void pointer, we don't
691      know anything about what that might alias.  Likewise if the
692      pointer is marked that way.  */
693   if (ref_all_alias_ptr_type_p (t))
694     return 0;
695 
696   return -1;
697 }
698 
699 /* Return the alias set for the memory pointed to by T, which may be
700    either a type or an expression.  */
701 
702 alias_set_type
get_deref_alias_set(tree t)703 get_deref_alias_set (tree t)
704 {
705   /* If we're not doing any alias analysis, just assume everything
706      aliases everything else.  */
707   if (!flag_strict_aliasing)
708     return 0;
709 
710   alias_set_type set = get_deref_alias_set_1 (t);
711 
712   /* Fall back to the alias-set of the pointed-to type.  */
713   if (set == -1)
714     {
715       if (! TYPE_P (t))
716 	t = TREE_TYPE (t);
717       set = get_alias_set (TREE_TYPE (t));
718     }
719 
720   return set;
721 }
722 
723 /* Return the pointer-type relevant for TBAA purposes from the
724    memory reference tree *T or NULL_TREE in which case *T is
725    adjusted to point to the outermost component reference that
726    can be used for assigning an alias set.  */
727 
728 static tree
reference_alias_ptr_type_1(tree * t)729 reference_alias_ptr_type_1 (tree *t)
730 {
731   tree inner;
732 
733   /* Get the base object of the reference.  */
734   inner = *t;
735   while (handled_component_p (inner))
736     {
737       /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
738 	 the type of any component references that wrap it to
739 	 determine the alias-set.  */
740       if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
741 	*t = TREE_OPERAND (inner, 0);
742       inner = TREE_OPERAND (inner, 0);
743     }
744 
745   /* Handle pointer dereferences here, they can override the
746      alias-set.  */
747   if (INDIRECT_REF_P (inner)
748       && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
749     return TREE_TYPE (TREE_OPERAND (inner, 0));
750   else if (TREE_CODE (inner) == TARGET_MEM_REF)
751     return TREE_TYPE (TMR_OFFSET (inner));
752   else if (TREE_CODE (inner) == MEM_REF
753 	   && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
754     return TREE_TYPE (TREE_OPERAND (inner, 1));
755 
756   /* If the innermost reference is a MEM_REF that has a
757      conversion embedded treat it like a VIEW_CONVERT_EXPR above,
758      using the memory access type for determining the alias-set.  */
759   if (TREE_CODE (inner) == MEM_REF
760       && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
761 	  != TYPE_MAIN_VARIANT
762 	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
763     return TREE_TYPE (TREE_OPERAND (inner, 1));
764 
765   /* Otherwise, pick up the outermost object that we could have
766      a pointer to.  */
767   tree tem = component_uses_parent_alias_set_from (*t);
768   if (tem)
769     *t = tem;
770 
771   return NULL_TREE;
772 }
773 
774 /* Return the pointer-type relevant for TBAA purposes from the
775    gimple memory reference tree T.  This is the type to be used for
776    the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
777    and guarantees that get_alias_set will return the same alias
778    set for T and the replacement.  */
779 
780 tree
reference_alias_ptr_type(tree t)781 reference_alias_ptr_type (tree t)
782 {
783   /* If the frontend assigns this alias-set zero, preserve that.  */
784   if (lang_hooks.get_alias_set (t) == 0)
785     return ptr_type_node;
786 
787   tree ptype = reference_alias_ptr_type_1 (&t);
788   /* If there is a given pointer type for aliasing purposes, return it.  */
789   if (ptype != NULL_TREE)
790     return ptype;
791 
792   /* Otherwise build one from the outermost component reference we
793      may use.  */
794   if (TREE_CODE (t) == MEM_REF
795       || TREE_CODE (t) == TARGET_MEM_REF)
796     return TREE_TYPE (TREE_OPERAND (t, 1));
797   else
798     return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
799 }
800 
801 /* Return whether the pointer-types T1 and T2 used to determine
802    two alias sets of two references will yield the same answer
803    from get_deref_alias_set.  */
804 
805 bool
alias_ptr_types_compatible_p(tree t1,tree t2)806 alias_ptr_types_compatible_p (tree t1, tree t2)
807 {
808   if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
809     return true;
810 
811   if (ref_all_alias_ptr_type_p (t1)
812       || ref_all_alias_ptr_type_p (t2))
813     return false;
814 
815   return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
816 	  == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
817 }
818 
819 /* Create emptry alias set entry.  */
820 
821 alias_set_entry *
init_alias_set_entry(alias_set_type set)822 init_alias_set_entry (alias_set_type set)
823 {
824   alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
825   ase->alias_set = set;
826   ase->children = NULL;
827   ase->has_zero_child = false;
828   ase->is_pointer = false;
829   ase->has_pointer = false;
830   gcc_checking_assert (!get_alias_set_entry (set));
831   (*alias_sets)[set] = ase;
832   return ase;
833 }
834 
835 /* Return the alias set for T, which may be either a type or an
836    expression.  Call language-specific routine for help, if needed.  */
837 
838 alias_set_type
get_alias_set(tree t)839 get_alias_set (tree t)
840 {
841   alias_set_type set;
842 
843   /* We can not give up with -fno-strict-aliasing because we need to build
844      proper type representation for possible functions which are build with
845      -fstrict-aliasing.  */
846 
847   /* return 0 if this or its type is an error.  */
848   if (t == error_mark_node
849       || (! TYPE_P (t)
850 	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
851     return 0;
852 
853   /* We can be passed either an expression or a type.  This and the
854      language-specific routine may make mutually-recursive calls to each other
855      to figure out what to do.  At each juncture, we see if this is a tree
856      that the language may need to handle specially.  First handle things that
857      aren't types.  */
858   if (! TYPE_P (t))
859     {
860       /* Give the language a chance to do something with this tree
861 	 before we look at it.  */
862       STRIP_NOPS (t);
863       set = lang_hooks.get_alias_set (t);
864       if (set != -1)
865 	return set;
866 
867       /* Get the alias pointer-type to use or the outermost object
868          that we could have a pointer to.  */
869       tree ptype = reference_alias_ptr_type_1 (&t);
870       if (ptype != NULL)
871 	return get_deref_alias_set (ptype);
872 
873       /* If we've already determined the alias set for a decl, just return
874 	 it.  This is necessary for C++ anonymous unions, whose component
875 	 variables don't look like union members (boo!).  */
876       if (VAR_P (t)
877 	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
878 	return MEM_ALIAS_SET (DECL_RTL (t));
879 
880       /* Now all we care about is the type.  */
881       t = TREE_TYPE (t);
882     }
883 
884   /* Variant qualifiers don't affect the alias set, so get the main
885      variant.  */
886   t = TYPE_MAIN_VARIANT (t);
887 
888   if (AGGREGATE_TYPE_P (t)
889       && TYPE_TYPELESS_STORAGE (t))
890     return 0;
891 
892   /* Always use the canonical type as well.  If this is a type that
893      requires structural comparisons to identify compatible types
894      use alias set zero.  */
895   if (TYPE_STRUCTURAL_EQUALITY_P (t))
896     {
897       /* Allow the language to specify another alias set for this
898 	 type.  */
899       set = lang_hooks.get_alias_set (t);
900       if (set != -1)
901 	return set;
902       /* Handle structure type equality for pointer types, arrays and vectors.
903 	 This is easy to do, because the code bellow ignore canonical types on
904 	 these anyway.  This is important for LTO, where TYPE_CANONICAL for
905 	 pointers can not be meaningfuly computed by the frotnend.  */
906       if (canonical_type_used_p (t))
907 	{
908 	  /* In LTO we set canonical types for all types where it makes
909 	     sense to do so.  Double check we did not miss some type.  */
910 	  gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
911           return 0;
912 	}
913     }
914   else
915     {
916       t = TYPE_CANONICAL (t);
917       gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
918     }
919 
920   /* If this is a type with a known alias set, return it.  */
921   gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
922   if (TYPE_ALIAS_SET_KNOWN_P (t))
923     return TYPE_ALIAS_SET (t);
924 
925   /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
926   if (!COMPLETE_TYPE_P (t))
927     {
928       /* For arrays with unknown size the conservative answer is the
929 	 alias set of the element type.  */
930       if (TREE_CODE (t) == ARRAY_TYPE)
931 	return get_alias_set (TREE_TYPE (t));
932 
933       /* But return zero as a conservative answer for incomplete types.  */
934       return 0;
935     }
936 
937   /* See if the language has special handling for this type.  */
938   set = lang_hooks.get_alias_set (t);
939   if (set != -1)
940     return set;
941 
942   /* There are no objects of FUNCTION_TYPE, so there's no point in
943      using up an alias set for them.  (There are, of course, pointers
944      and references to functions, but that's different.)  */
945   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
946     set = 0;
947 
948   /* Unless the language specifies otherwise, let vector types alias
949      their components.  This avoids some nasty type punning issues in
950      normal usage.  And indeed lets vectors be treated more like an
951      array slice.  */
952   else if (TREE_CODE (t) == VECTOR_TYPE)
953     set = get_alias_set (TREE_TYPE (t));
954 
955   /* Unless the language specifies otherwise, treat array types the
956      same as their components.  This avoids the asymmetry we get
957      through recording the components.  Consider accessing a
958      character(kind=1) through a reference to a character(kind=1)[1:1].
959      Or consider if we want to assign integer(kind=4)[0:D.1387] and
960      integer(kind=4)[4] the same alias set or not.
961      Just be pragmatic here and make sure the array and its element
962      type get the same alias set assigned.  */
963   else if (TREE_CODE (t) == ARRAY_TYPE
964 	   && (!TYPE_NONALIASED_COMPONENT (t)
965 	       || TYPE_STRUCTURAL_EQUALITY_P (t)))
966     set = get_alias_set (TREE_TYPE (t));
967 
968   /* From the former common C and C++ langhook implementation:
969 
970      Unfortunately, there is no canonical form of a pointer type.
971      In particular, if we have `typedef int I', then `int *', and
972      `I *' are different types.  So, we have to pick a canonical
973      representative.  We do this below.
974 
975      Technically, this approach is actually more conservative that
976      it needs to be.  In particular, `const int *' and `int *'
977      should be in different alias sets, according to the C and C++
978      standard, since their types are not the same, and so,
979      technically, an `int **' and `const int **' cannot point at
980      the same thing.
981 
982      But, the standard is wrong.  In particular, this code is
983      legal C++:
984 
985      int *ip;
986      int **ipp = &ip;
987      const int* const* cipp = ipp;
988      And, it doesn't make sense for that to be legal unless you
989      can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
990      the pointed-to types.  This issue has been reported to the
991      C++ committee.
992 
993      For this reason go to canonical type of the unqalified pointer type.
994      Until GCC 6 this code set all pointers sets to have alias set of
995      ptr_type_node but that is a bad idea, because it prevents disabiguations
996      in between pointers.  For Firefox this accounts about 20% of all
997      disambiguations in the program.  */
998   else if (POINTER_TYPE_P (t) && t != ptr_type_node)
999     {
1000       tree p;
1001       auto_vec <bool, 8> reference;
1002 
1003       /* Unnest all pointers and references.
1004 	 We also want to make pointer to array/vector equivalent to pointer to
1005 	 its element (see the reasoning above). Skip all those types, too.  */
1006       for (p = t; POINTER_TYPE_P (p)
1007 	   || (TREE_CODE (p) == ARRAY_TYPE
1008 	       && (!TYPE_NONALIASED_COMPONENT (p)
1009 		   || !COMPLETE_TYPE_P (p)
1010 		   || TYPE_STRUCTURAL_EQUALITY_P (p)))
1011 	   || TREE_CODE (p) == VECTOR_TYPE;
1012 	   p = TREE_TYPE (p))
1013 	{
1014 	  /* Ada supports recusive pointers.  Instead of doing recrusion check
1015 	     just give up once the preallocated space of 8 elements is up.
1016 	     In this case just punt to void * alias set.  */
1017 	  if (reference.length () == 8)
1018 	    {
1019 	      p = ptr_type_node;
1020 	      break;
1021 	    }
1022 	  if (TREE_CODE (p) == REFERENCE_TYPE)
1023 	    /* In LTO we want languages that use references to be compatible
1024  	       with languages that use pointers.  */
1025 	    reference.safe_push (true && !in_lto_p);
1026 	  if (TREE_CODE (p) == POINTER_TYPE)
1027 	    reference.safe_push (false);
1028 	}
1029       p = TYPE_MAIN_VARIANT (p);
1030 
1031       /* Make void * compatible with char * and also void **.
