1 /*
2  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3  * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
4  * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
5  * Copyright (c) 1999 by Hewlett-Packard Company.  All rights reserved.
6  *
7  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
9  *
10  * Permission is hereby granted to use or copy this program
11  * for any purpose,  provided the above notices are retained on all copies.
12  * Permission to modify the code and to distribute modified code is granted,
13  * provided the above notices are retained, and a notice that the code was
14  * modified is included with the above copyright notice.
15  */
16 
17 # include "private/gc_priv.h"
18 
19 # if defined(LINUX) && !defined(POWERPC)
20 #   include <linux/version.h>
21 #   if (LINUX_VERSION_CODE <= 0x10400)
22       /* Ugly hack to get struct sigcontext_struct definition.  Required      */
23       /* for some early 1.3.X releases.  Will hopefully go away soon. */
24       /* in some later Linux releases, asm/sigcontext.h may have to   */
25       /* be included instead.                                         */
26 #     define __KERNEL__
27 #     include <asm/signal.h>
28 #     undef __KERNEL__
29 #   else
30       /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31       /* struct sigcontext.  libc6 (glibc2) uses "struct sigcontext" in     */
32       /* prototypes, so we have to include the top-level sigcontext.h to    */
33       /* make sure the former gets defined to be the latter if appropriate. */
34 #     include <features.h>
35 #     if 2 <= __GLIBC__
36 #       if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 	  /* glibc 2.1 no longer has sigcontext.h.  But signal.h	*/
38 	  /* has the right declaration for glibc 2.1.			*/
39 #         include <sigcontext.h>
40 #       endif /* 0 == __GLIBC_MINOR__ */
41 #     else /* not 2 <= __GLIBC__ */
42         /* libc5 doesn't have <sigcontext.h>: go directly with the kernel   */
43         /* one.  Check LINUX_VERSION_CODE to see which we should reference. */
44 #       include <asm/sigcontext.h>
45 #     endif /* 2 <= __GLIBC__ */
46 #   endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49     && !defined(MSWINCE)
50 #   include <sys/types.h>
51 #   if !defined(MSWIN32) && !defined(SUNOS4)
52 #   	include <unistd.h>
53 #   endif
54 # endif
55 
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 #   define SIGSEGV 0 /* value is irrelevant */
59 # else
60 #   include <signal.h>
61 # endif
62 
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
66 
67 /* Blatantly OS dependent routines, except for those that are related 	*/
68 /* to dynamic loading.							*/
69 
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 #   define NEED_FIND_LIMIT
72 # endif
73 
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 #   define NEED_FIND_LIMIT
76 # endif
77 
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 #   define NEED_FIND_LIMIT
80 # endif
81 
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83       || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 #   define NEED_FIND_LIMIT
85 # endif
86 
87 #if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__))
88 #  include <machine/trap.h>
89 #  if !defined(PCR)
90 #    define NEED_FIND_LIMIT
91 #  endif
92 #endif
93 
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95     && !defined(NEED_FIND_LIMIT)
96    /* Used by GC_init_netbsd_elf() below.	*/
97 #  define NEED_FIND_LIMIT
98 #endif
99 
100 #ifdef NEED_FIND_LIMIT
101 #   include <setjmp.h>
102 #endif
103 
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
109 
110 #if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
115 
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
119 
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h>   /* for locking */
123 #endif
124 #if defined(USE_MMAP) || defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126     --> USE_MUNMAP requires USE_MMAP
127 # endif
128 # include <sys/types.h>
129 # include <sys/mman.h>
130 # include <sys/stat.h>
131 # include <errno.h>
132 #endif
133 
134 #ifdef UNIX_LIKE
135 # include <fcntl.h>
136 # if defined(SUNOS5SIGS) && !defined(FREEBSD)
137 #  include <sys/siginfo.h>
138 # endif
139   /* Define SETJMP and friends to be the version that restores	*/
140   /* the signal mask.						*/
141 # define SETJMP(env) sigsetjmp(env, 1)
142 # define LONGJMP(env, val) siglongjmp(env, val)
143 # define JMP_BUF sigjmp_buf
144 #else
145 # define SETJMP(env) setjmp(env)
146 # define LONGJMP(env, val) longjmp(env, val)
147 # define JMP_BUF jmp_buf
148 #endif
149 
150 #ifdef DARWIN
151 /* for get_etext and friends */
152 #include <mach-o/getsect.h>
153 #endif
154 
155 #ifdef DJGPP
156   /* Apparently necessary for djgpp 2.01.  May cause problems with	*/
157   /* other versions.							*/
158   typedef long unsigned int caddr_t;
159 #endif
160 
161 #ifdef PCR
162 # include "il/PCR_IL.h"
163 # include "th/PCR_ThCtl.h"
164 # include "mm/PCR_MM.h"
165 #endif
166 
167 #if !defined(NO_EXECUTE_PERMISSION)
168 # define OPT_PROT_EXEC PROT_EXEC
169 #else
170 # define OPT_PROT_EXEC 0
171 #endif
172 
173 #if defined(LINUX) && \
174     (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
175 
176 /* We need to parse /proc/self/maps, either to find dynamic libraries,	*/
177 /* and/or to find the register backing store base (IA64).  Do it once	*/
178 /* here.								*/
179 
180 #define READ read
181 
182 /* Repeatedly perform a read call until the buffer is filled or	*/
183 /* we encounter EOF.						*/
GC_repeat_read(int fd,char * buf,size_t count)184 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
185 {
186     ssize_t num_read = 0;
187     ssize_t result;
188 
189     while (num_read < count) {
190 	result = READ(fd, buf + num_read, count - num_read);
191 	if (result < 0) return result;
192 	if (result == 0) break;
193 	num_read += result;
194     }
195     return num_read;
196 }
197 
198 /*
199  * Apply fn to a buffer containing the contents of /proc/self/maps.
200  * Return the result of fn or, if we failed, 0.
201  * We currently do nothing to /proc/self/maps other than simply read
202  * it.  This code could be simplified if we could determine its size
203  * ahead of time.
204  */
205 
GC_apply_to_maps(word (* fn)(char *))206 word GC_apply_to_maps(word (*fn)(char *))
207 {
208     int f;
209     int result;
210     size_t maps_size = 4000;  /* Initial guess. 	*/
211     static char init_buf[1];
212     static char *maps_buf = init_buf;
213     static size_t maps_buf_sz = 1;
214 
215     /* Read /proc/self/maps, growing maps_buf as necessary.	*/
216         /* Note that we may not allocate conventionally, and	*/
217         /* thus can't use stdio.				*/
218 	do {
219 	    if (maps_size >= maps_buf_sz) {
220 	      /* Grow only by powers of 2, since we leak "too small" buffers. */
221 	      while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
222 	      maps_buf = GC_scratch_alloc(maps_buf_sz);
223 	      if (maps_buf == 0) return 0;
224 	    }
225 	    f = open("/proc/self/maps", O_RDONLY);
226 	    if (-1 == f) return 0;
227 	    maps_size = 0;
228 	    do {
229 	        result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
230 	        if (result <= 0) return 0;
231 	        maps_size += result;
232 	    } while (result == maps_buf_sz-1);
233 	    close(f);
234 	} while (maps_size >= maps_buf_sz);
235         maps_buf[maps_size] = '\0';
236 
237     /* Apply fn to result. */
238 	return fn(maps_buf);
239 }
240 
241 #endif /* Need GC_apply_to_maps */
242 
243 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
244 //
245 //  GC_parse_map_entry parses an entry from /proc/self/maps so we can
246 //  locate all writable data segments that belong to shared libraries.
247 //  The format of one of these entries and the fields we care about
248 //  is as follows:
249 //  XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537     name of mapping...\n
250 //  ^^^^^^^^ ^^^^^^^^ ^^^^          ^^
251 //  start    end      prot          maj_dev
252 //
253 //  Note that since about auguat 2003 kernels, the columns no longer have
254 //  fixed offsets on 64-bit kernels.  Hence we no longer rely on fixed offsets
255 //  anywhere, which is safer anyway.
256 //
257 
258 /*
259  * Assign various fields of the first line in buf_ptr to *start, *end,
260  * *prot_buf and *maj_dev.  Only *prot_buf may be set for unwritable maps.
261  */
GC_parse_map_entry(char * buf_ptr,word * start,word * end,char * prot_buf,unsigned int * maj_dev)262 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
263                                 char *prot_buf, unsigned int *maj_dev)
264 {
265     char *start_start, *end_start, *prot_start, *maj_dev_start;
266     char *p;
267     char *endp;
268 
269     if (buf_ptr == NULL || *buf_ptr == '\0') {
270         return NULL;
271     }
272 
273     p = buf_ptr;
274     while (isspace(*p)) ++p;
275     start_start = p;
276     GC_ASSERT(isxdigit(*start_start));
277     *start = strtoul(start_start, &endp, 16); p = endp;
278     GC_ASSERT(*p=='-');
279 
280     ++p;
281     end_start = p;
282     GC_ASSERT(isxdigit(*end_start));
283     *end = strtoul(end_start, &endp, 16); p = endp;
284     GC_ASSERT(isspace(*p));
285 
286     while (isspace(*p)) ++p;
287     prot_start = p;
288     GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
289     memcpy(prot_buf, prot_start, 4);
290     prot_buf[4] = '\0';
291     if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
292 	/* Skip past protection field to offset field */
293           while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
294           GC_ASSERT(isxdigit(*p));
295 	/* Skip past offset field, which we ignore */
296           while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
297 	maj_dev_start = p;
298         GC_ASSERT(isxdigit(*maj_dev_start));
299         *maj_dev = strtoul(maj_dev_start, NULL, 16);
300     }
301 
302     while (*p && *p++ != '\n');
303 
304     return p;
305 }
306 
307 #endif /* Need to parse /proc/self/maps. */
308 
309 #if defined(SEARCH_FOR_DATA_START)
310   /* The I386 case can be handled without a search.  The Alpha case	*/
311   /* used to be handled differently as well, but the rules changed	*/
312   /* for recent Linux versions.  This seems to be the easiest way to	*/
313   /* cover all versions.						*/
314 
315 # if defined(LINUX) || defined(HURD)
316     /* Some Linux distributions arrange to define __data_start.  Some	*/
317     /* define data_start as a weak symbol.  The latter is technically	*/
318     /* broken, since the user program may define data_start, in which	*/
319     /* case we lose.  Nonetheless, we try both, prefering __data_start.	*/
320     /* We assume gcc-compatible pragmas.	*/
321 #   pragma weak __data_start
322     extern int __data_start[];
323 #   pragma weak data_start
324     extern int data_start[];
325 # endif /* LINUX */
326   extern int _end[];
327 
328   ptr_t GC_data_start;
329 
GC_init_linux_data_start()330   void GC_init_linux_data_start()
331   {
332     extern ptr_t GC_find_limit();
333 
334 #   if defined(LINUX) || defined(HURD)
335       /* Try the easy approaches first:	*/
336       if ((ptr_t)__data_start != 0) {
337 	  GC_data_start = (ptr_t)(__data_start);
338 	  return;
339       }
340       if ((ptr_t)data_start != 0) {
341 	  GC_data_start = (ptr_t)(data_start);
342 	  return;
343       }
344 #   endif /* LINUX */
345     GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
346   }
347 #endif
348 
349 # ifdef ECOS
350 
351 # ifndef ECOS_GC_MEMORY_SIZE
352 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
353 # endif /* ECOS_GC_MEMORY_SIZE */
354 
355 // setjmp() function, as described in ANSI para 7.6.1.1
356 #undef SETJMP
357 #define SETJMP( __env__ )  hal_setjmp( __env__ )
358 
359 // FIXME: This is a simple way of allocating memory which is
360 // compatible with ECOS early releases.  Later releases use a more
361 // sophisticated means of allocating memory than this simple static
362 // allocator, but this method is at least bound to work.
363 static char memory[ECOS_GC_MEMORY_SIZE];
364 static char *brk = memory;
365 
tiny_sbrk(ptrdiff_t increment)366 static void *tiny_sbrk(ptrdiff_t increment)
367 {
368   void *p = brk;
369 
370   brk += increment;
371 
372   if (brk >  memory + sizeof memory)
373     {
374       brk -= increment;
375       return NULL;
376     }
377 
378   return p;
379 }
380 #define sbrk tiny_sbrk
381 # endif /* ECOS */
382 
383 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
384   ptr_t GC_data_start;
385 
GC_init_netbsd_elf()386   void GC_init_netbsd_elf()
387   {
388     extern ptr_t GC_find_limit();
389     extern char **environ;
390 	/* This may need to be environ, without the underscore, for	*/
391 	/* some versions.						*/
392     GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
393   }
394 #endif
395 
396 # ifdef OS2
397 
398 # include <stddef.h>
399 
400 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
401 
402 struct exe_hdr {
403     unsigned short      magic_number;
404     unsigned short      padding[29];
405     long                new_exe_offset;
406 };
407 
408 #define E_MAGIC(x)      (x).magic_number
409 #define EMAGIC          0x5A4D
410 #define E_LFANEW(x)     (x).new_exe_offset
411 
412 struct e32_exe {
413     unsigned char       magic_number[2];
414     unsigned char       byte_order;
415     unsigned char       word_order;
416     unsigned long       exe_format_level;
417     unsigned short      cpu;
418     unsigned short      os;
419     unsigned long       padding1[13];
420     unsigned long       object_table_offset;
421     unsigned long       object_count;
422     unsigned long       padding2[31];
423 };
424 
425 #define E32_MAGIC1(x)   (x).magic_number[0]
426 #define E32MAGIC1       'L'
427 #define E32_MAGIC2(x)   (x).magic_number[1]
428 #define E32MAGIC2       'X'
429 #define E32_BORDER(x)   (x).byte_order
430 #define E32LEBO         0
431 #define E32_WORDER(x)   (x).word_order
432 #define E32LEWO         0
433 #define E32_CPU(x)      (x).cpu
434 #define E32CPU286       1
435 #define E32_OBJTAB(x)   (x).object_table_offset
436 #define E32_OBJCNT(x)   (x).object_count
437 
438 struct o32_obj {
439     unsigned long       size;
440     unsigned long       base;
441     unsigned long       flags;
442     unsigned long       pagemap;
443     unsigned long       mapsize;
444     unsigned long       reserved;
445 };
446 
447 #define O32_FLAGS(x)    (x).flags
448 #define OBJREAD         0x0001L
449 #define OBJWRITE        0x0002L
450 #define OBJINVALID      0x0080L
451 #define O32_SIZE(x)     (x).size
452 #define O32_BASE(x)     (x).base
453 
454 # else  /* IBM's compiler */
455 
456 /* A kludge to get around what appears to be a header file bug */
457 # ifndef WORD
458 #   define WORD unsigned short
459 # endif
460 # ifndef DWORD
461 #   define DWORD unsigned long
462 # endif
463 
464 # define EXE386 1
465 # include <newexe.h>
466 # include <exe386.h>
467 
468 # endif  /* __IBMC__ */
469 
470 # define INCL_DOSEXCEPTIONS
471 # define INCL_DOSPROCESS
472 # define INCL_DOSERRORS
473 # define INCL_DOSMODULEMGR
474 # define INCL_DOSMEMMGR
475 # include <os2.h>
476 
477 
478 /* Disable and enable signals during nontrivial allocations	*/
479 
GC_disable_signals(void)480 void GC_disable_signals(void)
481 {
482     ULONG nest;
483 
484     DosEnterMustComplete(&nest);
485     if (nest != 1) ABORT("nested GC_disable_signals");
486 }
487 
GC_enable_signals(void)488 void GC_enable_signals(void)
489 {
490     ULONG nest;
491 
492     DosExitMustComplete(&nest);
493     if (nest != 0) ABORT("GC_enable_signals");
494 }
495 
496 
497 # else
498 
499 #  if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
500       && !defined(MSWINCE) \
501       && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
502       && !defined(NOSYS) && !defined(ECOS)
503 
504 #   if defined(SIG_BLOCK)
505 	/* Use POSIX/SYSV interface */
506 #	define SIGSET_T sigset_t
507 #	define SIG_DEL(set, signal) sigdelset(&(set), (signal))
508 #	define SIG_FILL(set) sigfillset(&set)
509 #	define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
510 #   elif defined(sigmask) && !defined(UTS4) && !defined(HURD)
511 	/* Use the traditional BSD interface */
512 #	define SIGSET_T int
513 #	define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
514 #	define SIG_FILL(set)  (set) = 0x7fffffff
515     	  /* Setting the leading bit appears to provoke a bug in some	*/
516     	  /* longjmp implementations.  Most systems appear not to have	*/
517     	  /* a signal 32.						*/
518 #	define SIGSETMASK(old, new) (old) = sigsetmask(new)
519 #   else
520 #       error undetectable signal API
521 #   endif
522 
523 static GC_bool mask_initialized = FALSE;
524 
525 static SIGSET_T new_mask;
526 
527 static SIGSET_T old_mask;
528 
529 static SIGSET_T dummy;
530 
531 #if defined(PRINTSTATS) && !defined(THREADS)
532 # define CHECK_SIGNALS
533   int GC_sig_disabled = 0;
534 #endif
535 
GC_disable_signals()536 void GC_disable_signals()
537 {
538     if (!mask_initialized) {
539     	SIG_FILL(new_mask);
540 
541 	SIG_DEL(new_mask, SIGSEGV);
542 	SIG_DEL(new_mask, SIGILL);
543 	SIG_DEL(new_mask, SIGQUIT);
544 #	ifdef SIGBUS
545 	    SIG_DEL(new_mask, SIGBUS);
546 #	endif
547 #	ifdef SIGIOT
548 	    SIG_DEL(new_mask, SIGIOT);
549 #	endif
550 #	ifdef SIGEMT
551 	    SIG_DEL(new_mask, SIGEMT);
552 #	endif
553 #	ifdef SIGTRAP
554 	    SIG_DEL(new_mask, SIGTRAP);
555 #	endif
556 	mask_initialized = TRUE;
557     }
558 #   ifdef CHECK_SIGNALS
559 	if (GC_sig_disabled != 0) ABORT("Nested disables");
560 	GC_sig_disabled++;
561 #   endif
562     SIGSETMASK(old_mask,new_mask);
563 }
564 
GC_enable_signals()565 void GC_enable_signals()
566 {
567 #   ifdef CHECK_SIGNALS
568 	if (GC_sig_disabled != 1) ABORT("Unmatched enable");
569 	GC_sig_disabled--;
570 #   endif
571     SIGSETMASK(dummy,old_mask);
572 }
573 
574 #  endif  /* !PCR */
575 
576 # endif /*!OS/2 */
577 
578 /* Ivan Demakov: simplest way (to me) */
579 #if defined (DOS4GW)
GC_disable_signals()580   void GC_disable_signals() { }
GC_enable_signals()581   void GC_enable_signals() { }
582 #endif
583 
584 /* Find the page size */
585 word GC_page_size;
586 
587 # if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
GC_setpagesize()588   void GC_setpagesize()
589   {
590     GetSystemInfo(&GC_sysinfo);
591     GC_page_size = GC_sysinfo.dwPageSize;
592   }
593 
594 # else
595 #   if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
596        || defined(USE_MUNMAP)
GC_setpagesize()597 	void GC_setpagesize()
598 	{
599 	    GC_page_size = GETPAGESIZE();
600 	}
601 #   else
602 	/* It's acceptable to fake it. */
GC_setpagesize()603 	void GC_setpagesize()
604 	{
605 	    GC_page_size = HBLKSIZE;
606 	}
607 #   endif
608 # endif
609 
610 /*
611  * Find the base of the stack.
612  * Used only in single-threaded environment.
