1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--            ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS           --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2004-2011, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- This unit was originally developed by Matthew J Heaney.                  --
28------------------------------------------------------------------------------
29
30package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys is
31
32   package Ops renames Tree_Operations;
33
34   -------------
35   -- Ceiling --
36   -------------
37
38   --  AKA Lower_Bound
39
40   function Ceiling
41     (Tree : Tree_Type'Class;
42      Key  : Key_Type) return Count_Type
43   is
44      Y : Count_Type;
45      X : Count_Type;
46      N : Nodes_Type renames Tree.Nodes;
47
48   begin
49      Y := 0;
50
51      X := Tree.Root;
52      while X /= 0 loop
53         if Is_Greater_Key_Node (Key, N (X)) then
54            X := Ops.Right (N (X));
55         else
56            Y := X;
57            X := Ops.Left (N (X));
58         end if;
59      end loop;
60
61      return Y;
62   end Ceiling;
63
64   ----------
65   -- Find --
66   ----------
67
68   function Find
69     (Tree : Tree_Type'Class;
70      Key  : Key_Type) return Count_Type
71   is
72      Y : Count_Type;
73      X : Count_Type;
74      N : Nodes_Type renames Tree.Nodes;
75
76   begin
77      Y := 0;
78
79      X := Tree.Root;
80      while X /= 0 loop
81         if Is_Greater_Key_Node (Key, N (X)) then
82            X := Ops.Right (N (X));
83         else
84            Y := X;
85            X := Ops.Left (N (X));
86         end if;
87      end loop;
88
89      if Y = 0 then
90         return 0;
91      end if;
92
93      if Is_Less_Key_Node (Key, N (Y)) then
94         return 0;
95      end if;
96
97      return Y;
98   end Find;
99
100   -----------
101   -- Floor --
102   -----------
103
104   function Floor
105     (Tree : Tree_Type'Class;
106      Key  : Key_Type) return Count_Type
107   is
108      Y : Count_Type;
109      X : Count_Type;
110      N : Nodes_Type renames Tree.Nodes;
111
112   begin
113      Y := 0;
114
115      X := Tree.Root;
116      while X /= 0 loop
117         if Is_Less_Key_Node (Key, N (X)) then
118            X := Ops.Left (N (X));
119         else
120            Y := X;
121            X := Ops.Right (N (X));
122         end if;
123      end loop;
124
125      return Y;
126   end Floor;
127
128   --------------------------------
129   -- Generic_Conditional_Insert --
130   --------------------------------
131
132   procedure Generic_Conditional_Insert
133     (Tree     : in out Tree_Type'Class;
134      Key      : Key_Type;
135      Node     : out Count_Type;
136      Inserted : out Boolean)
137   is
138      Y : Count_Type;
139      X : Count_Type;
140      N : Nodes_Type renames Tree.Nodes;
141
142   begin
143      --  This is a "conditional" insertion, meaning that the insertion request
144      --  can "fail" in the sense that no new node is created. If the Key is
145      --  equivalent to an existing node, then we return the existing node and
146      --  Inserted is set to False. Otherwise, we allocate a new node (via
147      --  Insert_Post) and Inserted is set to True.
148
149      --  Note that we are testing for equivalence here, not equality. Key must
150      --  be strictly less than its next neighbor, and strictly greater than
151      --  its previous neighbor, in order for the conditional insertion to
152      --  succeed.
153
154      --  We search the tree to find the nearest neighbor of Key, which is
155      --  either the smallest node greater than Key (Inserted is True), or the
156      --  largest node less or equivalent to Key (Inserted is False).
157
158      Y := 0;
159      X := Tree.Root;
160      Inserted := True;
161      while X /= 0 loop
162         Y := X;
163         Inserted := Is_Less_Key_Node (Key, N (X));
164         X := (if Inserted then Ops.Left (N (X)) else Ops.Right (N (X)));
165      end loop;
166
167      if Inserted then
168
169         --  Either Tree is empty, or Key is less than Y. If Y is the first
170         --  node in the tree, then there are no other nodes that we need to
171         --  search for, and we insert a new node into the tree.
172
173         if Y = Tree.First then
174            Insert_Post (Tree, Y, True, Node);
175            return;
176         end if;
177
178         --  Y is the next nearest-neighbor of Key. We know that Key is not
179         --  equivalent to Y (because Key is strictly less than Y), so we move
180         --  to the previous node, the nearest-neighbor just smaller or
181         --  equivalent to Key.
182
183         Node := Ops.Previous (Tree, Y);
184
185      else
186         --  Y is the previous nearest-neighbor of Key. We know that Key is not
187         --  less than Y, which means either that Key is equivalent to Y, or
188         --  greater than Y.
189
190         Node := Y;
191      end if;
192
193      --  Key is equivalent to or greater than Node. We must resolve which is
194      --  the case, to determine whether the conditional insertion succeeds.
