1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--   A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S  --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2004-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- This unit was originally developed by Matthew J Heaney.                  --
28------------------------------------------------------------------------------
29
30with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
31pragma Elaborate_All
32  (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
33
34with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
35pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
36
37with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
38pragma Elaborate_All
39  (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
40
41with System; use type System.Address;
42
43package body Ada.Containers.Bounded_Ordered_Sets is
44
45   ------------------------------
46   -- Access to Fields of Node --
47   ------------------------------
48
49   --  These subprograms provide functional notation for access to fields
50   --  of a node, and procedural notation for modifying these fields.
51
52   function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
53   pragma Inline (Color);
54
55   function Left (Node : Node_Type) return Count_Type;
56   pragma Inline (Left);
57
58   function Parent (Node : Node_Type) return Count_Type;
59   pragma Inline (Parent);
60
61   function Right (Node : Node_Type) return Count_Type;
62   pragma Inline (Right);
63
64   procedure Set_Color
65     (Node  : in out Node_Type;
66      Color : Red_Black_Trees.Color_Type);
67   pragma Inline (Set_Color);
68
69   procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
70   pragma Inline (Set_Left);
71
72   procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
73   pragma Inline (Set_Right);
74
75   procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
76   pragma Inline (Set_Parent);
77
78   -----------------------
79   -- Local Subprograms --
80   -----------------------
81
82   procedure Insert_Sans_Hint
83     (Container : in out Set;
84      New_Item  : Element_Type;
85      Node      : out Count_Type;
86      Inserted  : out Boolean);
87
88   procedure Insert_With_Hint
89     (Dst_Set  : in out Set;
90      Dst_Hint : Count_Type;
91      Src_Node : Node_Type;
92      Dst_Node : out Count_Type);
93
94   function Is_Greater_Element_Node
95     (Left  : Element_Type;
96      Right : Node_Type) return Boolean;
97   pragma Inline (Is_Greater_Element_Node);
98
99   function Is_Less_Element_Node
100     (Left  : Element_Type;
101      Right : Node_Type) return Boolean;
102   pragma Inline (Is_Less_Element_Node);
103
104   function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
105   pragma Inline (Is_Less_Node_Node);
106
107   procedure Replace_Element
108     (Container : in out Set;
109      Index     : Count_Type;
110      Item      : Element_Type);
111
112   --------------------------
113   -- Local Instantiations --
114   --------------------------
115
116   package Tree_Operations is
117      new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types);
118
119   use Tree_Operations;
120
121   package Element_Keys is
122      new Red_Black_Trees.Generic_Bounded_Keys
123        (Tree_Operations     => Tree_Operations,
124         Key_Type            => Element_Type,
125         Is_Less_Key_Node    => Is_Less_Element_Node,
126         Is_Greater_Key_Node => Is_Greater_Element_Node);
127
128   package Set_Ops is
129      new Red_Black_Trees.Generic_Bounded_Set_Operations
130        (Tree_Operations  => Tree_Operations,
131         Set_Type         => Set,
132         Assign           => Assign,
133         Insert_With_Hint => Insert_With_Hint,
134         Is_Less          => Is_Less_Node_Node);
135
136   ---------
137   -- "<" --
138   ---------
139
140   function "<" (Left, Right : Cursor) return Boolean is
141   begin
142      if Left.Node = 0 then
143         raise Constraint_Error with "Left cursor equals No_Element";
144      end if;
145
146      if Right.Node = 0 then
147         raise Constraint_Error with "Right cursor equals No_Element";
148      end if;
149
150      pragma Assert (Vet (Left.Container.all, Left.Node),
151                     "bad Left cursor in ""<""");
152
153      pragma Assert (Vet (Right.Container.all, Right.Node),
154                     "bad Right cursor in ""<""");
155
156      declare
157         LN : Nodes_Type renames Left.Container.Nodes;
158         RN : Nodes_Type renames Right.Container.Nodes;
159      begin
160         return LN (Left.Node).Element < RN (Right.Node).Element;
161      end;
162   end "<";
163
164   function "<" (Left : Cursor; Right : Element_Type) return Boolean is
165   begin
166      if Left.Node = 0 then
167         raise Constraint_Error with "Left cursor equals No_Element";
168      end if;
169
170      pragma Assert (Vet (Left.Container.all, Left.Node),
171                     "bad Left cursor in ""<""");
172
173      return Left.Container.Nodes (Left.Node).Element < Right;
174   end "<";
175
176   function "<" (Left : Element_Type; Right : Cursor) return Boolean is
177   begin
178      if Right.Node = 0 then
179         raise Constraint_Error with "Right cursor equals No_Element";
180      end if;
181
182      pragma Assert (Vet (Right.Container.all, Right.Node),
183                     "bad Right cursor in ""<""");
184
185      return Left < Right.Container.Nodes (Right.Node).Element;
186   end "<";
187
188   ---------
189   -- "=" --
190   ---------
191
192   function "=" (Left, Right : Set) return Boolean is
193      function Is_Equal_Node_Node (L, R : Node_Type) return Boolean;
194      pragma Inline (Is_Equal_Node_Node);
195
196      function Is_Equal is
197         new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
198
199      ------------------------
200      -- Is_Equal_Node_Node --
201      ------------------------
202
203      function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is
204      begin
205         return L.Element = R.Element;
206      end Is_Equal_Node_Node;
207
208   --  Start of processing for Is_Equal
209
210   begin
211      return Is_Equal (Left, Right);
212   end "=";
213
214   ---------
215   -- ">" --
216   ---------
217
218   function ">" (Left, Right : Cursor) return Boolean is
219   begin
220      if Left.Node = 0 then
221         raise Constraint_Error with "Left cursor equals No_Element";
222      end if;
223
224      if Right.Node = 0 then
225         raise Constraint_Error with "Right cursor equals No_Element";
226      end if;
227
228      pragma Assert (Vet (Left.Container.all, Left.Node),
229                     "bad Left cursor in "">""");
230
231      pragma Assert (Vet (Right.Container.all, Right.Node),
232                     "bad Right cursor in "">""");
233
234      --  L > R same as R < L
235
236      declare
237         LN : Nodes_Type renames Left.Container.Nodes;
238         RN : Nodes_Type renames Right.Container.Nodes;
239      begin
240         return RN (Right.Node).Element < LN (Left.Node).Element;
241      end;
242   end ">";
243
244   function ">" (Left : Element_Type; Right : Cursor) return Boolean is
245   begin
246      if Right.Node = 0 then
247         raise Constraint_Error with "Right cursor equals No_Element";
248      end if;
249
250      pragma Assert (Vet (Right.Container.all, Right.Node),
251                     "bad Right cursor in "">""");
252
253      return Right.Container.Nodes (Right.Node).Element < Left;
254   end ">";
255
256   function ">" (Left : Cursor; Right : Element_Type) return Boolean is
257   begin
258      if Left.Node = 0 then
259         raise Constraint_Error with "Left cursor equals No_Element";
260      end if;
261
262      pragma Assert (Vet (Left.Container.all, Left.Node),
263                     "bad Left cursor in "">""");
264
265      return Right < Left.Container.Nodes (Left.Node).Element;
266   end ">";
267
268   ------------
269   -- Assign --
270   ------------
271
272   procedure Assign (Target : in out Set; Source : Set) is
273      procedure Append_Element (Source_Node : Count_Type);
274
275      procedure Append_Elements is
276         new Tree_Operations.Generic_Iteration (Append_Element);
277
278      --------------------
279      -- Append_Element --
280      --------------------
281
282      procedure Append_Element (Source_Node : Count_Type) is
283         SN : Node_Type renames Source.Nodes (Source_Node);
284
285         procedure Set_Element (Node : in out Node_Type);
286         pragma Inline (Set_Element);
287
288         function New_Node return Count_Type;
289         pragma Inline (New_Node);
290
291         procedure Insert_Post is
292            new Element_Keys.Generic_Insert_Post (New_Node);
293
294         procedure Unconditional_Insert_Sans_Hint is
295            new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
296
297         procedure Unconditional_Insert_Avec_Hint is
298            new Element_Keys.Generic_Unconditional_Insert_With_Hint
299              (Insert_Post,
300               Unconditional_Insert_Sans_Hint);
301
302         procedure Allocate is
303            new Tree_Operations.Generic_Allocate (Set_Element);