613  * With threads, GC_mark_roots needs to know how to do this.
614  * Called with allocator lock held.
615  */
616 # if defined(MSWIN32) || defined(MSWINCE)
617 # define is_writable(prot) ((prot) == PAGE_READWRITE \
618 			    || (prot) == PAGE_WRITECOPY \
619 			    || (prot) == PAGE_EXECUTE_READWRITE \
620 			    || (prot) == PAGE_EXECUTE_WRITECOPY)
621 /* Return the number of bytes that are writable starting at p.	*/
622 /* The pointer p is assumed to be page aligned.			*/
623 /* If base is not 0, *base becomes the beginning of the 	*/
624 /* allocation region containing p.				*/
GC_get_writable_length(ptr_t p,ptr_t * base)625 word GC_get_writable_length(ptr_t p, ptr_t *base)
626 {
627     MEMORY_BASIC_INFORMATION buf;
628     word result;
629     word protect;
630 
631     result = VirtualQuery(p, &buf, sizeof(buf));
632     if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
633     if (base != 0) *base = (ptr_t)(buf.AllocationBase);
634     protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
635     if (!is_writable(protect)) {
636         return(0);
637     }
638     if (buf.State != MEM_COMMIT) return(0);
639     return(buf.RegionSize);
640 }
641 
GC_get_stack_base()642 ptr_t GC_get_stack_base()
643 {
644     int dummy;
645     ptr_t sp = (ptr_t)(&dummy);
646     ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
647     word size = GC_get_writable_length(trunc_sp, 0);
648 
649     return(trunc_sp + size);
650 }
651 
652 
653 # endif /* MS Windows */
654 
655 # ifdef BEOS
656 # include <kernel/OS.h>
GC_get_stack_base()657 ptr_t GC_get_stack_base(){
658 	thread_info th;
659 	get_thread_info(find_thread(NULL),&th);
660 	return th.stack_end;
661 }
662 # endif /* BEOS */
663 
664 
665 # ifdef OS2
666 
GC_get_stack_base()667 ptr_t GC_get_stack_base()
668 {
669     PTIB ptib;
670     PPIB ppib;
671 
672     if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
673     	GC_err_printf0("DosGetInfoBlocks failed\n");
674     	ABORT("DosGetInfoBlocks failed\n");
675     }
676     return((ptr_t)(ptib -> tib_pstacklimit));
677 }
678 
679 # endif /* OS2 */
680 
681 # ifdef AMIGA
682 #   define GC_AMIGA_SB
683 #   include "AmigaOS.c"
684 #   undef GC_AMIGA_SB
685 # endif /* AMIGA */
686 
687 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
688 
689 #   ifdef __STDC__
690 	typedef void (*handler)(int);
691 #   else
692 	typedef void (*handler)();
693 #   endif
694 
695 #   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
696     || defined(HURD) || defined(NETBSD)
697 	static struct sigaction old_segv_act;
698 #	if defined(IRIX5) || defined(HPUX) \
699 	|| defined(HURD) || defined(NETBSD)
700 	    static struct sigaction old_bus_act;
701 #	endif
702 #   else
703         static handler old_segv_handler, old_bus_handler;
704 #   endif
705 
706 #   ifdef __STDC__
GC_set_and_save_fault_handler(handler h)707       void GC_set_and_save_fault_handler(handler h)
708 #   else
709       void GC_set_and_save_fault_handler(h)
710       handler h;
711 #   endif
712     {
713 #	if defined(SUNOS5SIGS) || defined(IRIX5)  \
714         || defined(OSF1) || defined(HURD) || defined(NETBSD)
715 	  struct sigaction	act;
716 
717 	  act.sa_handler	= h;
718 #	  if 0 /* Was necessary for Solaris 2.3 and very temporary 	*/
719 	       /* NetBSD bugs.						*/
720             act.sa_flags          = SA_RESTART | SA_NODEFER;
721 #         else
722             act.sa_flags          = SA_RESTART;
723 #	  endif
724 
725 	  (void) sigemptyset(&act.sa_mask);
726 #	  ifdef GC_IRIX_THREADS
727 		/* Older versions have a bug related to retrieving and	*/
728 		/* and setting a handler at the same time.		*/
729 	        (void) sigaction(SIGSEGV, 0, &old_segv_act);
730 	        (void) sigaction(SIGSEGV, &act, 0);
731 	        (void) sigaction(SIGBUS, 0, &old_bus_act);
732 	        (void) sigaction(SIGBUS, &act, 0);
733 #	  else
734 	        (void) sigaction(SIGSEGV, &act, &old_segv_act);
735 #		if defined(IRIX5) \
736 		   || defined(HPUX) || defined(HURD) || defined(NETBSD)
737 		    /* Under Irix 5.x or HP/UX, we may get SIGBUS.	*/
738 		    /* Pthreads doesn't exist under Irix 5.x, so we	*/
739 		    /* don't have to worry in the threads case.		*/
740 		    (void) sigaction(SIGBUS, &act, &old_bus_act);
741 #		endif
742 #	  endif	/* GC_IRIX_THREADS */
743 #	else
744     	  old_segv_handler = signal(SIGSEGV, h);
745 #	  ifdef SIGBUS
746 	    old_bus_handler = signal(SIGBUS, h);
747 #	  endif
748 #	endif
749     }
750 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
751 
752 # ifdef NEED_FIND_LIMIT
753   /* Some tools to implement HEURISTIC2	*/
754 #   define MIN_PAGE_SIZE 256	/* Smallest conceivable page size, bytes */
755     /* static */ JMP_BUF GC_jmp_buf;
756 
757     /*ARGSUSED*/
GC_fault_handler(sig)758     void GC_fault_handler(sig)
759     int sig;
760     {
761         LONGJMP(GC_jmp_buf, 1);
762     }
763 
GC_setup_temporary_fault_handler()764     void GC_setup_temporary_fault_handler()
765     {
766 	GC_set_and_save_fault_handler(GC_fault_handler);
767     }
768 
GC_reset_fault_handler()769     void GC_reset_fault_handler()
770     {
771 #       if defined(SUNOS5SIGS) || defined(IRIX5) \
772 	   || defined(OSF1) || defined(HURD) || defined(NETBSD)
773 	  (void) sigaction(SIGSEGV, &old_segv_act, 0);
774 #	  if defined(IRIX5) \
775 	     || defined(HPUX) || defined(HURD) || defined(NETBSD)
776 	      (void) sigaction(SIGBUS, &old_bus_act, 0);
777 #	  endif
778 #       else
779   	  (void) signal(SIGSEGV, old_segv_handler);
780 #	  ifdef SIGBUS
781 	    (void) signal(SIGBUS, old_bus_handler);
782 #	  endif
783 #       endif
784     }
785 
786     /* Return the first nonaddressible location > p (up) or 	*/
787     /* the smallest location q s.t. [q,p) is addressable (!up).	*/
788     /* We assume that p (up) or p-1 (!up) is addressable.	*/
GC_find_limit(p,up)789     ptr_t GC_find_limit(p, up)
790     ptr_t p;
791     GC_bool up;
792     {
793         static VOLATILE ptr_t result;
794     		/* Needs to be static, since otherwise it may not be	*/
795     		/* preserved across the longjmp.  Can safely be 	*/
796     		/* static since it's only called once, with the		*/
797     		/* allocation lock held.				*/
798 
799 
800 	GC_setup_temporary_fault_handler();
801 	if (SETJMP(GC_jmp_buf) == 0) {
802 	    result = (ptr_t)(((word)(p))
803 			      & ~(MIN_PAGE_SIZE-1));
804 	    for (;;) {
805  	        if (up) {
806 		    result += MIN_PAGE_SIZE;
807  	        } else {
808 		    result -= MIN_PAGE_SIZE;
809  	        }
810 		GC_noop1((word)(*result));
811 	    }
812 	}
813 	GC_reset_fault_handler();
814  	if (!up) {
815 	    result += MIN_PAGE_SIZE;
816  	}
817 	return(result);
818     }
819 # endif
820 
821 #if defined(ECOS) || defined(NOSYS)
GC_get_stack_base()822   ptr_t GC_get_stack_base()
823   {
824     return STACKBOTTOM;
825   }
826 #endif
827 
828 #ifdef HPUX_STACKBOTTOM
829 
830 #include <sys/param.h>
831 #include <sys/pstat.h>
832 
GC_get_register_stack_base(void)833   ptr_t GC_get_register_stack_base(void)
834   {
835     struct pst_vm_status vm_status;
836 
837     int i = 0;
838     while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
839       if (vm_status.pst_type == PS_RSESTACK) {
840         return (ptr_t) vm_status.pst_vaddr;
841       }
842     }
843 
844     /* old way to get the register stackbottom */
845     return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
846                    & ~(BACKING_STORE_ALIGNMENT - 1));
847   }
848 
849 #endif /* HPUX_STACK_BOTTOM */
850 
851 #ifdef LINUX_STACKBOTTOM
852 
853 #include <sys/types.h>
854 #include <sys/stat.h>
855 
856 # define STAT_SKIP 27   /* Number of fields preceding startstack	*/
857 			/* field in /proc/self/stat			*/
858 
859 #ifdef USE_LIBC_PRIVATES
860 # pragma weak __libc_stack_end
861   extern ptr_t __libc_stack_end;
862 #endif
863 
864 # ifdef IA64
865     /* Try to read the backing store base from /proc/self/maps.	*/
866     /* We look for the writable mapping with a 0 major device,  */
867     /* which is	as close to our frame as possible, but below it.*/
backing_store_base_from_maps(char * maps)868     static word backing_store_base_from_maps(char *maps)
869     {
870       char prot_buf[5];
871       char *buf_ptr = maps;
872       word start, end;
873       unsigned int maj_dev;
874       word current_best = 0;
875       word dummy;
876 
877       for (;;) {
878         buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
879 	if (buf_ptr == NULL) return current_best;
880 	if (prot_buf[1] == 'w' && maj_dev == 0) {
881 	    if (end < (word)(&dummy) && start > current_best) current_best = start;
882 	}
883       }
884       return current_best;
885     }
886 
backing_store_base_from_proc(void)887     static word backing_store_base_from_proc(void)
888     {
889         return GC_apply_to_maps(backing_store_base_from_maps);
890     }
891 
892 #   ifdef USE_LIBC_PRIVATES
893 #     pragma weak __libc_ia64_register_backing_store_base
894       extern ptr_t __libc_ia64_register_backing_store_base;
895 #   endif
896 
GC_get_register_stack_base(void)897     ptr_t GC_get_register_stack_base(void)
898     {
899 #     ifdef USE_LIBC_PRIVATES
900         if (0 != &__libc_ia64_register_backing_store_base
901 	    && 0 != __libc_ia64_register_backing_store_base) {
902 	  /* Glibc 2.2.4 has a bug such that for dynamically linked	*/
903 	  /* executables __libc_ia64_register_backing_store_base is 	*/
904 	  /* defined but uninitialized during constructor calls.  	*/
905 	  /* Hence we check for both nonzero address and value.		*/
906 	  return __libc_ia64_register_backing_store_base;
907         }
908 #     endif
909       word result = backing_store_base_from_proc();
910       if (0 == result) {
911 	  /* Use dumb heuristics.  Works only for default configuration. */
912 	  result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
913 	  result += BACKING_STORE_ALIGNMENT - 1;
914 	  result &= ~(BACKING_STORE_ALIGNMENT - 1);
915 	  /* Verify that it's at least readable.  If not, we goofed. */
916 	  GC_noop1(*(word *)result);
917       }
918       return (ptr_t)result;
919     }
920 # endif
921 
GC_linux_stack_base(void)922   ptr_t GC_linux_stack_base(void)
923   {
924     /* We read the stack base value from /proc/self/stat.  We do this	*/
925     /* using direct I/O system calls in order to avoid calling malloc   */
926     /* in case REDIRECT_MALLOC is defined.				*/
927 #   define STAT_BUF_SIZE 4096
928 #   define STAT_READ read
929 	  /* Should probably call the real read, if read is wrapped.	*/
930     char stat_buf[STAT_BUF_SIZE];
931     int f;
932     char c;
933     word result = 0;
934     size_t i, buf_offset = 0;
935 
936     /* First try the easy way.  This should work for glibc 2.2	*/
937     /* This fails in a prelinked ("prelink" command) executable */
938     /* since the correct value of __libc_stack_end never	*/
939     /* becomes visible to us.  The second test works around 	*/
940     /* this.							*/
941 #   ifdef USE_LIBC_PRIVATES
942       if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
943 #       ifdef IA64
944 	  /* Some versions of glibc set the address 16 bytes too	*/
945 	  /* low while the initialization code is running.		*/
946 	  if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
947 	    return __libc_stack_end + 0x10;
948 	  } /* Otherwise it's not safe to add 16 bytes and we fall	*/
949 	    /* back to using /proc.					*/
950 #	else
951 #	ifdef SPARC
952 	  /* Older versions of glibc for 64-bit Sparc do not set
953 	   * this variable correctly, it gets set to either zero
954 	   * or one.
955 	   */
956 	  if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
957 	    return __libc_stack_end;
958 #	else
959 	  return __libc_stack_end;
960 #	endif
961 #	endif
962       }
963 #   endif
964     f = open("/proc/self/stat", O_RDONLY);
965     if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
966 	ABORT("Couldn't read /proc/self/stat");
967     }
968     c = stat_buf[buf_offset++];
969     /* Skip the required number of fields.  This number is hopefully	*/
970     /* constant across all Linux implementations.			*/
971       for (i = 0; i < STAT_SKIP; ++i) {
972 	while (isspace(c)) c = stat_buf[buf_offset++];
973 	while (!isspace(c)) c = stat_buf[buf_offset++];
974       }
975     while (isspace(c)) c = stat_buf[buf_offset++];
976     while (isdigit(c)) {
977       result *= 10;
978       result += c - '0';
979       c = stat_buf[buf_offset++];
980     }
981     close(f);
982     if (result < 0x10000000) ABORT("Absurd stack bottom value");
983     return (ptr_t)result;
984   }
985 
986 #endif /* LINUX_STACKBOTTOM */
987 
988 #ifdef FREEBSD_STACKBOTTOM
989 
990 /* This uses an undocumented sysctl call, but at least one expert 	*/
991 /* believes it will stay.						*/
992 
993 #include <unistd.h>
994 #include <sys/types.h>
995 #include <sys/sysctl.h>
996 
GC_freebsd_stack_base(void)997   ptr_t GC_freebsd_stack_base(void)
998   {
999     int nm[2] = {CTL_KERN, KERN_USRSTACK};
1000     ptr_t base;
1001     size_t len = sizeof(ptr_t);
1002     int r = sysctl(nm, 2, &base, &len, NULL, 0);
1003 
1004     if (r) ABORT("Error getting stack base");
1005 
1006     return base;
1007   }
1008 
1009 #endif /* FREEBSD_STACKBOTTOM */
1010 
1011 #ifdef SOLARIS_STACKBOTTOM
1012 
1013 # include <thread.h>
1014 # include <signal.h>
1015 # include <pthread.h>
1016 
1017   /* These variables are used to cache ss_sp value for the primordial   */
1018   /* thread (it's better not to call thr_stksegment() twice for this    */
1019   /* thread - see JDK bug #4352906).                                    */
1020   static pthread_t stackbase_main_self = 0;
1021                         /* 0 means stackbase_main_ss_sp value is unset. */
1022   static void *stackbase_main_ss_sp = NULL;
1023 
GC_solaris_stack_base(void)1024   ptr_t GC_solaris_stack_base(void)
1025   {
1026     stack_t s;
1027     pthread_t self = pthread_self();
1028     if (self == stackbase_main_self)
1029       {
1030         /* If the client calls GC_get_stack_base() from the main thread */
1031         /* then just return the cached value.                           */
1032         GC_ASSERT(stackbase_main_ss_sp != NULL);
1033         return stackbase_main_ss_sp;
1034       }
1035 
1036     if (thr_stksegment(&s)) {
1037       /* According to the manual, the only failure error code returned  */
1038       /* is EAGAIN meaning "the information is not available due to the */
1039       /* thread is not yet completely initialized or it is an internal  */
1040       /* thread" - this shouldn't happen here.                          */
1041       ABORT("thr_stksegment failed");
1042     }
1043     /* s.ss_sp holds the pointer to the stack bottom. */
1044     GC_ASSERT((void *)&s HOTTER_THAN s.ss_sp);
1045 
1046     if (!stackbase_main_self)
1047       {
1048         /* Cache the stack base value for the primordial thread (this   */
1049         /* is done during GC_init, so there is no race).                */
1050         stackbase_main_ss_sp = s.ss_sp;
1051         stackbase_main_self = self;
1052       }
1053 
1054     return s.ss_sp;
1055   }
1056 
1057 #endif /* GC_SOLARIS_THREADS */
1058 
1059 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1060     && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1061 
GC_get_stack_base()1062 ptr_t GC_get_stack_base()
1063 {
1064 #   if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1065        defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM) || \
1066        defined(SOLARIS_STACKBOTTOM)
1067     word dummy;
1068     ptr_t result;
1069 #   endif
1070 
1071 #   define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1072 
1073 #   ifdef STACKBOTTOM
1074 	return(STACKBOTTOM);
1075 #   else
1076 #	ifdef HEURISTIC1
1077 #	   ifdef STACK_GROWS_DOWN
1078 	     result = (ptr_t)((((word)(&dummy))
1079 	     		       + STACKBOTTOM_ALIGNMENT_M1)
1080 			      & ~STACKBOTTOM_ALIGNMENT_M1);
1081 #	   else
1082 	     result = (ptr_t)(((word)(&dummy))
1083 			      & ~STACKBOTTOM_ALIGNMENT_M1);
1084 #	   endif
1085 #	endif /* HEURISTIC1 */
1086 #	ifdef LINUX_STACKBOTTOM
1087 	   result = GC_linux_stack_base();
1088 #	endif
1089 #	ifdef FREEBSD_STACKBOTTOM
1090 	   result = GC_freebsd_stack_base();
1091 #	endif
1092 #	ifdef SOLARIS_STACKBOTTOM
1093 	   result = GC_solaris_stack_base();
1094 #	endif
1095 #	ifdef HEURISTIC2
1096 #	    ifdef STACK_GROWS_DOWN
1097 		result = GC_find_limit((ptr_t)(&dummy), TRUE);
1098 #           	ifdef HEURISTIC2_LIMIT
1099 		    if (result > HEURISTIC2_LIMIT
1100 		        && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1101 		            result = HEURISTIC2_LIMIT;
1102 		    }
1103 #	        endif
1104 #	    else
1105 		result = GC_find_limit((ptr_t)(&dummy), FALSE);
1106 #           	ifdef HEURISTIC2_LIMIT
1107 		    if (result < HEURISTIC2_LIMIT
1108 		        && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1109 		            result = HEURISTIC2_LIMIT;
1110 		    }
1111 #	        endif
1112 #	    endif
1113 
1114 #	endif /* HEURISTIC2 */
1115 #	ifdef STACK_GROWS_DOWN
1116 	    if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1117 #	endif
1118     	return(result);
1119 #   endif /* STACKBOTTOM */
1120 }
1121 
1122 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1123 
1124 /*
1125  * Register static data segment(s) as roots.
1126  * If more data segments are added later then they need to be registered
1127  * add that point (as we do with SunOS dynamic loading),
1128  * or GC_mark_roots needs to check for them (as we do with PCR).
1129  * Called with allocator lock held.
