1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 4                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Exp_Aggr; use Exp_Aggr;
33with Exp_Atag; use Exp_Atag;
34with Exp_Ch2;  use Exp_Ch2;
35with Exp_Ch3;  use Exp_Ch3;
36with Exp_Ch6;  use Exp_Ch6;
37with Exp_Ch7;  use Exp_Ch7;
38with Exp_Ch9;  use Exp_Ch9;
39with Exp_Disp; use Exp_Disp;
40with Exp_Fixd; use Exp_Fixd;
41with Exp_Intr; use Exp_Intr;
42with Exp_Pakd; use Exp_Pakd;
43with Exp_Tss;  use Exp_Tss;
44with Exp_Util; use Exp_Util;
45with Exp_VFpt; use Exp_VFpt;
46with Freeze;   use Freeze;
47with Inline;   use Inline;
48with Lib;      use Lib;
49with Namet;    use Namet;
50with Nlists;   use Nlists;
51with Nmake;    use Nmake;
52with Opt;      use Opt;
53with Par_SCO;  use Par_SCO;
54with Restrict; use Restrict;
55with Rident;   use Rident;
56with Rtsfind;  use Rtsfind;
57with Sem;      use Sem;
58with Sem_Aux;  use Sem_Aux;
59with Sem_Cat;  use Sem_Cat;
60with Sem_Ch3;  use Sem_Ch3;
61with Sem_Ch8;  use Sem_Ch8;
62with Sem_Ch13; use Sem_Ch13;
63with Sem_Eval; use Sem_Eval;
64with Sem_Res;  use Sem_Res;
65with Sem_Type; use Sem_Type;
66with Sem_Util; use Sem_Util;
67with Sem_Warn; use Sem_Warn;
68with Sinfo;    use Sinfo;
69with Snames;   use Snames;
70with Stand;    use Stand;
71with SCIL_LL;  use SCIL_LL;
72with Targparm; use Targparm;
73with Tbuild;   use Tbuild;
74with Ttypes;   use Ttypes;
75with Uintp;    use Uintp;
76with Urealp;   use Urealp;
77with Validsw;  use Validsw;
78
79package body Exp_Ch4 is
80
81   -----------------------
82   -- Local Subprograms --
83   -----------------------
84
85   procedure Binary_Op_Validity_Checks (N : Node_Id);
86   pragma Inline (Binary_Op_Validity_Checks);
87   --  Performs validity checks for a binary operator
88
89   procedure Build_Boolean_Array_Proc_Call
90     (N   : Node_Id;
91      Op1 : Node_Id;
92      Op2 : Node_Id);
93   --  If a boolean array assignment can be done in place, build call to
94   --  corresponding library procedure.
95
96   function Current_Anonymous_Master return Entity_Id;
97   --  Return the entity of the heterogeneous finalization master belonging to
98   --  the current unit (either function, package or procedure). This master
99   --  services all anonymous access-to-controlled types. If the current unit
100   --  does not have such master, create one.
101
102   procedure Displace_Allocator_Pointer (N : Node_Id);
103   --  Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
104   --  Expand_Allocator_Expression. Allocating class-wide interface objects
105   --  this routine displaces the pointer to the allocated object to reference
106   --  the component referencing the corresponding secondary dispatch table.
107
108   procedure Expand_Allocator_Expression (N : Node_Id);
109   --  Subsidiary to Expand_N_Allocator, for the case when the expression
110   --  is a qualified expression or an aggregate.
111
112   procedure Expand_Array_Comparison (N : Node_Id);
113   --  This routine handles expansion of the comparison operators (N_Op_Lt,
114   --  N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
115   --  code for these operators is similar, differing only in the details of
116   --  the actual comparison call that is made. Special processing (call a
117   --  run-time routine)
118
119   function Expand_Array_Equality
120     (Nod    : Node_Id;
121      Lhs    : Node_Id;
122      Rhs    : Node_Id;
123      Bodies : List_Id;
124      Typ    : Entity_Id) return Node_Id;
125   --  Expand an array equality into a call to a function implementing this
126   --  equality, and a call to it. Loc is the location for the generated nodes.
127   --  Lhs and Rhs are the array expressions to be compared. Bodies is a list
128   --  on which to attach bodies of local functions that are created in the
129   --  process. It is the responsibility of the caller to insert those bodies
130   --  at the right place. Nod provides the Sloc value for the generated code.
131   --  Normally the types used for the generated equality routine are taken
132   --  from Lhs and Rhs. However, in some situations of generated code, the
133   --  Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
134   --  the type to be used for the formal parameters.