1032 	 Programs are commonly violating TBAA by this.
1033 
1034 	 We also make void * to conflict with every pointer
1035 	 (see record_component_aliases) and thus it is safe it to use it for
1036 	 pointers to types with TYPE_STRUCTURAL_EQUALITY_P.  */
1037       if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1038 	set = get_alias_set (ptr_type_node);
1039       else
1040 	{
1041 	  /* Rebuild pointer type starting from canonical types using
1042 	     unqualified pointers and references only.  This way all such
1043 	     pointers will have the same alias set and will conflict with
1044 	     each other.
1045 
1046 	     Most of time we already have pointers or references of a given type.
1047 	     If not we build new one just to be sure that if someone later
1048 	     (probably only middle-end can, as we should assign all alias
1049 	     classes only after finishing translation unit) builds the pointer
1050 	     type, the canonical type will match.  */
1051 	  p = TYPE_CANONICAL (p);
1052 	  while (!reference.is_empty ())
1053 	    {
1054 	      if (reference.pop ())
1055 		p = build_reference_type (p);
1056 	      else
1057 		p = build_pointer_type (p);
1058 	      gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1059 	      /* build_pointer_type should always return the canonical type.
1060 		 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1061 		 them.  Be sure that frontends do not glob canonical types of
1062 		 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1063 		 in all other cases.  */
1064 	      gcc_checking_assert (!TYPE_CANONICAL (p)
1065 				   || p == TYPE_CANONICAL (p));
1066 	    }
1067 
1068 	  /* Assign the alias set to both p and t.
1069 	     We can not call get_alias_set (p) here as that would trigger
1070 	     infinite recursion when p == t.  In other cases it would just
1071 	     trigger unnecesary legwork of rebuilding the pointer again.  */
1072 	  gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1073 	  if (TYPE_ALIAS_SET_KNOWN_P (p))
1074 	    set = TYPE_ALIAS_SET (p);
1075 	  else
1076 	    {
1077 	      set = new_alias_set ();
1078 	      TYPE_ALIAS_SET (p) = set;
1079 	    }
1080 	}
1081     }
1082   /* Alias set of ptr_type_node is special and serve as universal pointer which
1083      is TBAA compatible with every other pointer type.  Be sure we have the
1084      alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1085      of pointer types NULL.  */
1086   else if (t == ptr_type_node)
1087     set = new_alias_set ();
1088 
1089   /* Otherwise make a new alias set for this type.  */
1090   else
1091     {
1092       /* Each canonical type gets its own alias set, so canonical types
1093 	 shouldn't form a tree.  It doesn't really matter for types
1094 	 we handle specially above, so only check it where it possibly
1095 	 would result in a bogus alias set.  */
1096       gcc_checking_assert (TYPE_CANONICAL (t) == t);
1097 
1098       set = new_alias_set ();
1099     }
1100 
1101   TYPE_ALIAS_SET (t) = set;
1102 
1103   /* If this is an aggregate type or a complex type, we must record any
1104      component aliasing information.  */
1105   if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1106     record_component_aliases (t);
1107 
1108   /* We treat pointer types specially in alias_set_subset_of.  */
1109   if (POINTER_TYPE_P (t) && set)
1110     {
1111       alias_set_entry *ase = get_alias_set_entry (set);
1112       if (!ase)
1113 	ase = init_alias_set_entry (set);
1114       ase->is_pointer = true;
1115       ase->has_pointer = true;
1116     }
1117 
1118   return set;
1119 }
1120 
1121 /* Return a brand-new alias set.  */
1122 
1123 alias_set_type
new_alias_set(void)1124 new_alias_set (void)
1125 {
1126   if (alias_sets == 0)
1127     vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1128   vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1129   return alias_sets->length () - 1;
1130 }
1131 
1132 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1133    not everything that aliases SUPERSET also aliases SUBSET.  For example,
1134    in C, a store to an `int' can alias a load of a structure containing an
1135    `int', and vice versa.  But it can't alias a load of a 'double' member
1136    of the same structure.  Here, the structure would be the SUPERSET and
1137    `int' the SUBSET.  This relationship is also described in the comment at
1138    the beginning of this file.
1139 
1140    This function should be called only once per SUPERSET/SUBSET pair.
1141 
1142    It is illegal for SUPERSET to be zero; everything is implicitly a
1143    subset of alias set zero.  */
1144 
1145 void
record_alias_subset(alias_set_type superset,alias_set_type subset)1146 record_alias_subset (alias_set_type superset, alias_set_type subset)
1147 {
1148   alias_set_entry *superset_entry;
1149   alias_set_entry *subset_entry;
1150 
1151   /* It is possible in complex type situations for both sets to be the same,
1152      in which case we can ignore this operation.  */
1153   if (superset == subset)
1154     return;
1155 
1156   gcc_assert (superset);
1157 
1158   superset_entry = get_alias_set_entry (superset);
1159   if (superset_entry == 0)
1160     {
1161       /* Create an entry for the SUPERSET, so that we have a place to
1162 	 attach the SUBSET.  */
1163       superset_entry = init_alias_set_entry (superset);
1164     }
1165 
1166   if (subset == 0)
1167     superset_entry->has_zero_child = 1;
1168   else
1169     {
1170       subset_entry = get_alias_set_entry (subset);
1171       if (!superset_entry->children)
1172 	superset_entry->children
1173 	  = hash_map<alias_set_hash, int>::create_ggc (64);
1174       /* If there is an entry for the subset, enter all of its children
1175 	 (if they are not already present) as children of the SUPERSET.  */
1176       if (subset_entry)
1177 	{
1178 	  if (subset_entry->has_zero_child)
1179 	    superset_entry->has_zero_child = true;
1180           if (subset_entry->has_pointer)
1181 	    superset_entry->has_pointer = true;
1182 
1183 	  if (subset_entry->children)
1184 	    {
1185 	      hash_map<alias_set_hash, int>::iterator iter
1186 		= subset_entry->children->begin ();
1187 	      for (; iter != subset_entry->children->end (); ++iter)
1188 		superset_entry->children->put ((*iter).first, (*iter).second);
1189 	    }
1190 	}
1191 
1192       /* Enter the SUBSET itself as a child of the SUPERSET.  */
1193       superset_entry->children->put (subset, 0);
1194     }
1195 }
1196 
1197 /* Record that component types of TYPE, if any, are part of SUPERSET for
1198    aliasing purposes.  For record types, we only record component types
1199    for fields that are not marked non-addressable.  For array types, we
1200    only record the component type if it is not marked non-aliased.  */
1201 
1202 void
record_component_aliases(tree type,alias_set_type superset)1203 record_component_aliases (tree type, alias_set_type superset)
1204 {
1205   tree field;
1206 
1207   if (superset == 0)
1208     return;
1209 
1210   switch (TREE_CODE (type))
1211     {
1212     case RECORD_TYPE:
1213     case UNION_TYPE:
1214     case QUAL_UNION_TYPE:
1215       for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1216 	if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1217 	  {
1218 	    /* LTO type merging does not make any difference between
1219 	       component pointer types.  We may have
1220 
1221 	       struct foo {int *a;};
1222 
1223 	       as TYPE_CANONICAL of
1224 
1225 	       struct bar {float *a;};
1226 
1227 	       Because accesses to int * and float * do not alias, we would get
1228 	       false negative when accessing the same memory location by
1229 	       float ** and bar *. We thus record the canonical type as:
1230 
1231 	       struct {void *a;};
1232 
1233 	       void * is special cased and works as a universal pointer type.
1234 	       Accesses to it conflicts with accesses to any other pointer
1235 	       type.  */
1236 	    tree t = TREE_TYPE (field);
1237 	    if (in_lto_p)
1238 	      {
1239 		/* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1240 		   element type and that type has to be normalized to void *,
1241 		   too, in the case it is a pointer. */
1242 		while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1243 		  {
1244 		    gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1245 		    t = TREE_TYPE (t);
1246 		  }
1247 		if (POINTER_TYPE_P (t))
1248 		  t = ptr_type_node;
1249 		else if (flag_checking)
1250 		  gcc_checking_assert (get_alias_set (t)
1251 				       == get_alias_set (TREE_TYPE (field)));
1252 	      }
1253 
1254 	    alias_set_type set = get_alias_set (t);
1255 	    record_alias_subset (superset, set);
1256 	    /* If the field has alias-set zero make sure to still record
1257 	       any componets of it.  This makes sure that for
1258 		 struct A {
1259 		   struct B {
1260 		     int i;
1261 		     char c[4];
1262 		   } b;
1263 		 };
1264 	       in C++ even though 'B' has alias-set zero because
1265 	       TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1266 	       'int' as subset.  */
1267 	    if (set == 0)
1268 	      record_component_aliases (t, superset);
1269 	  }
1270       break;
1271 
1272     case COMPLEX_TYPE:
1273       record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1274       break;
1275 
1276     /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1277        element type.  */
1278 
1279     default:
1280       break;
1281     }
1282 }
1283 
1284 /* Record that component types of TYPE, if any, are part of that type for
1285    aliasing purposes.  For record types, we only record component types
1286    for fields that are not marked non-addressable.  For array types, we
1287    only record the component type if it is not marked non-aliased.  */
1288 
1289 void
record_component_aliases(tree type)1290 record_component_aliases (tree type)
1291 {
1292   alias_set_type superset = get_alias_set (type);
1293   record_component_aliases (type, superset);
1294 }
1295 
1296 
1297 /* Allocate an alias set for use in storing and reading from the varargs
1298    spill area.  */
1299 
1300 static GTY(()) alias_set_type varargs_set = -1;
1301 
1302 alias_set_type
get_varargs_alias_set(void)1303 get_varargs_alias_set (void)
1304 {
1305 #if 1
1306   /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1307      varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1308      consistently use the varargs alias set for loads from the varargs
1309      area.  So don't use it anywhere.  */
1310   return 0;
1311 #else
1312   if (varargs_set == -1)
1313     varargs_set = new_alias_set ();
1314 
1315   return varargs_set;
1316 #endif
1317 }
1318 
1319 /* Likewise, but used for the fixed portions of the frame, e.g., register
1320    save areas.  */
1321 
1322 static GTY(()) alias_set_type frame_set = -1;
1323 
1324 alias_set_type
get_frame_alias_set(void)1325 get_frame_alias_set (void)
1326 {
1327   if (frame_set == -1)
1328     frame_set = new_alias_set ();
1329 
1330   return frame_set;
1331 }
1332 
1333 /* Create a new, unique base with id ID.  */
1334 
1335 static rtx
unique_base_value(HOST_WIDE_INT id)1336 unique_base_value (HOST_WIDE_INT id)
1337 {
1338   return gen_rtx_ADDRESS (Pmode, id);
1339 }
1340 
1341 /* Return true if accesses based on any other base value cannot alias
1342    those based on X.  */
1343 
1344 static bool
unique_base_value_p(rtx x)1345 unique_base_value_p (rtx x)
1346 {
1347   return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1348 }
1349 
1350 /* Return true if X is known to be a base value.  */
1351 
1352 static bool
known_base_value_p(rtx x)1353 known_base_value_p (rtx x)
1354 {
1355   switch (GET_CODE (x))
1356     {
1357     case LABEL_REF:
1358     case SYMBOL_REF:
1359       return true;
1360 
1361     case ADDRESS:
1362       /* Arguments may or may not be bases; we don't know for sure.  */
1363       return GET_MODE (x) != VOIDmode;
1364 
1365     default:
1366       return false;
1367     }
1368 }
1369 
1370 /* Inside SRC, the source of a SET, find a base address.  */
1371 
1372 static rtx
find_base_value(rtx src)1373 find_base_value (rtx src)
1374 {
1375   unsigned int regno;
1376   scalar_int_mode int_mode;
1377 
1378 #if defined (FIND_BASE_TERM)
1379   /* Try machine-dependent ways to find the base term.  */
1380   src = FIND_BASE_TERM (src);
1381 #endif
1382 
1383   switch (GET_CODE (src))
1384     {
1385     case SYMBOL_REF:
1386     case LABEL_REF:
1387       return src;
1388 
1389     case REG:
1390       regno = REGNO (src);
1391       /* At the start of a function, argument registers have known base
1392 	 values which may be lost later.  Returning an ADDRESS
1393 	 expression here allows optimization based on argument values
1394 	 even when the argument registers are used for other purposes.  */
1395       if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1396 	return new_reg_base_value[regno];
1397 
1398       /* If a pseudo has a known base value, return it.  Do not do this
1399 	 for non-fixed hard regs since it can result in a circular
1400 	 dependency chain for registers which have values at function entry.