1130  */
1131 
1132 # ifdef OS2
1133 
GC_register_data_segments()1134 void GC_register_data_segments()
1135 {
1136     PTIB ptib;
1137     PPIB ppib;
1138     HMODULE module_handle;
1139 #   define PBUFSIZ 512
1140     UCHAR path[PBUFSIZ];
1141     FILE * myexefile;
1142     struct exe_hdr hdrdos;	/* MSDOS header.	*/
1143     struct e32_exe hdr386;	/* Real header for my executable */
1144     struct o32_obj seg;	/* Currrent segment */
1145     int nsegs;
1146 
1147 
1148     if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1149     	GC_err_printf0("DosGetInfoBlocks failed\n");
1150     	ABORT("DosGetInfoBlocks failed\n");
1151     }
1152     module_handle = ppib -> pib_hmte;
1153     if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1154     	GC_err_printf0("DosQueryModuleName failed\n");
1155     	ABORT("DosGetInfoBlocks failed\n");
1156     }
1157     myexefile = fopen(path, "rb");
1158     if (myexefile == 0) {
1159         GC_err_puts("Couldn't open executable ");
1160         GC_err_puts(path); GC_err_puts("\n");
1161         ABORT("Failed to open executable\n");
1162     }
1163     if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1164         GC_err_puts("Couldn't read MSDOS header from ");
1165         GC_err_puts(path); GC_err_puts("\n");
1166         ABORT("Couldn't read MSDOS header");
1167     }
1168     if (E_MAGIC(hdrdos) != EMAGIC) {
1169         GC_err_puts("Executable has wrong DOS magic number: ");
1170         GC_err_puts(path); GC_err_puts("\n");
1171         ABORT("Bad DOS magic number");
1172     }
1173     if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1174         GC_err_puts("Seek to new header failed in ");
1175         GC_err_puts(path); GC_err_puts("\n");
1176         ABORT("Bad DOS magic number");
1177     }
1178     if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1179         GC_err_puts("Couldn't read MSDOS header from ");
1180         GC_err_puts(path); GC_err_puts("\n");
1181         ABORT("Couldn't read OS/2 header");
1182     }
1183     if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1184         GC_err_puts("Executable has wrong OS/2 magic number:");
1185         GC_err_puts(path); GC_err_puts("\n");
1186         ABORT("Bad OS/2 magic number");
1187     }
1188     if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1189         GC_err_puts("Executable %s has wrong byte order: ");
1190         GC_err_puts(path); GC_err_puts("\n");
1191         ABORT("Bad byte order");
1192     }
1193     if ( E32_CPU(hdr386) == E32CPU286) {
1194         GC_err_puts("GC can't handle 80286 executables: ");
1195         GC_err_puts(path); GC_err_puts("\n");
1196         EXIT();
1197     }
1198     if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1199     	      SEEK_SET) != 0) {
1200         GC_err_puts("Seek to object table failed: ");
1201         GC_err_puts(path); GC_err_puts("\n");
1202         ABORT("Seek to object table failed");
1203     }
1204     for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1205       int flags;
1206       if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1207         GC_err_puts("Couldn't read obj table entry from ");
1208         GC_err_puts(path); GC_err_puts("\n");
1209         ABORT("Couldn't read obj table entry");
1210       }
1211       flags = O32_FLAGS(seg);
1212       if (!(flags & OBJWRITE)) continue;
1213       if (!(flags & OBJREAD)) continue;
1214       if (flags & OBJINVALID) {
1215           GC_err_printf0("Object with invalid pages?\n");
1216           continue;
1217       }
1218       GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1219     }
1220 }
1221 
1222 # else /* !OS2 */
1223 
1224 # if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
1225 
1226 # ifdef CYGWIN32
1227 #    define GC_no_win32_dlls (FALSE)
1228 # endif
1229 
1230 # ifdef MSWIN32
1231   /* Unfortunately, we have to handle win32s very differently from NT, 	*/
1232   /* Since VirtualQuery has very different semantics.  In particular,	*/
1233   /* under win32s a VirtualQuery call on an unmapped page returns an	*/
1234   /* invalid result.  Under NT, GC_register_data_segments is a noop and	*/
1235   /* all real work is done by GC_register_dynamic_libraries.  Under	*/
1236   /* win32s, we cannot find the data segments associated with dll's.	*/
1237   /* We register the main data segment here.				*/
1238   GC_bool GC_no_win32_dlls = FALSE;
1239   	/* This used to be set for gcc, to avoid dealing with		*/
1240   	/* the structured exception handling issues.  But we now have	*/
1241   	/* assembly code to do that right.				*/
1242   GC_bool GC_wnt = FALSE;
1243         /* This is a Windows NT derivative, i.e. NT, W2K, XP or later.  */
1244 
GC_init_win32()1245   void GC_init_win32()
1246   {
1247     /* if we're running under win32s, assume that no DLLs will be loaded */
1248     DWORD v = GetVersion();
1249     GC_wnt = !(v & 0x80000000);
1250     GC_no_win32_dlls |= ((!GC_wnt) && (v & 0xff) <= 3);
1251   }
1252 
1253   /* Return the smallest address a such that VirtualQuery		*/
1254   /* returns correct results for all addresses between a and start.	*/
1255   /* Assumes VirtualQuery returns correct information for start.	*/
GC_least_described_address(ptr_t start)1256   ptr_t GC_least_described_address(ptr_t start)
1257   {
1258     MEMORY_BASIC_INFORMATION buf;
1259     DWORD result;
1260     LPVOID limit;
1261     ptr_t p;
1262     LPVOID q;
1263 
1264     limit = GC_sysinfo.lpMinimumApplicationAddress;
1265     p = (ptr_t)((word)start & ~(GC_page_size - 1));
1266     for (;;) {
1267     	q = (LPVOID)(p - GC_page_size);
1268     	if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1269     	result = VirtualQuery(q, &buf, sizeof(buf));
1270     	if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1271     	p = (ptr_t)(buf.AllocationBase);
1272     }
1273     return(p);
1274   }
1275 # endif
1276 
1277 # ifndef REDIRECT_MALLOC
1278   /* We maintain a linked list of AllocationBase values that we know	*/
1279   /* correspond to malloc heap sections.  Currently this is only called */
1280   /* during a GC.  But there is some hope that for long running		*/
1281   /* programs we will eventually see most heap sections.		*/
1282 
1283   /* In the long run, it would be more reliable to occasionally walk 	*/
1284   /* the malloc heap with HeapWalk on the default heap.  But that	*/
1285   /* apparently works only for NT-based Windows. 			*/
1286 
1287   /* In the long run, a better data structure would also be nice ...	*/
1288   struct GC_malloc_heap_list {
1289     void * allocation_base;
1290     struct GC_malloc_heap_list *next;
1291   } *GC_malloc_heap_l = 0;
1292 
1293   /* Is p the base of one of the malloc heap sections we already know	*/
1294   /* about?								*/
GC_is_malloc_heap_base(ptr_t p)1295   GC_bool GC_is_malloc_heap_base(ptr_t p)
1296   {
1297     struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1298 
1299     while (0 != q) {
1300       if (q -> allocation_base == p) return TRUE;
1301       q = q -> next;
1302     }
1303     return FALSE;
1304   }
1305 
GC_get_allocation_base(void * p)1306   void *GC_get_allocation_base(void *p)
1307   {
1308     MEMORY_BASIC_INFORMATION buf;
1309     DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1310     if (result != sizeof(buf)) {
1311       ABORT("Weird VirtualQuery result");
1312     }
1313     return buf.AllocationBase;
1314   }
1315 
1316   size_t GC_max_root_size = 100000;	/* Appr. largest root size.	*/
1317 
GC_add_current_malloc_heap()1318   void GC_add_current_malloc_heap()
1319   {
1320     struct GC_malloc_heap_list *new_l =
1321                  malloc(sizeof(struct GC_malloc_heap_list));
1322     void * candidate = GC_get_allocation_base(new_l);
1323 
1324     if (new_l == 0) return;
1325     if (GC_is_malloc_heap_base(candidate)) {
1326       /* Try a little harder to find malloc heap.			*/
1327 	size_t req_size = 10000;
1328 	do {
1329 	  void *p = malloc(req_size);
1330 	  if (0 == p) { free(new_l); return; }
1331  	  candidate = GC_get_allocation_base(p);
1332 	  free(p);
1333 	  req_size *= 2;
1334 	} while (GC_is_malloc_heap_base(candidate)
1335 	         && req_size < GC_max_root_size/10 && req_size < 500000);
1336 	if (GC_is_malloc_heap_base(candidate)) {
1337 	  free(new_l); return;
1338 	}
1339     }
1340 #   ifdef CONDPRINT
1341       if (GC_print_stats)
1342 	  GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1343                      candidate);
1344 #   endif
1345     new_l -> allocation_base = candidate;
1346     new_l -> next = GC_malloc_heap_l;
1347     GC_malloc_heap_l = new_l;
1348   }
1349 # endif /* REDIRECT_MALLOC */
1350 
1351   /* Is p the start of either the malloc heap, or of one of our */
1352   /* heap sections?						*/
GC_is_heap_base(ptr_t p)1353   GC_bool GC_is_heap_base (ptr_t p)
1354   {
1355 
1356      unsigned i;
1357 
1358 #    ifndef REDIRECT_MALLOC
1359        static word last_gc_no = -1;
1360 
1361        if (last_gc_no != GC_gc_no) {
1362 	 GC_add_current_malloc_heap();
1363 	 last_gc_no = GC_gc_no;
1364        }
1365        if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1366        if (GC_is_malloc_heap_base(p)) return TRUE;
1367 #    endif
1368      for (i = 0; i < GC_n_heap_bases; i++) {
1369          if (GC_heap_bases[i] == p) return TRUE;
1370      }
1371      return FALSE ;
1372   }
1373 
1374 # ifdef MSWIN32
GC_register_root_section(ptr_t static_root)1375   void GC_register_root_section(ptr_t static_root)
1376   {
1377       MEMORY_BASIC_INFORMATION buf;
1378       DWORD result;
1379       DWORD protect;
1380       LPVOID p;
1381       char * base;
1382       char * limit, * new_limit;
1383 
1384       if (!GC_no_win32_dlls) return;
1385       p = base = limit = GC_least_described_address(static_root);
1386       while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1387         result = VirtualQuery(p, &buf, sizeof(buf));
1388         if (result != sizeof(buf) || buf.AllocationBase == 0
1389             || GC_is_heap_base(buf.AllocationBase)) break;
1390         new_limit = (char *)p + buf.RegionSize;
1391         protect = buf.Protect;
1392         if (buf.State == MEM_COMMIT
1393             && is_writable(protect)) {
1394             if ((char *)p == limit) {
1395                 limit = new_limit;
1396             } else {
1397                 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1398                 base = p;
1399                 limit = new_limit;
1400             }
1401         }
1402         if (p > (LPVOID)new_limit /* overflow */) break;
1403         p = (LPVOID)new_limit;
1404       }
1405       if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1406   }
1407 #endif
1408 
GC_register_data_segments()1409   void GC_register_data_segments()
1410   {
1411 #     ifdef MSWIN32
1412       static char dummy;
1413       GC_register_root_section((ptr_t)(&dummy));
1414 #     endif
1415   }
1416 
1417 # else /* !OS2 && !Windows */
1418 
1419 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1420       || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
GC_SysVGetDataStart(max_page_size,etext_addr)1421 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1422 int max_page_size;
1423 int * etext_addr;
1424 {
1425     word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1426     		    & ~(sizeof(word) - 1);
1427     	/* etext rounded to word boundary	*/
1428     word next_page = ((text_end + (word)max_page_size - 1)
1429     		      & ~((word)max_page_size - 1));
1430     word page_offset = (text_end & ((word)max_page_size - 1));
1431     VOLATILE char * result = (char *)(next_page + page_offset);
1432     /* Note that this isnt equivalent to just adding		*/
1433     /* max_page_size to &etext if &etext is at a page boundary	*/
1434 
1435     GC_setup_temporary_fault_handler();
1436     if (SETJMP(GC_jmp_buf) == 0) {
1437     	/* Try writing to the address.	*/
1438     	*result = *result;
1439         GC_reset_fault_handler();
1440     } else {
1441         GC_reset_fault_handler();
1442     	/* We got here via a longjmp.  The address is not readable.	*/
1443     	/* This is known to happen under Solaris 2.4 + gcc, which place	*/
1444     	/* string constants in the text segment, but after etext.	*/
1445     	/* Use plan B.  Note that we now know there is a gap between	*/
1446     	/* text and data segments, so plan A bought us something.	*/
1447     	result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1448     }
1449     return((ptr_t)result);
1450 }
1451 # endif
1452 
1453 # if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1454 /* Its unclear whether this should be identical to the above, or 	*/
1455 /* whether it should apply to non-X86 architectures.			*/
1456 /* For now we don't assume that there is always an empty page after	*/
1457 /* etext.  But in some cases there actually seems to be slightly more.  */
1458 /* This also deals with holes between read-only data and writable data.	*/
GC_FreeBSDGetDataStart(max_page_size,etext_addr)1459 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1460 int max_page_size;
1461 int * etext_addr;
1462 {
1463     word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1464 		     & ~(sizeof(word) - 1);
1465 	/* etext rounded to word boundary	*/
1466     VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1467 			      & ~((word)max_page_size - 1);
1468     VOLATILE ptr_t result = (ptr_t)text_end;
1469     GC_setup_temporary_fault_handler();
1470     if (SETJMP(GC_jmp_buf) == 0) {
1471 	/* Try reading at the address.				*/
1472 	/* This should happen before there is another thread.	*/
1473 	for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1474 	    *(VOLATILE char *)next_page;
1475 	GC_reset_fault_handler();
1476     } else {
1477 	GC_reset_fault_handler();
1478 	/* As above, we go to plan B	*/
1479 	result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1480     }
1481     return(result);
1482 }
1483 
1484 # endif
1485 
1486 
1487 #ifdef AMIGA
1488 
1489 #  define GC_AMIGA_DS
1490 #  include "AmigaOS.c"
1491 #  undef GC_AMIGA_DS
1492 
1493 #else /* !OS2 && !Windows && !AMIGA */
1494 
GC_register_data_segments()1495 void GC_register_data_segments()
1496 {
1497 #   if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1498 #     if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1499 	/* As of Solaris 2.3, the Solaris threads implementation	*/
1500 	/* allocates the data structure for the initial thread with	*/
1501 	/* sbrk at process startup.  It needs to be scanned, so that	*/
1502 	/* we don't lose some malloc allocated data structures		*/
1503 	/* hanging from it.  We're on thin ice here ...			*/
1504         extern caddr_t sbrk();
1505 
1506 	GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1507 #     else
1508 	GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1509 #       if defined(DATASTART2)
1510          GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1511 #       endif
1512 #     endif
1513 #   endif
1514 #   if defined(MACOS)
1515     {
1516 #   if defined(THINK_C)
1517 	extern void* GC_MacGetDataStart(void);
1518 	/* globals begin above stack and end at a5. */
1519 	GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1520 			   (ptr_t)LMGetCurrentA5(), FALSE);
1521 #   else
1522 #     if defined(__MWERKS__)
1523 #       if !__POWERPC__
1524 	  extern void* GC_MacGetDataStart(void);
1525 	  /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1526 #         if __option(far_data)
1527 	  extern void* GC_MacGetDataEnd(void);
1528 #         endif
1529 	  /* globals begin above stack and end at a5. */
1530 	  GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1531           		     (ptr_t)LMGetCurrentA5(), FALSE);
1532 	  /* MATTHEW: Handle Far Globals */
1533 #         if __option(far_data)
1534       /* Far globals follow he QD globals: */
1535 	  GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1536           		     (ptr_t)GC_MacGetDataEnd(), FALSE);
1537 #         endif
1538 #       else
1539 	  extern char __data_start__[], __data_end__[];
1540 	  GC_add_roots_inner((ptr_t)&__data_start__,
1541 	  		     (ptr_t)&__data_end__, FALSE);
1542 #       endif /* __POWERPC__ */
1543 #     endif /* __MWERKS__ */
1544 #   endif /* !THINK_C */
1545     }
1546 #   endif /* MACOS */
1547 
1548     /* Dynamic libraries are added at every collection, since they may  */
1549     /* change.								*/
1550 }
1551 
1552 # endif  /* ! AMIGA */
1553 # endif  /* ! MSWIN32 && ! MSWINCE*/
1554 # endif  /* ! OS2 */
1555 
1556 /*
1557  * Auxiliary routines for obtaining memory from OS.