135
136   procedure Expand_Boolean_Operator (N : Node_Id);
137   --  Common expansion processing for Boolean operators (And, Or, Xor) for the
138   --  case of array type arguments.
139
140   procedure Expand_Short_Circuit_Operator (N : Node_Id);
141   --  Common expansion processing for short-circuit boolean operators
142
143   procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
144   --  Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
145   --  where we allow comparison of "out of range" values.
146
147   function Expand_Composite_Equality
148     (Nod    : Node_Id;
149      Typ    : Entity_Id;
150      Lhs    : Node_Id;
151      Rhs    : Node_Id;
152      Bodies : List_Id) return Node_Id;
153   --  Local recursive function used to expand equality for nested composite
154   --  types. Used by Expand_Record/Array_Equality, Bodies is a list on which
155   --  to attach bodies of local functions that are created in the process.
156   --  It is the responsibility of the caller to insert those bodies at the
157   --  right place. Nod provides the Sloc value for generated code. Lhs and Rhs
158   --  are the left and right sides for the comparison, and Typ is the type of
159   --  the objects to compare.
160
161   procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
162   --  Routine to expand concatenation of a sequence of two or more operands
163   --  (in the list Operands) and replace node Cnode with the result of the
164   --  concatenation. The operands can be of any appropriate type, and can
165   --  include both arrays and singleton elements.
166
167   procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
168   --  N is an N_In membership test mode, with the overflow check mode set to
169   --  MINIMIZED or ELIMINATED, and the type of the left operand is a signed
170   --  integer type. This is a case where top level processing is required to
171   --  handle overflow checks in subtrees.
172
173   procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
174   --  N is a N_Op_Divide or N_Op_Multiply node whose result is universal
175   --  fixed. We do not have such a type at runtime, so the purpose of this
176   --  routine is to find the real type by looking up the tree. We also
177   --  determine if the operation must be rounded.
178
179   function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
180   --  Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
181   --  discriminants if it has a constrained nominal type, unless the object
182   --  is a component of an enclosing Unchecked_Union object that is subject
183   --  to a per-object constraint and the enclosing object lacks inferable
184   --  discriminants.
185   --
186   --  An expression of an Unchecked_Union type has inferable discriminants
187   --  if it is either a name of an object with inferable discriminants or a
188   --  qualified expression whose subtype mark denotes a constrained subtype.
189
190   procedure Insert_Dereference_Action (N : Node_Id);
191   --  N is an expression whose type is an access. When the type of the
192   --  associated storage pool is derived from Checked_Pool, generate a
193   --  call to the 'Dereference' primitive operation.
194
195   function Make_Array_Comparison_Op
196     (Typ : Entity_Id;
197      Nod : Node_Id) return Node_Id;
198   --  Comparisons between arrays are expanded in line. This function produces
199   --  the body of the implementation of (a > b), where a and b are one-
200   --  dimensional arrays of some discrete type. The original node is then
201   --  expanded into the appropriate call to this function. Nod provides the
202   --  Sloc value for the generated code.
203
204   function Make_Boolean_Array_Op
205     (Typ : Entity_Id;
206      N   : Node_Id) return Node_Id;
207   --  Boolean operations on boolean arrays are expanded in line. This function
208   --  produce the body for the node N, which is (a and b), (a or b), or (a xor
209   --  b). It is used only the normal case and not the packed case. The type
210   --  involved, Typ, is the Boolean array type, and the logical operations in
211   --  the body are simple boolean operations. Note that Typ is always a
212   --  constrained type (the caller has ensured this by using
213   --  Convert_To_Actual_Subtype if necessary).
214
215   function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
216   --  For signed arithmetic operations when the current overflow mode is
217   --  MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
218   --  as the first thing we do. We then return. We count on the recursive
219   --  apparatus for overflow checks to call us back with an equivalent
220   --  operation that is in CHECKED mode, avoiding a recursive entry into this
221   --  routine, and that is when we will proceed with the expansion of the
222   --  operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
223   --  these optimizations without first making this check, since there may be
224   --  operands further down the tree that are relying on the recursive calls
225   --  triggered by the top level nodes to properly process overflow checking
226   --  and remaining expansion on these nodes. Note that this call back may be
227   --  skipped if the operation is done in Bignum mode but that's fine, since
228   --  the Bignum call takes care of everything.