195
196      if Is_Greater_Key_Node (Key, N (Node)) then
197
198         --  Key is strictly greater than Node, which means that Key is not
199         --  equivalent to Node. In this case, the insertion succeeds, and we
200         --  insert a new node into the tree.
201
202         Insert_Post (Tree, Y, Inserted, Node);
203         Inserted := True;
204         return;
205      end if;
206
207      --  Key is equivalent to Node. This is a conditional insertion, so we do
208      --  not insert a new node in this case. We return the existing node and
209      --  report that no insertion has occurred.
210
211      Inserted := False;
212   end Generic_Conditional_Insert;
213
214   ------------------------------------------
215   -- Generic_Conditional_Insert_With_Hint --
216   ------------------------------------------
217
218   procedure Generic_Conditional_Insert_With_Hint
219     (Tree      : in out Tree_Type'Class;
220      Position  : Count_Type;
221      Key       : Key_Type;
222      Node      : out Count_Type;
223      Inserted  : out Boolean)
224   is
225      N : Nodes_Type renames Tree.Nodes;
226
227   begin
228      --  The purpose of a hint is to avoid a search from the root of
229      --  tree. If we have it hint it means we only need to traverse the
230      --  subtree rooted at the hint to find the nearest neighbor. Note
231      --  that finding the neighbor means merely walking the tree; this
232      --  is not a search and the only comparisons that occur are with
233      --  the hint and its neighbor.
234
235      --  If Position is 0, this is interpreted to mean that Key is
236      --  large relative to the nodes in the tree. If the tree is empty,
237      --  or Key is greater than the last node in the tree, then we're
238      --  done; otherwise the hint was "wrong" and we must search.
239
240      if Position = 0 then  -- largest
241         if Tree.Last = 0
242           or else Is_Greater_Key_Node (Key, N (Tree.Last))
243         then
244            Insert_Post (Tree, Tree.Last, False, Node);
245            Inserted := True;
246         else
247            Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
248         end if;
249
250         return;
251      end if;
252
253      pragma Assert (Tree.Length > 0);
254
255      --  A hint can either name the node that immediately follows Key,
256      --  or immediately precedes Key. We first test whether Key is
257      --  less than the hint, and if so we compare Key to the node that
258      --  precedes the hint. If Key is both less than the hint and
259      --  greater than the hint's preceding neighbor, then we're done;
260      --  otherwise we must search.
261
262      --  Note also that a hint can either be an anterior node or a leaf
263      --  node. A new node is always inserted at the bottom of the tree
264      --  (at least prior to rebalancing), becoming the new left or
265      --  right child of leaf node (which prior to the insertion must
266      --  necessarily be null, since this is a leaf). If the hint names
267      --  an anterior node then its neighbor must be a leaf, and so
268      --  (here) we insert after the neighbor. If the hint names a leaf
269      --  then its neighbor must be anterior and so we insert before the
270      --  hint.
271
272      if Is_Less_Key_Node (Key, N (Position)) then
273         declare
274            Before : constant Count_Type := Ops.Previous (Tree, Position);
275
276         begin
277            if Before = 0 then
278               Insert_Post (Tree, Tree.First, True, Node);
279               Inserted := True;
280
281            elsif Is_Greater_Key_Node (Key, N (Before)) then
282               if Ops.Right (N (Before)) = 0 then
283                  Insert_Post (Tree, Before, False, Node);
284               else
285                  Insert_Post (Tree, Position, True, Node);
286               end if;
287
288               Inserted := True;
289
290            else
291               Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
292            end if;
293         end;
294
295         return;
296      end if;
297
298      --  We know that Key isn't less than the hint so we try again,
299      --  this time to see if it's greater than the hint. If so we
300      --  compare Key to the node that follows the hint. If Key is both
301      --  greater than the hint and less than the hint's next neighbor,
302      --  then we're done; otherwise we must search.
303
304      if Is_Greater_Key_Node (Key, N (Position)) then
305         declare
306            After : constant Count_Type := Ops.Next (Tree, Position);
307
308         begin
309            if After = 0 then
310               Insert_Post (Tree, Tree.Last, False, Node);
311               Inserted := True;
312
313            elsif Is_Less_Key_Node (Key, N (After)) then
314               if Ops.Right (N (Position)) = 0 then
315                  Insert_Post (Tree, Position, False, Node);
316               else
317                  Insert_Post (Tree, After, True, Node);
318               end if;
319
320               Inserted := True;
321
322            else
323               Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted);
324            end if;
325         end;
326
327         return;
328      end if;
329
330      --  We know that Key is neither less than the hint nor greater
331      --  than the hint, and that's the definition of equivalence.
332      --  There's nothing else we need to do, since a search would just
333      --  reach the same conclusion.