1558  */
1559 
1560 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1561 	&& !defined(MSWIN32) && !defined(MSWINCE) \
1562 	&& !defined(MACOS) && !defined(DOS4GW)
1563 
1564 # ifdef SUNOS4
1565     extern caddr_t sbrk();
1566 # endif
1567 # ifdef __STDC__
1568 #   define SBRK_ARG_T ptrdiff_t
1569 # else
1570 #   define SBRK_ARG_T int
1571 # endif
1572 
1573 
1574 # if 0 && defined(RS6000)  /* We now use mmap */
1575 /* The compiler seems to generate speculative reads one past the end of	*/
1576 /* an allocated object.  Hence we need to make sure that the page 	*/
1577 /* following the last heap page is also mapped.				*/
1578 ptr_t GC_unix_get_mem(bytes)
1579 word bytes;
1580 {
1581     caddr_t cur_brk = (caddr_t)sbrk(0);
1582     caddr_t result;
1583     SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1584     static caddr_t my_brk_val = 0;
1585 
1586     if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1587     if (lsbs != 0) {
1588         if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1589     }
1590     if (cur_brk == my_brk_val) {
1591     	/* Use the extra block we allocated last time. */
1592         result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1593         if (result == (caddr_t)(-1)) return(0);
1594         result -= GC_page_size;
1595     } else {
1596         result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1597         if (result == (caddr_t)(-1)) return(0);
1598     }
1599     my_brk_val = result + bytes + GC_page_size;	/* Always page aligned */
1600     return((ptr_t)result);
1601 }
1602 
1603 #else  /* Not RS6000 */
1604 
1605 #if defined(USE_MMAP) || defined(USE_MUNMAP)
1606 
1607 #ifdef USE_MMAP_FIXED
1608 #   define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1609 	/* Seems to yield better performance on Solaris 2, but can	*/
1610 	/* be unreliable if something is already mapped at the address.	*/
1611 #else
1612 #   define GC_MMAP_FLAGS MAP_PRIVATE
1613 #endif
1614 
1615 #ifdef USE_MMAP_ANON
1616 # define zero_fd -1
1617 # if defined(MAP_ANONYMOUS)
1618 #   define OPT_MAP_ANON MAP_ANONYMOUS
1619 # else
1620 #   define OPT_MAP_ANON MAP_ANON
1621 # endif
1622 #else
1623   static int zero_fd;
1624 # define OPT_MAP_ANON 0
1625 #endif
1626 
1627 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1628 
1629 #if defined(USE_MMAP)
1630 /* Tested only under Linux, IRIX5 and Solaris 2 */
1631 
1632 #ifndef HEAP_START
1633 #   define HEAP_START 0
1634 #endif
1635 
GC_unix_get_mem(bytes)1636 ptr_t GC_unix_get_mem(bytes)
1637 word bytes;
1638 {
1639     void *result;
1640     static ptr_t last_addr = HEAP_START;
1641 
1642 #   ifndef USE_MMAP_ANON
1643       static GC_bool initialized = FALSE;
1644 
1645       if (!initialized) {
1646 	  zero_fd = open("/dev/zero", O_RDONLY);
1647 	  fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1648 	  initialized = TRUE;
1649       }
1650 #   endif
1651 
1652     if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1653     result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1654 		  GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1655     if (result == MAP_FAILED) return(0);
1656     last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1657     last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1658 #   if !defined(LINUX)
1659       if (last_addr == 0) {
1660         /* Oops.  We got the end of the address space.  This isn't	*/
1661 	/* usable by arbitrary C code, since one-past-end pointers	*/
1662 	/* don't work, so we discard it and try again.			*/
1663 	munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1664 			/* Leave last page mapped, so we can't repeat. */
1665 	return GC_unix_get_mem(bytes);
1666       }
1667 #   else
1668       GC_ASSERT(last_addr != 0);
1669 #   endif
1670     return((ptr_t)result);
1671 }
1672 
1673 #else /* Not RS6000, not USE_MMAP */
GC_unix_get_mem(bytes)1674 ptr_t GC_unix_get_mem(bytes)
1675 word bytes;
1676 {
1677   ptr_t result;
1678 # ifdef IRIX5
1679     /* Bare sbrk isn't thread safe.  Play by malloc rules.	*/
1680     /* The equivalent may be needed on other systems as well. 	*/
1681     __LOCK_MALLOC();
1682 # endif
1683   {
1684     ptr_t cur_brk = (ptr_t)sbrk(0);
1685     SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1686 
1687     if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1688     if (lsbs != 0) {
1689         if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1690     }
1691     result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1692     if (result == (ptr_t)(-1)) result = 0;
1693   }
1694 # ifdef IRIX5
1695     __UNLOCK_MALLOC();
1696 # endif
1697   return(result);
1698 }
1699 
1700 #endif /* Not USE_MMAP */
1701 #endif /* Not RS6000 */
1702 
1703 # endif /* UN*X */
1704 
1705 # ifdef OS2
1706 
os2_alloc(size_t bytes)1707 void * os2_alloc(size_t bytes)
1708 {
1709     void * result;
1710 
1711     if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1712     				    PAG_WRITE | PAG_COMMIT)
1713 		    != NO_ERROR) {
1714 	return(0);
1715     }
1716     if (result == 0) return(os2_alloc(bytes));
1717     return(result);
1718 }
1719 
1720 # endif /* OS2 */
1721 
1722 
1723 # if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
1724 SYSTEM_INFO GC_sysinfo;
1725 # endif
1726 
1727 # if defined(MSWIN32) || defined(CYGWIN32)
1728 
1729 word GC_n_heap_bases = 0;
1730 
1731 # ifdef USE_GLOBAL_ALLOC
1732 #   define GLOBAL_ALLOC_TEST 1
1733 # else
1734 #   define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1735 # endif
1736 
GC_win32_get_mem(bytes)1737 ptr_t GC_win32_get_mem(bytes)
1738 word bytes;
1739 {
1740     ptr_t result;
1741 
1742 # ifdef CYGWIN32
1743     result = GC_unix_get_mem (bytes);
1744 # else
1745     if (GLOBAL_ALLOC_TEST) {
1746     	/* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE.	*/
1747     	/* There are also unconfirmed rumors of other		*/
1748     	/* problems, so we dodge the issue.			*/
1749         result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1750         result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1751     } else {
1752 	/* VirtualProtect only works on regions returned by a	*/
1753 	/* single VirtualAlloc call.  Thus we allocate one 	*/
1754 	/* extra page, which will prevent merging of blocks	*/
1755 	/* in separate regions, and eliminate any temptation	*/
1756 	/* to call VirtualProtect on a range spanning regions.	*/
1757 	/* This wastes a small amount of memory, and risks	*/
1758 	/* increased fragmentation.  But better alternatives	*/
1759 	/* would require effort.				*/
1760         result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1761     				      MEM_COMMIT | MEM_RESERVE,
1762     				      PAGE_EXECUTE_READWRITE);
1763     }
1764 #endif
1765     if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1766     	/* If I read the documentation correctly, this can	*/
1767     	/* only happen if HBLKSIZE > 64k or not a power of 2.	*/
1768     if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1769     GC_heap_bases[GC_n_heap_bases++] = result;
1770     return(result);
1771 }
1772 
GC_win32_free_heap()1773 void GC_win32_free_heap ()
1774 {
1775     if (GC_no_win32_dlls) {
1776  	while (GC_n_heap_bases > 0) {
1777 # ifdef CYGWIN32
1778  	    free (GC_heap_bases[--GC_n_heap_bases]);
1779 # else
1780  	    GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1781 # endif
1782  	    GC_heap_bases[GC_n_heap_bases] = 0;
1783  	}
1784     }
1785 }
1786 # endif
1787 
1788 #ifdef AMIGA
1789 # define GC_AMIGA_AM
1790 # include "AmigaOS.c"
1791 # undef GC_AMIGA_AM
1792 #endif
1793 
1794 
1795 # ifdef MSWINCE
1796 word GC_n_heap_bases = 0;
1797 
GC_wince_get_mem(bytes)1798 ptr_t GC_wince_get_mem(bytes)
1799 word bytes;
1800 {
1801     ptr_t result;
1802     word i;
1803 
1804     /* Round up allocation size to multiple of page size */
1805     bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1806 
1807     /* Try to find reserved, uncommitted pages */
1808     for (i = 0; i < GC_n_heap_bases; i++) {
1809 	if (((word)(-(signed_word)GC_heap_lengths[i])
1810 	     & (GC_sysinfo.dwAllocationGranularity-1))
1811 	    >= bytes) {
1812 	    result = GC_heap_bases[i] + GC_heap_lengths[i];
1813 	    break;
1814 	}
1815     }
1816 
1817     if (i == GC_n_heap_bases) {
1818 	/* Reserve more pages */
1819 	word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1820 			 & ~(GC_sysinfo.dwAllocationGranularity-1);
1821 	/* If we ever support MPROTECT_VDB here, we will probably need to	*/
1822 	/* ensure that res_bytes is strictly > bytes, so that VirtualProtect	*/
1823 	/* never spans regions.  It seems to be OK for a VirtualFree argument	*/
1824 	/* to span regions, so we should be OK for now.				*/
1825 	result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1826     				      MEM_RESERVE | MEM_TOP_DOWN,
1827     				      PAGE_EXECUTE_READWRITE);
1828 	if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1829     	    /* If I read the documentation correctly, this can	*/
1830     	    /* only happen if HBLKSIZE > 64k or not a power of 2.	*/
1831 	if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1832 	GC_heap_bases[GC_n_heap_bases] = result;
1833 	GC_heap_lengths[GC_n_heap_bases] = 0;
1834 	GC_n_heap_bases++;
1835     }
1836 
1837     /* Commit pages */
1838     result = (ptr_t) VirtualAlloc(result, bytes,
1839 				  MEM_COMMIT,
1840     				  PAGE_EXECUTE_READWRITE);
1841     if (result != NULL) {
1842 	if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1843 	GC_heap_lengths[i] += bytes;
1844     }
1845 
1846     return(result);
1847 }
1848 # endif
1849 
1850 #ifdef USE_MUNMAP
1851 
1852 /* For now, this only works on Win32/WinCE and some Unix-like	*/
1853 /* systems.  If you have something else, don't define		*/
1854 /* USE_MUNMAP.							*/
1855 /* We assume ANSI C to support this feature.			*/
1856 
1857 #if !defined(MSWIN32) && !defined(MSWINCE)
1858 
1859 #include <unistd.h>
1860 #include <sys/mman.h>
1861 #include <sys/stat.h>
1862 #include <sys/types.h>
1863 
1864 #endif
1865 
1866 /* Compute a page aligned starting address for the unmap 	*/
1867 /* operation on a block of size bytes starting at start.	*/
1868 /* Return 0 if the block is too small to make this feasible.	*/
GC_unmap_start(ptr_t start,word bytes)1869 ptr_t GC_unmap_start(ptr_t start, word bytes)
1870 {
1871     ptr_t result = start;
1872     /* Round start to next page boundary.       */
1873         result += GC_page_size - 1;
1874         result = (ptr_t)((word)result & ~(GC_page_size - 1));
1875     if (result + GC_page_size > start + bytes) return 0;
1876     return result;
1877 }
1878 
1879 /* Compute end address for an unmap operation on the indicated	*/
1880 /* block.							*/
GC_unmap_end(ptr_t start,word bytes)1881 ptr_t GC_unmap_end(ptr_t start, word bytes)
1882 {
1883     ptr_t end_addr = start + bytes;
1884     end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1885     return end_addr;
1886 }
1887 
1888 /* Under Win32/WinCE we commit (map) and decommit (unmap)	*/
1889 /* memory using	VirtualAlloc and VirtualFree.  These functions	*/
1890 /* work on individual allocations of virtual memory, made	*/
1891 /* previously using VirtualAlloc with the MEM_RESERVE flag.	*/
1892 /* The ranges we need to (de)commit may span several of these	*/
1893 /* allocations; therefore we use VirtualQuery to check		*/
1894 /* allocation lengths, and split up the range as necessary.	*/
1895 
1896 /* We assume that GC_remap is called on exactly the same range	*/
1897 /* as a previous call to GC_unmap.  It is safe to consistently	*/
1898 /* round the endpoints in both places.				*/
GC_unmap(ptr_t start,word bytes)1899 void GC_unmap(ptr_t start, word bytes)
1900 {
1901     ptr_t start_addr = GC_unmap_start(start, bytes);
1902     ptr_t end_addr = GC_unmap_end(start, bytes);
1903     word len = end_addr - start_addr;
1904     if (0 == start_addr) return;
1905 #   if defined(MSWIN32) || defined(MSWINCE)
1906       while (len != 0) {
1907           MEMORY_BASIC_INFORMATION mem_info;
1908 	  GC_word free_len;
1909 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1910 	      != sizeof(mem_info))
1911 	      ABORT("Weird VirtualQuery result");
1912 	  free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1913 	  if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1914 	      ABORT("VirtualFree failed");
1915 	  GC_unmapped_bytes += free_len;
1916 	  start_addr += free_len;
1917 	  len -= free_len;
1918       }
1919 #   else
1920       /* We immediately remap it to prevent an intervening mmap from	*/
1921       /* accidentally grabbing the same address space.			*/
1922       {
1923 	void * result;
1924         result = mmap(start_addr, len, PROT_NONE,
1925 		      MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1926 		      zero_fd, 0/* offset */);
1927         if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1928       }
1929       GC_unmapped_bytes += len;
1930 #   endif
1931 }
1932 
1933 
GC_remap(ptr_t start,word bytes)1934 void GC_remap(ptr_t start, word bytes)
1935 {
1936     ptr_t start_addr = GC_unmap_start(start, bytes);
1937     ptr_t end_addr = GC_unmap_end(start, bytes);
1938     word len = end_addr - start_addr;
1939 
1940 #   if defined(MSWIN32) || defined(MSWINCE)
1941       ptr_t result;
1942 
1943       if (0 == start_addr) return;
1944       while (len != 0) {
1945           MEMORY_BASIC_INFORMATION mem_info;
1946 	  GC_word alloc_len;
1947 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1948 	      != sizeof(mem_info))
1949 	      ABORT("Weird VirtualQuery result");
1950 	  alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1951 	  result = VirtualAlloc(start_addr, alloc_len,
1952 				MEM_COMMIT,
1953 				PAGE_EXECUTE_READWRITE);
1954 	  if (result != start_addr) {
1955 	      ABORT("VirtualAlloc remapping failed");
1956 	  }
1957 	  GC_unmapped_bytes -= alloc_len;
1958 	  start_addr += alloc_len;
1959 	  len -= alloc_len;
1960       }
1961 #   else
1962       /* It was already remapped with PROT_NONE. */
1963       int result;
1964 
1965       if (0 == start_addr) return;
1966       result = mprotect(start_addr, len,
1967 		        PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1968       if (result != 0) {
1969 	  GC_err_printf3(
1970 		"Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1971 	        start_addr, len, errno);
1972 	  ABORT("Mprotect remapping failed");
1973       }
1974       GC_unmapped_bytes -= len;
1975 #   endif
1976 }
1977 
1978 /* Two adjacent blocks have already been unmapped and are about to	*/
1979 /* be merged.  Unmap the whole block.  This typically requires		*/
1980 /* that we unmap a small section in the middle that was not previously	*/
1981 /* unmapped due to alignment constraints.				*/
GC_unmap_gap(ptr_t start1,word bytes1,ptr_t start2,word bytes2)1982 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1983 {
1984     ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1985     ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1986     ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1987     ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1988     ptr_t start_addr = end1_addr;
1989     ptr_t end_addr = start2_addr;
1990     word len;
1991     GC_ASSERT(start1 + bytes1 == start2);
1992     if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1993     if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1994     if (0 == start_addr) return;
1995     len = end_addr - start_addr;
1996 #   if defined(MSWIN32) || defined(MSWINCE)
1997       while (len != 0) {
1998           MEMORY_BASIC_INFORMATION mem_info;
1999 	  GC_word free_len;
2000 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
2001 	      != sizeof(mem_info))
2002 	      ABORT("Weird VirtualQuery result");
2003 	  free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
2004 	  if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
2005 	      ABORT("VirtualFree failed");
2006 	  GC_unmapped_bytes += free_len;
2007 	  start_addr += free_len;
2008 	  len -= free_len;
2009       }
2010 #   else
2011       if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
2012       GC_unmapped_bytes += len;
2013 #   endif
2014 }
2015 
2016 #endif /* USE_MUNMAP */
2017 
2018 /* Routine for pushing any additional roots.  In THREADS 	*/
2019 /* environment, this is also responsible for marking from 	*/
2020 /* thread stacks. 						*/
2021 #ifndef THREADS
2022 void (*GC_push_other_roots)() = 0;
2023 #else /* THREADS */
2024 
2025 # ifdef PCR
GC_push_thread_stack(PCR_Th_T * t,PCR_Any dummy)2026 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
2027 {
2028     struct PCR_ThCtl_TInfoRep info;
2029     PCR_ERes result;
2030 
2031     info.ti_stkLow = info.ti_stkHi = 0;
2032     result = PCR_ThCtl_GetInfo(t, &info);
2033     GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
2034     return(result);
2035 }
2036 
2037 /* Push the contents of an old object. We treat this as stack	*/
2038 /* data only becasue that makes it robust against mark stack	*/
2039 /* overflow.							*/
GC_push_old_obj(void * p,size_t size,PCR_Any data)2040 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
2041 {
2042     GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
2043     return(PCR_ERes_okay);
2044 }
2045 
2046 
GC_default_push_other_roots(void)2047 void GC_default_push_other_roots GC_PROTO((void))
2048 {
2049     /* Traverse data allocated by previous memory managers.		*/
2050 	{
2051 	  extern struct PCR_MM_ProcsRep * GC_old_allocator;
2052 
2053 	  if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
2054 	  					   GC_push_old_obj, 0)
2055 	      != PCR_ERes_okay) {
2056 	      ABORT("Old object enumeration failed");
2057 	  }
2058 	}
2059     /* Traverse all thread stacks. */
2060 	if (PCR_ERes_IsErr(
2061                 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
2062               || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2063               ABORT("Thread stack marking failed\n");
2064 	}
2065 }
2066 
2067 # endif /* PCR */
2068 
2069 # ifdef SRC_M3
2070 
2071 # ifdef ALL_INTERIOR_POINTERS
2072     --> misconfigured
2073 # endif
2074 
2075 void GC_push_thread_structures GC_PROTO((void))
2076 {
2077     /* Not our responsibibility. */
2078 }
2079 
2080 extern void ThreadF__ProcessStacks();
2081 
GC_push_thread_stack(start,stop)2082 void GC_push_thread_stack(start, stop)
2083 word start, stop;
2084 {
2085    GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2086 }
2087 
2088 /* Push routine with M3 specific calling convention. */
GC_m3_push_root(dummy1,p,dummy2,dummy3)2089 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2090 word *p;
2091 ptr_t dummy1, dummy2;
2092 int dummy3;
2093 {
2094     word q = *p;
2095 
2096     GC_PUSH_ONE_STACK(q, p);
2097 }
2098 
2099 /* M3 set equivalent to RTHeap.TracedRefTypes */
2100 typedef struct { int elts[1]; }  RefTypeSet;
2101 RefTypeSet GC_TracedRefTypes = {{0x1}};
2102 
GC_default_push_other_roots(void)2103 void GC_default_push_other_roots GC_PROTO((void))
2104 {
2105     /* Use the M3 provided routine for finding static roots.	 */
2106     /* This is a bit dubious, since it presumes no C roots.	 */
2107     /* We handle the collector roots explicitly in GC_push_roots */
2108       	RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2109 	if (GC_words_allocd > 0) {
2110 	    ThreadF__ProcessStacks(GC_push_thread_stack);
2111 	}
2112 	/* Otherwise this isn't absolutely necessary, and we have	*/
2113 	/* startup ordering problems.					*/
2114 }
2115 
2116 # endif /* SRC_M3 */
2117 
2118 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2119      defined(GC_WIN32_THREADS)
2120 
2121 extern void GC_push_all_stacks();
2122 
GC_default_push_other_roots(void)2123 void GC_default_push_other_roots GC_PROTO((void))
2124 {
2125     GC_push_all_stacks();
2126 }
2127 
2128 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2129 
2130 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2131 
2132 #endif /* THREADS */
2133 
2134 /*
2135  * Routines for accessing dirty  bits on virtual pages.
2136  * We plan to eventually implement four strategies for doing so:
2137  * DEFAULT_VDB:	A simple dummy implementation that treats every page
2138  *		as possibly dirty.  This makes incremental collection
2139  *		useless, but the implementation is still correct.
2140  * PCR_VDB:	Use PPCRs virtual dirty bit facility.
2141  * PROC_VDB:	Use the /proc facility for reading dirty bits.  Only
2142  *		works under some SVR4 variants.  Even then, it may be
2143  *		too slow to be entirely satisfactory.  Requires reading
2144  *		dirty bits for entire address space.  Implementations tend
2145  *		to assume that the client is a (slow) debugger.
2146  * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2147  *		dirtied pages.  The implementation (and implementability)
2148  *		is highly system dependent.  This usually fails when system
2149  *		calls write to a protected page.  We prevent the read system
2150  *		call from doing so.  It is the clients responsibility to
2151  *		make sure that other system calls are similarly protected
2152  *		or write only to the stack.
2153  */
2154 GC_bool GC_dirty_maintained = FALSE;
2155 
2156 # ifdef DEFAULT_VDB
2157 
2158 /* All of the following assume the allocation lock is held, and	*/
2159 /* signals are disabled.					*/
2160 
2161 /* The client asserts that unallocated pages in the heap are never	*/
2162 /* written.								*/
2163 
2164 /* Initialize virtual dirty bit implementation.			*/
GC_dirty_init()2165 void GC_dirty_init()
2166 {
2167 #   ifdef PRINTSTATS
2168       GC_printf0("Initializing DEFAULT_VDB...\n");
2169 #   endif
2170     GC_dirty_maintained = TRUE;
2171 }
2172 
2173 /* Retrieve system dirty bits for heap to a local buffer.	*/
2174 /* Restore the systems notion of which pages are dirty.		*/
GC_read_dirty()2175 void GC_read_dirty()
2176 {}
2177 
2178 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer?	*/
2179 /* If the actual page size is different, this returns TRUE if any	*/
2180 /* of the pages overlapping h are dirty.  This routine may err on the	*/
2181 /* side of labelling pages as dirty (and this implementation does).	*/
2182 /*ARGSUSED*/
GC_page_was_dirty(h)2183 GC_bool GC_page_was_dirty(h)
2184 struct hblk *h;
2185 {
2186     return(TRUE);
2187 }
2188 
2189 /*
2190  * The following two routines are typically less crucial.  They matter
2191  * most with large dynamic libraries, or if we can't accurately identify
2192  * stacks, e.g. under Solaris 2.X.  Otherwise the following default
2193  * versions are adequate.