304
305         --------------
306         -- New_Node --
307         --------------
308
309         function New_Node return Count_Type is
310            Result : Count_Type;
311         begin
312            Allocate (Target, Result);
313            return Result;
314         end New_Node;
315
316         -----------------
317         -- Set_Element --
318         -----------------
319
320         procedure Set_Element (Node : in out Node_Type) is
321         begin
322            Node.Element := SN.Element;
323         end Set_Element;
324
325         Target_Node : Count_Type;
326
327      --  Start of processing for Append_Element
328
329      begin
330         Unconditional_Insert_Avec_Hint
331           (Tree  => Target,
332            Hint  => 0,
333            Key   => SN.Element,
334            Node  => Target_Node);
335      end Append_Element;
336
337   --  Start of processing for Assign
338
339   begin
340      if Target'Address = Source'Address then
341         return;
342      end if;
343
344      if Target.Capacity < Source.Length then
345         raise Capacity_Error
346           with "Target capacity is less than Source length";
347      end if;
348
349      Target.Clear;
350      Append_Elements (Source);
351   end Assign;
352
353   -------------
354   -- Ceiling --
355   -------------
356
357   function Ceiling (Container : Set; Item : Element_Type) return Cursor is
358      Node : constant Count_Type :=
359        Element_Keys.Ceiling (Container, Item);
360   begin
361      return (if Node = 0 then No_Element
362              else Cursor'(Container'Unrestricted_Access, Node));
363   end Ceiling;
364
365   -----------
366   -- Clear --
367   -----------
368
369   procedure Clear (Container : in out Set) is
370   begin
371      Tree_Operations.Clear_Tree (Container);
372   end Clear;
373
374   -----------
375   -- Color --
376   -----------
377
378   function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
379   begin
380      return Node.Color;
381   end Color;
382
383   ------------------------
384   -- Constant_Reference --
385   ------------------------
386
387   function Constant_Reference
388     (Container : aliased Set;
389      Position  : Cursor) return Constant_Reference_Type
390   is
391   begin
392      if Position.Container = null then
393         raise Constraint_Error with "Position cursor has no element";
394      end if;
395
396      if Position.Container /= Container'Unrestricted_Access then
397         raise Program_Error with
398           "Position cursor designates wrong container";
399      end if;
400
401      pragma Assert
402        (Vet (Container, Position.Node),
403         "bad cursor in Constant_Reference");
404
405      declare
406         N : Node_Type renames Container.Nodes (Position.Node);
407      begin
408         return (Element => N.Element'Access);
409      end;
410   end Constant_Reference;
411
412   --------------
413   -- Contains --
414   --------------
415
416   function Contains
417     (Container : Set;
418      Item      : Element_Type) return Boolean
419   is
420   begin
421      return Find (Container, Item) /= No_Element;
422   end Contains;
423
424   ----------
425   -- Copy --
426   ----------
427
428   function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
429      C : Count_Type;
430
431   begin
432      if Capacity = 0 then
433         C := Source.Length;
434      elsif Capacity >= Source.Length then
435         C := Capacity;
436      else
437         raise Capacity_Error with "Capacity value too small";
438      end if;
439
440      return Target : Set (Capacity => C) do
441         Assign (Target => Target, Source => Source);
442      end return;
443   end Copy;
444
445   ------------
446   -- Delete --
447   ------------
448
449   procedure Delete (Container : in out Set; Position : in out Cursor) is
450   begin
451      if Position.Node = 0 then
452         raise Constraint_Error with "Position cursor equals No_Element";
453      end if;
454
455      if Position.Container /= Container'Unrestricted_Access then
456         raise Program_Error with "Position cursor designates wrong set";
457      end if;
458
459      pragma Assert (Vet (Container, Position.Node),
460                     "bad cursor in Delete");
461
462      Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
463      Tree_Operations.Free (Container, Position.Node);
464
465      Position := No_Element;
466   end Delete;
467
468   procedure Delete (Container : in out Set; Item : Element_Type) is
469      X : constant Count_Type := Element_Keys.Find (Container, Item);
470
471   begin
472      if X = 0 then
473         raise Constraint_Error with "attempt to delete element not in set";
474      end if;
475
476      Tree_Operations.Delete_Node_Sans_Free (Container, X);
477      Tree_Operations.Free (Container, X);
478   end Delete;
479
480   ------------------
481   -- Delete_First --
482   ------------------
483
484   procedure Delete_First (Container : in out Set) is
485      X : constant Count_Type := Container.First;
486   begin
487      if X /= 0 then
488         Tree_Operations.Delete_Node_Sans_Free (Container, X);
489         Tree_Operations.Free (Container, X);
490      end if;
491   end Delete_First;
492
493   -----------------
494   -- Delete_Last --
495   -----------------
496
497   procedure Delete_Last (Container : in out Set) is
498      X : constant Count_Type := Container.Last;
499   begin
500      if X /= 0 then
501         Tree_Operations.Delete_Node_Sans_Free (Container, X);
502         Tree_Operations.Free (Container, X);
503      end if;
504   end Delete_Last;
505
506   ----------------
507   -- Difference --
508   ----------------
509
510   procedure Difference (Target : in out Set; Source : Set)
511      renames Set_Ops.Set_Difference;
512
513   function Difference (Left, Right : Set) return Set
514      renames Set_Ops.Set_Difference;
515
516   -------------
517   -- Element --
518   -------------
519
520   function Element (Position : Cursor) return Element_Type is
521   begin
522      if Position.Node = 0 then
523         raise Constraint_Error with "Position cursor equals No_Element";
524      end if;
525
526      pragma Assert (Vet (Position.Container.all, Position.Node),
527                     "bad cursor in Element");
528
529      return Position.Container.Nodes (Position.Node).Element;
530   end Element;
531
532   -------------------------
533   -- Equivalent_Elements --
534   -------------------------
535
536   function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
537   begin
538      return (if Left < Right or else Right < Left then False else True);
539   end Equivalent_Elements;
540
541   ---------------------
542   -- Equivalent_Sets --
543   ---------------------
544
545   function Equivalent_Sets (Left, Right : Set) return Boolean is
546      function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
547      pragma Inline (Is_Equivalent_Node_Node);
548
549      function Is_Equivalent is
550         new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
551
552      -----------------------------
553      -- Is_Equivalent_Node_Node --
554      -----------------------------
555
556      function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
557      begin
558         return (if L.Element < R.Element then False
559                 elsif R.Element < L.Element then False
560                 else True);
561      end Is_Equivalent_Node_Node;
562
563   --  Start of processing for Equivalent_Sets
564
565   begin
566      return Is_Equivalent (Left, Right);
567   end Equivalent_Sets;
568
569   -------------
570   -- Exclude --
571   -------------
572
573   procedure Exclude (Container : in out Set; Item : Element_Type) is
574      X : constant Count_Type := Element_Keys.Find (Container, Item);
575   begin
576      if X /= 0 then
577         Tree_Operations.Delete_Node_Sans_Free (Container, X);
578         Tree_Operations.Free (Container, X);
579      end if;
580   end Exclude;
581
582   --------------
583   -- Finalize --
584   --------------
585
586   procedure Finalize (Object : in out Iterator) is
587   begin
588      if Object.Container /= null then
589         declare
590            B : Natural renames Object.Container.all.Busy;
591         begin
592            B := B - 1;
593         end;
594      end if;
595   end Finalize;
596
597   ----------
598   -- Find --
599   ----------
600
601   function Find (Container : Set; Item : Element_Type) return Cursor is
602      Node : constant Count_Type := Element_Keys.Find (Container, Item);
603   begin
604      return (if Node = 0 then No_Element
605              else Cursor'(Container'Unrestricted_Access, Node));
606   end Find;
607
608   -----------
609   -- First --
610   -----------
611
612   function First (Container : Set) return Cursor is
613   begin
614      return (if Container.First = 0 then No_Element
615              else Cursor'(Container'Unrestricted_Access, Container.First));
616   end First;
617
618   function First (Object : Iterator) return Cursor is
619   begin
620      --  The value of the iterator object's Node component influences the
621      --  behavior of the First (and Last) selector function.
