1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package rsa implements RSA encryption as specified in PKCS#1.
6//
7// RSA is a single, fundamental operation that is used in this package to
8// implement either public-key encryption or public-key signatures.
9//
10// The original specification for encryption and signatures with RSA is PKCS#1
11// and the terms "RSA encryption" and "RSA signatures" by default refer to
12// PKCS#1 version 1.5. However, that specification has flaws and new designs
13// should use version two, usually called by just OAEP and PSS, where
14// possible.
15//
16// Two sets of interfaces are included in this package. When a more abstract
17// interface isn't necessary, there are functions for encrypting/decrypting
18// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
19// over the public-key primitive, the PrivateKey struct implements the
20// Decrypter and Signer interfaces from the crypto package.
21//
22// The RSA operations in this package are not implemented using constant-time algorithms.
23package rsa
24
25import (
26	"crypto"
27	"crypto/rand"
28	"crypto/subtle"
29	"errors"
30	"hash"
31	"io"
32	"math"
33	"math/big"
34)
35
36var bigZero = big.NewInt(0)
37var bigOne = big.NewInt(1)
38
39// A PublicKey represents the public part of an RSA key.
40type PublicKey struct {
41	N *big.Int // modulus
42	E int      // public exponent
43}
44
45// OAEPOptions is an interface for passing options to OAEP decryption using the
46// crypto.Decrypter interface.
47type OAEPOptions struct {
48	// Hash is the hash function that will be used when generating the mask.
49	Hash crypto.Hash
50	// Label is an arbitrary byte string that must be equal to the value
51	// used when encrypting.
52	Label []byte
53}
54
55var (
56	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
57	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
58	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
59)
60
61// checkPub sanity checks the public key before we use it.
62// We require pub.E to fit into a 32-bit integer so that we
63// do not have different behavior depending on whether
64// int is 32 or 64 bits. See also
65// http://www.imperialviolet.org/2012/03/16/rsae.html.
66func checkPub(pub *PublicKey) error {
67	if pub.N == nil {
68		return errPublicModulus
69	}
70	if pub.E < 2 {
71		return errPublicExponentSmall
72	}
73	if pub.E > 1<<31-1 {
74		return errPublicExponentLarge
75	}
76	return nil
77}
78
79// A PrivateKey represents an RSA key
80type PrivateKey struct {
81	PublicKey            // public part.
82	D         *big.Int   // private exponent
83	Primes    []*big.Int // prime factors of N, has >= 2 elements.
84
85	// Precomputed contains precomputed values that speed up private
86	// operations, if available.
87	Precomputed PrecomputedValues
88}
89
90// Public returns the public key corresponding to priv.
91func (priv *PrivateKey) Public() crypto.PublicKey {
92	return &priv.PublicKey
93}
94
95// Sign signs digest with priv, reading randomness from rand. If opts is a
96// *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
97// be used.
98//
99// This method implements crypto.Signer, which is an interface to support keys
100// where the private part is kept in, for example, a hardware module. Common
101// uses should use the Sign* functions in this package directly.
102func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
103	if pssOpts, ok := opts.(*PSSOptions); ok {
104		return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts)
105	}
106
107	return SignPKCS1v15(rand, priv, opts.HashFunc(), digest)
108}
109
110// Decrypt decrypts ciphertext with priv. If opts is nil or of type
111// *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
112// opts must have type *OAEPOptions and OAEP decryption is done.
113func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
114	if opts == nil {
115		return DecryptPKCS1v15(rand, priv, ciphertext)
116	}
117
118	switch opts := opts.(type) {
119	case *OAEPOptions:
120		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
121
122	case *PKCS1v15DecryptOptions:
123		if l := opts.SessionKeyLen; l > 0 {
124			plaintext = make([]byte, l)
125			if _, err := io.ReadFull(rand, plaintext); err != nil {
126				return nil, err
127			}
128			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
129				return nil, err
130			}
131			return plaintext, nil
132		} else {
133			return DecryptPKCS1v15(rand, priv, ciphertext)
134		}
135
136	default:
137		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
138	}
139}
140
141type PrecomputedValues struct {
142	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
143	Qinv   *big.Int // Q^-1 mod P
144
145	// CRTValues is used for the 3rd and subsequent primes. Due to a
146	// historical accident, the CRT for the first two primes is handled
147	// differently in PKCS#1 and interoperability is sufficiently
148	// important that we mirror this.