2194  */
2195 
2196 /* Could any valid GC heap pointer ever have been written to this page?	*/
2197 /*ARGSUSED*/
GC_page_was_ever_dirty(h)2198 GC_bool GC_page_was_ever_dirty(h)
2199 struct hblk *h;
2200 {
2201     return(TRUE);
2202 }
2203 
2204 /* Reset the n pages starting at h to "was never dirty" status.	*/
GC_is_fresh(h,n)2205 void GC_is_fresh(h, n)
2206 struct hblk *h;
2207 word n;
2208 {
2209 }
2210 
2211 /* A call that:						*/
2212 /* I) hints that [h, h+nblocks) is about to be written.	*/
2213 /* II) guarantees that protection is removed.		*/
2214 /* (I) may speed up some dirty bit implementations.	*/
2215 /* (II) may be essential if we need to ensure that	*/
2216 /* pointer-free system call buffers in the heap are 	*/
2217 /* not protected.					*/
2218 /*ARGSUSED*/
GC_remove_protection(h,nblocks,is_ptrfree)2219 void GC_remove_protection(h, nblocks, is_ptrfree)
2220 struct hblk *h;
2221 word nblocks;
2222 GC_bool is_ptrfree;
2223 {
2224 }
2225 
2226 # endif /* DEFAULT_VDB */
2227 
2228 
2229 # ifdef MPROTECT_VDB
2230 
2231 /*
2232  * See DEFAULT_VDB for interface descriptions.
2233  */
2234 
2235 /*
2236  * This implementation maintains dirty bits itself by catching write
2237  * faults and keeping track of them.  We assume nobody else catches
2238  * SIGBUS or SIGSEGV.  We assume no write faults occur in system calls.
2239  * This means that clients must ensure that system calls don't write
2240  * to the write-protected heap.  Probably the best way to do this is to
2241  * ensure that system calls write at most to POINTERFREE objects in the
2242  * heap, and do even that only if we are on a platform on which those
2243  * are not protected.  Another alternative is to wrap system calls
2244  * (see example for read below), but the current implementation holds
2245  * a lock across blocking calls, making it problematic for multithreaded
2246  * applications.
2247  * We assume the page size is a multiple of HBLKSIZE.
2248  * We prefer them to be the same.  We avoid protecting POINTERFREE
2249  * objects only if they are the same.
2250  */
2251 
2252 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2253 
2254 #   include <sys/mman.h>
2255 #   include <signal.h>
2256 #   include <sys/syscall.h>
2257 
2258 #   define PROTECT(addr, len) \
2259     	  if (mprotect((caddr_t)(addr), (size_t)(len), \
2260     	      	       PROT_READ | OPT_PROT_EXEC) < 0) { \
2261     	    ABORT("mprotect failed"); \
2262     	  }
2263 #   define UNPROTECT(addr, len) \
2264     	  if (mprotect((caddr_t)(addr), (size_t)(len), \
2265     	  	       PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2266     	    ABORT("un-mprotect failed"); \
2267     	  }
2268 
2269 # else
2270 
2271 # ifdef DARWIN
2272     /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2273        decrease the likelihood of some of the problems described below. */
2274     #include <mach/vm_map.h>
2275     static mach_port_t GC_task_self;
2276     #define PROTECT(addr,len) \
2277         if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2278                 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2279             ABORT("vm_portect failed"); \
2280         }
2281     #define UNPROTECT(addr,len) \
2282         if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2283                 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2284             ABORT("vm_portect failed"); \
2285         }
2286 # else
2287 
2288 #   ifndef MSWINCE
2289 #     include <signal.h>
2290 #   endif
2291 
2292     static DWORD protect_junk;
2293 #   define PROTECT(addr, len) \
2294 	  if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2295 	  		      &protect_junk)) { \
2296 	    DWORD last_error = GetLastError(); \
2297 	    GC_printf1("Last error code: %lx\n", last_error); \
2298 	    ABORT("VirtualProtect failed"); \
2299 	  }
2300 #   define UNPROTECT(addr, len) \
2301 	  if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2302 	  		      &protect_junk)) { \
2303 	    ABORT("un-VirtualProtect failed"); \
2304 	  }
2305 # endif /* !DARWIN */
2306 # endif /* MSWIN32 || MSWINCE || DARWIN */
2307 
2308 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2309     typedef void (* SIG_PF)();
2310 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2311 
2312 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2313     || defined(HURD)
2314 # ifdef __STDC__
2315     typedef void (* SIG_PF)(int);
2316 # else
2317     typedef void (* SIG_PF)();
2318 # endif
2319 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2320 
2321 #if defined(MSWIN32)
2322     typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2323 #   undef SIG_DFL
2324 #   define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2325 #endif
2326 #if defined(MSWINCE)
2327     typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2328 #   undef SIG_DFL
2329 #   define SIG_DFL (SIG_PF) (-1)
2330 #endif
2331 
2332 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2333     typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2334 #endif /* IRIX5 || OSF1 || HURD */
2335 
2336 #if defined(SUNOS5SIGS)
2337 # if defined(HPUX) || defined(FREEBSD)
2338 #   define SIGINFO_T siginfo_t
2339 # else
2340 #   define SIGINFO_T struct siginfo
2341 # endif
2342 # ifdef __STDC__
2343     typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2344 # else
2345     typedef void (* REAL_SIG_PF)();
2346 # endif
2347 #endif /* SUNOS5SIGS */
2348 
2349 #if defined(LINUX)
2350 #   if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2351       typedef struct sigcontext s_c;
2352 #   else  /* glibc < 2.2 */
2353 #     include <linux/version.h>
2354 #     if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2355         typedef struct sigcontext s_c;
2356 #     else
2357         typedef struct sigcontext_struct s_c;
2358 #     endif
2359 #   endif  /* glibc < 2.2 */
2360 #   if defined(ALPHA) || defined(M68K)
2361       typedef void (* REAL_SIG_PF)(int, int, s_c *);
2362 #   else
2363 #     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2364         typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2365 	/* FIXME:						  */
2366 	/* According to SUSV3, the last argument should have type */
2367 	/* void * or ucontext_t *				  */
2368 #     else
2369         typedef void (* REAL_SIG_PF)(int, s_c);
2370 #     endif
2371 #   endif
2372 #   ifdef ALPHA
2373     /* Retrieve fault address from sigcontext structure by decoding	*/
2374     /* instruction.							*/
get_fault_addr(s_c * sc)2375     char * get_fault_addr(s_c *sc) {
2376         unsigned instr;
2377 	word faultaddr;
2378 
2379 	instr = *((unsigned *)(sc->sc_pc));
2380 	faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2381 	faultaddr += (word) (((int)instr << 16) >> 16);
2382 	return (char *)faultaddr;
2383     }
2384 #   endif /* !ALPHA */
2385 # endif /* LINUX */
2386 
2387 #ifndef DARWIN
2388 SIG_PF GC_old_bus_handler;
2389 SIG_PF GC_old_segv_handler;	/* Also old MSWIN32 ACCESS_VIOLATION filter */
2390 #endif /* !DARWIN */
2391 
2392 #if defined(THREADS)
2393 /* We need to lock around the bitmap update in the write fault handler	*/
2394 /* in order to avoid the risk of losing a bit.  We do this with a 	*/
2395 /* test-and-set spin lock if we know how to do that.  Otherwise we	*/
2396 /* check whether we are already in the handler and use the dumb but	*/
2397 /* safe fallback algorithm of setting all bits in the word.		*/
2398 /* Contention should be very rare, so we do the minimum to handle it	*/
2399 /* correctly.								*/
2400 #ifdef GC_TEST_AND_SET_DEFINED
2401   static VOLATILE unsigned int fault_handler_lock = 0;
async_set_pht_entry_from_index(VOLATILE page_hash_table db,int index)2402   void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2403     while (GC_test_and_set(&fault_handler_lock)) {}
2404     /* Could also revert to set_pht_entry_from_index_safe if initial	*/
2405     /* GC_test_and_set fails.						*/
2406     set_pht_entry_from_index(db, index);
2407     GC_clear(&fault_handler_lock);
2408   }
2409 #else /* !GC_TEST_AND_SET_DEFINED */
2410   /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong,	*/
2411   /* just before we notice the conflict and correct it. We may end up   */
2412   /* looking at it while it's wrong.  But this requires contention	*/
2413   /* exactly when a GC is triggered, which seems far less likely to	*/
2414   /* fail than the old code, which had no reported failures.  Thus we	*/
2415   /* leave it this way while we think of something better, or support	*/
2416   /* GC_test_and_set on the remaining platforms.			*/
2417   static VOLATILE word currently_updating = 0;
async_set_pht_entry_from_index(VOLATILE page_hash_table db,int index)2418   void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2419     unsigned int update_dummy;
2420     currently_updating = (word)(&update_dummy);
2421     set_pht_entry_from_index(db, index);
2422     /* If we get contention in the 10 or so instruction window here,	*/
2423     /* and we get stopped by a GC between the two updates, we lose!	*/
2424     if (currently_updating != (word)(&update_dummy)) {
2425 	set_pht_entry_from_index_safe(db, index);
2426 	/* We claim that if two threads concurrently try to update the	*/
2427 	/* dirty bit vector, the first one to execute UPDATE_START 	*/
2428 	/* will see it changed when UPDATE_END is executed.  (Note that	*/
2429 	/* &update_dummy must differ in two distinct threads.)  It	*/
2430 	/* will then execute set_pht_entry_from_index_safe, thus 	*/
2431 	/* returning us to a safe state, though not soon enough.	*/
2432     }
2433   }
2434 #endif /* !GC_TEST_AND_SET_DEFINED */
2435 #else /* !THREADS */
2436 # define async_set_pht_entry_from_index(db, index) \
2437 	set_pht_entry_from_index(db, index)
2438 #endif /* !THREADS */
2439 
2440 /*ARGSUSED*/
2441 #if !defined(DARWIN)
2442 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
GC_write_fault_handler(sig,code,scp,addr)2443     void GC_write_fault_handler(sig, code, scp, addr)
2444     int sig, code;
2445     struct sigcontext *scp;
2446     char * addr;
2447 #   ifdef SUNOS4
2448 #     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2449 #     define CODE_OK (FC_CODE(code) == FC_PROT \
2450               	    || (FC_CODE(code) == FC_OBJERR \
2451               	       && FC_ERRNO(code) == FC_PROT))
2452 #   endif
2453 #   ifdef FREEBSD
2454 #     define SIG_OK (sig == SIGBUS)
2455 #     define CODE_OK TRUE
2456 #   endif
2457 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2458 
2459 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2460 #   include <errno.h>
2461     void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2462 #   ifdef OSF1
2463 #     define SIG_OK (sig == SIGSEGV)
2464 #     define CODE_OK (code == 2 /* experimentally determined */)
2465 #   endif
2466 #   ifdef IRIX5
2467 #     define SIG_OK (sig == SIGSEGV)
2468 #     define CODE_OK (code == EACCES)
2469 #   endif
2470 #   ifdef HURD
2471 #     define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2472 #     define CODE_OK  TRUE
2473 #   endif
2474 # endif /* IRIX5 || OSF1 || HURD */
2475 
2476 # if defined(LINUX)
2477 #   if defined(ALPHA) || defined(M68K)
2478       void GC_write_fault_handler(int sig, int code, s_c * sc)
2479 #   else
2480 #     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2481         void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2482 #     else
2483 #       if defined(ARM32)
2484           void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2485 #       else
2486           void GC_write_fault_handler(int sig, s_c sc)
2487 #       endif
2488 #     endif
2489 #   endif
2490 #   define SIG_OK (sig == SIGSEGV)
2491 #   define CODE_OK TRUE
2492 	/* Empirically c.trapno == 14, on IA32, but is that useful?     */
2493 	/* Should probably consider alignment issues on other 		*/
2494 	/* architectures.						*/
2495 # endif /* LINUX */
2496 
2497 # if defined(SUNOS5SIGS)
2498 #  ifdef __STDC__
2499     void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2500 #  else
2501     void GC_write_fault_handler(sig, scp, context)
2502     int sig;
2503     SIGINFO_T *scp;
2504     void * context;
2505 #  endif
2506 #   ifdef HPUX
2507 #     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2508 #     define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2509 		     || (scp -> si_code == BUS_ADRERR) \
2510 		     || (scp -> si_code == BUS_UNKNOWN) \
2511 		     || (scp -> si_code == SEGV_UNKNOWN) \
2512 		     || (scp -> si_code == BUS_OBJERR)
2513 #   else
2514 #     ifdef FREEBSD
2515 #       define SIG_OK (sig == SIGBUS)
2516 #       define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2517 #     else
2518 #       define SIG_OK (sig == SIGSEGV)
2519 #       define CODE_OK (scp -> si_code == SEGV_ACCERR)
2520 #     endif
2521 #   endif
2522 # endif /* SUNOS5SIGS */
2523 
2524 # if defined(MSWIN32) || defined(MSWINCE)
2525     LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2526 #   define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2527 			STATUS_ACCESS_VIOLATION)
2528 #   define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2529 			/* Write fault */
2530 # endif /* MSWIN32 || MSWINCE */
2531 {
2532     register unsigned i;
2533 #   if defined(HURD)
2534 	char *addr = (char *) code;
2535 #   endif
2536 #   ifdef IRIX5
2537 	char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2538 #   endif
2539 #   if defined(OSF1) && defined(ALPHA)
2540 	char * addr = (char *) (scp -> sc_traparg_a0);
2541 #   endif
2542 #   ifdef SUNOS5SIGS
2543 	char * addr = (char *) (scp -> si_addr);
2544 #   endif
2545 #   ifdef LINUX
2546 #     if defined(I386)
2547 	char * addr = (char *) (sc.cr2);
2548 #     else
2549 #	if defined(M68K)
2550           char * addr = NULL;
2551 
2552 	  struct sigcontext *scp = (struct sigcontext *)(sc);
2553 
2554 	  int format = (scp->sc_formatvec >> 12) & 0xf;
2555 	  unsigned long *framedata = (unsigned long *)(scp + 1);
2556 	  unsigned long ea;
2557 
2558 	  if (format == 0xa || format == 0xb) {
2559 	  	/* 68020/030 */
2560 	  	ea = framedata[2];
2561 	  } else if (format == 7) {
2562 	  	/* 68040 */
2563 	  	ea = framedata[3];
2564 	  	if (framedata[1] & 0x08000000) {
2565 	  		/* correct addr on misaligned access */
2566 	  		ea = (ea+4095)&(~4095);
2567 		}
2568 	  } else if (format == 4) {
2569 	  	/* 68060 */
2570 	  	ea = framedata[0];
2571 	  	if (framedata[1] & 0x08000000) {
2572 	  		/* correct addr on misaligned access */
2573 	  		ea = (ea+4095)&(~4095);
2574 	  	}
2575 	  }
2576 	  addr = (char *)ea;
2577 #	else
2578 #	  ifdef ALPHA
2579             char * addr = get_fault_addr(sc);
2580 #	  else
2581 #	    if defined(IA64) || defined(HP_PA) || defined(X86_64)
2582 	      char * addr = si -> si_addr;
2583 	      /* I believe this is claimed to work on all platforms for	*/
2584 	      /* Linux 2.3.47 and later.  Hopefully we don't have to	*/
2585 	      /* worry about earlier kernels on IA64.			*/
2586 #	    else
2587 #             if defined(POWERPC)
2588                 char * addr = (char *) (sc.regs->dar);
2589 #	      else
2590 #               if defined(ARM32)
2591                   char * addr = (char *)sc.fault_address;
2592 #               else
2593 #		  if defined(CRIS)
2594 		    char * addr = (char *)sc.regs.csraddr;
2595 #		  else
2596 		    --> architecture not supported
2597 #		  endif
2598 #               endif
2599 #	      endif
2600 #	    endif
2601 #	  endif
2602 #	endif
2603 #     endif
2604 #   endif
2605 #   if defined(MSWIN32) || defined(MSWINCE)
2606 	char * addr = (char *) (exc_info -> ExceptionRecord
2607 				-> ExceptionInformation[1]);
2608 #	define sig SIGSEGV
2609 #   endif
2610 
2611     if (SIG_OK && CODE_OK) {
2612         register struct hblk * h =
2613         		(struct hblk *)((word)addr & ~(GC_page_size-1));
2614         GC_bool in_allocd_block;
2615 
2616 #	ifdef SUNOS5SIGS
2617 	    /* Address is only within the correct physical page.	*/
2618 	    in_allocd_block = FALSE;
2619             for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2620               if (HDR(h+i) != 0) {
2621                 in_allocd_block = TRUE;
2622               }
2623             }
2624 #	else
2625 	    in_allocd_block = (HDR(addr) != 0);
2626 #	endif
2627         if (!in_allocd_block) {
2628 	    /* FIXME - We should make sure that we invoke the	*/
2629 	    /* old handler with the appropriate calling 	*/
2630 	    /* sequence, which often depends on SA_SIGINFO.	*/
2631 
2632 	    /* Heap blocks now begin and end on page boundaries */
2633             SIG_PF old_handler;
2634 
2635             if (sig == SIGSEGV) {
2636             	old_handler = GC_old_segv_handler;
2637             } else {
2638                 old_handler = GC_old_bus_handler;
2639             }
2640             if (old_handler == SIG_DFL) {
2641 #		if !defined(MSWIN32) && !defined(MSWINCE)
2642 		    GC_err_printf1("Segfault at 0x%lx\n", addr);
2643                     ABORT("Unexpected bus error or segmentation fault");
2644 #		else
2645 		    return(EXCEPTION_CONTINUE_SEARCH);
2646 #		endif
2647             } else {
2648 #		if defined (SUNOS4) \
2649                     || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2650 		    (*old_handler) (sig, code, scp, addr);
2651 		    return;
2652 #		endif
2653 #		if defined (SUNOS5SIGS)
2654                     /*
2655                      * FIXME: For FreeBSD, this code should check if the
2656                      * old signal handler used the traditional BSD style and
2657                      * if so call it using that style.
2658                      */
2659 		    (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2660 		    return;
2661 #		endif
2662 #		if defined (LINUX)
2663 #		    if defined(ALPHA) || defined(M68K)
2664 		        (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2665 #		    else
2666 #		      if defined(IA64) || defined(HP_PA) || defined(X86_64)
2667 		        (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2668 #		      else
2669 		        (*(REAL_SIG_PF)old_handler) (sig, sc);
2670 #		      endif
2671 #		    endif
2672 		    return;
2673 #		endif
2674 #		if defined (IRIX5) || defined(OSF1) || defined(HURD)
2675 		    (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2676 		    return;
2677 #		endif
2678 #		ifdef MSWIN32
2679 		    return((*old_handler)(exc_info));
2680 #		endif
2681             }
2682         }
2683         UNPROTECT(h, GC_page_size);
2684 	/* We need to make sure that no collection occurs between	*/
2685 	/* the UNPROTECT and the setting of the dirty bit.  Otherwise	*/
2686 	/* a write by a third thread might go unnoticed.  Reversing	*/
2687 	/* the order is just as bad, since we would end up unprotecting	*/
2688 	/* a page in a GC cycle during which it's not marked.		*/
2689 	/* Currently we do this by disabling the thread stopping	*/
2690 	/* signals while this handler is running.  An alternative might	*/
2691 	/* be to record the fact that we're about to unprotect, or	*/
2692 	/* have just unprotected a page in the GC's thread structure,	*/
2693 	/* and then to have the thread stopping code set the dirty	*/
2694 	/* flag, if necessary.						*/
2695         for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2696             register int index = PHT_HASH(h+i);
2697 
2698             async_set_pht_entry_from_index(GC_dirty_pages, index);
2699         }
2700 #	if defined(OSF1)
2701 	    /* These reset the signal handler each time by default. */
2702 	    signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2703 #	endif
2704     	/* The write may not take place before dirty bits are read.	*/
2705     	/* But then we'll fault again ...				*/
2706 #	if defined(MSWIN32) || defined(MSWINCE)
2707 	    return(EXCEPTION_CONTINUE_EXECUTION);
2708 #	else
2709 	    return;
2710 #	endif
2711     }
2712 #if defined(MSWIN32) || defined(MSWINCE)
2713     return EXCEPTION_CONTINUE_SEARCH;
2714 #else
2715     GC_err_printf1("Segfault at 0x%lx\n", addr);
2716     ABORT("Unexpected bus error or segmentation fault");
2717 #endif
2718 }
2719 #endif /* !DARWIN */
2720 
2721 /*
2722  * We hold the allocation lock.  We expect block h to be written
2723  * shortly.  Ensure that all pages containing any part of the n hblks
2724  * starting at h are no longer protected.  If is_ptrfree is false,
2725  * also ensure that they will subsequently appear to be dirty.