622
623      --  When the Node component is 0, this means the iterator object was
624      --  constructed without a start expression, in which case the (forward)
625      --  iteration starts from the (logical) beginning of the entire sequence
626      --  of items (corresponding to Container.First, for a forward iterator).
627
628      --  Otherwise, this is iteration over a partial sequence of items. When
629      --  the Node component is positive, the iterator object was constructed
630      --  with a start expression, that specifies the position from which the
631      --  (forward) partial iteration begins.
632
633      if Object.Node = 0 then
634         return Bounded_Ordered_Sets.First (Object.Container.all);
635      else
636         return Cursor'(Object.Container, Object.Node);
637      end if;
638   end First;
639
640   -------------------
641   -- First_Element --
642   -------------------
643
644   function First_Element (Container : Set) return Element_Type is
645   begin
646      if Container.First = 0 then
647         raise Constraint_Error with "set is empty";
648      end if;
649
650      return Container.Nodes (Container.First).Element;
651   end First_Element;
652
653   -----------
654   -- Floor --
655   -----------
656
657   function Floor (Container : Set; Item : Element_Type) return Cursor is
658      Node : constant Count_Type := Element_Keys.Floor (Container, Item);
659   begin
660      return (if Node = 0 then No_Element
661              else Cursor'(Container'Unrestricted_Access, Node));
662   end Floor;
663
664   ------------------
665   -- Generic_Keys --
666   ------------------
667
668   package body Generic_Keys is
669
670      -----------------------
671      -- Local Subprograms --
672      -----------------------
673
674      function Is_Greater_Key_Node
675        (Left  : Key_Type;
676         Right : Node_Type) return Boolean;
677      pragma Inline (Is_Greater_Key_Node);
678
679      function Is_Less_Key_Node
680        (Left  : Key_Type;
681         Right : Node_Type) return Boolean;
682      pragma Inline (Is_Less_Key_Node);
683
684      --------------------------
685      -- Local Instantiations --
686      --------------------------
687
688      package Key_Keys is
689        new Red_Black_Trees.Generic_Bounded_Keys
690          (Tree_Operations     => Tree_Operations,
691           Key_Type            => Key_Type,
692           Is_Less_Key_Node    => Is_Less_Key_Node,
693           Is_Greater_Key_Node => Is_Greater_Key_Node);
694
695      -------------
696      -- Ceiling --
697      -------------
698
699      function Ceiling (Container : Set; Key : Key_Type) return Cursor is
700         Node : constant Count_Type :=
701           Key_Keys.Ceiling (Container, Key);
702      begin
703         return (if Node = 0 then No_Element
704                 else Cursor'(Container'Unrestricted_Access, Node));
705      end Ceiling;
706
707      ------------------------
708      -- Constant_Reference --
709      ------------------------
710
711      function Constant_Reference
712        (Container : aliased Set;
713         Key       : Key_Type) return Constant_Reference_Type
714      is
715         Node : constant Count_Type := Key_Keys.Find (Container, Key);
716
717      begin
718         if Node = 0 then
719            raise Constraint_Error with "key not in set";
720         end if;
721
722         declare
723            N : Node_Type renames Container.Nodes (Node);
724         begin
725            return (Element => N.Element'Access);
726         end;
727      end Constant_Reference;
728
729      --------------
730      -- Contains --
731      --------------
732
733      function Contains (Container : Set; Key : Key_Type) return Boolean is
734      begin
735         return Find (Container, Key) /= No_Element;
736      end Contains;
737
738      ------------
739      -- Delete --
740      ------------
741
742      procedure Delete (Container : in out Set; Key : Key_Type) is
743         X : constant Count_Type := Key_Keys.Find (Container, Key);
744
745      begin
746         if X = 0 then
747            raise Constraint_Error with "attempt to delete key not in set";
748         end if;
749
750         Tree_Operations.Delete_Node_Sans_Free (Container, X);
751         Tree_Operations.Free (Container, X);
752      end Delete;
753
754      -------------
755      -- Element --
756      -------------
757
758      function Element (Container : Set; Key : Key_Type) return Element_Type is
759         Node : constant Count_Type := Key_Keys.Find (Container, Key);
760
761      begin
762         if Node = 0 then
763            raise Constraint_Error with "key not in set";
764         end if;
765
766         return Container.Nodes (Node).Element;
767      end Element;
768
769      ---------------------
770      -- Equivalent_Keys --
771      ---------------------
772
773      function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
774      begin
775         return (if Left < Right or else Right < Left then False else True);
776      end Equivalent_Keys;
777
778      -------------
779      -- Exclude --
780      -------------
781
782      procedure Exclude (Container : in out Set; Key : Key_Type) is
783         X : constant Count_Type := Key_Keys.Find (Container, Key);
784      begin
785         if X /= 0 then
786            Tree_Operations.Delete_Node_Sans_Free (Container, X);
787            Tree_Operations.Free (Container, X);
788         end if;
789      end Exclude;
790
791      ----------
792      -- Find --
793      ----------
794
795      function Find (Container : Set; Key : Key_Type) return Cursor is
796         Node : constant Count_Type := Key_Keys.Find (Container, Key);
797      begin
798         return (if Node = 0 then No_Element
799                 else Cursor'(Container'Unrestricted_Access, Node));
800      end Find;
801
802      -----------
803      -- Floor --
804      -----------
805
806      function Floor (Container : Set; Key : Key_Type) return Cursor is
807         Node : constant Count_Type := Key_Keys.Floor (Container, Key);
808      begin
809         return (if Node = 0 then No_Element
810                 else Cursor'(Container'Unrestricted_Access, Node));
811      end Floor;
812
813      -------------------------
814      -- Is_Greater_Key_Node --
815      -------------------------
816
817      function Is_Greater_Key_Node
818        (Left  : Key_Type;
819         Right : Node_Type) return Boolean
820      is
821      begin
822         return Key (Right.Element) < Left;
823      end Is_Greater_Key_Node;
824
825      ----------------------
826      -- Is_Less_Key_Node --
827      ----------------------
828
829      function Is_Less_Key_Node
830        (Left  : Key_Type;
831         Right : Node_Type) return Boolean
832      is
833      begin
834         return Left < Key (Right.Element);
835      end Is_Less_Key_Node;
836
837      ---------
838      -- Key --
839      ---------
840
841      function Key (Position : Cursor) return Key_Type is
842      begin