149	CRTValues []CRTValue
150}
151
152// CRTValue contains the precomputed Chinese remainder theorem values.
153type CRTValue struct {
154	Exp   *big.Int // D mod (prime-1).
155	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
156	R     *big.Int // product of primes prior to this (inc p and q).
157}
158
159// Validate performs basic sanity checks on the key.
160// It returns nil if the key is valid, or else an error describing a problem.
161func (priv *PrivateKey) Validate() error {
162	if err := checkPub(&priv.PublicKey); err != nil {
163		return err
164	}
165
166	// Check that Πprimes == n.
167	modulus := new(big.Int).Set(bigOne)
168	for _, prime := range priv.Primes {
169		// Any primes ≤ 1 will cause divide-by-zero panics later.
170		if prime.Cmp(bigOne) <= 0 {
171			return errors.New("crypto/rsa: invalid prime value")
172		}
173		modulus.Mul(modulus, prime)
174	}
175	if modulus.Cmp(priv.N) != 0 {
176		return errors.New("crypto/rsa: invalid modulus")
177	}
178
179	// Check that de ≡ 1 mod p-1, for each prime.
180	// This implies that e is coprime to each p-1 as e has a multiplicative
181	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
182	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
183	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
184	congruence := new(big.Int)
185	de := new(big.Int).SetInt64(int64(priv.E))
186	de.Mul(de, priv.D)
187	for _, prime := range priv.Primes {
188		pminus1 := new(big.Int).Sub(prime, bigOne)
189		congruence.Mod(de, pminus1)
190		if congruence.Cmp(bigOne) != 0 {
191			return errors.New("crypto/rsa: invalid exponents")
192		}
193	}
194	return nil
195}
196
197// GenerateKey generates an RSA keypair of the given bit size using the
198// random source random (for example, crypto/rand.Reader).
199func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
200	return GenerateMultiPrimeKey(random, 2, bits)
201}
202
203// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
204// size and the given random source, as suggested in [1]. Although the public
205// keys are compatible (actually, indistinguishable) from the 2-prime case,
206// the private keys are not. Thus it may not be possible to export multi-prime
207// private keys in certain formats or to subsequently import them into other
208// code.
209//
210// Table 1 in [2] suggests maximum numbers of primes for a given size.
211//
212// [1] US patent 4405829 (1972, expired)
213// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
214func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
215	priv := new(PrivateKey)
216	priv.E = 65537
217
218	if nprimes < 2 {
219		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
220	}
221
222	if bits < 64 {
223		primeLimit := float64(uint64(1) << uint(bits/nprimes))
224		// pi approximates the number of primes less than primeLimit
225		pi := primeLimit / (math.Log(primeLimit) - 1)
226		// Generated primes start with 11 (in binary) so we can only
227		// use a quarter of them.
228		pi /= 4
229		// Use a factor of two to ensure that key generation terminates
230		// in a reasonable amount of time.
231		pi /= 2
232		if pi <= float64(nprimes) {
233			return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
234		}
235	}
236
237	primes := make([]*big.Int, nprimes)
238
239NextSetOfPrimes:
240	for {
241		todo := bits
242		// crypto/rand should set the top two bits in each prime.
243		// Thus each prime has the form
244		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
245		// And the product is:
246		//   P = 2^todo × α
247		// where α is the product of nprimes numbers of the form 0.11...
248		//
249		// If α < 1/2 (which can happen for nprimes > 2), we need to
250		// shift todo to compensate for lost bits: the mean value of 0.11...
251		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
252		// will give good results.