2726  */
GC_remove_protection(h,nblocks,is_ptrfree)2727 void GC_remove_protection(h, nblocks, is_ptrfree)
2728 struct hblk *h;
2729 word nblocks;
2730 GC_bool is_ptrfree;
2731 {
2732     struct hblk * h_trunc;  /* Truncated to page boundary */
2733     struct hblk * h_end;    /* Page boundary following block end */
2734     struct hblk * current;
2735     GC_bool found_clean;
2736 
2737     if (!GC_dirty_maintained) return;
2738     h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2739     h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2740 	                    & ~(GC_page_size-1));
2741     found_clean = FALSE;
2742     for (current = h_trunc; current < h_end; ++current) {
2743         int index = PHT_HASH(current);
2744 
2745         if (!is_ptrfree || current < h || current >= h + nblocks) {
2746             async_set_pht_entry_from_index(GC_dirty_pages, index);
2747         }
2748     }
2749     UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2750 }
2751 
2752 #if !defined(DARWIN)
GC_dirty_init()2753 void GC_dirty_init()
2754 {
2755 #   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2756        defined(OSF1) || defined(HURD)
2757       struct sigaction	act, oldact;
2758       /* We should probably specify SA_SIGINFO for Linux, and handle 	*/
2759       /* the different architectures more uniformly.			*/
2760 #     if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2761 	 || defined(OSF1) || defined(HURD)
2762     	act.sa_flags	= SA_RESTART;
2763         act.sa_handler  = (SIG_PF)GC_write_fault_handler;
2764 #     else
2765     	act.sa_flags	= SA_RESTART | SA_SIGINFO;
2766         act.sa_sigaction = GC_write_fault_handler;
2767 #     endif
2768       (void)sigemptyset(&act.sa_mask);
2769 #     ifdef SIG_SUSPEND
2770         /* Arrange to postpone SIG_SUSPEND while we're in a write fault	*/
2771         /* handler.  This effectively makes the handler atomic w.r.t.	*/
2772         /* stopping the world for GC.					*/
2773         (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2774 #     endif /* SIG_SUSPEND */
2775 #    endif
2776 #   ifdef PRINTSTATS
2777 	GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2778 #   endif
2779     GC_dirty_maintained = TRUE;
2780     if (GC_page_size % HBLKSIZE != 0) {
2781         GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2782         ABORT("Page size not multiple of HBLKSIZE");
2783     }
2784 #   if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2785       GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2786       if (GC_old_bus_handler == SIG_IGN) {
2787         GC_err_printf0("Previously ignored bus error!?");
2788         GC_old_bus_handler = SIG_DFL;
2789       }
2790       if (GC_old_bus_handler != SIG_DFL) {
2791 #	ifdef PRINTSTATS
2792           GC_err_printf0("Replaced other SIGBUS handler\n");
2793 #	endif
2794       }
2795 #   endif
2796 #   if defined(SUNOS4)
2797       GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2798       if (GC_old_segv_handler == SIG_IGN) {
2799         GC_err_printf0("Previously ignored segmentation violation!?");
2800         GC_old_segv_handler = SIG_DFL;
2801       }
2802       if (GC_old_segv_handler != SIG_DFL) {
2803 #	ifdef PRINTSTATS
2804           GC_err_printf0("Replaced other SIGSEGV handler\n");
2805 #	endif
2806       }
2807 #   endif
2808 #   if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2809        || defined(LINUX) || defined(OSF1) || defined(HURD)
2810       /* SUNOS5SIGS includes HPUX */
2811 #     if defined(GC_IRIX_THREADS)
2812       	sigaction(SIGSEGV, 0, &oldact);
2813       	sigaction(SIGSEGV, &act, 0);
2814 #     else
2815 	{
2816 	  int res = sigaction(SIGSEGV, &act, &oldact);
2817 	  if (res != 0) ABORT("Sigaction failed");
2818  	}
2819 #     endif
2820 #     if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2821 	/* This is Irix 5.x, not 6.x.  Irix 5.x does not have	*/
2822 	/* sa_sigaction.					*/
2823 	GC_old_segv_handler = oldact.sa_handler;
2824 #     else /* Irix 6.x or SUNOS5SIGS or LINUX */
2825         if (oldact.sa_flags & SA_SIGINFO) {
2826           GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2827         } else {
2828           GC_old_segv_handler = oldact.sa_handler;
2829         }
2830 #     endif
2831       if (GC_old_segv_handler == SIG_IGN) {
2832 	     GC_err_printf0("Previously ignored segmentation violation!?");
2833 	     GC_old_segv_handler = SIG_DFL;
2834       }
2835       if (GC_old_segv_handler != SIG_DFL) {
2836 #       ifdef PRINTSTATS
2837 	  GC_err_printf0("Replaced other SIGSEGV handler\n");
2838 #       endif
2839       }
2840 #   endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2841 #   if defined(HPUX) || defined(LINUX) || defined(HURD) \
2842       || (defined(FREEBSD) && defined(SUNOS5SIGS))
2843       sigaction(SIGBUS, &act, &oldact);
2844       GC_old_bus_handler = oldact.sa_handler;
2845       if (GC_old_bus_handler == SIG_IGN) {
2846 	     GC_err_printf0("Previously ignored bus error!?");
2847 	     GC_old_bus_handler = SIG_DFL;
2848       }
2849       if (GC_old_bus_handler != SIG_DFL) {
2850 #       ifdef PRINTSTATS
2851 	  GC_err_printf0("Replaced other SIGBUS handler\n");
2852 #       endif
2853       }
2854 #   endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2855 #   if defined(MSWIN32)
2856       GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2857       if (GC_old_segv_handler != NULL) {
2858 #	ifdef PRINTSTATS
2859           GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2860 #	endif
2861       } else {
2862           GC_old_segv_handler = SIG_DFL;
2863       }
2864 #   endif
2865 }
2866 #endif /* !DARWIN */
2867 
GC_incremental_protection_needs()2868 int GC_incremental_protection_needs()
2869 {
2870     if (GC_page_size == HBLKSIZE) {
2871 	return GC_PROTECTS_POINTER_HEAP;
2872     } else {
2873 	return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2874     }
2875 }
2876 
2877 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2878 
2879 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2880 
2881 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
GC_protect_heap()2882 void GC_protect_heap()
2883 {
2884     ptr_t start;
2885     word len;
2886     struct hblk * current;
2887     struct hblk * current_start;  /* Start of block to be protected. */
2888     struct hblk * limit;
2889     unsigned i;
2890     GC_bool protect_all =
2891 	  (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2892     for (i = 0; i < GC_n_heap_sects; i++) {
2893         start = GC_heap_sects[i].hs_start;
2894         len = GC_heap_sects[i].hs_bytes;
2895 	if (protect_all) {
2896           PROTECT(start, len);
2897 	} else {
2898 	  GC_ASSERT(PAGE_ALIGNED(len))
2899 	  GC_ASSERT(PAGE_ALIGNED(start))
2900 	  current_start = current = (struct hblk *)start;
2901 	  limit = (struct hblk *)(start + len);
2902 	  while (current < limit) {
2903             hdr * hhdr;
2904 	    word nhblks;
2905 	    GC_bool is_ptrfree;
2906 
2907 	    GC_ASSERT(PAGE_ALIGNED(current));
2908 	    GET_HDR(current, hhdr);
2909 	    if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2910 	      /* This can happen only if we're at the beginning of a 	*/
2911 	      /* heap segment, and a block spans heap segments.		*/
2912 	      /* We will handle that block as part of the preceding	*/
2913 	      /* segment.						*/
2914 	      GC_ASSERT(current_start == current);
2915 	      current_start = ++current;
2916 	      continue;
2917 	    }
2918 	    if (HBLK_IS_FREE(hhdr)) {
2919 	      GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2920 	      nhblks = divHBLKSZ(hhdr -> hb_sz);
2921 	      is_ptrfree = TRUE;	/* dirty on alloc */
2922 	    } else {
2923 	      nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2924 	      is_ptrfree = IS_PTRFREE(hhdr);
2925 	    }
2926 	    if (is_ptrfree) {
2927 	      if (current_start < current) {
2928 		PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2929 	      }
2930 	      current_start = (current += nhblks);
2931 	    } else {
2932 	      current += nhblks;
2933 	    }
2934 	  }
2935 	  if (current_start < current) {
2936 	    PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2937 	  }
2938 	}
2939     }
2940 }
2941 
2942 /* We assume that either the world is stopped or its OK to lose dirty	*/
2943 /* bits while this is happenning (as in GC_enable_incremental).		*/
GC_read_dirty()2944 void GC_read_dirty()
2945 {
2946     BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2947           (sizeof GC_dirty_pages));
2948     BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2949     GC_protect_heap();
2950 }
2951 
GC_page_was_dirty(h)2952 GC_bool GC_page_was_dirty(h)
2953 struct hblk * h;
2954 {
2955     register word index = PHT_HASH(h);
2956 
2957     return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2958 }
2959 
2960 /*
2961  * Acquiring the allocation lock here is dangerous, since this
2962  * can be called from within GC_call_with_alloc_lock, and the cord
2963  * package does so.  On systems that allow nested lock acquisition, this
2964  * happens to work.
2965  * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2966  */
2967 
2968 static GC_bool syscall_acquired_lock = FALSE;	/* Protected by GC lock. */
2969 
GC_begin_syscall()2970 void GC_begin_syscall()
2971 {
2972     if (!I_HOLD_LOCK()) {
2973 	LOCK();
2974 	syscall_acquired_lock = TRUE;
2975     }
2976 }
2977 
GC_end_syscall()2978 void GC_end_syscall()
2979 {
2980     if (syscall_acquired_lock) {
2981 	syscall_acquired_lock = FALSE;
2982 	UNLOCK();
2983     }
2984 }
2985 
GC_unprotect_range(addr,len)2986 void GC_unprotect_range(addr, len)
2987 ptr_t addr;
2988 word len;
2989 {
2990     struct hblk * start_block;
2991     struct hblk * end_block;
2992     register struct hblk *h;
2993     ptr_t obj_start;
2994 
2995     if (!GC_dirty_maintained) return;
2996     obj_start = GC_base(addr);
2997     if (obj_start == 0) return;
2998     if (GC_base(addr + len - 1) != obj_start) {
2999         ABORT("GC_unprotect_range(range bigger than object)");
3000     }
3001     start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
3002     end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
3003     end_block += GC_page_size/HBLKSIZE - 1;
3004     for (h = start_block; h <= end_block; h++) {
3005         register word index = PHT_HASH(h);
3006 
3007         async_set_pht_entry_from_index(GC_dirty_pages, index);
3008     }
3009     UNPROTECT(start_block,
3010     	      ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
3011 }
3012 
3013 #if 0
3014 
3015 /* We no longer wrap read by default, since that was causing too many	*/
3016 /* problems.  It is preferred that the client instead avoids writing	*/
3017 /* to the write-protected heap with a system call.			*/
3018 /* This still serves as sample code if you do want to wrap system calls.*/
3019 
3020 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
3021 /* Replacement for UNIX system call.					  */
3022 /* Other calls that write to the heap should be handled similarly.	  */
3023 /* Note that this doesn't work well for blocking reads:  It will hold	  */
3024 /* the allocation lock for the entire duration of the call. Multithreaded */
3025 /* clients should really ensure that it won't block, either by setting 	  */
3026 /* the descriptor nonblocking, or by calling select or poll first, to	  */
3027 /* make sure that input is available.					  */
3028 /* Another, preferred alternative is to ensure that system calls never 	  */
3029 /* write to the protected heap (see above).				  */
3030 # if defined(__STDC__) && !defined(SUNOS4)
3031 #   include <unistd.h>
3032 #   include <sys/uio.h>
3033     ssize_t read(int fd, void *buf, size_t nbyte)
3034 # else
3035 #   ifndef LINT
3036       int read(fd, buf, nbyte)
3037 #   else
3038       int GC_read(fd, buf, nbyte)
3039 #   endif
3040     int fd;
3041     char *buf;
3042     int nbyte;
3043 # endif
3044 {
3045     int result;
3046 
3047     GC_begin_syscall();
3048     GC_unprotect_range(buf, (word)nbyte);
3049 #   if defined(IRIX5) || defined(GC_LINUX_THREADS)
3050 	/* Indirect system call may not always be easily available.	*/
3051 	/* We could call _read, but that would interfere with the	*/
3052 	/* libpthread interception of read.				*/
3053 	/* On Linux, we have to be careful with the linuxthreads	*/
3054 	/* read interception.						*/
3055 	{
3056 	    struct iovec iov;
3057 
3058 	    iov.iov_base = buf;
3059 	    iov.iov_len = nbyte;
3060 	    result = readv(fd, &iov, 1);
3061 	}
3062 #   else
3063 #     if defined(HURD)
3064 	result = __read(fd, buf, nbyte);
3065 #     else
3066  	/* The two zero args at the end of this list are because one
3067  	   IA-64 syscall() implementation actually requires six args
3068  	   to be passed, even though they aren't always used. */
3069      	result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3070 #     endif /* !HURD */
3071 #   endif
3072     GC_end_syscall();
3073     return(result);
3074 }
3075 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3076 
3077 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3078     /* We use the GNU ld call wrapping facility.			*/
3079     /* This requires that the linker be invoked with "--wrap read".	*/
3080     /* This can be done by passing -Wl,"--wrap read" to gcc.		*/
3081     /* I'm not sure that this actually wraps whatever version of read	*/
3082     /* is called by stdio.  That code also mentions __read.		*/
3083 #   include <unistd.h>
3084     ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3085     {
3086  	int result;
3087 
3088 	GC_begin_syscall();
3089     	GC_unprotect_range(buf, (word)nbyte);
3090 	result = __real_read(fd, buf, nbyte);
3091 	GC_end_syscall();
3092 	return(result);
3093     }
3094 
3095     /* We should probably also do this for __read, or whatever stdio	*/
3096     /* actually calls.							*/
3097 #endif
3098 
3099 #endif /* 0 */
3100 
3101 /*ARGSUSED*/
GC_page_was_ever_dirty(h)3102 GC_bool GC_page_was_ever_dirty(h)
3103 struct hblk *h;
3104 {
3105     return(TRUE);
3106 }
3107 
3108 /* Reset the n pages starting at h to "was never dirty" status.	*/
3109 /*ARGSUSED*/
GC_is_fresh(h,n)3110 void GC_is_fresh(h, n)
3111 struct hblk *h;
3112 word n;
3113 {
3114 }
3115 
3116 # endif /* MPROTECT_VDB */
3117 
3118 # ifdef PROC_VDB
3119 
3120 /*
3121  * See DEFAULT_VDB for interface descriptions.
3122  */
3123 
3124 /*
3125  * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3126  * from which we can read page modified bits.  This facility is far from
3127  * optimal (e.g. we would like to get the info for only some of the
3128  * address space), but it avoids intercepting system calls.