1401 
1402 	 The test above is not sufficient because the scheduler may move
1403 	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1404       if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1405 	  && regno < vec_safe_length (reg_base_value))
1406 	{
1407 	  /* If we're inside init_alias_analysis, use new_reg_base_value
1408 	     to reduce the number of relaxation iterations.  */
1409 	  if (new_reg_base_value && new_reg_base_value[regno]
1410 	      && DF_REG_DEF_COUNT (regno) == 1)
1411 	    return new_reg_base_value[regno];
1412 
1413 	  if ((*reg_base_value)[regno])
1414 	    return (*reg_base_value)[regno];
1415 	}
1416 
1417       return 0;
1418 
1419     case MEM:
1420       /* Check for an argument passed in memory.  Only record in the
1421 	 copying-arguments block; it is too hard to track changes
1422 	 otherwise.  */
1423       if (copying_arguments
1424 	  && (XEXP (src, 0) == arg_pointer_rtx
1425 	      || (GET_CODE (XEXP (src, 0)) == PLUS
1426 		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1427 	return arg_base_value;
1428       return 0;
1429 
1430     case CONST:
1431       src = XEXP (src, 0);
1432       if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1433 	break;
1434 
1435       /* fall through */
1436 
1437     case PLUS:
1438     case MINUS:
1439       {
1440 	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1441 
1442 	/* If either operand is a REG that is a known pointer, then it
1443 	   is the base.  */
1444 	if (REG_P (src_0) && REG_POINTER (src_0))
1445 	  return find_base_value (src_0);
1446 	if (REG_P (src_1) && REG_POINTER (src_1))
1447 	  return find_base_value (src_1);
1448 
1449 	/* If either operand is a REG, then see if we already have
1450 	   a known value for it.  */
1451 	if (REG_P (src_0))
1452 	  {
1453 	    temp = find_base_value (src_0);
1454 	    if (temp != 0)
1455 	      src_0 = temp;
1456 	  }
1457 
1458 	if (REG_P (src_1))
1459 	  {
1460 	    temp = find_base_value (src_1);
1461 	    if (temp!= 0)
1462 	      src_1 = temp;
1463 	  }
1464 
1465 	/* If either base is named object or a special address
1466 	   (like an argument or stack reference), then use it for the
1467 	   base term.  */
1468 	if (src_0 != 0 && known_base_value_p (src_0))
1469 	  return src_0;
1470 
1471 	if (src_1 != 0 && known_base_value_p (src_1))
1472 	  return src_1;
1473 
1474 	/* Guess which operand is the base address:
1475 	   If either operand is a symbol, then it is the base.  If
1476 	   either operand is a CONST_INT, then the other is the base.  */
1477 	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1478 	  return find_base_value (src_0);
1479 	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1480 	  return find_base_value (src_1);
1481 
1482 	return 0;
1483       }
1484 
1485     case LO_SUM:
1486       /* The standard form is (lo_sum reg sym) so look only at the
1487 	 second operand.  */
1488       return find_base_value (XEXP (src, 1));
1489 
1490     case AND:
1491       /* If the second operand is constant set the base
1492 	 address to the first operand.  */
1493       if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1494 	return find_base_value (XEXP (src, 0));
1495       return 0;
1496 
1497     case TRUNCATE:
1498       /* As we do not know which address space the pointer is referring to, we can
1499 	 handle this only if the target does not support different pointer or
1500 	 address modes depending on the address space.  */
1501       if (!target_default_pointer_address_modes_p ())
1502 	break;
1503       if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1504 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1505 	break;
1506       /* Fall through.  */
1507     case HIGH:
1508     case PRE_INC:
1509     case PRE_DEC:
1510     case POST_INC:
1511     case POST_DEC:
1512     case PRE_MODIFY:
1513     case POST_MODIFY:
1514       return find_base_value (XEXP (src, 0));
1515 
1516     case ZERO_EXTEND:
1517     case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1518       /* As we do not know which address space the pointer is referring to, we can
1519 	 handle this only if the target does not support different pointer or
1520 	 address modes depending on the address space.  */
1521       if (!target_default_pointer_address_modes_p ())
1522 	break;
1523 
1524       {
1525 	rtx temp = find_base_value (XEXP (src, 0));
1526 
1527 	if (temp != 0 && CONSTANT_P (temp))
1528 	  temp = convert_memory_address (Pmode, temp);
1529 
1530 	return temp;
1531       }
1532 
1533     default:
1534       break;
1535     }
1536 
1537   return 0;
1538 }
1539 
1540 /* Called from init_alias_analysis indirectly through note_stores,
1541    or directly if DEST is a register with a REG_NOALIAS note attached.
1542    SET is null in the latter case.  */
1543 
1544 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1545    register N has been set in this function.  */
1546 static sbitmap reg_seen;
1547 
1548 static void
record_set(rtx dest,const_rtx set,void * data ATTRIBUTE_UNUSED)1549 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1550 {
1551   unsigned regno;
1552   rtx src;
1553   int n;
1554 
1555   if (!REG_P (dest))
1556     return;
1557 
1558   regno = REGNO (dest);
1559 
1560   gcc_checking_assert (regno < reg_base_value->length ());
1561 
1562   n = REG_NREGS (dest);
1563   if (n != 1)
1564     {
1565       while (--n >= 0)
1566 	{
1567 	  bitmap_set_bit (reg_seen, regno + n);
1568 	  new_reg_base_value[regno + n] = 0;
1569 	}
1570       return;
1571     }
1572 
1573   if (set)
1574     {
1575       /* A CLOBBER wipes out any old value but does not prevent a previously
1576 	 unset register from acquiring a base address (i.e. reg_seen is not
1577 	 set).  */
1578       if (GET_CODE (set) == CLOBBER)
1579 	{
1580 	  new_reg_base_value[regno] = 0;
1581 	  return;
1582 	}
1583       src = SET_SRC (set);
1584     }
1585   else
1586     {
1587       /* There's a REG_NOALIAS note against DEST.  */
1588       if (bitmap_bit_p (reg_seen, regno))
1589 	{
1590 	  new_reg_base_value[regno] = 0;
1591 	  return;
1592 	}
1593       bitmap_set_bit (reg_seen, regno);
1594       new_reg_base_value[regno] = unique_base_value (unique_id++);
1595       return;
1596     }
1597 
1598   /* If this is not the first set of REGNO, see whether the new value
1599      is related to the old one.  There are two cases of interest:
1600 
1601 	(1) The register might be assigned an entirely new value
1602 	    that has the same base term as the original set.
1603 
1604 	(2) The set might be a simple self-modification that
1605 	    cannot change REGNO's base value.
1606 
1607      If neither case holds, reject the original base value as invalid.
1608      Note that the following situation is not detected:
1609 
1610 	 extern int x, y;  int *p = &x; p += (&y-&x);
1611 
1612      ANSI C does not allow computing the difference of addresses
1613      of distinct top level objects.  */
1614   if (new_reg_base_value[regno] != 0
1615       && find_base_value (src) != new_reg_base_value[regno])
1616     switch (GET_CODE (src))
1617       {
1618       case LO_SUM:
1619       case MINUS:
1620 	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1621 	  new_reg_base_value[regno] = 0;
1622 	break;
1623       case PLUS:
1624 	/* If the value we add in the PLUS is also a valid base value,
1625 	   this might be the actual base value, and the original value
1626 	   an index.  */
1627 	{
1628 	  rtx other = NULL_RTX;
1629 
1630 	  if (XEXP (src, 0) == dest)
1631 	    other = XEXP (src, 1);
1632 	  else if (XEXP (src, 1) == dest)
1633 	    other = XEXP (src, 0);
1634 
1635 	  if (! other || find_base_value (other))
1636 	    new_reg_base_value[regno] = 0;
1637 	  break;
1638 	}
1639       case AND:
1640 	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1641 	  new_reg_base_value[regno] = 0;
1642 	break;
1643       default:
1644 	new_reg_base_value[regno] = 0;
1645 	break;
1646       }
1647   /* If this is the first set of a register, record the value.  */
1648   else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1649 	   && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1650     new_reg_base_value[regno] = find_base_value (src);
1651 
1652   bitmap_set_bit (reg_seen, regno);
1653 }
1654 
1655 /* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1656    using hard registers with non-null REG_BASE_VALUE for renaming.  */
1657 rtx
get_reg_base_value(unsigned int regno)1658 get_reg_base_value (unsigned int regno)
1659 {
1660   return (*reg_base_value)[regno];
1661 }
1662 
1663 /* If a value is known for REGNO, return it.  */
1664 
1665 rtx
get_reg_known_value(unsigned int regno)1666 get_reg_known_value (unsigned int regno)
1667 {
1668   if (regno >= FIRST_PSEUDO_REGISTER)
1669     {
1670       regno -= FIRST_PSEUDO_REGISTER;
1671       if (regno < vec_safe_length (reg_known_value))
1672 	return (*reg_known_value)[regno];
1673     }
1674   return NULL;
1675 }
1676 
1677 /* Set it.  */
1678 
1679 static void
set_reg_known_value(unsigned int regno,rtx val)1680 set_reg_known_value (unsigned int regno, rtx val)
1681 {
1682   if (regno >= FIRST_PSEUDO_REGISTER)
1683     {
1684       regno -= FIRST_PSEUDO_REGISTER;
1685       if (regno < vec_safe_length (reg_known_value))
1686 	(*reg_known_value)[regno] = val;
1687     }
1688 }
1689 
1690 /* Similarly for reg_known_equiv_p.  */
1691 
1692 bool
get_reg_known_equiv_p(unsigned int regno)1693 get_reg_known_equiv_p (unsigned int regno)
1694 {
1695   if (regno >= FIRST_PSEUDO_REGISTER)
1696     {
1697       regno -= FIRST_PSEUDO_REGISTER;
1698       if (regno < vec_safe_length (reg_known_value))
1699 	return bitmap_bit_p (reg_known_equiv_p, regno);
1700     }
1701   return false;
1702 }
1703 
1704 static void
set_reg_known_equiv_p(unsigned int regno,bool val)1705 set_reg_known_equiv_p (unsigned int regno, bool val)
1706 {
1707   if (regno >= FIRST_PSEUDO_REGISTER)
1708     {
1709       regno -= FIRST_PSEUDO_REGISTER;
1710       if (regno < vec_safe_length (reg_known_value))
1711 	{
1712 	  if (val)
1713 	    bitmap_set_bit (reg_known_equiv_p, regno);
1714 	  else
1715 	    bitmap_clear_bit (reg_known_equiv_p, regno);
1716 	}
1717     }
1718 }
1719 
1720 
1721 /* Returns a canonical version of X, from the point of view alias
1722    analysis.  (For example, if X is a MEM whose address is a register,
1723    and the register has a known value (say a SYMBOL_REF), then a MEM
1724    whose address is the SYMBOL_REF is returned.)  */
1725 
1726 rtx
canon_rtx(rtx x)1727 canon_rtx (rtx x)
1728 {
1729   /* Recursively look for equivalences.  */
1730   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1731     {
1732       rtx t = get_reg_known_value (REGNO (x));
1733       if (t == x)
1734 	return x;
1735       if (t)
1736 	return canon_rtx (t);
1737     }
1738 
1739   if (GET_CODE (x) == PLUS)
1740     {
1741       rtx x0 = canon_rtx (XEXP (x, 0));
1742       rtx x1 = canon_rtx (XEXP (x, 1));
1743 
1744       if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1745 	return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1746     }
1747 
1748   /* This gives us much better alias analysis when called from
1749      the loop optimizer.   Note we want to leave the original
1750      MEM alone, but need to return the canonicalized MEM with
1751      all the flags with their original values.  */
1752   else if (MEM_P (x))
1753     x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1754 
1755   return x;
1756 }
1757 
1758 /* Return 1 if X and Y are identical-looking rtx's.