334
335      Node := Position;
336      Inserted := False;
337   end Generic_Conditional_Insert_With_Hint;
338
339   -------------------------
340   -- Generic_Insert_Post --
341   -------------------------
342
343   procedure Generic_Insert_Post
344     (Tree   : in out Tree_Type'Class;
345      Y      : Count_Type;
346      Before : Boolean;
347      Z      : out Count_Type)
348   is
349      N : Nodes_Type renames Tree.Nodes;
350
351   begin
352      if Tree.Length >= Tree.Capacity then
353         raise Capacity_Error with "not enough capacity to insert new item";
354      end if;
355
356      if Tree.Busy > 0 then
357         raise Program_Error with
358           "attempt to tamper with cursors (container is busy)";
359      end if;
360
361      Z := New_Node;
362      pragma Assert (Z /= 0);
363
364      if Y = 0 then
365         pragma Assert (Tree.Length = 0);
366         pragma Assert (Tree.Root = 0);
367         pragma Assert (Tree.First = 0);
368         pragma Assert (Tree.Last = 0);
369
370         Tree.Root := Z;
371         Tree.First := Z;
372         Tree.Last := Z;
373
374      elsif Before then
375         pragma Assert (Ops.Left (N (Y)) = 0);
376
377         Ops.Set_Left (N (Y), Z);
378
379         if Y = Tree.First then
380            Tree.First := Z;
381         end if;
382
383      else
384         pragma Assert (Ops.Right (N (Y)) = 0);
385
386         Ops.Set_Right (N (Y), Z);
387
388         if Y = Tree.Last then
389            Tree.Last := Z;
390         end if;
391      end if;
392
393      Ops.Set_Color (N (Z), Red);
394      Ops.Set_Parent (N (Z), Y);
395      Ops.Rebalance_For_Insert (Tree, Z);
396      Tree.Length := Tree.Length + 1;
397   end Generic_Insert_Post;
398
399   -----------------------
400   -- Generic_Iteration --
401   -----------------------
402
403   procedure Generic_Iteration
404     (Tree : Tree_Type'Class;
405      Key  : Key_Type)
406   is
407      procedure Iterate (Index : Count_Type);
408
409      -------------
410      -- Iterate --
411      -------------
412
413      procedure Iterate (Index : Count_Type) is
414         J : Count_Type;
415         N : Nodes_Type renames Tree.Nodes;
416
417      begin
418         J := Index;
419         while J /= 0 loop
420            if Is_Less_Key_Node (Key, N (J)) then
421               J := Ops.Left (N (J));
422            elsif Is_Greater_Key_Node (Key, N (J)) then
423               J := Ops.Right (N (J));
424            else
425               Iterate (Ops.Left (N (J)));
426               Process (J);
427               J := Ops.Right (N (J));
428            end if;
429         end loop;
430      end Iterate;
431
432   --  Start of processing for Generic_Iteration
433
434   begin
435      Iterate (Tree.Root);
436   end Generic_Iteration;
437
438   -------------------------------
439   -- Generic_Reverse_Iteration --
440   -------------------------------
441
442   procedure Generic_Reverse_Iteration
443     (Tree : Tree_Type'Class;
444      Key  : Key_Type)
445   is
446      procedure Iterate (Index : Count_Type);
447
448      -------------
449      -- Iterate --
450      -------------
451
452      procedure Iterate (Index : Count_Type) is
453         J : Count_Type;
454         N : Nodes_Type renames Tree.Nodes;
455
456      begin
457         J := Index;
458         while J /= 0 loop
459            if Is_Less_Key_Node (Key, N (J)) then
460               J := Ops.Left (N (J));
461            elsif Is_Greater_Key_Node (Key, N (J)) then
462               J := Ops.Right (N (J));
463            else
464               Iterate (Ops.Right (N (J)));
465               Process (J);
466               J := Ops.Left (N (J));
467            end if;
468         end loop;
469      end Iterate;
470
471   --  Start of processing for Generic_Reverse_Iteration
472
473   begin
474      Iterate (Tree.Root);
475   end Generic_Reverse_Iteration;
476
477   ----------------------------------
478   -- Generic_Unconditional_Insert --
479   ----------------------------------
480
481   procedure Generic_Unconditional_Insert
482     (Tree : in out Tree_Type'Class;
483      Key  : Key_Type;
484      Node : out Count_Type)
485   is
486      Y : Count_Type;
487      X : Count_Type;
488      N : Nodes_Type renames Tree.Nodes;
489
490      Before : Boolean;
491
492   begin
493      Y := 0;
494      Before := False;
495
496      X := Tree.Root;
497      while X /= 0 loop
498         Y := X;
499         Before := Is_Less_Key_Node (Key, N (X));
500         X := (if Before then Ops.Left (N (X)) else Ops.Right (N (X)));
501      end loop;
502
503      Insert_Post (Tree, Y, Before, Node);
504   end Generic_Unconditional_Insert;
505
506   --------------------------------------------
507   -- Generic_Unconditional_Insert_With_Hint --
508   --------------------------------------------
509
510   procedure Generic_Unconditional_Insert_With_Hint
511     (Tree : in out Tree_Type'Class;
512      Hint : Count_Type;
513      Key  : Key_Type;
514      Node : out Count_Type)
515   is
516      N : Nodes_Type renames Tree.Nodes;
517
518   begin
519      --  There are fewer constraints for an unconditional insertion
520      --  than for a conditional insertion, since we allow duplicate
521      --  keys. So instead of having to check (say) whether Key is
522      --  (strictly) greater than the hint's previous neighbor, here we
523      --  allow Key to be equal to or greater than the previous node.