3129  */
3130 
3131 #include <errno.h>
3132 #include <sys/types.h>
3133 #include <sys/signal.h>
3134 #include <sys/fault.h>
3135 #include <sys/syscall.h>
3136 #include <sys/procfs.h>
3137 #include <sys/stat.h>
3138 
3139 #define INITIAL_BUF_SZ 16384
3140 word GC_proc_buf_size = INITIAL_BUF_SZ;
3141 char *GC_proc_buf;
3142 
3143 #ifdef GC_SOLARIS_THREADS
3144 /* We don't have exact sp values for threads.  So we count on	*/
3145 /* occasionally declaring stack pages to be fresh.  Thus we 	*/
3146 /* need a real implementation of GC_is_fresh.  We can't clear	*/
3147 /* entries in GC_written_pages, since that would declare all	*/
3148 /* pages with the given hash address to be fresh.		*/
3149 #   define MAX_FRESH_PAGES 8*1024	/* Must be power of 2 */
3150     struct hblk ** GC_fresh_pages;	/* A direct mapped cache.	*/
3151     					/* Collisions are dropped.	*/
3152 
3153 #   define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3154 #   define ADD_FRESH_PAGE(h) \
3155 	GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3156 #   define PAGE_IS_FRESH(h) \
3157 	(GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3158 #endif
3159 
3160 /* Add all pages in pht2 to pht1 */
GC_or_pages(pht1,pht2)3161 void GC_or_pages(pht1, pht2)
3162 page_hash_table pht1, pht2;
3163 {
3164     register int i;
3165 
3166     for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3167 }
3168 
3169 int GC_proc_fd;
3170 
GC_dirty_init()3171 void GC_dirty_init()
3172 {
3173     int fd;
3174     char buf[30];
3175 
3176     GC_dirty_maintained = TRUE;
3177     if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3178     	register int i;
3179 
3180         for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3181 #       ifdef PRINTSTATS
3182 	    GC_printf1("Allocated words:%lu:all pages may have been written\n",
3183 	    	       (unsigned long)
3184 	    	      		(GC_words_allocd + GC_words_allocd_before_gc));
3185 #	endif
3186     }
3187     sprintf(buf, "/proc/%d", getpid());
3188     fd = open(buf, O_RDONLY);
3189     if (fd < 0) {
3190     	ABORT("/proc open failed");
3191     }
3192     GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3193     close(fd);
3194     syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3195     if (GC_proc_fd < 0) {
3196     	ABORT("/proc ioctl failed");
3197     }
3198     GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3199 #   ifdef GC_SOLARIS_THREADS
3200 	GC_fresh_pages = (struct hblk **)
3201 	  GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3202 	if (GC_fresh_pages == 0) {
3203 	    GC_err_printf0("No space for fresh pages\n");
3204 	    EXIT();
3205 	}
3206 	BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3207 #   endif
3208 }
3209 
3210 /* Ignore write hints. They don't help us here.	*/
3211 /*ARGSUSED*/
GC_remove_protection(h,nblocks,is_ptrfree)3212 void GC_remove_protection(h, nblocks, is_ptrfree)
3213 struct hblk *h;
3214 word nblocks;
3215 GC_bool is_ptrfree;
3216 {
3217 }
3218 
3219 #ifdef GC_SOLARIS_THREADS
3220 #   define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3221 #else
3222 #   define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3223 #endif
3224 
GC_read_dirty()3225 void GC_read_dirty()
3226 {
3227     unsigned long ps, np;
3228     int nmaps;
3229     ptr_t vaddr;
3230     struct prasmap * map;
3231     char * bufp;
3232     ptr_t current_addr, limit;
3233     int i;
3234 int dummy;
3235 
3236     BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3237 
3238     bufp = GC_proc_buf;
3239     if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3240 #	ifdef PRINTSTATS
3241             GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3242             	       GC_proc_buf_size);
3243 #	endif
3244         {
3245             /* Retry with larger buffer. */
3246             word new_size = 2 * GC_proc_buf_size;
3247             char * new_buf = GC_scratch_alloc(new_size);
3248 
3249             if (new_buf != 0) {
3250                 GC_proc_buf = bufp = new_buf;
3251                 GC_proc_buf_size = new_size;
3252             }
3253             if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3254                 WARN("Insufficient space for /proc read\n", 0);
3255                 /* Punt:	*/
3256         	memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3257 		memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3258 #		ifdef GC_SOLARIS_THREADS
3259 		    BZERO(GC_fresh_pages,
3260 		    	  MAX_FRESH_PAGES * sizeof (struct hblk *));
3261 #		endif
3262 		return;
3263             }
3264         }
3265     }
3266     /* Copy dirty bits into GC_grungy_pages */
3267     	nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3268 	/* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3269 		     nmaps, PG_REFERENCED, PG_MODIFIED); */
3270 	bufp = bufp + sizeof(struct prpageheader);
3271 	for (i = 0; i < nmaps; i++) {
3272 	    map = (struct prasmap *)bufp;
3273 	    vaddr = (ptr_t)(map -> pr_vaddr);
3274 	    ps = map -> pr_pagesize;
3275 	    np = map -> pr_npage;
3276 	    /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3277 	    limit = vaddr + ps * np;
3278 	    bufp += sizeof (struct prasmap);
3279 	    for (current_addr = vaddr;
3280 	         current_addr < limit; current_addr += ps){
3281 	        if ((*bufp++) & PG_MODIFIED) {
3282 	            register struct hblk * h = (struct hblk *) current_addr;
3283 
3284 	            while ((ptr_t)h < current_addr + ps) {
3285 	                register word index = PHT_HASH(h);
3286 
3287 	                set_pht_entry_from_index(GC_grungy_pages, index);
3288 #			ifdef GC_SOLARIS_THREADS
3289 			  {
3290 			    register int slot = FRESH_PAGE_SLOT(h);
3291 
3292 			    if (GC_fresh_pages[slot] == h) {
3293 			        GC_fresh_pages[slot] = 0;
3294 			    }
3295 			  }
3296 #			endif
3297 	                h++;
3298 	            }
3299 	        }
3300 	    }
3301 	    bufp += sizeof(long) - 1;
3302 	    bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3303 	}
3304     /* Update GC_written_pages. */
3305         GC_or_pages(GC_written_pages, GC_grungy_pages);
3306 #   ifdef GC_SOLARIS_THREADS
3307       /* Make sure that old stacks are considered completely clean	*/
3308       /* unless written again.						*/
3309 	GC_old_stacks_are_fresh();
3310 #   endif
3311 }
3312 
3313 #undef READ
3314 
GC_page_was_dirty(h)3315 GC_bool GC_page_was_dirty(h)
3316 struct hblk *h;
3317 {
3318     register word index = PHT_HASH(h);
3319     register GC_bool result;
3320 
3321     result = get_pht_entry_from_index(GC_grungy_pages, index);
3322 #   ifdef GC_SOLARIS_THREADS
3323 	if (result && PAGE_IS_FRESH(h)) result = FALSE;
3324 	/* This happens only if page was declared fresh since	*/
3325 	/* the read_dirty call, e.g. because it's in an unused  */
3326 	/* thread stack.  It's OK to treat it as clean, in	*/
3327 	/* that case.  And it's consistent with 		*/
3328 	/* GC_page_was_ever_dirty.				*/
3329 #   endif
3330     return(result);
3331 }
3332 
GC_page_was_ever_dirty(h)3333 GC_bool GC_page_was_ever_dirty(h)
3334 struct hblk *h;
3335 {
3336     register word index = PHT_HASH(h);
3337     register GC_bool result;
3338 
3339     result = get_pht_entry_from_index(GC_written_pages, index);
3340 #   ifdef GC_SOLARIS_THREADS
3341 	if (result && PAGE_IS_FRESH(h)) result = FALSE;
3342 #   endif
3343     return(result);
3344 }
3345 
3346 /* Caller holds allocation lock.	*/
GC_is_fresh(h,n)3347 void GC_is_fresh(h, n)
3348 struct hblk *h;
3349 word n;
3350 {
3351 
3352     register word index;
3353 
3354 #   ifdef GC_SOLARIS_THREADS
3355       register word i;
3356 
3357       if (GC_fresh_pages != 0) {
3358         for (i = 0; i < n; i++) {
3359           ADD_FRESH_PAGE(h + i);
3360         }
3361       }
3362 #   endif
3363 }
3364 
3365 # endif /* PROC_VDB */
3366 
3367 
3368 # ifdef PCR_VDB
3369 
3370 # include "vd/PCR_VD.h"
3371 
3372 # define NPAGES (32*1024)	/* 128 MB */
3373 
3374 PCR_VD_DB  GC_grungy_bits[NPAGES];
3375 
3376 ptr_t GC_vd_base;	/* Address corresponding to GC_grungy_bits[0]	*/
3377 			/* HBLKSIZE aligned.				*/
3378 
GC_dirty_init()3379 void GC_dirty_init()
3380 {
3381     GC_dirty_maintained = TRUE;
3382     /* For the time being, we assume the heap generally grows up */
3383     GC_vd_base = GC_heap_sects[0].hs_start;
3384     if (GC_vd_base == 0) {
3385    	ABORT("Bad initial heap segment");
3386     }
3387     if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3388 	!= PCR_ERes_okay) {
3389 	ABORT("dirty bit initialization failed");
3390     }
3391 }
3392 
GC_read_dirty()3393 void GC_read_dirty()
3394 {
3395     /* lazily enable dirty bits on newly added heap sects */
3396     {
3397         static int onhs = 0;
3398         int nhs = GC_n_heap_sects;
3399         for( ; onhs < nhs; onhs++ ) {
3400             PCR_VD_WriteProtectEnable(
3401                     GC_heap_sects[onhs].hs_start,
3402                     GC_heap_sects[onhs].hs_bytes );
3403         }
3404     }
3405 
3406 
3407     if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3408         != PCR_ERes_okay) {
3409 	ABORT("dirty bit read failed");
3410     }
3411 }
3412 
GC_page_was_dirty(h)3413 GC_bool GC_page_was_dirty(h)
3414 struct hblk *h;
3415 {
3416     if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3417 	return(TRUE);
3418     }
3419     return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3420 }
3421 
3422 /*ARGSUSED*/
GC_remove_protection(h,nblocks,is_ptrfree)3423 void GC_remove_protection(h, nblocks, is_ptrfree)
3424 struct hblk *h;
3425 word nblocks;
3426 GC_bool is_ptrfree;
3427 {
3428     PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3429     PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3430 }
3431 
3432 # endif /* PCR_VDB */
3433 
3434 #if defined(MPROTECT_VDB) && defined(DARWIN)
3435 /* The following sources were used as a *reference* for this exception handling
3436    code:
3437       1. Apple's mach/xnu documentation
3438       2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3439          omnigroup's macosx-dev list.
3440          www.omnigroup.com/mailman/archive/macosx-dev/2000-June/014178.html
3441       3. macosx-nat.c from Apple's GDB source code.
3442 */
3443 
3444 /* The bug that caused all this trouble should now be fixed. This should
3445    eventually be removed if all goes well. */
3446 /* define BROKEN_EXCEPTION_HANDLING */
3447 
3448 #include <mach/mach.h>
3449 #include <mach/mach_error.h>
3450 #include <mach/thread_status.h>
3451 #include <mach/exception.h>
3452 #include <mach/task.h>
3453 #include <pthread.h>
3454 
3455 /* These are not defined in any header, although they are documented */
3456 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3457 extern kern_return_t exception_raise(
3458     mach_port_t,mach_port_t,mach_port_t,
3459     exception_type_t,exception_data_t,mach_msg_type_number_t);
3460 extern kern_return_t exception_raise_state(
3461     mach_port_t,mach_port_t,mach_port_t,
3462     exception_type_t,exception_data_t,mach_msg_type_number_t,
3463     thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3464     thread_state_t,mach_msg_type_number_t*);
3465 extern kern_return_t exception_raise_state_identity(
3466     mach_port_t,mach_port_t,mach_port_t,
3467     exception_type_t,exception_data_t,mach_msg_type_number_t,
3468     thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3469     thread_state_t,mach_msg_type_number_t*);
3470 
3471 
3472 #define MAX_EXCEPTION_PORTS 16
3473 
3474 static struct {
3475     mach_msg_type_number_t count;
3476     exception_mask_t      masks[MAX_EXCEPTION_PORTS];
3477     exception_handler_t   ports[MAX_EXCEPTION_PORTS];
3478     exception_behavior_t  behaviors[MAX_EXCEPTION_PORTS];
3479     thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3480 } GC_old_exc_ports;
3481 
3482 static struct {
3483     mach_port_t exception;
3484 #if defined(THREADS)
3485     mach_port_t reply;
3486 #endif
3487 } GC_ports;
3488 
3489 typedef struct {
3490     mach_msg_header_t head;
3491 } GC_msg_t;
3492 
3493 typedef enum {
3494     GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3495 } GC_mprotect_state_t;
3496 
3497 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3498    but it isn't  documented. Use the source and see if they
3499    should be ok. */
3500 #define ID_STOP 1
3501 #define ID_RESUME 2
3502 
3503 /* These values are only used on the reply port */
3504 #define ID_ACK 3
3505 
3506 #if defined(THREADS)
3507 
3508 GC_mprotect_state_t GC_mprotect_state;
3509 
3510 /* The following should ONLY be called when the world is stopped  */
GC_mprotect_thread_notify(mach_msg_id_t id)3511 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3512     struct {
3513         GC_msg_t msg;
3514         mach_msg_trailer_t trailer;
3515     } buf;
3516     mach_msg_return_t r;
3517     /* remote, local */
3518     buf.msg.head.msgh_bits =
3519         MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3520     buf.msg.head.msgh_size = sizeof(buf.msg);
3521     buf.msg.head.msgh_remote_port = GC_ports.exception;
3522     buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3523     buf.msg.head.msgh_id = id;
3524 
3525     r = mach_msg(
3526         &buf.msg.head,
3527         MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3528         sizeof(buf.msg),
3529         sizeof(buf),
3530         GC_ports.reply,
3531         MACH_MSG_TIMEOUT_NONE,
3532         MACH_PORT_NULL);
3533     if(r != MACH_MSG_SUCCESS)
3534 	ABORT("mach_msg failed in GC_mprotect_thread_notify");
3535     if(buf.msg.head.msgh_id != ID_ACK)
3536         ABORT("invalid ack in GC_mprotect_thread_notify");
3537 }
3538 
3539 /* Should only be called by the mprotect thread */
GC_mprotect_thread_reply()3540 static void GC_mprotect_thread_reply() {
3541     GC_msg_t msg;
3542     mach_msg_return_t r;
3543     /* remote, local */
3544     msg.head.msgh_bits =
3545         MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3546     msg.head.msgh_size = sizeof(msg);
3547     msg.head.msgh_remote_port = GC_ports.reply;
3548     msg.head.msgh_local_port = MACH_PORT_NULL;
3549     msg.head.msgh_id = ID_ACK;
3550 
3551     r = mach_msg(
3552         &msg.head,
3553         MACH_SEND_MSG,
3554         sizeof(msg),
3555         0,
3556         MACH_PORT_NULL,
3557         MACH_MSG_TIMEOUT_NONE,
3558         MACH_PORT_NULL);
3559     if(r != MACH_MSG_SUCCESS)
3560 	ABORT("mach_msg failed in GC_mprotect_thread_reply");
3561 }
3562 
GC_mprotect_stop()3563 void GC_mprotect_stop() {
3564     GC_mprotect_thread_notify(ID_STOP);
3565 }
GC_mprotect_resume()3566 void GC_mprotect_resume() {
3567     GC_mprotect_thread_notify(ID_RESUME);
3568 }
3569 
3570 #else /* !THREADS */
3571 /* The compiler should optimize away any GC_mprotect_state computations */
3572 #define GC_mprotect_state GC_MP_NORMAL
3573 #endif
3574 
GC_mprotect_thread(void * arg)3575 static void *GC_mprotect_thread(void *arg) {
3576     mach_msg_return_t r;
3577     /* These two structures contain some private kernel data. We don't need to
3578        access any of it so we don't bother defining a proper struct. The
3579        correct definitions are in the xnu source code. */
3580     struct {
3581         mach_msg_header_t head;
3582         char data[256];
3583     } reply;
3584     struct {
3585         mach_msg_header_t head;
3586         mach_msg_body_t msgh_body;
3587         char data[1024];
3588     } msg;
3589 
3590     mach_msg_id_t id;
3591 
3592     GC_darwin_register_mach_handler_thread(mach_thread_self());
3593 
3594     for(;;) {
3595         r = mach_msg(
3596             &msg.head,
3597             MACH_RCV_MSG|MACH_RCV_LARGE|
3598                 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3599             0,
3600             sizeof(msg),
3601             GC_ports.exception,
3602             GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3603             MACH_PORT_NULL);
3604 
3605         id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3606 
3607 #if defined(THREADS)
3608         if(GC_mprotect_state == GC_MP_DISCARDING) {
3609             if(r == MACH_RCV_TIMED_OUT) {
3610                 GC_mprotect_state = GC_MP_STOPPED;
3611                 GC_mprotect_thread_reply();
3612                 continue;
3613             }
3614             if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3615                 ABORT("out of order mprotect thread request");
3616         }
3617 #endif
3618 
3619         if(r != MACH_MSG_SUCCESS) {
3620             GC_err_printf2("mach_msg failed with %d %s\n",
3621                 (int)r,mach_error_string(r));
3622             ABORT("mach_msg failed");
3623         }
3624 
3625         switch(id) {
3626 #if defined(THREADS)
3627             case ID_STOP:
3628                 if(GC_mprotect_state != GC_MP_NORMAL)
3629                     ABORT("Called mprotect_stop when state wasn't normal");
3630                 GC_mprotect_state = GC_MP_DISCARDING;
3631                 break;
3632             case ID_RESUME:
3633                 if(GC_mprotect_state != GC_MP_STOPPED)
3634                     ABORT("Called mprotect_resume when state wasn't stopped");
3635                 GC_mprotect_state = GC_MP_NORMAL;
3636                 GC_mprotect_thread_reply();
3637                 break;
3638 #endif /* THREADS */
3639             default:
3640 	            /* Handle the message (calls catch_exception_raise) */
3641     	        if(!exc_server(&msg.head,&reply.head))
3642                     ABORT("exc_server failed");
3643                 /* Send the reply */
3644                 r = mach_msg(
3645                     &reply.head,
3646                     MACH_SEND_MSG,
3647                     reply.head.msgh_size,
3648                     0,
3649                     MACH_PORT_NULL,
3650                     MACH_MSG_TIMEOUT_NONE,
3651                     MACH_PORT_NULL);
3652 	        if(r != MACH_MSG_SUCCESS) {
3653 	        	/* This will fail if the thread dies, but the thread shouldn't
3654 	        	   die... */
3655 	        	#ifdef BROKEN_EXCEPTION_HANDLING
3656     	        	GC_err_printf2(
3657                         "mach_msg failed with %d %s while sending exc reply\n",
3658                         (int)r,mach_error_string(r));
3659     	        #else
3660     	        	ABORT("mach_msg failed while sending exception reply");
3661     	        #endif
3662         	}
3663         } /* switch */
3664     } /* for(;;) */
3665     /* NOT REACHED */
3666     return NULL;
3667 }
3668 
3669 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3670    be going throught the mach exception handler. However, it seems a SIGBUS is
3671    occasionally sent for some unknown reason. Even more odd, it seems to be
3672    meaningless and safe to ignore. */
3673 #ifdef BROKEN_EXCEPTION_HANDLING
3674 
3675 typedef void (* SIG_PF)();
3676 static SIG_PF GC_old_bus_handler;
3677 
3678 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3679    Even if this doesn't get updated property, it isn't really a problem */
3680 static int GC_sigbus_count;
3681 
GC_darwin_sigbus(int num,siginfo_t * sip,void * context)3682 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3683     if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3684 
3685     /* Ugh... some seem safe to ignore, but too many in a row probably means
3686        trouble. GC_sigbus_count is reset for each mach exception that is
3687        handled */
3688     if(GC_sigbus_count >= 8) {
3689         ABORT("Got more than 8 SIGBUSs in a row!");
3690     } else {
3691         GC_sigbus_count++;
3692         GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3693     }
3694 }
3695 #endif /* BROKEN_EXCEPTION_HANDLING */
3696 
GC_dirty_init()3697 void GC_dirty_init() {
3698     kern_return_t r;
3699     mach_port_t me;
3700     pthread_t thread;
3701     pthread_attr_t attr;
3702     exception_mask_t mask;
3703 
3704 #   ifdef PRINTSTATS
3705         GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3706             "implementation\n");
3707 #   endif
3708 #	ifdef BROKEN_EXCEPTION_HANDLING
3709         GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3710             "exception handling bugs.\n");
3711 #	endif
3712     GC_dirty_maintained = TRUE;
3713     if (GC_page_size % HBLKSIZE != 0) {
3714         GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3715         ABORT("Page size not multiple of HBLKSIZE");
3716     }
3717 
3718     GC_task_self = me = mach_task_self();
3719 
3720     r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3721     if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3722 
3723     r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3724     	MACH_MSG_TYPE_MAKE_SEND);
3725     if(r != KERN_SUCCESS)
3726     	ABORT("mach_port_insert_right failed (exception port)");
3727 
3728     #if defined(THREADS)
3729         r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3730         if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3731     #endif
3732 
3733     /* The exceptions we want to catch */
3734     mask = EXC_MASK_BAD_ACCESS;
3735 
3736     r = task_get_exception_ports(
3737         me,
3738         mask,
3739         GC_old_exc_ports.masks,
3740         &GC_old_exc_ports.count,
3741         GC_old_exc_ports.ports,
3742         GC_old_exc_ports.behaviors,
3743         GC_old_exc_ports.flavors
3744     );
3745     if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3746 
3747     r = task_set_exception_ports(
3748         me,
3749         mask,
3750         GC_ports.exception,
3751         EXCEPTION_DEFAULT,
3752         GC_MACH_THREAD_STATE
3753     );