1759    Expect that X and Y has been already canonicalized.
1760 
1761    We use the data in reg_known_value above to see if two registers with
1762    different numbers are, in fact, equivalent.  */
1763 
1764 static int
rtx_equal_for_memref_p(const_rtx x,const_rtx y)1765 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1766 {
1767   int i;
1768   int j;
1769   enum rtx_code code;
1770   const char *fmt;
1771 
1772   if (x == 0 && y == 0)
1773     return 1;
1774   if (x == 0 || y == 0)
1775     return 0;
1776 
1777   if (x == y)
1778     return 1;
1779 
1780   code = GET_CODE (x);
1781   /* Rtx's of different codes cannot be equal.  */
1782   if (code != GET_CODE (y))
1783     return 0;
1784 
1785   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1786      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1787 
1788   if (GET_MODE (x) != GET_MODE (y))
1789     return 0;
1790 
1791   /* Some RTL can be compared without a recursive examination.  */
1792   switch (code)
1793     {
1794     case REG:
1795       return REGNO (x) == REGNO (y);
1796 
1797     case LABEL_REF:
1798       return label_ref_label (x) == label_ref_label (y);
1799 
1800     case SYMBOL_REF:
1801       return compare_base_symbol_refs (x, y) == 1;
1802 
1803     case ENTRY_VALUE:
1804       /* This is magic, don't go through canonicalization et al.  */
1805       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1806 
1807     case VALUE:
1808     CASE_CONST_UNIQUE:
1809       /* Pointer equality guarantees equality for these nodes.  */
1810       return 0;
1811 
1812     default:
1813       break;
1814     }
1815 
1816   /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1817   if (code == PLUS)
1818     return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1819 	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1820 	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1821 		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1822   /* For commutative operations, the RTX match if the operand match in any
1823      order.  Also handle the simple binary and unary cases without a loop.  */
1824   if (COMMUTATIVE_P (x))
1825     {
1826       rtx xop0 = canon_rtx (XEXP (x, 0));
1827       rtx yop0 = canon_rtx (XEXP (y, 0));
1828       rtx yop1 = canon_rtx (XEXP (y, 1));
1829 
1830       return ((rtx_equal_for_memref_p (xop0, yop0)
1831 	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1832 	      || (rtx_equal_for_memref_p (xop0, yop1)
1833 		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1834     }
1835   else if (NON_COMMUTATIVE_P (x))
1836     {
1837       return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1838 				      canon_rtx (XEXP (y, 0)))
1839 	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1840 					 canon_rtx (XEXP (y, 1))));
1841     }
1842   else if (UNARY_P (x))
1843     return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1844 				   canon_rtx (XEXP (y, 0)));
1845 
1846   /* Compare the elements.  If any pair of corresponding elements
1847      fail to match, return 0 for the whole things.
1848 
1849      Limit cases to types which actually appear in addresses.  */
1850 
1851   fmt = GET_RTX_FORMAT (code);
1852   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1853     {
1854       switch (fmt[i])
1855 	{
1856 	case 'i':
1857 	  if (XINT (x, i) != XINT (y, i))
1858 	    return 0;
1859 	  break;
1860 
1861 	case 'p':
1862 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1863 	    return 0;
1864 	  break;
1865 
1866 	case 'E':
1867 	  /* Two vectors must have the same length.  */
1868 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1869 	    return 0;
1870 
1871 	  /* And the corresponding elements must match.  */
1872 	  for (j = 0; j < XVECLEN (x, i); j++)
1873 	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1874 					canon_rtx (XVECEXP (y, i, j))) == 0)
1875 	      return 0;
1876 	  break;
1877 
1878 	case 'e':
1879 	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1880 				      canon_rtx (XEXP (y, i))) == 0)
1881 	    return 0;
1882 	  break;
1883 
1884 	  /* This can happen for asm operands.  */
1885 	case 's':
1886 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1887 	    return 0;
1888 	  break;
1889 
1890 	/* This can happen for an asm which clobbers memory.  */
1891 	case '0':
1892 	  break;
1893 
1894 	  /* It is believed that rtx's at this level will never
1895 	     contain anything but integers and other rtx's,
1896 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1897 	default:
1898 	  gcc_unreachable ();
1899 	}
1900     }
1901   return 1;
1902 }
1903 
1904 static rtx
find_base_term(rtx x,vec<std::pair<cselib_val *,struct elt_loc_list * >> & visited_vals)1905 find_base_term (rtx x, vec<std::pair<cselib_val *,
1906 				     struct elt_loc_list *> > &visited_vals)
1907 {
1908   cselib_val *val;
1909   struct elt_loc_list *l, *f;
1910   rtx ret;
1911   scalar_int_mode int_mode;
1912 
1913 #if defined (FIND_BASE_TERM)
1914   /* Try machine-dependent ways to find the base term.  */
1915   x = FIND_BASE_TERM (x);
1916 #endif
1917 
1918   switch (GET_CODE (x))
1919     {
1920     case REG:
1921       return REG_BASE_VALUE (x);
1922 
1923     case TRUNCATE:
1924       /* As we do not know which address space the pointer is referring to, we can
1925 	 handle this only if the target does not support different pointer or
1926 	 address modes depending on the address space.  */
1927       if (!target_default_pointer_address_modes_p ())
1928 	return 0;
1929       if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1930 	  || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1931 	return 0;
1932       /* Fall through.  */
1933     case HIGH:
1934     case PRE_INC:
1935     case PRE_DEC:
1936     case POST_INC:
1937     case POST_DEC:
1938     case PRE_MODIFY:
1939     case POST_MODIFY:
1940       return find_base_term (XEXP (x, 0), visited_vals);
1941 
1942     case ZERO_EXTEND:
1943     case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1944       /* As we do not know which address space the pointer is referring to, we can
1945 	 handle this only if the target does not support different pointer or
1946 	 address modes depending on the address space.  */
1947       if (!target_default_pointer_address_modes_p ())
1948 	return 0;
1949 
1950       {
1951 	rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1952 
1953 	if (temp != 0 && CONSTANT_P (temp))
1954 	  temp = convert_memory_address (Pmode, temp);
1955 
1956 	return temp;
1957       }
1958 
1959     case VALUE:
1960       val = CSELIB_VAL_PTR (x);
1961       ret = NULL_RTX;
1962 
1963       if (!val)
1964 	return ret;
1965 
1966       if (cselib_sp_based_value_p (val))
1967 	return static_reg_base_value[STACK_POINTER_REGNUM];
1968 
1969       f = val->locs;
1970       /* Reset val->locs to avoid infinite recursion.  */
1971       if (f)
1972 	visited_vals.safe_push (std::make_pair (val, f));
1973       val->locs = NULL;
1974 
1975       for (l = f; l; l = l->next)
1976 	if (GET_CODE (l->loc) == VALUE
1977 	    && CSELIB_VAL_PTR (l->loc)->locs
1978 	    && !CSELIB_VAL_PTR (l->loc)->locs->next
1979 	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1980 	  continue;
1981 	else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1982 	  break;
1983 
1984       return ret;
1985 
1986     case LO_SUM:
1987       /* The standard form is (lo_sum reg sym) so look only at the
1988          second operand.  */
1989       return find_base_term (XEXP (x, 1), visited_vals);
1990 
1991     case CONST:
1992       x = XEXP (x, 0);
1993       if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1994 	return 0;
1995       /* Fall through.  */
1996     case PLUS:
1997     case MINUS:
1998       {
1999 	rtx tmp1 = XEXP (x, 0);
2000 	rtx tmp2 = XEXP (x, 1);
2001 
2002 	/* This is a little bit tricky since we have to determine which of
2003 	   the two operands represents the real base address.  Otherwise this
2004 	   routine may return the index register instead of the base register.
2005 
2006 	   That may cause us to believe no aliasing was possible, when in
2007 	   fact aliasing is possible.
2008 
2009 	   We use a few simple tests to guess the base register.  Additional
2010 	   tests can certainly be added.  For example, if one of the operands
2011 	   is a shift or multiply, then it must be the index register and the
2012 	   other operand is the base register.  */
2013 
2014 	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2015 	  return find_base_term (tmp2, visited_vals);
2016 
2017 	/* If either operand is known to be a pointer, then prefer it
2018 	   to determine the base term.  */
2019 	if (REG_P (tmp1) && REG_POINTER (tmp1))
2020 	  ;
2021 	else if (REG_P (tmp2) && REG_POINTER (tmp2))
2022 	  std::swap (tmp1, tmp2);
2023 	/* If second argument is constant which has base term, prefer it
2024 	   over variable tmp1.  See PR64025.  */
2025 	else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2026 	  std::swap (tmp1, tmp2);
2027 
2028 	/* Go ahead and find the base term for both operands.  If either base
2029 	   term is from a pointer or is a named object or a special address
2030 	   (like an argument or stack reference), then use it for the
2031 	   base term.  */
2032 	rtx base = find_base_term (tmp1, visited_vals);
2033 	if (base != NULL_RTX
2034 	    && ((REG_P (tmp1) && REG_POINTER (tmp1))
2035 		 || known_base_value_p (base)))
2036 	  return base;
2037 	base = find_base_term (tmp2, visited_vals);
2038 	if (base != NULL_RTX
2039 	    && ((REG_P (tmp2) && REG_POINTER (tmp2))
2040 		 || known_base_value_p (base)))
2041 	  return base;
2042 
2043 	/* We could not determine which of the two operands was the
2044 	   base register and which was the index.  So we can determine
2045 	   nothing from the base alias check.  */
2046 	return 0;
2047       }
2048 
2049     case AND:
2050       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2051 	return find_base_term (XEXP (x, 0), visited_vals);
2052       return 0;
2053 
2054     case SYMBOL_REF:
2055     case LABEL_REF:
2056       return x;
2057 
2058     default:
2059       return 0;
2060     }
2061 }
2062 
2063 /* Wrapper around the worker above which removes locs from visited VALUEs
2064    to avoid visiting them multiple times.  We unwind that changes here.  */
2065 
2066 static rtx
find_base_term(rtx x)2067 find_base_term (rtx x)
2068 {
2069   auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2070   rtx res = find_base_term (x, visited_vals);
2071   for (unsigned i = 0; i < visited_vals.length (); ++i)
2072     visited_vals[i].first->locs = visited_vals[i].second;
2073   return res;
2074 }
2075 
2076 /* Return true if accesses to address X may alias accesses based
2077    on the stack pointer.  */
2078 
2079 bool
may_be_sp_based_p(rtx x)2080 may_be_sp_based_p (rtx x)
2081 {
2082   rtx base = find_base_term (x);
2083   return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2084 }
2085 
2086 /* BASE1 and BASE2 are decls.  Return 1 if they refer to same object, 0
2087    if they refer to different objects and -1 if we can not decide.  */
2088 
2089 int
compare_base_decls(tree base1,tree base2)2090 compare_base_decls (tree base1, tree base2)
2091 {
2092   int ret;
2093   gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2094   if (base1 == base2)
2095     return 1;
2096 
2097   /* If we have two register decls with register specification we