229
230   procedure Optimize_Length_Comparison (N : Node_Id);
231   --  Given an expression, if it is of the form X'Length op N (or the other
232   --  way round), where N is known at compile time to be 0 or 1, and X is a
233   --  simple entity, and op is a comparison operator, optimizes it into a
234   --  comparison of First and Last.
235
236   procedure Process_Transient_Object
237     (Decl     : Node_Id;
238      Rel_Node : Node_Id);
239   --  Subsidiary routine to the expansion of expression_with_actions and if
240   --  expressions. Generate all the necessary code to finalize a transient
241   --  controlled object when the enclosing context is elaborated or evaluated.
242   --  Decl denotes the declaration of the transient controlled object which is
243   --  usually the result of a controlled function call. Rel_Node denotes the
244   --  context, either an expression_with_actions or an if expression.
245
246   procedure Rewrite_Comparison (N : Node_Id);
247   --  If N is the node for a comparison whose outcome can be determined at
248   --  compile time, then the node N can be rewritten with True or False. If
249   --  the outcome cannot be determined at compile time, the call has no
250   --  effect. If N is a type conversion, then this processing is applied to
251   --  its expression. If N is neither comparison nor a type conversion, the
252   --  call has no effect.
253
254   procedure Tagged_Membership
255     (N         : Node_Id;
256      SCIL_Node : out Node_Id;
257      Result    : out Node_Id);
258   --  Construct the expression corresponding to the tagged membership test.
259   --  Deals with a second operand being (or not) a class-wide type.
260
261   function Safe_In_Place_Array_Op
262     (Lhs : Node_Id;
263      Op1 : Node_Id;
264      Op2 : Node_Id) return Boolean;
265   --  In the context of an assignment, where the right-hand side is a boolean
266   --  operation on arrays, check whether operation can be performed in place.
267
268   procedure Unary_Op_Validity_Checks (N : Node_Id);
269   pragma Inline (Unary_Op_Validity_Checks);
270   --  Performs validity checks for a unary operator
271
272   -------------------------------
273   -- Binary_Op_Validity_Checks --
274   -------------------------------
275
276   procedure Binary_Op_Validity_Checks (N : Node_Id) is
277   begin
278      if Validity_Checks_On and Validity_Check_Operands then
279         Ensure_Valid (Left_Opnd (N));
280         Ensure_Valid (Right_Opnd (N));
281      end if;
282   end Binary_Op_Validity_Checks;
283
284   ------------------------------------
285   -- Build_Boolean_Array_Proc_Call --
286   ------------------------------------
287
288   procedure Build_Boolean_Array_Proc_Call
289     (N   : Node_Id;
290      Op1 : Node_Id;
291      Op2 : Node_Id)
292   is
293      Loc       : constant Source_Ptr := Sloc (N);
294      Kind      : constant Node_Kind := Nkind (Expression (N));
295      Target    : constant Node_Id   :=
296                    Make_Attribute_Reference (Loc,
297                      Prefix         => Name (N),
298                      Attribute_Name => Name_Address);
299
300      Arg1      : Node_Id := Op1;
301      Arg2      : Node_Id := Op2;
302      Call_Node : Node_Id;
303      Proc_Name : Entity_Id;
304
305   begin
306      if Kind = N_Op_Not then
307         if Nkind (Op1) in N_Binary_Op then
308
309            --  Use negated version of the binary operators
310
311            if Nkind (Op1) = N_Op_And then
312               Proc_Name := RTE (RE_Vector_Nand);
313
314            elsif Nkind (Op1) = N_Op_Or then
315               Proc_Name := RTE (RE_Vector_Nor);
316
317            else pragma Assert (Nkind (Op1) = N_Op_Xor);
318               Proc_Name := RTE (RE_Vector_Xor);
319            end if;
320
321            Call_Node :=
322              Make_Procedure_Call_Statement (Loc,
323                Name => New_Occurrence_Of (Proc_Name, Loc),
324
325                Parameter_Associations => New_List (
326                  Target,
327                  Make_Attribute_Reference (Loc,
328                    Prefix => Left_Opnd (Op1),
329                    Attribute_Name => Name_Address),
330
331                  Make_Attribute_Reference (Loc,
332                    Prefix => Right_Opnd (Op1),
333                    Attribute_Name => Name_Address),
334
335                  Make_Attribute_Reference (Loc,
336                    Prefix => Left_Opnd (Op1),
337                    Attribute_Name => Name_Length)));
338
339         else
340            Proc_Name := RTE (RE_Vector_Not);
341
342            Call_Node :=