253		if nprimes >= 7 {
254			todo += (nprimes - 2) / 5
255		}
256		for i := 0; i < nprimes; i++ {
257			var err error
258			primes[i], err = rand.Prime(random, todo/(nprimes-i))
259			if err != nil {
260				return nil, err
261			}
262			todo -= primes[i].BitLen()
263		}
264
265		// Make sure that primes is pairwise unequal.
266		for i, prime := range primes {
267			for j := 0; j < i; j++ {
268				if prime.Cmp(primes[j]) == 0 {
269					continue NextSetOfPrimes
270				}
271			}
272		}
273
274		n := new(big.Int).Set(bigOne)
275		totient := new(big.Int).Set(bigOne)
276		pminus1 := new(big.Int)
277		for _, prime := range primes {
278			n.Mul(n, prime)
279			pminus1.Sub(prime, bigOne)
280			totient.Mul(totient, pminus1)
281		}
282		if n.BitLen() != bits {
283			// This should never happen for nprimes == 2 because
284			// crypto/rand should set the top two bits in each prime.
285			// For nprimes > 2 we hope it does not happen often.
286			continue NextSetOfPrimes
287		}
288
289		g := new(big.Int)
290		priv.D = new(big.Int)
291		e := big.NewInt(int64(priv.E))
292		g.GCD(priv.D, nil, e, totient)
293
294		if g.Cmp(bigOne) == 0 {
295			if priv.D.Sign() < 0 {
296				priv.D.Add(priv.D, totient)
297			}
298			priv.Primes = primes
299			priv.N = n
300
301			break
302		}
303	}
304
305	priv.Precompute()
306	return priv, nil
307}
308
309// incCounter increments a four byte, big-endian counter.
310func incCounter(c *[4]byte) {
311	if c[3]++; c[3] != 0 {
312		return
313	}
314	if c[2]++; c[2] != 0 {
315		return
316	}
317	if c[1]++; c[1] != 0 {
318		return
319	}
320	c[0]++
321}
322
323// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
324// specified in PKCS#1 v2.1.
325func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
326	var counter [4]byte
327	var digest []byte
328
329	done := 0
330	for done < len(out) {
331		hash.Write(seed)
332		hash.Write(counter[0:4])
333		digest = hash.Sum(digest[:0])
334		hash.Reset()
335
336		for i := 0; i < len(digest) && done < len(out); i++ {
337			out[done] ^= digest[i]
338			done++
339		}
340		incCounter(&counter)
341	}
342}
343
344// ErrMessageTooLong is returned when attempting to encrypt a message which is
345// too large for the size of the public key.
346var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
347
348func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
349	e := big.NewInt(int64(pub.E))
350	c.Exp(m, e, pub.N)
351	return c
352}
353
354// EncryptOAEP encrypts the given message with RSA-OAEP.
355//
356// OAEP is parameterised by a hash function that is used as a random oracle.
357// Encryption and decryption of a given message must use the same hash function
358// and sha256.New() is a reasonable choice.
359//
360// The random parameter is used as a source of entropy to ensure that
361// encrypting the same message twice doesn't result in the same ciphertext.
362//
363// The label parameter may contain arbitrary data that will not be encrypted,
364// but which gives important context to the message. For example, if a given
365// public key is used to decrypt two types of messages then distinct label
366// values could be used to ensure that a ciphertext for one purpose cannot be
367// used for another by an attacker. If not required it can be empty.
368//
369// The message must be no longer than the length of the public modulus minus
370// twice the hash length, minus a further 2.
371func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
372	if err := checkPub(pub); err != nil {
373		return nil, err
374	}
375	hash.Reset()
376	k := (pub.N.BitLen() + 7) / 8
377	if len(msg) > k-2*hash.Size()-2 {
378		return nil, ErrMessageTooLong
379	}
380
381	hash.Write(label)
382	lHash := hash.Sum(nil)
383	hash.Reset()
384
385	em := make([]byte, k)
386	seed := em[1 : 1+hash.Size()]
387	db := em[1+hash.Size():]
388
389	copy(db[0:hash.Size()], lHash)
390	db[len(db)-len(msg)-1] = 1
391	copy(db[len(db)-len(msg):], msg)
392
393	_, err := io.ReadFull(random, seed)
394	if err != nil {
395		return nil, err
396	}
397
398	mgf1XOR(db, hash, seed)
399	mgf1XOR(seed, hash, db)
400
401	m := new(big.Int)
402	m.SetBytes(em)
403	c := encrypt(new(big.Int), pub, m)
404	out := c.Bytes()
405
406	if len(out) < k {
407		// If the output is too small, we need to left-pad with zeros.