2098      cannot decide unless their assembler names are the same.  */
2099   if (DECL_REGISTER (base1)
2100       && DECL_REGISTER (base2)
2101       && HAS_DECL_ASSEMBLER_NAME_P (base1)
2102       && HAS_DECL_ASSEMBLER_NAME_P (base2)
2103       && DECL_ASSEMBLER_NAME_SET_P (base1)
2104       && DECL_ASSEMBLER_NAME_SET_P (base2))
2105     {
2106       if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2107 	return 1;
2108       return -1;
2109     }
2110 
2111   /* Declarations of non-automatic variables may have aliases.  All other
2112      decls are unique.  */
2113   if (!decl_in_symtab_p (base1)
2114       || !decl_in_symtab_p (base2))
2115     return 0;
2116 
2117   /* Don't cause symbols to be inserted by the act of checking.  */
2118   symtab_node *node1 = symtab_node::get (base1);
2119   if (!node1)
2120     return 0;
2121   symtab_node *node2 = symtab_node::get (base2);
2122   if (!node2)
2123     return 0;
2124 
2125   ret = node1->equal_address_to (node2, true);
2126   return ret;
2127 }
2128 
2129 /* Same as compare_base_decls but for SYMBOL_REF.  */
2130 
2131 static int
compare_base_symbol_refs(const_rtx x_base,const_rtx y_base)2132 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2133 {
2134   tree x_decl = SYMBOL_REF_DECL (x_base);
2135   tree y_decl = SYMBOL_REF_DECL (y_base);
2136   bool binds_def = true;
2137 
2138   if (XSTR (x_base, 0) == XSTR (y_base, 0))
2139     return 1;
2140   if (x_decl && y_decl)
2141     return compare_base_decls (x_decl, y_decl);
2142   if (x_decl || y_decl)
2143     {
2144       if (!x_decl)
2145 	{
2146 	  std::swap (x_decl, y_decl);
2147 	  std::swap (x_base, y_base);
2148 	}
2149       /* We handle specially only section anchors and assume that other
2150  	 labels may overlap with user variables in an arbitrary way.  */
2151       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2152         return -1;
2153       /* Anchors contains static VAR_DECLs and CONST_DECLs.  We are safe
2154 	 to ignore CONST_DECLs because they are readonly.  */
2155       if (!VAR_P (x_decl)
2156 	  || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2157 	return 0;
2158 
2159       symtab_node *x_node = symtab_node::get_create (x_decl)
2160 			    ->ultimate_alias_target ();
2161       /* External variable can not be in section anchor.  */
2162       if (!x_node->definition)
2163 	return 0;
2164       x_base = XEXP (DECL_RTL (x_node->decl), 0);
2165       /* If not in anchor, we can disambiguate.  */
2166       if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2167 	return 0;
2168 
2169       /* We have an alias of anchored variable.  If it can be interposed;
2170  	 we must assume it may or may not alias its anchor.  */
2171       binds_def = decl_binds_to_current_def_p (x_decl);
2172     }
2173   /* If we have variable in section anchor, we can compare by offset.  */
2174   if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2175       && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2176     {
2177       if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2178 	return 0;
2179       if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2180 	return binds_def ? 1 : -1;
2181       if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2182 	return -1;
2183       return 0;
2184     }
2185   /* In general we assume that memory locations pointed to by different labels
2186      may overlap in undefined ways.  */
2187   return -1;
2188 }
2189 
2190 /* Return 0 if the addresses X and Y are known to point to different
2191    objects, 1 if they might be pointers to the same object.  */
2192 
2193 static int
base_alias_check(rtx x,rtx x_base,rtx y,rtx y_base,machine_mode x_mode,machine_mode y_mode)2194 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2195 		  machine_mode x_mode, machine_mode y_mode)
2196 {
2197   /* If the address itself has no known base see if a known equivalent
2198      value has one.  If either address still has no known base, nothing
2199      is known about aliasing.  */
2200   if (x_base == 0)
2201     {
2202       rtx x_c;
2203 
2204       if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2205 	return 1;
2206 
2207       x_base = find_base_term (x_c);
2208       if (x_base == 0)
2209 	return 1;
2210     }
2211 
2212   if (y_base == 0)
2213     {
2214       rtx y_c;
2215       if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2216 	return 1;
2217 
2218       y_base = find_base_term (y_c);
2219       if (y_base == 0)
2220 	return 1;
2221     }
2222 
2223   /* If the base addresses are equal nothing is known about aliasing.  */
2224   if (rtx_equal_p (x_base, y_base))
2225     return 1;
2226 
2227   /* The base addresses are different expressions.  If they are not accessed
2228      via AND, there is no conflict.  We can bring knowledge of object
2229      alignment into play here.  For example, on alpha, "char a, b;" can
2230      alias one another, though "char a; long b;" cannot.  AND addresses may
2231      implicitly alias surrounding objects; i.e. unaligned access in DImode
2232      via AND address can alias all surrounding object types except those
2233      with aligment 8 or higher.  */
2234   if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2235     return 1;
2236   if (GET_CODE (x) == AND
2237       && (!CONST_INT_P (XEXP (x, 1))
2238 	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2239     return 1;
2240   if (GET_CODE (y) == AND
2241       && (!CONST_INT_P (XEXP (y, 1))
2242 	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2243     return 1;
2244 
2245   /* Differing symbols not accessed via AND never alias.  */
2246   if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2247     return compare_base_symbol_refs (x_base, y_base) != 0;
2248 
2249   if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2250     return 0;
2251 
2252   if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2253     return 0;
2254 
2255   return 1;
2256 }
2257 
2258 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2259    (or equal to) that of V.  */
2260 
2261 static bool
refs_newer_value_p(const_rtx expr,rtx v)2262 refs_newer_value_p (const_rtx expr, rtx v)
2263 {
2264   int minuid = CSELIB_VAL_PTR (v)->uid;
2265   subrtx_iterator::array_type array;
2266   FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2267     if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2268       return true;
2269   return false;
2270 }
2271 
2272 /* Convert the address X into something we can use.  This is done by returning
2273    it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2274    we call cselib to get a more useful rtx.  */
2275 
2276 rtx
get_addr(rtx x)2277 get_addr (rtx x)
2278 {
2279   cselib_val *v;
2280   struct elt_loc_list *l;
2281 
2282   if (GET_CODE (x) != VALUE)
2283     {
2284       if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2285 	  && GET_CODE (XEXP (x, 0)) == VALUE
2286 	  && CONST_SCALAR_INT_P (XEXP (x, 1)))
2287 	{
2288 	  rtx op0 = get_addr (XEXP (x, 0));
2289 	  if (op0 != XEXP (x, 0))
2290 	    {
2291 	      if (GET_CODE (x) == PLUS
2292 		  && GET_CODE (XEXP (x, 1)) == CONST_INT)
2293 		return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2294 	      return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2295 					  op0, XEXP (x, 1));
2296 	    }
2297 	}
2298       return x;
2299     }
2300   v = CSELIB_VAL_PTR (x);
2301   if (v)
2302     {
2303       bool have_equivs = cselib_have_permanent_equivalences ();
2304       if (have_equivs)
2305 	v = canonical_cselib_val (v);
2306       for (l = v->locs; l; l = l->next)
2307 	if (CONSTANT_P (l->loc))
2308 	  return l->loc;
2309       for (l = v->locs; l; l = l->next)
2310 	if (!REG_P (l->loc) && !MEM_P (l->loc)
2311 	    /* Avoid infinite recursion when potentially dealing with
2312 	       var-tracking artificial equivalences, by skipping the
2313 	       equivalences themselves, and not choosing expressions
2314 	       that refer to newer VALUEs.  */
2315 	    && (!have_equivs
2316 		|| (GET_CODE (l->loc) != VALUE
2317 		    && !refs_newer_value_p (l->loc, x))))
2318 	  return l->loc;
2319       if (have_equivs)
2320 	{
2321 	  for (l = v->locs; l; l = l->next)
2322 	    if (REG_P (l->loc)
2323 		|| (GET_CODE (l->loc) != VALUE
2324 		    && !refs_newer_value_p (l->loc, x)))
2325 	      return l->loc;
2326 	  /* Return the canonical value.  */
2327 	  return v->val_rtx;
2328 	}
2329       if (v->locs)
2330 	return v->locs->loc;
2331     }
2332   return x;
2333 }
2334 
2335 /*  Return the address of the (N_REFS + 1)th memory reference to ADDR
2336     where SIZE is the size in bytes of the memory reference.  If ADDR
2337     is not modified by the memory reference then ADDR is returned.  */
2338 
2339 static rtx
addr_side_effect_eval(rtx addr,poly_int64 size,int n_refs)2340 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2341 {
2342   poly_int64 offset = 0;
2343 
2344   switch (GET_CODE (addr))
2345     {
2346     case PRE_INC:
2347       offset = (n_refs + 1) * size;
2348       break;
2349     case PRE_DEC:
2350       offset = -(n_refs + 1) * size;
2351       break;
2352     case POST_INC:
2353       offset = n_refs * size;
2354       break;
2355     case POST_DEC:
2356       offset = -n_refs * size;
2357       break;
2358 
2359     default:
2360       return addr;
2361     }
2362 
2363   addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2364   addr = canon_rtx (addr);
2365 
2366   return addr;
2367 }
2368 
2369 /* Return TRUE if an object X sized at XSIZE bytes and another object
2370    Y sized at YSIZE bytes, starting C bytes after X, may overlap.  If
2371    any of the sizes is zero, assume an overlap, otherwise use the
2372    absolute value of the sizes as the actual sizes.  */
2373 
2374 static inline bool
offset_overlap_p(poly_int64 c,poly_int64 xsize,poly_int64 ysize)2375 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2376 {
2377   if (known_eq (xsize, 0) || known_eq (ysize, 0))
2378     return true;
2379 
2380   if (maybe_ge (c, 0))
2381     return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2382   else
2383     return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2384 }
2385 
2386 /* Return one if X and Y (memory addresses) reference the
2387    same location in memory or if the references overlap.
2388    Return zero if they do not overlap, else return
2389    minus one in which case they still might reference the same location.
2390 
2391    C is an offset accumulator.  When
2392    C is nonzero, we are testing aliases between X and Y + C.
2393    XSIZE is the size in bytes of the X reference,
2394    similarly YSIZE is the size in bytes for Y.
2395    Expect that canon_rtx has been already called for X and Y.
2396 
2397    If XSIZE or YSIZE is zero, we do not know the amount of memory being
2398    referenced (the reference was BLKmode), so make the most pessimistic
2399    assumptions.
2400 
2401    If XSIZE or YSIZE is negative, we may access memory outside the object
2402    being referenced as a side effect.  This can happen when using AND to
2403    align memory references, as is done on the Alpha.
2404 
2405    Nice to notice that varying addresses cannot conflict with fp if no
2406    local variables had their addresses taken, but that's too hard now.
2407 
2408    ???  Contrary to the tree alias oracle this does not return
2409    one for X + non-constant and Y + non-constant when X and Y are equal.