843         if Position.Node = 0 then
844            raise Constraint_Error with
845              "Position cursor equals No_Element";
846         end if;
847
848         pragma Assert (Vet (Position.Container.all, Position.Node),
849                        "bad cursor in Key");
850
851         return Key (Position.Container.Nodes (Position.Node).Element);
852      end Key;
853
854      ----------
855      -- Read --
856      ----------
857
858      procedure  Read
859        (Stream : not null access Root_Stream_Type'Class;
860         Item   : out Reference_Type)
861      is
862      begin
863         raise Program_Error with "attempt to stream reference";
864      end Read;
865
866      ------------------------------
867      -- Reference_Preserving_Key --
868      ------------------------------
869
870      function Reference_Preserving_Key
871        (Container : aliased in out Set;
872         Position  : Cursor) return Reference_Type
873      is
874      begin
875         if Position.Container = null then
876            raise Constraint_Error with "Position cursor has no element";
877         end if;
878
879         if Position.Container /= Container'Unrestricted_Access then
880            raise Program_Error with
881              "Position cursor designates wrong container";
882         end if;
883
884         pragma Assert
885           (Vet (Container, Position.Node),
886            "bad cursor in function Reference_Preserving_Key");
887
888         --  Some form of finalization will be required in order to actually
889         --  check that the key-part of the element designated by Position has
890         --  not changed.  ???
891
892         declare
893            N : Node_Type renames Container.Nodes (Position.Node);
894         begin
895            return (Element => N.Element'Access);
896         end;
897      end Reference_Preserving_Key;
898
899      function Reference_Preserving_Key
900        (Container : aliased in out Set;
901         Key       : Key_Type) return Reference_Type
902      is
903         Node : constant Count_Type := Key_Keys.Find (Container, Key);
904
905      begin
906         if Node = 0 then
907            raise Constraint_Error with "key not in set";
908         end if;
909
910         declare
911            N : Node_Type renames Container.Nodes (Node);
912         begin
913            return (Element => N.Element'Access);
914         end;
915      end Reference_Preserving_Key;
916
917      -------------
918      -- Replace --
919      -------------
920
921      procedure Replace
922        (Container : in out Set;
923         Key       : Key_Type;
924         New_Item  : Element_Type)
925      is
926         Node : constant Count_Type := Key_Keys.Find (Container, Key);
927
928      begin
929         if Node = 0 then
930            raise Constraint_Error with
931              "attempt to replace key not in set";
932         end if;
933
934         Replace_Element (Container, Node, New_Item);
935      end Replace;
936
937      -----------------------------------
938      -- Update_Element_Preserving_Key --
939      -----------------------------------
940
941      procedure Update_Element_Preserving_Key
942        (Container : in out Set;
943         Position  : Cursor;
944         Process   : not null access procedure (Element : in out Element_Type))
945      is
946      begin
947         if Position.Node = 0 then
948            raise Constraint_Error with
949              "Position cursor equals No_Element";
950         end if;
951
952         if Position.Container /= Container'Unrestricted_Access then
953            raise Program_Error with
954              "Position cursor designates wrong set";
955         end if;
956
957         pragma Assert (Vet (Container, Position.Node),
958                        "bad cursor in Update_Element_Preserving_Key");
959
960         --  Per AI05-0022, the container implementation is required to detect
961         --  element tampering by a generic actual subprogram.
962
963         declare
964            N : Node_Type renames Container.Nodes (Position.Node);
965            E : Element_Type renames N.Element;
966            K : constant Key_Type := Key (E);
967
968            B : Natural renames Container.Busy;
969            L : Natural renames Container.Lock;
970
971            Eq : Boolean;
972
973         begin
974            B := B + 1;
975            L := L + 1;
976
977            begin
978               Process (E);
979               Eq := Equivalent_Keys (K, Key (E));
980            exception
981               when others =>
982                  L := L - 1;
983                  B := B - 1;
984                  raise;
985            end;
986
987            L := L - 1;
988            B := B - 1;
989
990            if Eq then
991               return;
992            end if;
993         end;
994
995         Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
996         Tree_Operations.Free (Container, Position.Node);
997
998         raise Program_Error with "key was modified";
999      end Update_Element_Preserving_Key;
1000
1001      -----------
1002      -- Write --
1003      -----------
1004
1005      procedure Write
1006        (Stream : not null access Root_Stream_Type'Class;
1007         Item   : Reference_Type)
1008      is
1009      begin
1010         raise Program_Error with "attempt to stream reference";
1011      end Write;
1012   end Generic_Keys;
1013
1014   -----------------
1015   -- Has_Element --
1016   -----------------
1017
1018   function Has_Element (Position : Cursor) return Boolean is
1019   begin
1020      return Position /= No_Element;
1021   end Has_Element;
1022
1023   -------------
1024   -- Include --
1025   -------------
1026
1027   procedure Include (Container : in out Set; New_Item : Element_Type) is
1028      Position : Cursor;
1029      Inserted : Boolean;
1030
1031   begin
1032      Insert (Container, New_Item, Position, Inserted);
1033
1034      if not Inserted then
1035         if Container.Lock > 0 then
1036            raise Program_Error with
1037              "attempt to tamper with elements (set is locked)";
1038         end if;
1039
1040         Container.Nodes (Position.Node).Element := New_Item;
1041      end if;
1042   end Include;
1043
1044   ------------
1045   -- Insert --
1046   ------------
1047
1048   procedure Insert
1049     (Container : in out Set;
1050      New_Item  : Element_Type;
1051      Position  : out Cursor;
1052      Inserted  : out Boolean)
1053   is
1054   begin
1055      Insert_Sans_Hint
1056        (Container,
1057         New_Item,
1058         Position.Node,
1059         Inserted);
1060
1061      Position.Container := Container'Unrestricted_Access;
1062   end Insert;
1063
1064   procedure Insert
1065     (Container : in out Set;
1066      New_Item  : Element_Type)
1067   is
1068      Position : Cursor;
1069      pragma Unreferenced (Position);
1070
1071      Inserted : Boolean;
1072
1073   begin
1074      Insert (Container, New_Item, Position, Inserted);
1075
1076      if not Inserted then