343              Make_Procedure_Call_Statement (Loc,
344                Name => New_Occurrence_Of (Proc_Name, Loc),
345                Parameter_Associations => New_List (
346                  Target,
347
348                  Make_Attribute_Reference (Loc,
349                    Prefix => Op1,
350                    Attribute_Name => Name_Address),
351
352                  Make_Attribute_Reference (Loc,
353                    Prefix => Op1,
354                     Attribute_Name => Name_Length)));
355         end if;
356
357      else
358         --  We use the following equivalences:
359
360         --   (not X) or  (not Y)  =  not (X and Y)  =  Nand (X, Y)
361         --   (not X) and (not Y)  =  not (X or Y)   =  Nor  (X, Y)
362         --   (not X) xor (not Y)  =  X xor Y
363         --   X       xor (not Y)  =  not (X xor Y)  =  Nxor (X, Y)
364
365         if Nkind (Op1) = N_Op_Not then
366            Arg1 := Right_Opnd (Op1);
367            Arg2 := Right_Opnd (Op2);
368
369            if Kind = N_Op_And then
370               Proc_Name := RTE (RE_Vector_Nor);
371            elsif Kind = N_Op_Or then
372               Proc_Name := RTE (RE_Vector_Nand);
373            else
374               Proc_Name := RTE (RE_Vector_Xor);
375            end if;
376
377         else
378            if Kind = N_Op_And then
379               Proc_Name := RTE (RE_Vector_And);
380            elsif Kind = N_Op_Or then
381               Proc_Name := RTE (RE_Vector_Or);
382            elsif Nkind (Op2) = N_Op_Not then
383               Proc_Name := RTE (RE_Vector_Nxor);
384               Arg2 := Right_Opnd (Op2);
385            else
386               Proc_Name := RTE (RE_Vector_Xor);
387            end if;
388         end if;
389
390         Call_Node :=
391           Make_Procedure_Call_Statement (Loc,
392             Name => New_Occurrence_Of (Proc_Name, Loc),
393             Parameter_Associations => New_List (
394               Target,
395               Make_Attribute_Reference (Loc,
396                 Prefix         => Arg1,
397                 Attribute_Name => Name_Address),
398               Make_Attribute_Reference (Loc,
399                 Prefix         => Arg2,
400                 Attribute_Name => Name_Address),
401               Make_Attribute_Reference (Loc,
402                 Prefix         => Arg1,
403                 Attribute_Name => Name_Length)));
404      end if;
405
406      Rewrite (N, Call_Node);
407      Analyze (N);
408
409   exception
410      when RE_Not_Available =>
411         return;
412   end Build_Boolean_Array_Proc_Call;
413
414   ------------------------------
415   -- Current_Anonymous_Master --
416   ------------------------------
417
418   function Current_Anonymous_Master return Entity_Id is
419      Decls     : List_Id;
420      Loc       : Source_Ptr;
421      Subp_Body : Node_Id;
422      Unit_Decl : Node_Id;
423      Unit_Id   : Entity_Id;
424
425   begin
426      Unit_Id := Cunit_Entity (Current_Sem_Unit);
427
428      --  Find the entity of the current unit
429
430      if Ekind (Unit_Id) = E_Subprogram_Body then
431
432         --  When processing subprogram bodies, the proper scope is always that
433         --  of the spec.
434
435         Subp_Body := Unit_Id;
436         while Present (Subp_Body)
437           and then Nkind (Subp_Body) /= N_Subprogram_Body
438         loop
439            Subp_Body := Parent (Subp_Body);
440         end loop;
441
442         Unit_Id := Corresponding_Spec (Subp_Body);
443      end if;
444
445      Loc := Sloc (Unit_Id);
446      Unit_Decl := Unit (Cunit (Current_Sem_Unit));
447
448      --  Find the declarations list of the current unit
449
450      if Nkind (Unit_Decl) = N_Package_Declaration then
451         Unit_Decl := Specification (Unit_Decl);
452         Decls := Visible_Declarations (Unit_Decl);
453
454         if No (Decls) then
455            Decls := New_List (Make_Null_Statement (Loc));
456            Set_Visible_Declarations (Unit_Decl, Decls);
457
458         elsif Is_Empty_List (Decls) then
459            Append_To (Decls, Make_Null_Statement (Loc));
460         end if;
461
462      else
463         Decls := Declarations (Unit_Decl);
464
465         if No (Decls) then
466            Decls := New_List (Make_Null_Statement (Loc));
467            Set_Declarations (Unit_Decl, Decls);
468
469         elsif Is_Empty_List (Decls) then
470            Append_To (Decls, Make_Null_Statement (Loc));
471         end if;
472      end if;
473
474      --  The current unit has an existing anonymous master, traverse its
475      --  declarations and locate the entity.