2410    If that is fixed the TBAA hack for union type-punning can be removed.  */
2411 
2412 static int
memrefs_conflict_p(poly_int64 xsize,rtx x,poly_int64 ysize,rtx y,poly_int64 c)2413 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2414 		    poly_int64 c)
2415 {
2416   if (GET_CODE (x) == VALUE)
2417     {
2418       if (REG_P (y))
2419 	{
2420 	  struct elt_loc_list *l = NULL;
2421 	  if (CSELIB_VAL_PTR (x))
2422 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2423 		 l; l = l->next)
2424 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2425 		break;
2426 	  if (l)
2427 	    x = y;
2428 	  else
2429 	    x = get_addr (x);
2430 	}
2431       /* Don't call get_addr if y is the same VALUE.  */
2432       else if (x != y)
2433 	x = get_addr (x);
2434     }
2435   if (GET_CODE (y) == VALUE)
2436     {
2437       if (REG_P (x))
2438 	{
2439 	  struct elt_loc_list *l = NULL;
2440 	  if (CSELIB_VAL_PTR (y))
2441 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2442 		 l; l = l->next)
2443 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2444 		break;
2445 	  if (l)
2446 	    y = x;
2447 	  else
2448 	    y = get_addr (y);
2449 	}
2450       /* Don't call get_addr if x is the same VALUE.  */
2451       else if (y != x)
2452 	y = get_addr (y);
2453     }
2454   if (GET_CODE (x) == HIGH)
2455     x = XEXP (x, 0);
2456   else if (GET_CODE (x) == LO_SUM)
2457     x = XEXP (x, 1);
2458   else
2459     x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2460   if (GET_CODE (y) == HIGH)
2461     y = XEXP (y, 0);
2462   else if (GET_CODE (y) == LO_SUM)
2463     y = XEXP (y, 1);
2464   else
2465     y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2466 
2467   if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2468     {
2469       int cmp = compare_base_symbol_refs (x,y);
2470 
2471       /* If both decls are the same, decide by offsets.  */
2472       if (cmp == 1)
2473         return offset_overlap_p (c, xsize, ysize);
2474       /* Assume a potential overlap for symbolic addresses that went
2475 	 through alignment adjustments (i.e., that have negative
2476 	 sizes), because we can't know how far they are from each
2477 	 other.  */
2478       if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2479 	return -1;
2480       /* If decls are different or we know by offsets that there is no overlap,
2481 	 we win.  */
2482       if (!cmp || !offset_overlap_p (c, xsize, ysize))
2483 	return 0;
2484       /* Decls may or may not be different and offsets overlap....*/
2485       return -1;
2486     }
2487   else if (rtx_equal_for_memref_p (x, y))
2488     {
2489       return offset_overlap_p (c, xsize, ysize);
2490     }
2491 
2492   /* This code used to check for conflicts involving stack references and
2493      globals but the base address alias code now handles these cases.  */
2494 
2495   if (GET_CODE (x) == PLUS)
2496     {
2497       /* The fact that X is canonicalized means that this
2498 	 PLUS rtx is canonicalized.  */
2499       rtx x0 = XEXP (x, 0);
2500       rtx x1 = XEXP (x, 1);
2501 
2502       /* However, VALUEs might end up in different positions even in
2503 	 canonical PLUSes.  Comparing their addresses is enough.  */
2504       if (x0 == y)
2505 	return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2506       else if (x1 == y)
2507 	return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2508 
2509       poly_int64 cx1, cy1;
2510       if (GET_CODE (y) == PLUS)
2511 	{
2512 	  /* The fact that Y is canonicalized means that this
2513 	     PLUS rtx is canonicalized.  */
2514 	  rtx y0 = XEXP (y, 0);
2515 	  rtx y1 = XEXP (y, 1);
2516 
2517 	  if (x0 == y1)
2518 	    return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2519 	  if (x1 == y0)
2520 	    return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2521 
2522 	  if (rtx_equal_for_memref_p (x1, y1))
2523 	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2524 	  if (rtx_equal_for_memref_p (x0, y0))
2525 	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2526 	  if (poly_int_rtx_p (x1, &cx1))
2527 	    {
2528 	      if (poly_int_rtx_p (y1, &cy1))
2529 		return memrefs_conflict_p (xsize, x0, ysize, y0,
2530 					   c - cx1 + cy1);
2531 	      else
2532 		return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2533 	    }
2534 	  else if (poly_int_rtx_p (y1, &cy1))
2535 	    return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2536 
2537 	  return -1;
2538 	}
2539       else if (poly_int_rtx_p (x1, &cx1))
2540 	return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2541     }
2542   else if (GET_CODE (y) == PLUS)
2543     {
2544       /* The fact that Y is canonicalized means that this
2545 	 PLUS rtx is canonicalized.  */
2546       rtx y0 = XEXP (y, 0);
2547       rtx y1 = XEXP (y, 1);
2548 
2549       if (x == y0)
2550 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2551       if (x == y1)
2552 	return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2553 
2554       poly_int64 cy1;
2555       if (poly_int_rtx_p (y1, &cy1))
2556 	return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2557       else
2558 	return -1;
2559     }
2560 
2561   if (GET_CODE (x) == GET_CODE (y))
2562     switch (GET_CODE (x))
2563       {
2564       case MULT:
2565 	{
2566 	  /* Handle cases where we expect the second operands to be the
2567 	     same, and check only whether the first operand would conflict
2568 	     or not.  */
2569 	  rtx x0, y0;
2570 	  rtx x1 = canon_rtx (XEXP (x, 1));
2571 	  rtx y1 = canon_rtx (XEXP (y, 1));
2572 	  if (! rtx_equal_for_memref_p (x1, y1))
2573 	    return -1;
2574 	  x0 = canon_rtx (XEXP (x, 0));
2575 	  y0 = canon_rtx (XEXP (y, 0));
2576 	  if (rtx_equal_for_memref_p (x0, y0))
2577 	    return offset_overlap_p (c, xsize, ysize);
2578 
2579 	  /* Can't properly adjust our sizes.  */
2580 	  if (!CONST_INT_P (x1)
2581 	      || !can_div_trunc_p (xsize, INTVAL (x1), &xsize)
2582 	      || !can_div_trunc_p (ysize, INTVAL (x1), &ysize)
2583 	      || !can_div_trunc_p (c, INTVAL (x1), &c))
2584 	    return -1;
2585 	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2586 	}
2587 
2588       default:
2589 	break;
2590       }
2591 
2592   /* Deal with alignment ANDs by adjusting offset and size so as to
2593      cover the maximum range, without taking any previously known
2594      alignment into account.  Make a size negative after such an
2595      adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2596      assume a potential overlap, because they may end up in contiguous
2597      memory locations and the stricter-alignment access may span over
2598      part of both.  */
2599   if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2600     {
2601       HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2602       unsigned HOST_WIDE_INT uc = sc;
2603       if (sc < 0 && pow2_or_zerop (-uc))
2604 	{
2605 	  if (maybe_gt (xsize, 0))
2606 	    xsize = -xsize;
2607 	  if (maybe_ne (xsize, 0))
2608 	    xsize += sc + 1;
2609 	  c -= sc + 1;
2610 	  return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2611 				     ysize, y, c);
2612 	}
2613     }
2614   if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2615     {
2616       HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2617       unsigned HOST_WIDE_INT uc = sc;
2618       if (sc < 0 && pow2_or_zerop (-uc))
2619 	{
2620 	  if (maybe_gt (ysize, 0))
2621 	    ysize = -ysize;
2622 	  if (maybe_ne (ysize, 0))
2623 	    ysize += sc + 1;
2624 	  c += sc + 1;
2625 	  return memrefs_conflict_p (xsize, x,
2626 				     ysize, canon_rtx (XEXP (y, 0)), c);
2627 	}
2628     }
2629 
2630   if (CONSTANT_P (x))
2631     {
2632       poly_int64 cx, cy;
2633       if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2634 	{
2635 	  c += cy - cx;
2636 	  return offset_overlap_p (c, xsize, ysize);
2637 	}
2638 
2639       if (GET_CODE (x) == CONST)
2640 	{
2641 	  if (GET_CODE (y) == CONST)
2642 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2643 				       ysize, canon_rtx (XEXP (y, 0)), c);
2644 	  else
2645 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2646 				       ysize, y, c);
2647 	}
2648       if (GET_CODE (y) == CONST)
2649 	return memrefs_conflict_p (xsize, x, ysize,
2650 				   canon_rtx (XEXP (y, 0)), c);
2651 
2652       /* Assume a potential overlap for symbolic addresses that went
2653 	 through alignment adjustments (i.e., that have negative
2654 	 sizes), because we can't know how far they are from each
2655 	 other.  */
2656       if (CONSTANT_P (y))
2657 	return (maybe_lt (xsize, 0)
2658 		|| maybe_lt (ysize, 0)
2659 		|| offset_overlap_p (c, xsize, ysize));
2660 
2661       return -1;
2662     }
2663 
2664   return -1;
2665 }
2666 
2667 /* Functions to compute memory dependencies.
2668 
2669    Since we process the insns in execution order, we can build tables
2670    to keep track of what registers are fixed (and not aliased), what registers
2671    are varying in known ways, and what registers are varying in unknown
2672    ways.
2673 
2674    If both memory references are volatile, then there must always be a
2675    dependence between the two references, since their order can not be
2676    changed.  A volatile and non-volatile reference can be interchanged
2677    though.
2678 
2679    We also must allow AND addresses, because they may generate accesses
2680    outside the object being referenced.  This is used to generate aligned
2681    addresses from unaligned addresses, for instance, the alpha
2682    storeqi_unaligned pattern.  */
2683 
2684 /* Read dependence: X is read after read in MEM takes place.  There can
2685    only be a dependence here if both reads are volatile, or if either is
2686    an explicit barrier.  */
2687 
2688 int
read_dependence(const_rtx mem,const_rtx x)2689 read_dependence (const_rtx mem, const_rtx x)
2690 {
2691   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2692     return true;
2693   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2694       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2695     return true;
2696   return false;
2697 }
2698 
2699 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2700 
2701 static tree
decl_for_component_ref(tree x)2702 decl_for_component_ref (tree x)
2703 {
2704   do
2705     {
2706       x = TREE_OPERAND (x, 0);
2707     }
2708   while (x && TREE_CODE (x) == COMPONENT_REF);
2709 
2710   return x && DECL_P (x) ? x : NULL_TREE;
2711 }
2712 
2713 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2714    for the offset of the field reference.  *KNOWN_P says whether the
2715    offset is known.  */
2716 
2717 static void
adjust_offset_for_component_ref(tree x,bool * known_p,poly_int64 * offset)2718 adjust_offset_for_component_ref (tree x, bool *known_p,
2719 				 poly_int64 *offset)
2720 {
2721   if (!*known_p)
2722     return;
2723   do
2724     {
2725       tree xoffset = component_ref_field_offset (x);
2726       tree field = TREE_OPERAND (x, 1);
2727       if (TREE_CODE (xoffset) != INTEGER_CST)
2728 	{
2729 	  *known_p = false;
2730 	  return;
2731 	}
2732 
2733       offset_int woffset
2734 	= (wi::to_offset (xoffset)
2735 	   + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2736 	      >> LOG2_BITS_PER_UNIT));
2737       if (!wi::fits_uhwi_p (woffset))
2738 	{
2739 	  *known_p = false;
2740 	  return;
2741 	}
2742       *offset += woffset.to_uhwi ();
2743 
2744       x = TREE_OPERAND (x, 0);
2745     }
2746   while (x && TREE_CODE (x) == COMPONENT_REF);
2747 }
2748 
2749 /* Return nonzero if we can determine the exprs corresponding to memrefs
2750    X and Y and they do not overlap.
2751    If LOOP_VARIANT is set, skip offset-based disambiguation */
2752 
2753 int
nonoverlapping_memrefs_p(const_rtx x,const_rtx y,bool loop_invariant)2754 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2755 {
2756   tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2757   rtx rtlx, rtly;
2758   rtx basex, basey;
2759   bool moffsetx_known_p, moffsety_known_p;
2760   poly_int64 moffsetx = 0, moffsety = 0;
2761   poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2762 
2763   /* Unless both have exprs, we can't tell anything.  */
2764   if (exprx == 0 || expry == 0)
2765     return 0;
2766 
2767   /* For spill-slot accesses make sure we have valid offsets.  */
2768   if ((exprx == get_spill_slot_decl (false)
2769        && ! MEM_OFFSET_KNOWN_P (x))
2770       || (expry == get_spill_slot_decl (false)
2771 	  && ! MEM_OFFSET_KNOWN_P (y)))
2772     return 0;
2773 
2774   /* If the field reference test failed, look at the DECLs involved.  */
2775   moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2776   if (moffsetx_known_p)
2777     moffsetx = MEM_OFFSET (x);
2778   if (TREE_CODE (exprx) == COMPONENT_REF)
2779     {
2780       tree t = decl_for_component_ref (exprx);
2781       if (! t)
2782 	return 0;
2783       adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2784       exprx = t;
2785     }
2786 
2787   moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2788   if (moffsety_known_p)
2789     moffsety = MEM_OFFSET (y);
2790   if (TREE_CODE (expry) == COMPONENT_REF)
2791     {
2792       tree t = decl_for_component_ref (expry);
2793       if (! t)
2794 	return 0;
2795       adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2796       expry = t;
2797     }
2798 
2799   if (! DECL_P (exprx) || ! DECL_P (expry))
2800     return 0;
2801 
2802   /* If we refer to different gimple registers, or one gimple register
2803      and one non-gimple-register, we know they can't overlap.  First,
2804      gimple registers don't have their addresses taken.  Now, there
2805      could be more than one stack slot for (different versions of) the
2806      same gimple register, but we can presumably tell they don't
2807      overlap based on offsets from stack base addresses elsewhere.
2808      It's important that we don't proceed to DECL_RTL, because gimple
2809      registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2810      able to do anything about them since no SSA information will have
2811      remained to guide it.  */
2812   if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2813     return exprx != expry
2814       || (moffsetx_known_p && moffsety_known_p
2815 	  && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2816 	  && !offset_overlap_p (moffsety - moffsetx,
2817 				MEM_SIZE (x), MEM_SIZE (y)));
2818 
2819   /* With invalid code we can end up storing into the constant pool.