1077         raise Constraint_Error with
1078           "attempt to insert element already in set";
1079      end if;
1080   end Insert;
1081
1082   ----------------------
1083   -- Insert_Sans_Hint --
1084   ----------------------
1085
1086   procedure Insert_Sans_Hint
1087     (Container : in out Set;
1088      New_Item  : Element_Type;
1089      Node      : out Count_Type;
1090      Inserted  : out Boolean)
1091   is
1092      procedure Set_Element (Node : in out Node_Type);
1093      pragma Inline (Set_Element);
1094
1095      function New_Node return Count_Type;
1096      pragma Inline (New_Node);
1097
1098      procedure Insert_Post is
1099        new Element_Keys.Generic_Insert_Post (New_Node);
1100
1101      procedure Conditional_Insert_Sans_Hint is
1102        new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1103
1104      procedure Allocate is
1105         new Tree_Operations.Generic_Allocate (Set_Element);
1106
1107      --------------
1108      -- New_Node --
1109      --------------
1110
1111      function New_Node return Count_Type is
1112         Result : Count_Type;
1113      begin
1114         Allocate (Container, Result);
1115         return Result;
1116      end New_Node;
1117
1118      -----------------
1119      -- Set_Element --
1120      -----------------
1121
1122      procedure Set_Element (Node : in out Node_Type) is
1123      begin
1124         Node.Element := New_Item;
1125      end Set_Element;
1126
1127   --  Start of processing for Insert_Sans_Hint
1128
1129   begin
1130      Conditional_Insert_Sans_Hint
1131        (Container,
1132         New_Item,
1133         Node,
1134         Inserted);
1135   end Insert_Sans_Hint;
1136
1137   ----------------------
1138   -- Insert_With_Hint --
1139   ----------------------
1140
1141   procedure Insert_With_Hint
1142     (Dst_Set  : in out Set;
1143      Dst_Hint : Count_Type;
1144      Src_Node : Node_Type;
1145      Dst_Node : out Count_Type)
1146   is
1147      Success : Boolean;
1148      pragma Unreferenced (Success);
1149
1150      procedure Set_Element (Node : in out Node_Type);
1151      pragma Inline (Set_Element);
1152
1153      function New_Node return Count_Type;
1154      pragma Inline (New_Node);
1155
1156      procedure Insert_Post is
1157         new Element_Keys.Generic_Insert_Post (New_Node);
1158
1159      procedure Insert_Sans_Hint is
1160         new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1161
1162      procedure Local_Insert_With_Hint is
1163         new Element_Keys.Generic_Conditional_Insert_With_Hint
1164           (Insert_Post,
1165            Insert_Sans_Hint);
1166
1167      procedure Allocate is
1168         new Tree_Operations.Generic_Allocate (Set_Element);
1169
1170      --------------
1171      -- New_Node --
1172      --------------
1173
1174      function New_Node return Count_Type is
1175         Result : Count_Type;
1176      begin
1177         Allocate (Dst_Set, Result);
1178         return Result;
1179      end New_Node;
1180
1181      -----------------
1182      -- Set_Element --
1183      -----------------
1184
1185      procedure Set_Element (Node : in out Node_Type) is
1186      begin
1187         Node.Element := Src_Node.Element;
1188      end Set_Element;
1189
1190   --  Start of processing for Insert_With_Hint
1191
1192   begin
1193      Local_Insert_With_Hint
1194        (Dst_Set,
1195         Dst_Hint,
1196         Src_Node.Element,
1197         Dst_Node,
1198         Success);
1199   end Insert_With_Hint;
1200
1201   ------------------
1202   -- Intersection --
1203   ------------------
1204
1205   procedure Intersection (Target : in out Set; Source : Set)
1206      renames Set_Ops.Set_Intersection;
1207
1208   function Intersection (Left, Right : Set) return Set
1209      renames Set_Ops.Set_Intersection;
1210
1211   --------------
1212   -- Is_Empty --
1213   --------------
1214
1215   function Is_Empty (Container : Set) return Boolean is
1216   begin
1217      return Container.Length = 0;
1218   end Is_Empty;
1219
1220   -----------------------------
1221   -- Is_Greater_Element_Node --
1222   -----------------------------
1223
1224   function Is_Greater_Element_Node
1225     (Left  : Element_Type;
1226      Right : Node_Type) return Boolean
1227   is
1228   begin
1229      --  Compute e > node same as node < e
1230
1231      return Right.Element < Left;
1232   end Is_Greater_Element_Node;
1233
1234   --------------------------
1235   -- Is_Less_Element_Node --
1236   --------------------------
1237
1238   function Is_Less_Element_Node
1239     (Left  : Element_Type;
1240      Right : Node_Type) return Boolean
1241   is
1242   begin
1243      return Left < Right.Element;
1244   end Is_Less_Element_Node;
1245
1246   -----------------------
1247   -- Is_Less_Node_Node --
1248   -----------------------
1249
1250   function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
1251   begin
1252      return L.Element < R.Element;
1253   end Is_Less_Node_Node;
1254
1255   ---------------
1256   -- Is_Subset --
1257   ---------------
1258
1259   function Is_Subset (Subset : Set; Of_Set : Set) return Boolean
1260      renames Set_Ops.Set_Subset;
1261
1262   -------------
1263   -- Iterate --
1264   -------------
1265
1266   procedure Iterate
1267     (Container : Set;
1268      Process   : not null access procedure (Position : Cursor))
1269   is
1270      procedure Process_Node (Node : Count_Type);
1271      pragma Inline (Process_Node);
1272
1273      procedure Local_Iterate is
1274        new Tree_Operations.Generic_Iteration (Process_Node);
1275
1276      ------------------
1277      -- Process_Node --
1278      ------------------
1279
1280      procedure Process_Node (Node : Count_Type) is
1281      begin
1282         Process (Cursor'(Container'Unrestricted_Access, Node));
1283      end Process_Node;
1284
1285      S : Set renames Container'Unrestricted_Access.all;
1286      B : Natural renames S.Busy;
1287
1288   --  Start of processing for Iterate
1289
1290   begin
1291      B := B + 1;
1292
1293      begin
1294         Local_Iterate (S);
1295      exception
1296         when others =>
1297            B := B - 1;
1298            raise;
1299      end;
1300
1301      B := B - 1;
1302   end Iterate;
1303
1304   function Iterate (Container : Set)
1305     return Set_Iterator_Interfaces.Reversible_Iterator'class
1306   is
1307      B : Natural renames Container'Unrestricted_Access.all.Busy;
1308
1309   begin
1310      --  The value of the Node component influences the behavior of the First
1311      --  and Last selector functions of the iterator object. When the Node
1312      --  component is 0 (as is the case here), this means the iterator object
1313      --  was constructed without a start expression. This is a complete
1314      --  iterator, meaning that the iteration starts from the (logical)
1315      --  beginning of the sequence of items.
1316
1317      --  Note: For a forward iterator, Container.First is the beginning, and
1318      --  for a reverse iterator, Container.Last is the beginning.