524
525      --  There is the issue of what to do if Key is equivalent to the
526      --  hint. Does the new node get inserted before or after the hint?
527      --  We decide that it gets inserted after the hint, reasoning that
528      --  this is consistent with behavior for non-hint insertion, which
529      --  inserts a new node after existing nodes with equivalent keys.
530
531      --  First we check whether the hint is null, which is interpreted
532      --  to mean that Key is large relative to existing nodes.
533      --  Following our rule above, if Key is equal to or greater than
534      --  the last node, then we insert the new node immediately after
535      --  last. (We don't have an operation for testing whether a key is
536      --  "equal to or greater than" a node, so we must say instead "not
537      --  less than", which is equivalent.)
538
539      if Hint = 0 then  -- largest
540         if Tree.Last = 0 then
541            Insert_Post (Tree, 0, False, Node);
542         elsif Is_Less_Key_Node (Key, N (Tree.Last)) then
543            Unconditional_Insert_Sans_Hint (Tree, Key, Node);
544         else
545            Insert_Post (Tree, Tree.Last, False, Node);
546         end if;
547
548         return;
549      end if;
550
551      pragma Assert (Tree.Length > 0);
552
553      --  We decide here whether to insert the new node prior to the
554      --  hint. Key could be equivalent to the hint, so in theory we
555      --  could write the following test as "not greater than" (same as
556      --  "less than or equal to"). If Key were equivalent to the hint,
557      --  that would mean that the new node gets inserted before an
558      --  equivalent node. That wouldn't break any container invariants,
559      --  but our rule above says that new nodes always get inserted
560      --  after equivalent nodes. So here we test whether Key is both
561      --  less than the hint and equal to or greater than the hint's
562      --  previous neighbor, and if so insert it before the hint.
563
564      if Is_Less_Key_Node (Key, N (Hint)) then
565         declare
566            Before : constant Count_Type := Ops.Previous (Tree, Hint);
567         begin
568            if Before = 0 then
569               Insert_Post (Tree, Hint, True, Node);
570            elsif Is_Less_Key_Node (Key, N (Before)) then
571               Unconditional_Insert_Sans_Hint (Tree, Key, Node);
572            elsif Ops.Right (N (Before)) = 0 then
573               Insert_Post (Tree, Before, False, Node);
574            else
575               Insert_Post (Tree, Hint, True, Node);
576            end if;
577         end;
578
579         return;
580      end if;
581
582      --  We know that Key isn't less than the hint, so it must be equal
583      --  or greater. So we just test whether Key is less than or equal
584      --  to (same as "not greater than") the hint's next neighbor, and
585      --  if so insert it after the hint.
586
587      declare
588         After : constant Count_Type := Ops.Next (Tree, Hint);
589      begin
590         if After = 0 then
591            Insert_Post (Tree, Hint, False, Node);
592         elsif Is_Greater_Key_Node (Key, N (After)) then
593            Unconditional_Insert_Sans_Hint (Tree, Key, Node);
594         elsif Ops.Right (N (Hint)) = 0 then
595            Insert_Post (Tree, Hint, False, Node);
596         else
597            Insert_Post (Tree, After, True, Node);
598         end if;
599      end;
600   end Generic_Unconditional_Insert_With_Hint;
601
602   -----------------
603   -- Upper_Bound --
604   -----------------
605
606   function Upper_Bound
607     (Tree : Tree_Type'Class;
608      Key  : Key_Type) return Count_Type
609   is
610      Y : Count_Type;
611      X : Count_Type;
612      N : Nodes_Type renames Tree.Nodes;
613
614   begin
615      Y := 0;
616
617      X := Tree.Root;
618      while X /= 0 loop
619         if Is_Less_Key_Node (Key, N (X)) then
620            Y := X;
621            X := Ops.Left (N (X));
622         else
623            X := Ops.Right (N (X));
624         end if;
625      end loop;
626
627      return Y;
628   end Upper_Bound;
629
630end Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
631