2820      Bail out to avoid ICEing when creating RTL for this.
2821      See gfortran.dg/lto/20091028-2_0.f90.  */
2822   if (TREE_CODE (exprx) == CONST_DECL
2823       || TREE_CODE (expry) == CONST_DECL)
2824     return 1;
2825 
2826   /* If one decl is known to be a function or label in a function and
2827      the other is some kind of data, they can't overlap.  */
2828   if ((TREE_CODE (exprx) == FUNCTION_DECL
2829        || TREE_CODE (exprx) == LABEL_DECL)
2830       != (TREE_CODE (expry) == FUNCTION_DECL
2831 	  || TREE_CODE (expry) == LABEL_DECL))
2832     return 1;
2833 
2834   /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2835      living in multiple places), we can't tell anything.  Exception
2836      are FUNCTION_DECLs for which we can create DECL_RTL on demand.  */
2837   if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2838       || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2839     return 0;
2840 
2841   rtlx = DECL_RTL (exprx);
2842   rtly = DECL_RTL (expry);
2843 
2844   /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2845      can't overlap unless they are the same because we never reuse that part
2846      of the stack frame used for locals for spilled pseudos.  */
2847   if ((!MEM_P (rtlx) || !MEM_P (rtly))
2848       && ! rtx_equal_p (rtlx, rtly))
2849     return 1;
2850 
2851   /* If we have MEMs referring to different address spaces (which can
2852      potentially overlap), we cannot easily tell from the addresses
2853      whether the references overlap.  */
2854   if (MEM_P (rtlx) && MEM_P (rtly)
2855       && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2856     return 0;
2857 
2858   /* Get the base and offsets of both decls.  If either is a register, we
2859      know both are and are the same, so use that as the base.  The only
2860      we can avoid overlap is if we can deduce that they are nonoverlapping
2861      pieces of that decl, which is very rare.  */
2862   basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2863   basex = strip_offset_and_add (basex, &offsetx);
2864 
2865   basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2866   basey = strip_offset_and_add (basey, &offsety);
2867 
2868   /* If the bases are different, we know they do not overlap if both
2869      are constants or if one is a constant and the other a pointer into the
2870      stack frame.  Otherwise a different base means we can't tell if they
2871      overlap or not.  */
2872   if (compare_base_decls (exprx, expry) == 0)
2873     return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2874 	    || (CONSTANT_P (basex) && REG_P (basey)
2875 		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2876 	    || (CONSTANT_P (basey) && REG_P (basex)
2877 		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2878 
2879   /* Offset based disambiguation not appropriate for loop invariant */
2880   if (loop_invariant)
2881     return 0;
2882 
2883   /* Offset based disambiguation is OK even if we do not know that the
2884      declarations are necessarily different
2885     (i.e. compare_base_decls (exprx, expry) == -1)  */
2886 
2887   sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2888 	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2889 	   : -1);
2890   sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2891 	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2892 	   : -1);
2893 
2894   /* If we have an offset for either memref, it can update the values computed
2895      above.  */
2896   if (moffsetx_known_p)
2897     offsetx += moffsetx, sizex -= moffsetx;
2898   if (moffsety_known_p)
2899     offsety += moffsety, sizey -= moffsety;
2900 
2901   /* If a memref has both a size and an offset, we can use the smaller size.
2902      We can't do this if the offset isn't known because we must view this
2903      memref as being anywhere inside the DECL's MEM.  */
2904   if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2905     sizex = MEM_SIZE (x);
2906   if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2907     sizey = MEM_SIZE (y);
2908 
2909   return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2910 }
2911 
2912 /* Helper for true_dependence and canon_true_dependence.
2913    Checks for true dependence: X is read after store in MEM takes place.
2914 
2915    If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2916    NULL_RTX, and the canonical addresses of MEM and X are both computed
2917    here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2918 
2919    If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2920 
2921    Returns 1 if there is a true dependence, 0 otherwise.  */
2922 
2923 static int
true_dependence_1(const_rtx mem,machine_mode mem_mode,rtx mem_addr,const_rtx x,rtx x_addr,bool mem_canonicalized)2924 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2925 		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2926 {
2927   rtx true_mem_addr;
2928   rtx base;
2929   int ret;
2930 
2931   gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2932 		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2933 
2934   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2935     return 1;
2936 
2937   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2938      This is used in epilogue deallocation functions, and in cselib.  */
2939   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2940     return 1;
2941   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2942     return 1;
2943   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2944       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2945     return 1;
2946 
2947   if (! x_addr)
2948     x_addr = XEXP (x, 0);
2949   x_addr = get_addr (x_addr);
2950 
2951   if (! mem_addr)
2952     {
2953       mem_addr = XEXP (mem, 0);
2954       if (mem_mode == VOIDmode)
2955 	mem_mode = GET_MODE (mem);
2956     }
2957   true_mem_addr = get_addr (mem_addr);
2958 
2959   /* Read-only memory is by definition never modified, and therefore can't
2960      conflict with anything.  However, don't assume anything when AND
2961      addresses are involved and leave to the code below to determine
2962      dependence.  We don't expect to find read-only set on MEM, but
2963      stupid user tricks can produce them, so don't die.  */
2964   if (MEM_READONLY_P (x)
2965       && GET_CODE (x_addr) != AND
2966       && GET_CODE (true_mem_addr) != AND)
2967     return 0;
2968 
2969   /* If we have MEMs referring to different address spaces (which can
2970      potentially overlap), we cannot easily tell from the addresses
2971      whether the references overlap.  */
2972   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2973     return 1;
2974 
2975   base = find_base_term (x_addr);
2976   if (base && (GET_CODE (base) == LABEL_REF
2977 	       || (GET_CODE (base) == SYMBOL_REF
2978 		   && CONSTANT_POOL_ADDRESS_P (base))))
2979     return 0;
2980 
2981   rtx mem_base = find_base_term (true_mem_addr);
2982   if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2983 			  GET_MODE (x), mem_mode))
2984     return 0;
2985 
2986   x_addr = canon_rtx (x_addr);
2987   if (!mem_canonicalized)
2988     mem_addr = canon_rtx (true_mem_addr);
2989 
2990   if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2991 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2992     return ret;
2993 
2994   if (mems_in_disjoint_alias_sets_p (x, mem))
2995     return 0;
2996 
2997   if (nonoverlapping_memrefs_p (mem, x, false))
2998     return 0;
2999 
3000   return rtx_refs_may_alias_p (x, mem, true);
3001 }
3002 
3003 /* True dependence: X is read after store in MEM takes place.  */
3004 
3005 int
true_dependence(const_rtx mem,machine_mode mem_mode,const_rtx x)3006 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3007 {
3008   return true_dependence_1 (mem, mem_mode, NULL_RTX,
3009 			    x, NULL_RTX, /*mem_canonicalized=*/false);
3010 }
3011 
3012 /* Canonical true dependence: X is read after store in MEM takes place.
3013    Variant of true_dependence which assumes MEM has already been
3014    canonicalized (hence we no longer do that here).
3015    The mem_addr argument has been added, since true_dependence_1 computed
3016    this value prior to canonicalizing.  */
3017 
3018 int
canon_true_dependence(const_rtx mem,machine_mode mem_mode,rtx mem_addr,const_rtx x,rtx x_addr)3019 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3020 		       const_rtx x, rtx x_addr)
3021 {
3022   return true_dependence_1 (mem, mem_mode, mem_addr,
3023 			    x, x_addr, /*mem_canonicalized=*/true);
3024 }
3025 
3026 /* Returns nonzero if a write to X might alias a previous read from
3027    (or, if WRITEP is true, a write to) MEM.
3028    If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3029    and X_MODE the mode for that access.
3030    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3031 
3032 static int
write_dependence_p(const_rtx mem,const_rtx x,machine_mode x_mode,rtx x_addr,bool mem_canonicalized,bool x_canonicalized,bool writep)3033 write_dependence_p (const_rtx mem,
3034 		    const_rtx x, machine_mode x_mode, rtx x_addr,
3035 		    bool mem_canonicalized, bool x_canonicalized, bool writep)
3036 {
3037   rtx mem_addr;
3038   rtx true_mem_addr, true_x_addr;
3039   rtx base;
3040   int ret;
3041 
3042   gcc_checking_assert (x_canonicalized
3043 		       ? (x_addr != NULL_RTX
3044 			  && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3045 		       : (x_addr == NULL_RTX && x_mode == VOIDmode));
3046 
3047   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3048     return 1;
3049 
3050   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3051      This is used in epilogue deallocation functions.  */
3052   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3053     return 1;
3054   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3055     return 1;
3056   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3057       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3058     return 1;
3059 
3060   if (!x_addr)
3061     x_addr = XEXP (x, 0);
3062   true_x_addr = get_addr (x_addr);
3063 
3064   mem_addr = XEXP (mem, 0);
3065   true_mem_addr = get_addr (mem_addr);
3066 
3067   /* A read from read-only memory can't conflict with read-write memory.
3068      Don't assume anything when AND addresses are involved and leave to
3069      the code below to determine dependence.  */
3070   if (!writep
3071       && MEM_READONLY_P (mem)
3072       && GET_CODE (true_x_addr) != AND
3073       && GET_CODE (true_mem_addr) != AND)
3074     return 0;
3075 
3076   /* If we have MEMs referring to different address spaces (which can
3077      potentially overlap), we cannot easily tell from the addresses
3078      whether the references overlap.  */
3079   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3080     return 1;
3081 
3082   base = find_base_term (true_mem_addr);
3083   if (! writep
3084       && base
3085       && (GET_CODE (base) == LABEL_REF
3086 	  || (GET_CODE (base) == SYMBOL_REF
3087 	      && CONSTANT_POOL_ADDRESS_P (base))))
3088     return 0;
3089 
3090   rtx x_base = find_base_term (true_x_addr);
3091   if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3092 			  GET_MODE (x), GET_MODE (mem)))
3093     return 0;
3094 
3095   if (!x_canonicalized)
3096     {
3097       x_addr = canon_rtx (true_x_addr);
3098       x_mode = GET_MODE (x);
3099     }
3100   if (!mem_canonicalized)
3101     mem_addr = canon_rtx (true_mem_addr);
3102 
3103   if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3104 				 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3105     return ret;
3106 
3107   if (nonoverlapping_memrefs_p (x, mem, false))
3108     return 0;
3109 
3110   return rtx_refs_may_alias_p (x, mem, false);
3111 }
3112 
3113 /* Anti dependence: X is written after read in MEM takes place.  */
3114 
3115 int
anti_dependence(const_rtx mem,const_rtx x)3116 anti_dependence (const_rtx mem, const_rtx x)
3117 {
3118   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3119 			     /*mem_canonicalized=*/false,
3120 			     /*x_canonicalized*/false, /*writep=*/false);
3121 }
3122 
3123 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3124    Also, consider X in X_MODE (which might be from an enclosing
3125    STRICT_LOW_PART / ZERO_EXTRACT).
3126    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3127 
3128 int
canon_anti_dependence(const_rtx mem,bool mem_canonicalized,const_rtx x,machine_mode x_mode,rtx x_addr)3129 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3130 		       const_rtx x, machine_mode x_mode, rtx x_addr)
3131 {
3132   return write_dependence_p (mem, x, x_mode, x_addr,
3133 			     mem_canonicalized, /*x_canonicalized=*/true,
3134 			     /*writep=*/false);
3135 }
3136 
3137 /* Output dependence: X is written after store in MEM takes place.  */
3138 
3139 int
output_dependence(const_rtx mem,const_rtx x)3140 output_dependence (const_rtx mem, const_rtx x)
3141 {
3142   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3143 			     /*mem_canonicalized=*/false,
3144 			     /*x_canonicalized*/false, /*writep=*/true);
3145 }
3146 
3147 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3148    Also, consider X in X_MODE (which might be from an enclosing