1319
1320      return It : constant Iterator :=
1321        Iterator'(Limited_Controlled with
1322                    Container => Container'Unrestricted_Access,
1323                    Node      => 0)
1324      do
1325         B := B + 1;
1326      end return;
1327   end Iterate;
1328
1329   function Iterate (Container : Set; Start : Cursor)
1330     return Set_Iterator_Interfaces.Reversible_Iterator'class
1331   is
1332      B  : Natural renames Container'Unrestricted_Access.all.Busy;
1333
1334   begin
1335      --  It was formerly the case that when Start = No_Element, the partial
1336      --  iterator was defined to behave the same as for a complete iterator,
1337      --  and iterate over the entire sequence of items. However, those
1338      --  semantics were unintuitive and arguably error-prone (it is too easy
1339      --  to accidentally create an endless loop), and so they were changed,
1340      --  per the ARG meeting in Denver on 2011/11. However, there was no
1341      --  consensus about what positive meaning this corner case should have,
1342      --  and so it was decided to simply raise an exception. This does imply,
1343      --  however, that it is not possible to use a partial iterator to specify
1344      --  an empty sequence of items.
1345
1346      if Start = No_Element then
1347         raise Constraint_Error with
1348           "Start position for iterator equals No_Element";
1349      end if;
1350
1351      if Start.Container /= Container'Unrestricted_Access then
1352         raise Program_Error with
1353           "Start cursor of Iterate designates wrong set";
1354      end if;
1355
1356      pragma Assert (Vet (Container, Start.Node),
1357                     "Start cursor of Iterate is bad");
1358
1359      --  The value of the Node component influences the behavior of the First
1360      --  and Last selector functions of the iterator object. When the Node
1361      --  component is positive (as is the case here), it means that this
1362      --  is a partial iteration, over a subset of the complete sequence of
1363      --  items. The iterator object was constructed with a start expression,
1364      --  indicating the position from which the iteration begins. (Note that
1365      --  the start position has the same value irrespective of whether this
1366      --  is a forward or reverse iteration.)
1367
1368      return It : constant Iterator :=
1369        Iterator'(Limited_Controlled with
1370                    Container => Container'Unrestricted_Access,
1371                    Node      => Start.Node)
1372      do
1373         B := B + 1;
1374      end return;
1375   end Iterate;
1376
1377   ----------
1378   -- Last --
1379   ----------
1380
1381   function Last (Container : Set) return Cursor is
1382   begin
1383      return (if Container.Last = 0 then No_Element
1384              else Cursor'(Container'Unrestricted_Access, Container.Last));
1385   end Last;
1386
1387   function Last (Object : Iterator) return Cursor is
1388   begin
1389      --  The value of the iterator object's Node component influences the
1390      --  behavior of the Last (and First) selector function.
1391
1392      --  When the Node component is 0, this means the iterator object was
1393      --  constructed without a start expression, in which case the (reverse)
1394      --  iteration starts from the (logical) beginning of the entire sequence
1395      --  (corresponding to Container.Last, for a reverse iterator).
1396
1397      --  Otherwise, this is iteration over a partial sequence of items. When
1398      --  the Node component is positive, the iterator object was constructed
1399      --  with a start expression, that specifies the position from which the
1400      --  (reverse) partial iteration begins.
1401
1402      if Object.Node = 0 then
1403         return Bounded_Ordered_Sets.Last (Object.Container.all);
1404      else
1405         return Cursor'(Object.Container, Object.Node);
1406      end if;
1407   end Last;
1408
1409   ------------------
1410   -- Last_Element --
1411   ------------------
1412
1413   function Last_Element (Container : Set) return Element_Type is
1414   begin
1415      if Container.Last = 0 then
1416         raise Constraint_Error with "set is empty";
1417      end if;
1418
1419      return Container.Nodes (Container.Last).Element;
1420   end Last_Element;
1421
1422   ----------
1423   -- Left --
1424   ----------
1425
1426   function Left (Node : Node_Type) return Count_Type is
1427   begin
1428      return Node.Left;
1429   end Left;
1430
1431   ------------
1432   -- Length --
1433   ------------
1434
1435   function Length (Container : Set) return Count_Type is
1436   begin
1437      return Container.Length;
1438   end Length;
1439
1440   ----------
1441   -- Move --
1442   ----------
1443
1444   procedure Move (Target : in out Set; Source : in out Set) is
1445   begin
1446      if Target'Address = Source'Address then
1447         return;
1448      end if;
1449
1450      if Source.Busy > 0 then
1451         raise Program_Error with
1452           "attempt to tamper with cursors (container is busy)";
1453      end if;
1454
1455      Target.Assign (Source);
1456      Source.Clear;
1457   end Move;
1458
1459   ----------
1460   -- Next --
1461   ----------
1462
1463   function Next (Position : Cursor) return Cursor is
1464   begin
1465      if Position = No_Element then
1466         return No_Element;
1467      end if;
1468
1469      pragma Assert (Vet (Position.Container.all, Position.Node),
1470                     "bad cursor in Next");
1471
1472      declare
1473         Node : constant Count_Type :=
1474           Tree_Operations.Next (Position.Container.all, Position.Node);
1475
1476      begin
1477         if Node = 0 then
1478            return No_Element;
1479         end if;
1480
1481         return Cursor'(Position.Container, Node);
1482      end;
1483   end Next;
1484
1485   procedure Next (Position : in out Cursor) is
1486   begin
1487      Position := Next (Position);
1488   end Next;
1489
1490   function Next (Object : Iterator; Position : Cursor) return Cursor is
1491   begin
1492      if Position.Container = null then
1493         return No_Element;
1494      end if;
1495
1496      if Position.Container /= Object.Container then
1497         raise Program_Error with
1498           "Position cursor of Next designates wrong set";
1499      end if;
1500
1501      return Next (Position);
1502   end Next;
1503
1504   -------------
1505   -- Overlap --
1506   -------------
1507
1508   function Overlap (Left, Right : Set) return Boolean
1509      renames Set_Ops.Set_Overlap;
1510
1511   ------------
1512   -- Parent --
1513   ------------
1514
1515   function Parent (Node : Node_Type) return Count_Type is
1516   begin
1517      return Node.Parent;
1518   end Parent;
1519
1520   --------------
1521   -- Previous --
1522   --------------
1523
1524   function Previous (Position : Cursor) return Cursor is
1525   begin
1526      if Position = No_Element then
1527         return No_Element;
1528      end if;
1529
1530      pragma Assert (Vet (Position.Container.all, Position.Node),
1531                     "bad cursor in Previous");
1532
1533      declare
1534         Node : constant Count_Type :=
1535           Tree_Operations.Previous (Position.Container.all, Position.Node);
1536      begin
1537         return (if Node = 0 then No_Element
1538                 else Cursor'(Position.Container, Node));
1539      end;
1540   end Previous;
1541
1542   procedure Previous (Position : in out Cursor) is
1543   begin
1544      Position := Previous (Position);
1545   end Previous;
1546
1547   function Previous (Object : Iterator; Position : Cursor) return Cursor is
1548   begin
1549      if Position.Container = null then
1550         return No_Element;
1551      end if;
1552
1553      if Position.Container /= Object.Container then
1554         raise Program_Error with
1555           "Position cursor of Previous designates wrong set";
1556      end if;
1557
1558      return Previous (Position);
1559   end Previous;
1560
1561   -------------------
1562   -- Query_Element --