408		t := make([]byte, k)
409		copy(t[k-len(out):], out)
410		out = t
411	}
412
413	return out, nil
414}
415
416// ErrDecryption represents a failure to decrypt a message.
417// It is deliberately vague to avoid adaptive attacks.
418var ErrDecryption = errors.New("crypto/rsa: decryption error")
419
420// ErrVerification represents a failure to verify a signature.
421// It is deliberately vague to avoid adaptive attacks.
422var ErrVerification = errors.New("crypto/rsa: verification error")
423
424// modInverse returns ia, the inverse of a in the multiplicative group of prime
425// order n. It requires that a be a member of the group (i.e. less than n).
426func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
427	g := new(big.Int)
428	x := new(big.Int)
429	g.GCD(x, nil, a, n)
430	if g.Cmp(bigOne) != 0 {
431		// In this case, a and n aren't coprime and we cannot calculate
432		// the inverse. This happens because the values of n are nearly
433		// prime (being the product of two primes) rather than truly
434		// prime.
435		return
436	}
437
438	if x.Cmp(bigOne) < 0 {
439		// 0 is not the multiplicative inverse of any element so, if x
440		// < 1, then x is negative.
441		x.Add(x, n)
442	}
443
444	return x, true
445}
446
447// Precompute performs some calculations that speed up private key operations
448// in the future.
449func (priv *PrivateKey) Precompute() {
450	if priv.Precomputed.Dp != nil {
451		return
452	}
453
454	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
455	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
456
457	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
458	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
459
460	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
461
462	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
463	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
464	for i := 2; i < len(priv.Primes); i++ {
465		prime := priv.Primes[i]
466		values := &priv.Precomputed.CRTValues[i-2]
467
468		values.Exp = new(big.Int).Sub(prime, bigOne)
469		values.Exp.Mod(priv.D, values.Exp)
470
471		values.R = new(big.Int).Set(r)
472		values.Coeff = new(big.Int).ModInverse(r, prime)
473
474		r.Mul(r, prime)
475	}
476}
477
478// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
479// random source is given, RSA blinding is used.
480func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
481	// TODO(agl): can we get away with reusing blinds?
482	if c.Cmp(priv.N) > 0 {
483		err = ErrDecryption
484		return
485	}
486	if priv.N.Sign() == 0 {
487		return nil, ErrDecryption
488	}
489
490	var ir *big.Int
491	if random != nil {
492		// Blinding enabled. Blinding involves multiplying c by r^e.
493		// Then the decryption operation performs (m^e * r^e)^d mod n
494		// which equals mr mod n. The factor of r can then be removed
495		// by multiplying by the multiplicative inverse of r.
496
497		var r *big.Int
498
499		for {
500			r, err = rand.Int(random, priv.N)
501			if err != nil {
502				return
503			}
504			if r.Cmp(bigZero) == 0 {
505				r = bigOne
506			}
507			var ok bool
508			ir, ok = modInverse(r, priv.N)
509			if ok {
510				break
511			}
512		}
513		bigE := big.NewInt(int64(priv.E))
514		rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
515		cCopy := new(big.Int).Set(c)
516		cCopy.Mul(cCopy, rpowe)
517		cCopy.Mod(cCopy, priv.N)
518		c = cCopy
519	}
520
521	if priv.Precomputed.Dp == nil {
522		m = new(big.Int).Exp(c, priv.D, priv.N)
523	} else {
524		// We have the precalculated values needed for the CRT.