3149    STRICT_LOW_PART / ZERO_EXTRACT).
3150    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
3151 
3152 int
canon_output_dependence(const_rtx mem,bool mem_canonicalized,const_rtx x,machine_mode x_mode,rtx x_addr)3153 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3154 			 const_rtx x, machine_mode x_mode, rtx x_addr)
3155 {
3156   return write_dependence_p (mem, x, x_mode, x_addr,
3157 			     mem_canonicalized, /*x_canonicalized=*/true,
3158 			     /*writep=*/true);
3159 }
3160 
3161 
3162 
3163 /* Check whether X may be aliased with MEM.  Don't do offset-based
3164   memory disambiguation & TBAA.  */
3165 int
may_alias_p(const_rtx mem,const_rtx x)3166 may_alias_p (const_rtx mem, const_rtx x)
3167 {
3168   rtx x_addr, mem_addr;
3169 
3170   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3171     return 1;
3172 
3173   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3174      This is used in epilogue deallocation functions.  */
3175   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3176     return 1;
3177   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3178     return 1;
3179   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3180       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3181     return 1;
3182 
3183   x_addr = XEXP (x, 0);
3184   x_addr = get_addr (x_addr);
3185 
3186   mem_addr = XEXP (mem, 0);
3187   mem_addr = get_addr (mem_addr);
3188 
3189   /* Read-only memory is by definition never modified, and therefore can't
3190      conflict with anything.  However, don't assume anything when AND
3191      addresses are involved and leave to the code below to determine
3192      dependence.  We don't expect to find read-only set on MEM, but
3193      stupid user tricks can produce them, so don't die.  */
3194   if (MEM_READONLY_P (x)
3195       && GET_CODE (x_addr) != AND
3196       && GET_CODE (mem_addr) != AND)
3197     return 0;
3198 
3199   /* If we have MEMs referring to different address spaces (which can
3200      potentially overlap), we cannot easily tell from the addresses
3201      whether the references overlap.  */
3202   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3203     return 1;
3204 
3205   rtx x_base = find_base_term (x_addr);
3206   rtx mem_base = find_base_term (mem_addr);
3207   if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3208 			  GET_MODE (x), GET_MODE (mem_addr)))
3209     return 0;
3210 
3211   if (nonoverlapping_memrefs_p (mem, x, true))
3212     return 0;
3213 
3214   /* TBAA not valid for loop_invarint */
3215   return rtx_refs_may_alias_p (x, mem, false);
3216 }
3217 
3218 void
init_alias_target(void)3219 init_alias_target (void)
3220 {
3221   int i;
3222 
3223   if (!arg_base_value)
3224     arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3225 
3226   memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3227 
3228   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3229     /* Check whether this register can hold an incoming pointer
3230        argument.  FUNCTION_ARG_REGNO_P tests outgoing register
3231        numbers, so translate if necessary due to register windows.  */
3232     if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3233 	&& targetm.hard_regno_mode_ok (i, Pmode))
3234       static_reg_base_value[i] = arg_base_value;
3235 
3236   /* RTL code is required to be consistent about whether it uses the
3237      stack pointer, the frame pointer or the argument pointer to
3238      access a given area of the frame.  We can therefore use the
3239      base address to distinguish between the different areas.  */
3240   static_reg_base_value[STACK_POINTER_REGNUM]
3241     = unique_base_value (UNIQUE_BASE_VALUE_SP);
3242   static_reg_base_value[ARG_POINTER_REGNUM]
3243     = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3244   static_reg_base_value[FRAME_POINTER_REGNUM]
3245     = unique_base_value (UNIQUE_BASE_VALUE_FP);
3246 
3247   /* The above rules extend post-reload, with eliminations applying
3248      consistently to each of the three pointers.  Cope with cases in
3249      which the frame pointer is eliminated to the hard frame pointer
3250      rather than the stack pointer.  */
3251   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3252     static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3253       = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3254 }
3255 
3256 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3257    to be memory reference.  */
3258 static bool memory_modified;
3259 static void
memory_modified_1(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)3260 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3261 {
3262   if (MEM_P (x))
3263     {
3264       if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3265 	memory_modified = true;
3266     }
3267 }
3268 
3269 
3270 /* Return true when INSN possibly modify memory contents of MEM
3271    (i.e. address can be modified).  */
3272 bool
memory_modified_in_insn_p(const_rtx mem,const_rtx insn)3273 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3274 {
3275   if (!INSN_P (insn))
3276     return false;
3277   /* Conservatively assume all non-readonly MEMs might be modified in
3278      calls.  */
3279   if (CALL_P (insn))
3280     return true;
3281   memory_modified = false;
3282   note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3283   return memory_modified;
3284 }
3285 
3286 /* Return TRUE if the destination of a set is rtx identical to
3287    ITEM.  */
3288 static inline bool
set_dest_equal_p(const_rtx set,const_rtx item)3289 set_dest_equal_p (const_rtx set, const_rtx item)
3290 {
3291   rtx dest = SET_DEST (set);
3292   return rtx_equal_p (dest, item);
3293 }
3294 
3295 /* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
3296    array.  */
3297 
3298 void
init_alias_analysis(void)3299 init_alias_analysis (void)
3300 {
3301   unsigned int maxreg = max_reg_num ();
3302   int changed, pass;
3303   int i;
3304   unsigned int ui;
3305   rtx_insn *insn;
3306   rtx val;
3307   int rpo_cnt;
3308   int *rpo;
3309 
3310   timevar_push (TV_ALIAS_ANALYSIS);
3311 
3312   vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3313   reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3314   bitmap_clear (reg_known_equiv_p);
3315 
3316   /* If we have memory allocated from the previous run, use it.  */
3317   if (old_reg_base_value)
3318     reg_base_value = old_reg_base_value;
3319 
3320   if (reg_base_value)
3321     reg_base_value->truncate (0);
3322 
3323   vec_safe_grow_cleared (reg_base_value, maxreg);
3324 
3325   new_reg_base_value = XNEWVEC (rtx, maxreg);
3326   reg_seen = sbitmap_alloc (maxreg);
3327 
3328   /* The basic idea is that each pass through this loop will use the
3329      "constant" information from the previous pass to propagate alias
3330      information through another level of assignments.
3331 
3332      The propagation is done on the CFG in reverse post-order, to propagate
3333      things forward as far as possible in each iteration.
3334 
3335      This could get expensive if the assignment chains are long.  Maybe
3336      we should throttle the number of iterations, possibly based on
3337      the optimization level or flag_expensive_optimizations.
3338 
3339      We could propagate more information in the first pass by making use
3340      of DF_REG_DEF_COUNT to determine immediately that the alias information
3341      for a pseudo is "constant".
3342 
3343      A program with an uninitialized variable can cause an infinite loop
3344      here.  Instead of doing a full dataflow analysis to detect such problems
3345      we just cap the number of iterations for the loop.
3346 
3347      The state of the arrays for the set chain in question does not matter
3348      since the program has undefined behavior.  */
3349 
3350   rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3351   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3352 
3353   /* The prologue/epilogue insns are not threaded onto the
3354      insn chain until after reload has completed.  Thus,
3355      there is no sense wasting time checking if INSN is in
3356      the prologue/epilogue until after reload has completed.  */
3357   bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3358 				      || targetm.have_epilogue ())
3359 				     && reload_completed);
3360 
3361   pass = 0;
3362   do
3363     {
3364       /* Assume nothing will change this iteration of the loop.  */
3365       changed = 0;
3366 
3367       /* We want to assign the same IDs each iteration of this loop, so
3368 	 start counting from one each iteration of the loop.  */
3369       unique_id = 1;
3370 
3371       /* We're at the start of the function each iteration through the
3372 	 loop, so we're copying arguments.  */
3373       copying_arguments = true;
3374 
3375       /* Wipe the potential alias information clean for this pass.  */
3376       memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3377 
3378       /* Wipe the reg_seen array clean.  */
3379       bitmap_clear (reg_seen);
3380 
3381       /* Initialize the alias information for this pass.  */
3382       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3383 	if (static_reg_base_value[i]
3384 	    /* Don't treat the hard frame pointer as special if we
3385 	       eliminated the frame pointer to the stack pointer instead.  */
3386 	    && !(i == HARD_FRAME_POINTER_REGNUM
3387 		 && reload_completed
3388 		 && !frame_pointer_needed
3389 		 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3390 					   STACK_POINTER_REGNUM)))
3391 	  {
3392 	    new_reg_base_value[i] = static_reg_base_value[i];
3393 	    bitmap_set_bit (reg_seen, i);
3394 	  }
3395 
3396       /* Walk the insns adding values to the new_reg_base_value array.  */
3397       for (i = 0; i < rpo_cnt; i++)
3398 	{
3399 	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3400 	  FOR_BB_INSNS (bb, insn)
3401 	    {
3402 	      if (NONDEBUG_INSN_P (insn))
3403 		{
3404 		  rtx note, set;
3405 
3406 		  if (could_be_prologue_epilogue
3407 		      && prologue_epilogue_contains (insn))
3408 		    continue;
3409 
3410 		  /* If this insn has a noalias note, process it,  Otherwise,
3411 		     scan for sets.  A simple set will have no side effects
3412 		     which could change the base value of any other register.  */
3413 
3414 		  if (GET_CODE (PATTERN (insn)) == SET
3415 		      && REG_NOTES (insn) != 0
3416 		      && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3417 		    record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3418 		  else
3419 		    note_stores (PATTERN (insn), record_set, NULL);
3420 
3421 		  set = single_set (insn);
3422 
3423 		  if (set != 0
3424 		      && REG_P (SET_DEST (set))
3425 		      && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3426 		    {
3427 		      unsigned int regno = REGNO (SET_DEST (set));
3428 		      rtx src = SET_SRC (set);
3429 		      rtx t;
3430 
3431 		      note = find_reg_equal_equiv_note (insn);
3432 		      if (note && REG_NOTE_KIND (note) == REG_EQUAL
3433 			  && DF_REG_DEF_COUNT (regno) != 1)
3434 			note = NULL_RTX;
3435 
3436 		      if (note != NULL_RTX
3437 			  && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3438 			  && ! rtx_varies_p (XEXP (note, 0), 1)
3439 			  && ! reg_overlap_mentioned_p (SET_DEST (set),
3440 							XEXP (note, 0)))
3441 			{
3442 			  set_reg_known_value (regno, XEXP (note, 0));
3443 			  set_reg_known_equiv_p (regno,
3444 						 REG_NOTE_KIND (note) == REG_EQUIV);
3445 			}
3446 		      else if (DF_REG_DEF_COUNT (regno) == 1
3447 			       && GET_CODE (src) == PLUS
3448 			       && REG_P (XEXP (src, 0))
3449 			       && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3450 			       && CONST_INT_P (XEXP (src, 1)))
3451 			{
3452 			  t = plus_constant (GET_MODE (src), t,
3453 					     INTVAL (XEXP (src, 1)));
3454 			  set_reg_known_value (regno, t);
3455 			  set_reg_known_equiv_p (regno, false);
3456 			}
3457 		      else if (DF_REG_DEF_COUNT (regno) == 1
3458 			       && ! rtx_varies_p (src, 1))
3459 			{
3460 			  set_reg_known_value (regno, src);
3461 			  set_reg_known_equiv_p (regno, false);
3462 			}
3463 		    }
3464 		}
3465 	      else if (NOTE_P (insn)
3466 		       && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3467 		copying_arguments = false;
3468 	    }
3469 	}
3470 
3471       /* Now propagate values from new_reg_base_value to reg_base_value.  */
3472       gcc_assert (maxreg == (unsigned int) max_reg_num ());
3473 
3474       for (ui = 0; ui < maxreg; ui++)
3475 	{
3476 	  if (new_reg_base_value[ui]
3477 	      && new_reg_base_value[ui] != (*reg_base_value)[ui]
3478 	      && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3479 	    {
3480 	      (*reg_base_value)[ui] = new_reg_base_value[ui];
3481 	      changed = 1;
3482 	    }
3483 	}
3484     }
3485   while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3486   XDELETEVEC (rpo);
3487 
3488   /* Fill in the remaining entries.  */
3489   FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3490     {
3491       int regno = i + FIRST_PSEUDO_REGISTER;
3492       if (! val)
3493 	set_reg_known_value (regno, regno_reg_rtx[regno]);
3494     }
3495 
3496   /* Clean up.  */
3497   free (new_reg_base_value);
3498   new_reg_base_value = 0;
3499   sbitmap_free (reg_seen);
3500   reg_seen = 0;
3501   timevar_pop (TV_ALIAS_ANALYSIS);
3502 }
3503 
3504 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3505    Special API for var-tracking pass purposes.  */
3506 
3507 void
vt_equate_reg_base_value(const_rtx reg1,const_rtx reg2)3508 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3509 {
3510   (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3511 }
3512 
3513 void
end_alias_analysis(void)3514 end_alias_analysis (void)
3515 {
3516   old_reg_base_value = reg_base_value;
3517   vec_free (reg_known_value);
3518   sbitmap_free (reg_known_equiv_p);
3519 }
3520 
3521 void
dump_alias_stats_in_alias_c(FILE * s)3522 dump_alias_stats_in_alias_c (FILE *s)
3523 {
3524   fprintf (s, "  TBAA oracle: %llu disambiguations %llu queries\n"
3525 	      "               %llu are in alias set 0\n"
3526 	      "               %llu queries asked about the same object\n"
3527 	      "               %llu queries asked about the same alias set\n"
3528 	      "               %llu access volatile\n"
3529 	      "               %llu are dependent in the DAG\n"
3530 	      "               %llu are aritificially in conflict with void *\n",
3531 	   alias_stats.num_disambiguated,
3532 	   alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3533 	   + alias_stats.num_same_objects + alias_stats.num_volatile
3534 	   + alias_stats.num_dag + alias_stats.num_disambiguated
3535 	   + alias_stats.num_universal,
3536 	   alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3537 	   alias_stats.num_same_objects, alias_stats.num_volatile,
3538 	   alias_stats.num_dag, alias_stats.num_universal);
3539 }
3540 #include "gt-alias.h"
3541