1563   -------------------
1564
1565   procedure Query_Element
1566     (Position : Cursor;
1567      Process  : not null access procedure (Element : Element_Type))
1568   is
1569   begin
1570      if Position.Node = 0 then
1571         raise Constraint_Error with "Position cursor equals No_Element";
1572      end if;
1573
1574      pragma Assert (Vet (Position.Container.all, Position.Node),
1575                     "bad cursor in Query_Element");
1576
1577      declare
1578         S : Set renames Position.Container.all;
1579         B : Natural renames S.Busy;
1580         L : Natural renames S.Lock;
1581
1582      begin
1583         B := B + 1;
1584         L := L + 1;
1585
1586         begin
1587            Process (S.Nodes (Position.Node).Element);
1588         exception
1589            when others =>
1590               L := L - 1;
1591               B := B - 1;
1592               raise;
1593         end;
1594
1595         L := L - 1;
1596         B := B - 1;
1597      end;
1598   end Query_Element;
1599
1600   ----------
1601   -- Read --
1602   ----------
1603
1604   procedure Read
1605     (Stream    : not null access Root_Stream_Type'Class;
1606      Container : out Set)
1607   is
1608      procedure Read_Element (Node : in out Node_Type);
1609      pragma Inline (Read_Element);
1610
1611      procedure Allocate is
1612         new Tree_Operations.Generic_Allocate (Read_Element);
1613
1614      procedure Read_Elements is
1615         new Tree_Operations.Generic_Read (Allocate);
1616
1617      ------------------
1618      -- Read_Element --
1619      ------------------
1620
1621      procedure Read_Element (Node : in out Node_Type) is
1622      begin
1623         Element_Type'Read (Stream, Node.Element);
1624      end Read_Element;
1625
1626   --  Start of processing for Read
1627
1628   begin
1629      Read_Elements (Stream, Container);
1630   end Read;
1631
1632   procedure Read
1633     (Stream : not null access Root_Stream_Type'Class;
1634      Item   : out Cursor)
1635   is
1636   begin
1637      raise Program_Error with "attempt to stream set cursor";
1638   end Read;
1639
1640   procedure Read
1641     (Stream : not null access Root_Stream_Type'Class;
1642      Item   : out Constant_Reference_Type)
1643   is
1644   begin
1645      raise Program_Error with "attempt to stream reference";
1646   end Read;
1647
1648   -------------
1649   -- Replace --
1650   -------------
1651
1652   procedure Replace (Container : in out Set; New_Item : Element_Type) is
1653      Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1654
1655   begin
1656      if Node = 0 then
1657         raise Constraint_Error with
1658           "attempt to replace element not in set";
1659      end if;
1660
1661      if Container.Lock > 0 then
1662         raise Program_Error with
1663           "attempt to tamper with elements (set is locked)";
1664      end if;
1665
1666      Container.Nodes (Node).Element := New_Item;
1667   end Replace;
1668
1669   ---------------------
1670   -- Replace_Element --
1671   ---------------------
1672
1673   procedure Replace_Element
1674     (Container : in out Set;
1675      Index     : Count_Type;
1676      Item      : Element_Type)
1677   is
1678      pragma Assert (Index /= 0);
1679
1680      function New_Node return Count_Type;
1681      pragma Inline (New_Node);
1682
1683      procedure Local_Insert_Post is
1684         new Element_Keys.Generic_Insert_Post (New_Node);
1685
1686      procedure Local_Insert_Sans_Hint is
1687         new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1688
1689      procedure Local_Insert_With_Hint is
1690         new Element_Keys.Generic_Conditional_Insert_With_Hint
1691           (Local_Insert_Post,
1692            Local_Insert_Sans_Hint);
1693
1694      Nodes : Nodes_Type renames Container.Nodes;
1695      Node  : Node_Type renames Nodes (Index);
1696
1697      --------------
1698      -- New_Node --
1699      --------------
1700
1701      function New_Node return Count_Type is
1702      begin
1703         Node.Element := Item;
1704         Node.Color   := Red_Black_Trees.Red;
1705         Node.Parent  := 0;
1706         Node.Right   := 0;
1707         Node.Left    := 0;
1708         return Index;
1709      end New_Node;
1710
1711      Hint      : Count_Type;
1712      Result    : Count_Type;
1713      Inserted  : Boolean;
1714      Compare   : Boolean;
1715
1716      --  Per AI05-0022, the container implementation is required to detect
1717      --  element tampering by a generic actual subprogram.
1718
1719      B : Natural renames Container.Busy;
1720      L : Natural renames Container.Lock;
1721
1722   --  Start of processing for Replace_Element
1723
1724   begin
1725      --  Replace_Element assigns value Item to the element designated by Node,
1726      --  per certain semantic constraints, described as follows.
1727
1728      --  If Item is equivalent to the element, then element is replaced and
1729      --  there's nothing else to do. This is the easy case.
1730
1731      --  If Item is not equivalent, then the node will (possibly) have to move
1732      --  to some other place in the tree. This is slighly more complicated,
1733      --  because we must ensure that Item is not equivalent to some other
1734      --  element in the tree (in which case, the replacement is not allowed).
1735
1736      --  Determine whether Item is equivalent to element on the specified
1737      --  node.
1738
1739      begin
1740         B := B + 1;
1741         L := L + 1;
1742
1743         Compare := (if Item < Node.Element then False
1744                     elsif Node.Element < Item then False
1745                     else True);
1746
1747         L := L - 1;
1748         B := B - 1;
1749
1750      exception
1751         when others =>
1752            L := L - 1;
1753            B := B - 1;
1754            raise;
1755      end;
1756
1757      if Compare then
1758
1759         --  Item is equivalent to the node's element, so we will not have to
1760         --  move the node.
1761
1762         if Container.Lock > 0 then
1763            raise Program_Error with
1764              "attempt to tamper with elements (set is locked)";
1765         end if;
1766
1767         Node.Element := Item;
1768         return;
1769      end if;
1770
1771      --  The replacement Item is not equivalent to the element on the
1772      --  specified node, which means that it will need to be re-inserted in a
1773      --  different position in the tree. We must now determine whether Item is
1774      --  equivalent to some other element in the tree (which would prohibit
1775      --  the assignment and hence the move).
1776
1777      --  Ceiling returns the smallest element equivalent or greater than the
1778      --  specified Item; if there is no such element, then it returns 0.
1779
1780      Hint := Element_Keys.Ceiling (Container, Item);
1781
1782      if Hint /= 0 then  -- Item <= Nodes (Hint).Element
1783         begin
1784            B := B + 1;
1785            L := L + 1;
1786
1787            Compare := Item < Nodes (Hint).Element;
1788
1789            L := L - 1;
1790            B := B - 1;
1791
1792         exception
1793            when others =>
1794               L := L - 1;
1795               B := B - 1;
1796               raise;
1797         end;
1798
1799         --  Item is equivalent to Nodes (Hint).Element
1800
1801         if not Compare then
1802
1803            --  Ceiling returns an element that is equivalent or greater than
1804            --  Item. If Item is "not less than" the element, then by
1805            --  elimination we know that Item is equivalent to the element.
1806
1807            --  But this means that it is not possible to assign the value of
1808            --  Item to the specified element (on Node), because a different
1809            --  element (on Hint) equivalent to Item already exsits. (Were we
1810            --  to change Node's element value, we would have to move Node, but
1811            --  we would be unable to move the Node, because its new position
1812            --  in the tree is already occupied by an equivalent element.)