3754     if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3755 
3756     if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3757     if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3758         ABORT("pthread_attr_setdetachedstate failed");
3759 
3760 #	undef pthread_create
3761     /* This will call the real pthread function, not our wrapper */
3762     if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3763         ABORT("pthread_create failed");
3764     pthread_attr_destroy(&attr);
3765 
3766     /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3767     #ifdef BROKEN_EXCEPTION_HANDLING
3768     {
3769         struct sigaction sa, oldsa;
3770         sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3771         sigemptyset(&sa.sa_mask);
3772         sa.sa_flags = SA_RESTART|SA_SIGINFO;
3773         if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3774         GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3775         if (GC_old_bus_handler != SIG_DFL) {
3776 #       	ifdef PRINTSTATS
3777                 GC_err_printf0("Replaced other SIGBUS handler\n");
3778 #       	endif
3779         }
3780     }
3781     #endif /* BROKEN_EXCEPTION_HANDLING  */
3782 }
3783 
3784 /* The source code for Apple's GDB was used as a reference for the exception
3785    forwarding code. This code is similar to be GDB code only because there is
3786    only one way to do it. */
GC_forward_exception(mach_port_t thread,mach_port_t task,exception_type_t exception,exception_data_t data,mach_msg_type_number_t data_count)3787 static kern_return_t GC_forward_exception(
3788         mach_port_t thread,
3789         mach_port_t task,
3790         exception_type_t exception,
3791         exception_data_t data,
3792         mach_msg_type_number_t data_count
3793 ) {
3794     int i;
3795     kern_return_t r;
3796     mach_port_t port;
3797     exception_behavior_t behavior;
3798     thread_state_flavor_t flavor;
3799 
3800     thread_state_t thread_state;
3801     mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3802 
3803     for(i=0;i<GC_old_exc_ports.count;i++)
3804         if(GC_old_exc_ports.masks[i] & (1 << exception))
3805             break;
3806     if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3807 
3808     port = GC_old_exc_ports.ports[i];
3809     behavior = GC_old_exc_ports.behaviors[i];
3810     flavor = GC_old_exc_ports.flavors[i];
3811 
3812     if(behavior != EXCEPTION_DEFAULT) {
3813         r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3814         if(r != KERN_SUCCESS)
3815             ABORT("thread_get_state failed in forward_exception");
3816     }
3817 
3818     switch(behavior) {
3819         case EXCEPTION_DEFAULT:
3820             r = exception_raise(port,thread,task,exception,data,data_count);
3821             break;
3822         case EXCEPTION_STATE:
3823             r = exception_raise_state(port,thread,task,exception,data,
3824                 data_count,&flavor,thread_state,thread_state_count,
3825                 thread_state,&thread_state_count);
3826             break;
3827         case EXCEPTION_STATE_IDENTITY:
3828             r = exception_raise_state_identity(port,thread,task,exception,data,
3829                 data_count,&flavor,thread_state,thread_state_count,
3830                 thread_state,&thread_state_count);
3831             break;
3832         default:
3833             r = KERN_FAILURE; /* make gcc happy */
3834             ABORT("forward_exception: unknown behavior");
3835             break;
3836     }
3837 
3838     if(behavior != EXCEPTION_DEFAULT) {
3839         r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3840         if(r != KERN_SUCCESS)
3841             ABORT("thread_set_state failed in forward_exception");
3842     }
3843 
3844     return r;
3845 }
3846 
3847 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3848 
3849 /* This violates the namespace rules but there isn't anything that can be done
3850    about it. The exception handling stuff is hard coded to call this */
3851 kern_return_t
catch_exception_raise(mach_port_t exception_port,mach_port_t thread,mach_port_t task,exception_type_t exception,exception_data_t code,mach_msg_type_number_t code_count)3852 catch_exception_raise(
3853    mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3854    exception_type_t exception,exception_data_t code,
3855    mach_msg_type_number_t code_count
3856 ) {
3857     kern_return_t r;
3858     char *addr;
3859     struct hblk *h;
3860     int i;
3861 #   if defined(POWERPC)
3862 #     if CPP_WORDSZ == 32
3863         thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3864         mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3865         ppc_exception_state_t exc_state;
3866 #     else
3867         thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3868         mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3869         ppc_exception_state64_t exc_state;
3870 #     endif
3871 #   elif defined(I386) || defined(X86_64)
3872 #     if CPP_WORDSZ == 32
3873 	thread_state_flavor_t flavor = x86_EXCEPTION_STATE32;
3874 	mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE32_COUNT;
3875 	x86_exception_state32_t exc_state;
3876 #     else
3877 	thread_state_flavor_t flavor = x86_EXCEPTION_STATE64;
3878 	mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE64_COUNT;
3879 	x86_exception_state64_t exc_state;
3880 #     endif
3881 #   else
3882 #	error FIXME for non-ppc darwin
3883 #   endif
3884 
3885 
3886     if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3887         #ifdef DEBUG_EXCEPTION_HANDLING
3888         /* We aren't interested, pass it on to the old handler */
3889         GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3890             exception,
3891             code_count > 0 ? code[0] : -1,
3892             code_count > 1 ? code[1] : -1);
3893         #endif
3894         return FWD();
3895     }
3896 
3897     r = thread_get_state(thread,flavor,
3898         (natural_t*)&exc_state,&exc_state_count);
3899     if(r != KERN_SUCCESS) {
3900         /* The thread is supposed to be suspended while the exception handler
3901            is called. This shouldn't fail. */
3902         #ifdef BROKEN_EXCEPTION_HANDLING
3903             GC_err_printf0("thread_get_state failed in "
3904                 "catch_exception_raise\n");
3905             return KERN_SUCCESS;
3906         #else
3907             ABORT("thread_get_state failed in catch_exception_raise");
3908         #endif
3909     }
3910 
3911     /* This is the address that caused the fault */
3912 #if defined(POWERPC)
3913     addr = (char*) exc_state. THREAD_FLD(dar);
3914 #elif defined (I386) || defined (X86_64)
3915     addr = (char*) exc_state. THREAD_FLD(faultvaddr);
3916 #else
3917 #   error FIXME for non POWERPC/I386
3918 #endif
3919 
3920     if((HDR(addr)) == 0) {
3921         /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3922            KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3923            a bunch in a row before doing anything about it. If a "real" fault
3924            ever occurres it'll just keep faulting over and over and we'll hit
3925            the limit pretty quickly. */
3926         #ifdef BROKEN_EXCEPTION_HANDLING
3927             static char *last_fault;
3928             static int last_fault_count;
3929 
3930             if(addr != last_fault) {
3931                 last_fault = addr;
3932                 last_fault_count = 0;
3933             }
3934             if(++last_fault_count < 32) {
3935                 if(last_fault_count == 1)
3936                     GC_err_printf1(
3937                         "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3938                         addr);
3939                 return KERN_SUCCESS;
3940             }
3941 
3942             GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3943             /* Can't pass it along to the signal handler because that is
3944                ignoring SIGBUS signals. We also shouldn't call ABORT here as
3945                signals don't always work too well from the exception handler. */
3946             GC_err_printf0("Aborting\n");
3947             exit(EXIT_FAILURE);
3948         #else /* BROKEN_EXCEPTION_HANDLING */
3949             /* Pass it along to the next exception handler
3950                (which should call SIGBUS/SIGSEGV) */
3951             return FWD();
3952         #endif /* !BROKEN_EXCEPTION_HANDLING */
3953     }
3954 
3955     #ifdef BROKEN_EXCEPTION_HANDLING
3956         /* Reset the number of consecutive SIGBUSs */
3957         GC_sigbus_count = 0;
3958     #endif
3959 
3960     if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3961         h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3962         UNPROTECT(h, GC_page_size);
3963         for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3964             register int index = PHT_HASH(h+i);
3965             async_set_pht_entry_from_index(GC_dirty_pages, index);
3966         }
3967     } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3968         /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3969            when we're just going to PROTECT() it again later. The thread
3970            will just fault again once it resumes */
3971     } else {
3972         /* Shouldn't happen, i don't think */
3973         GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3974         return FWD();
3975     }
3976     return KERN_SUCCESS;
3977 }
3978 #undef FWD
3979 
3980 /* These should never be called, but just in case...  */
catch_exception_raise_state(mach_port_name_t exception_port,int exception,exception_data_t code,mach_msg_type_number_t codeCnt,int flavor,thread_state_t old_state,int old_stateCnt,thread_state_t new_state,int new_stateCnt)3981 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3982     int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3983     int flavor, thread_state_t old_state, int old_stateCnt,
3984     thread_state_t new_state, int new_stateCnt)
3985 {
3986     ABORT("catch_exception_raise_state");
3987     return(KERN_INVALID_ARGUMENT);
3988 }
catch_exception_raise_state_identity(mach_port_name_t exception_port,mach_port_t thread,mach_port_t task,int exception,exception_data_t code,mach_msg_type_number_t codeCnt,int flavor,thread_state_t old_state,int old_stateCnt,thread_state_t new_state,int new_stateCnt)3989 kern_return_t catch_exception_raise_state_identity(
3990     mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3991     int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3992     int flavor, thread_state_t old_state, int old_stateCnt,
3993     thread_state_t new_state, int new_stateCnt)
3994 {
3995     ABORT("catch_exception_raise_state_identity");
3996     return(KERN_INVALID_ARGUMENT);
3997 }
3998 
3999 
4000 #endif /* DARWIN && MPROTECT_VDB */
4001 
4002 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
GC_incremental_protection_needs()4003   int GC_incremental_protection_needs()
4004   {
4005     return GC_PROTECTS_NONE;
4006   }
4007 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
4008 
4009 /*
4010  * Call stack save code for debugging.
4011  * Should probably be in mach_dep.c, but that requires reorganization.
4012  */
4013 
4014 /* I suspect the following works for most X86 *nix variants, so 	*/
4015 /* long as the frame pointer is explicitly stored.  In the case of gcc,	*/
4016 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is.	*/
4017 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
4018 #   include <features.h>
4019 
4020     struct frame {
4021 	struct frame *fr_savfp;
4022 	long	fr_savpc;
4023         long	fr_arg[NARGS];  /* All the arguments go here.	*/
4024     };
4025 #endif
4026 
4027 #if defined(SPARC)
4028 #  if defined(LINUX)
4029 #    include <features.h>
4030 
4031      struct frame {
4032 	long	fr_local[8];
4033 	long	fr_arg[6];
4034 	struct frame *fr_savfp;
4035 	long	fr_savpc;
4036 #       ifndef __arch64__
4037 	  char	*fr_stret;
4038 #       endif
4039 	long	fr_argd[6];
4040 	long	fr_argx[0];
4041      };
4042 #  else
4043 #    if defined(SUNOS4)
4044 #      include <machine/frame.h>
4045 #    else
4046 #      if defined (DRSNX)
4047 #	 include <sys/sparc/frame.h>
4048 #      else
4049 #	 if defined(OPENBSD)
4050 #	   include <frame.h>
4051 #	 else
4052 #	   if defined(FREEBSD) || defined(NETBSD)
4053 #	     include <machine/frame.h>
4054 #	   else
4055 #	     include <sys/frame.h>
4056 #	   endif
4057 #	 endif
4058 #      endif
4059 #    endif
4060 #  endif
4061 #  if NARGS > 6
4062 	--> We only know how to to get the first 6 arguments
4063 #  endif
4064 #endif /* SPARC */
4065 
4066 #ifdef  NEED_CALLINFO
4067 /* Fill in the pc and argument information for up to NFRAMES of my	*/
4068 /* callers.  Ignore my frame and my callers frame.			*/
4069 
4070 #ifdef LINUX
4071 #   include <unistd.h>
4072 #endif
4073 
4074 #endif /* NEED_CALLINFO */
4075 
4076 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4077 # include <execinfo.h>
4078 #endif
4079 
4080 #ifdef SAVE_CALL_CHAIN
4081 
4082 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4083     && defined(GC_HAVE_BUILTIN_BACKTRACE)
4084 
4085 #ifdef REDIRECT_MALLOC
4086   /* Deal with possible malloc calls in backtrace by omitting	*/
4087   /* the infinitely recursing backtrace.			*/
4088 # ifdef THREADS
4089     __thread 	/* If your compiler doesn't understand this */
4090     		/* you could use something like pthread_getspecific.	*/
4091 # endif
4092   GC_in_save_callers = FALSE;
4093 #endif
4094 
GC_save_callers(info)4095 void GC_save_callers (info)
4096 struct callinfo info[NFRAMES];
4097 {
4098   void * tmp_info[NFRAMES + 1];
4099   int npcs, i;
4100 # define IGNORE_FRAMES 1
4101 
4102   /* We retrieve NFRAMES+1 pc values, but discard the first, since it	*/
4103   /* points to our own frame.						*/
4104 # ifdef REDIRECT_MALLOC
4105     if (GC_in_save_callers) {
4106       info[0].ci_pc = (word)(&GC_save_callers);
4107       for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4108       return;
4109     }
4110     GC_in_save_callers = TRUE;
4111 # endif
4112   GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4113   npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4114   BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4115   for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4116 # ifdef REDIRECT_MALLOC
4117     GC_in_save_callers = FALSE;
4118 # endif
4119 }
4120 
4121 #else /* No builtin backtrace; do it ourselves */
4122 
4123 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4124 #  define FR_SAVFP fr_fp
4125 #  define FR_SAVPC fr_pc
4126 #else
4127 #  define FR_SAVFP fr_savfp
4128 #  define FR_SAVPC fr_savpc
4129 #endif
4130 
4131 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4132 #   define BIAS 2047
4133 #else
4134 #   define BIAS 0
4135 #endif
4136 
4137 void GC_save_callers (info)
4138 struct callinfo info[NFRAMES];
4139 {
4140   struct frame *frame;
4141   struct frame *fp;
4142   int nframes = 0;
4143 # ifdef I386
4144     /* We assume this is turned on only with gcc as the compiler. */
4145     asm("movl %%ebp,%0" : "=r"(frame));
4146     fp = frame;
4147 # else
4148     frame = (struct frame *) GC_save_regs_in_stack ();
4149     fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4150 #endif
4151 
4152    for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4153 	   && (nframes < NFRAMES));
4154        fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4155       register int i;
4156 
4157       info[nframes].ci_pc = fp->FR_SAVPC;
4158 #     if NARGS > 0
4159         for (i = 0; i < NARGS; i++) {
4160 	  info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4161         }
4162 #     endif /* NARGS > 0 */
4163   }
4164   if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4165 }
4166 
4167 #endif /* No builtin backtrace */
4168 
4169 #endif /* SAVE_CALL_CHAIN */
4170 
4171 #ifdef NEED_CALLINFO
4172 
4173 /* Print info to stderr.  We do NOT hold the allocation lock */
GC_print_callers(info)4174 void GC_print_callers (info)
4175 struct callinfo info[NFRAMES];
4176 {
4177     register int i;
4178     static int reentry_count = 0;
4179     GC_bool stop = FALSE;
4180 
4181     /* FIXME: This should probably use a different lock, so that we	*/
4182     /* become callable with or without the allocation lock.		*/
4183     LOCK();
4184       ++reentry_count;
4185     UNLOCK();
4186 
4187 #   if NFRAMES == 1
4188       GC_err_printf0("\tCaller at allocation:\n");
4189 #   else
4190       GC_err_printf0("\tCall chain at allocation:\n");
4191 #   endif
4192     for (i = 0; i < NFRAMES && !stop ; i++) {
4193      	if (info[i].ci_pc == 0) break;
4194 #	if NARGS > 0
4195 	{
4196 	  int j;
4197 
4198      	  GC_err_printf0("\t\targs: ");
4199      	  for (j = 0; j < NARGS; j++) {
4200      	    if (j != 0) GC_err_printf0(", ");
4201      	    GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4202      	    				~(info[i].ci_arg[j]));
4203      	  }
4204 	  GC_err_printf0("\n");
4205 	}
4206 # 	endif
4207         if (reentry_count > 1) {
4208 	    /* We were called during an allocation during	*/
4209 	    /* a previous GC_print_callers call; punt.		*/
4210      	    GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4211 	    continue;
4212 	}
4213 	{
4214 #	  ifdef LINUX
4215 	    FILE *pipe;
4216 #	  endif
4217 #	  if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4218 	     && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4219 	    char **sym_name =
4220 	      backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4221 	    char *name = sym_name[0];
4222 #	  else
4223 	    char buf[40];
4224 	    char *name = buf;
4225      	    sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4226 #	  endif
4227 #	  if defined(LINUX) && !defined(SMALL_CONFIG)
4228 	    /* Try for a line number. */
4229 	    {
4230 #	        define EXE_SZ 100
4231 		static char exe_name[EXE_SZ];
4232 #		define CMD_SZ 200
4233 		char cmd_buf[CMD_SZ];
4234 #		define RESULT_SZ 200
4235 		static char result_buf[RESULT_SZ];
4236 		size_t result_len;
4237 		char *old_preload;
4238 #		define PRELOAD_SZ 200
4239     		char preload_buf[PRELOAD_SZ];
4240 		static GC_bool found_exe_name = FALSE;
4241 		static GC_bool will_fail = FALSE;
4242 		int ret_code;
4243 		/* Try to get it via a hairy and expensive scheme.	*/
4244 		/* First we get the name of the executable:		*/
4245 		if (will_fail) goto out;
4246 		if (!found_exe_name) {
4247 		  ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4248 		  if (ret_code < 0 || ret_code >= EXE_SZ
4249 		      || exe_name[0] != '/') {
4250 		    will_fail = TRUE;	/* Dont try again. */
4251 		    goto out;
4252 		  }
4253 		  exe_name[ret_code] = '\0';
4254 		  found_exe_name = TRUE;
4255 		}
4256 		/* Then we use popen to start addr2line -e <exe> <addr>	*/
4257 		/* There are faster ways to do this, but hopefully this	*/
4258 		/* isn't time critical.					*/
4259 		sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4260 				 (unsigned long)info[i].ci_pc);
4261 		old_preload = getenv ("LD_PRELOAD");
4262 	        if (0 != old_preload) {
4263 		  if (strlen (old_preload) >= PRELOAD_SZ) {
4264 		    will_fail = TRUE;
4265 		    goto out;
4266 		  }
4267 		  strcpy (preload_buf, old_preload);
4268 		  unsetenv ("LD_PRELOAD");
4269 	        }
4270 		pipe = popen(cmd_buf, "r");
4271 		if (0 != old_preload
4272 		    && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4273 		  WARN("Failed to reset LD_PRELOAD\n", 0);
4274       		}
4275 		if (pipe == NULL
4276 		    || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4277 		       == 0) {
4278 		  if (pipe != NULL) pclose(pipe);
4279 		  will_fail = TRUE;
4280 		  goto out;
4281 		}
4282 		if (result_buf[result_len - 1] == '\n') --result_len;
4283 		result_buf[result_len] = 0;
4284 		if (result_buf[0] == '?'
4285 		    || result_buf[result_len-2] == ':'
4286 		       && result_buf[result_len-1] == '0') {
4287 		    pclose(pipe);
4288 		    goto out;
4289 		}
4290 		/* Get rid of embedded newline, if any.  Test for "main" */
4291 		{
4292 		   char * nl = strchr(result_buf, '\n');
4293 		   if (nl != NULL && nl < result_buf + result_len) {
4294 		     *nl = ':';
4295 		   }
4296 		   if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4297 		     stop = TRUE;
4298 		   }
4299 		}
4300 		if (result_len < RESULT_SZ - 25) {
4301 		  /* Add in hex address	*/
4302 		    sprintf(result_buf + result_len, " [0x%lx]",
4303 			  (unsigned long)info[i].ci_pc);
4304 		}
4305 		name = result_buf;
4306 		pclose(pipe);
4307 		out:;
4308 	    }
4309 #	  endif /* LINUX */
4310 	  GC_err_printf1("\t\t%s\n", name);
4311 #	  if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4312 	     && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4313 	    free(sym_name);  /* May call GC_free; that's OK */
4314 #         endif
4315 	}
4316     }
4317     LOCK();
4318       --reentry_count;
4319     UNLOCK();
4320 }
4321 
4322 #endif /* NEED_CALLINFO */
4323 
4324 
4325 
4326 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4327 
4328 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4329    addresses in FIND_LEAK output. */
4330 
dump_maps(char * maps)4331 static word dump_maps(char *maps)
4332 {
4333     GC_err_write(maps, strlen(maps));
4334     return 1;
4335 }
4336 
GC_print_address_map()4337 void GC_print_address_map()
4338 {
4339     GC_err_printf0("---------- Begin address map ----------\n");
4340     GC_apply_to_maps(dump_maps);
4341     GC_err_printf0("---------- End address map ----------\n");
4342 }
4343 
4344 #endif
4345 
4346 
4347