525		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
526		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
527		m.Sub(m, m2)
528		if m.Sign() < 0 {
529			m.Add(m, priv.Primes[0])
530		}
531		m.Mul(m, priv.Precomputed.Qinv)
532		m.Mod(m, priv.Primes[0])
533		m.Mul(m, priv.Primes[1])
534		m.Add(m, m2)
535
536		for i, values := range priv.Precomputed.CRTValues {
537			prime := priv.Primes[2+i]
538			m2.Exp(c, values.Exp, prime)
539			m2.Sub(m2, m)
540			m2.Mul(m2, values.Coeff)
541			m2.Mod(m2, prime)
542			if m2.Sign() < 0 {
543				m2.Add(m2, prime)
544			}
545			m2.Mul(m2, values.R)
546			m.Add(m, m2)
547		}
548	}
549
550	if ir != nil {
551		// Unblind.
552		m.Mul(m, ir)
553		m.Mod(m, priv.N)
554	}
555
556	return
557}
558
559func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
560	m, err = decrypt(random, priv, c)
561	if err != nil {
562		return nil, err
563	}
564
565	// In order to defend against errors in the CRT computation, m^e is
566	// calculated, which should match the original ciphertext.
567	check := encrypt(new(big.Int), &priv.PublicKey, m)
568	if c.Cmp(check) != 0 {
569		return nil, errors.New("rsa: internal error")
570	}
571	return m, nil
572}
573
574// DecryptOAEP decrypts ciphertext using RSA-OAEP.
575
576// OAEP is parameterised by a hash function that is used as a random oracle.
577// Encryption and decryption of a given message must use the same hash function
578// and sha256.New() is a reasonable choice.
579//
580// The random parameter, if not nil, is used to blind the private-key operation
581// and avoid timing side-channel attacks. Blinding is purely internal to this
582// function – the random data need not match that used when encrypting.
583//
584// The label parameter must match the value given when encrypting. See
585// EncryptOAEP for details.
586func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
587	if err := checkPub(&priv.PublicKey); err != nil {
588		return nil, err
589	}
590	k := (priv.N.BitLen() + 7) / 8
591	if len(ciphertext) > k ||
592		k < hash.Size()*2+2 {
593		return nil, ErrDecryption
594	}
595
596	c := new(big.Int).SetBytes(ciphertext)
597
598	m, err := decrypt(random, priv, c)
599	if err != nil {
600		return nil, err
601	}
602
603	hash.Write(label)
604	lHash := hash.Sum(nil)
605	hash.Reset()
606
607	// Converting the plaintext number to bytes will strip any
608	// leading zeros so we may have to left pad. We do this unconditionally
609	// to avoid leaking timing information. (Although we still probably
610	// leak the number of leading zeros. It's not clear that we can do
611	// anything about this.)
612	em := leftPad(m.Bytes(), k)
613
614	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
615
616	seed := em[1 : hash.Size()+1]
617	db := em[hash.Size()+1:]
618
619	mgf1XOR(seed, hash, db)
620	mgf1XOR(db, hash, seed)
621
622	lHash2 := db[0:hash.Size()]
623
624	// We have to validate the plaintext in constant time in order to avoid
625	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
626	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
627	// v2.0. In J. Kilian, editor, Advances in Cryptology.
628	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
629
630	// The remainder of the plaintext must be zero or more 0x00, followed
631	// by 0x01, followed by the message.
632	//   lookingForIndex: 1 iff we are still looking for the 0x01
633	//   index: the offset of the first 0x01 byte
634	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
635	var lookingForIndex, index, invalid int
636	lookingForIndex = 1
637	rest := db[hash.Size():]
638
639	for i := 0; i < len(rest); i++ {
640		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
641		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
642		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
643		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
644		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
645	}
646
647	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
648		return nil, ErrDecryption
649	}
650
651	return rest[index+1:], nil
652}
653
654// leftPad returns a new slice of length size. The contents of input are right
655// aligned in the new slice.
656func leftPad(input []byte, size int) (out []byte) {
657	n := len(input)
658	if n > size {
659		n = size
660	}
661	out = make([]byte, size)
662	copy(out[len(out)-n:], input)
663	return
664}
665