1813
1814            raise Program_Error with "attempt to replace existing element";
1815         end if;
1816
1817         --  Item is not equivalent to any other element in the tree
1818         --  (specifically, it is less than Nodes (Hint).Element), so it is
1819         --  safe to assign the value of Item to Node.Element. This means that
1820         --  the node will have to move to a different position in the tree
1821         --  (because its element will have a different value).
1822
1823         --  The nearest (greater) neighbor of Item is Hint. This will be the
1824         --  insertion position of Node (because its element will have Item as
1825         --  its new value).
1826
1827         --  If Node equals Hint, the relative position of Node does not
1828         --  change. This allows us to perform an optimization: we need not
1829         --  remove Node from the tree and then reinsert it with its new value,
1830         --  because it would only be placed in the exact same position.
1831
1832         if Hint = Index then
1833            if Container.Lock > 0 then
1834               raise Program_Error with
1835                 "attempt to tamper with elements (set is locked)";
1836            end if;
1837
1838            Node.Element := Item;
1839            return;
1840         end if;
1841      end if;
1842
1843      --  If we get here, it is because Item was greater than all elements in
1844      --  the tree (Hint = 0), or because Item was less than some element at a
1845      --  different place in the tree (Item < Nodes (Hint).Element and Hint /=
1846      --  Index). In either case, we remove Node from the tree and then insert
1847      --  Item into the tree, onto the same Node.
1848
1849      Tree_Operations.Delete_Node_Sans_Free (Container, Index);
1850
1851      Local_Insert_With_Hint
1852        (Tree     => Container,
1853         Position => Hint,
1854         Key      => Item,
1855         Node     => Result,
1856         Inserted => Inserted);
1857
1858      pragma Assert (Inserted);
1859      pragma Assert (Result = Index);
1860   end Replace_Element;
1861
1862   procedure Replace_Element
1863     (Container : in out Set;
1864      Position  : Cursor;
1865      New_Item  : Element_Type)
1866   is
1867   begin
1868      if Position.Node = 0 then
1869         raise Constraint_Error with
1870           "Position cursor equals No_Element";
1871      end if;
1872
1873      if Position.Container /= Container'Unrestricted_Access then
1874         raise Program_Error with
1875           "Position cursor designates wrong set";
1876      end if;
1877
1878      pragma Assert (Vet (Container, Position.Node),
1879                     "bad cursor in Replace_Element");
1880
1881      Replace_Element (Container, Position.Node, New_Item);
1882   end Replace_Element;
1883
1884   ---------------------
1885   -- Reverse_Iterate --
1886   ---------------------
1887
1888   procedure Reverse_Iterate
1889     (Container : Set;
1890      Process   : not null access procedure (Position : Cursor))
1891   is
1892      procedure Process_Node (Node : Count_Type);
1893      pragma Inline (Process_Node);
1894
1895      procedure Local_Reverse_Iterate is
1896         new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1897
1898      ------------------
1899      -- Process_Node --
1900      ------------------
1901
1902      procedure Process_Node (Node : Count_Type) is
1903      begin
1904         Process (Cursor'(Container'Unrestricted_Access, Node));
1905      end Process_Node;
1906
1907      S : Set renames Container'Unrestricted_Access.all;
1908      B : Natural renames S.Busy;
1909
1910   --  Start of processing for Reverse_Iterate
1911
1912   begin
1913      B := B + 1;
1914
1915      begin
1916         Local_Reverse_Iterate (S);
1917      exception
1918         when others =>
1919            B := B - 1;
1920            raise;
1921      end;
1922
1923      B := B - 1;
1924   end Reverse_Iterate;
1925
1926   -----------
1927   -- Right --
1928   -----------
1929
1930   function Right (Node : Node_Type) return Count_Type is
1931   begin
1932      return Node.Right;
1933   end Right;
1934
1935   ---------------
1936   -- Set_Color --
1937   ---------------
1938
1939   procedure Set_Color
1940     (Node  : in out Node_Type;
1941      Color : Red_Black_Trees.Color_Type)
1942   is
1943   begin
1944      Node.Color := Color;
1945   end Set_Color;
1946
1947   --------------
1948   -- Set_Left --
1949   --------------
1950
1951   procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
1952   begin
1953      Node.Left := Left;
1954   end Set_Left;
1955
1956   ----------------
1957   -- Set_Parent --
1958   ----------------
1959
1960   procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
1961   begin
1962      Node.Parent := Parent;
1963   end Set_Parent;
1964
1965   ---------------
1966   -- Set_Right --
1967   ---------------
1968
1969   procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
1970   begin
1971      Node.Right := Right;
1972   end Set_Right;
1973
1974   --------------------------
1975   -- Symmetric_Difference --
1976   --------------------------
1977
1978   procedure Symmetric_Difference (Target : in out Set; Source : Set)
1979      renames Set_Ops.Set_Symmetric_Difference;
1980
1981   function Symmetric_Difference (Left, Right : Set) return Set
1982      renames Set_Ops.Set_Symmetric_Difference;
1983
1984   ------------
1985   -- To_Set --
1986   ------------
1987
1988   function To_Set (New_Item : Element_Type) return Set is
1989      Node     : Count_Type;
1990      Inserted : Boolean;
1991   begin
1992      return S : Set (1) do
1993         Insert_Sans_Hint (S, New_Item, Node, Inserted);
1994         pragma Assert (Inserted);
1995      end return;
1996   end To_Set;
1997
1998   -----------
1999   -- Union --
2000   -----------
2001
2002   procedure Union (Target : in out Set; Source : Set)
2003      renames Set_Ops.Set_Union;
2004
2005   function Union (Left, Right : Set) return Set
2006      renames Set_Ops.Set_Union;
2007
2008   -----------
2009   -- Write --
2010   -----------
2011
2012   procedure Write
2013     (Stream    : not null access Root_Stream_Type'Class;
2014      Container : Set)
2015   is
2016      procedure Write_Element
2017        (Stream : not null access Root_Stream_Type'Class;
2018         Node   : Node_Type);
2019      pragma Inline (Write_Element);
2020
2021      procedure Write_Elements is
2022         new Tree_Operations.Generic_Write (Write_Element);
2023
2024      -------------------
2025      -- Write_Element --
2026      -------------------
2027
2028      procedure Write_Element
2029        (Stream : not null access Root_Stream_Type'Class;
2030         Node   : Node_Type)
2031      is
2032      begin
2033         Element_Type'Write (Stream, Node.Element);
2034      end Write_Element;
2035
2036   --  Start of processing for Write
2037
2038   begin
2039      Write_Elements (Stream, Container);
2040   end Write;
2041
2042   procedure Write
2043     (Stream : not null access Root_Stream_Type'Class;
2044      Item   : Cursor)
2045   is
2046   begin
2047      raise Program_Error with "attempt to stream set cursor";
2048   end Write;
2049
2050   procedure Write
2051     (Stream : not null access Root_Stream_Type'Class;
2052      Item   : Constant_Reference_Type)
2053   is
2054   begin
2055      raise Program_Error with "attempt to stream reference";
2056   end Write;
2057
2058end Ada.Containers.Bounded_Ordered_Sets;
2059