476
477      if Has_Anonymous_Master (Unit_Id) then
478         declare
479            Decl       : Node_Id;
480            Fin_Mas_Id : Entity_Id;
481
482         begin
483            Decl := First (Decls);
484            while Present (Decl) loop
485
486               --  Look for the first variable in the declarations whole type
487               --  is Finalization_Master.
488
489               if Nkind (Decl) = N_Object_Declaration then
490                  Fin_Mas_Id := Defining_Identifier (Decl);
491
492                  if Ekind (Fin_Mas_Id) = E_Variable
493                    and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
494                  then
495                     return Fin_Mas_Id;
496                  end if;
497               end if;
498
499               Next (Decl);
500            end loop;
501
502            --  The master was not found even though the unit was labeled as
503            --  having one.
504
505            raise Program_Error;
506         end;
507
508      --  Create a new anonymous master
509
510      else
511         declare
512            First_Decl : constant Node_Id := First (Decls);
513            Action     : Node_Id;
514            Fin_Mas_Id : Entity_Id;
515
516         begin
517            --  Since the master and its associated initialization is inserted
518            --  at top level, use the scope of the unit when analyzing.
519
520            Push_Scope (Unit_Id);
521
522            --  Create the finalization master
523
524            Fin_Mas_Id :=
525              Make_Defining_Identifier (Loc,
526                Chars => New_External_Name (Chars (Unit_Id), "AM"));
527
528            --  Generate:
529            --    <Fin_Mas_Id> : Finalization_Master;
530
531            Action :=
532              Make_Object_Declaration (Loc,
533                Defining_Identifier => Fin_Mas_Id,
534                Object_Definition =>
535                  New_Occurrence_Of (RTE (RE_Finalization_Master), Loc));
536
537            Insert_Before_And_Analyze (First_Decl, Action);
538
539            --  Mark the unit to prevent the generation of multiple masters
540
541            Set_Has_Anonymous_Master (Unit_Id);
542
543            --  Do not set the base pool and mode of operation on .NET/JVM
544            --  since those targets do not support pools and all VM masters
545            --  are heterogeneous by default.
546
547            if VM_Target = No_VM then
548
549               --  Generate:
550               --    Set_Base_Pool
551               --      (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
552
553               Action :=
554                 Make_Procedure_Call_Statement (Loc,
555                   Name =>
556                     New_Occurrence_Of (RTE (RE_Set_Base_Pool), Loc),
557
558                   Parameter_Associations => New_List (
559                     New_Occurrence_Of (Fin_Mas_Id, Loc),
560                     Make_Attribute_Reference (Loc,
561                       Prefix =>
562                         New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
563                       Attribute_Name => Name_Unrestricted_Access)));
564
565               Insert_Before_And_Analyze (First_Decl, Action);
566
567               --  Generate:
568               --    Set_Is_Heterogeneous (<Fin_Mas_Id>);
569
570               Action :=
571                 Make_Procedure_Call_Statement (Loc,
572                   Name =>
573                     New_Occurrence_Of (RTE (RE_Set_Is_Heterogeneous), Loc),
574                   Parameter_Associations => New_List (
575                     New_Occurrence_Of (Fin_Mas_Id, Loc)));
576
577               Insert_Before_And_Analyze (First_Decl, Action);
578            end if;
579
580            --  Restore the original state of the scope stack
581
582            Pop_Scope;
583
584            return Fin_Mas_Id;
585         end;
586      end if;
587   end Current_Anonymous_Master;
588
589   --------------------------------
590   -- Displace_Allocator_Pointer --
591   --------------------------------
592
593   procedure Displace_Allocator_Pointer (N : Node_Id) is
594      Loc       : constant Source_Ptr := Sloc (N);
595      Orig_Node : constant Node_Id := Original_Node (N);
596      Dtyp      : Entity_Id;
597      Etyp      : Entity_Id;
598      PtrT      : Entity_Id;
599
600   begin
601      --  Do nothing in case of VM targets: the virtual machine will handle
602      --  interfaces directly.
603
604      if not Tagged_Type_Expansion then
605         return;
606      end if;
607
608      pragma Assert (Nkind (N) = N_Identifier
609        and then Nkind (Orig_Node) = N_Allocator);
610
611      PtrT := Etype (Orig_Node);
612      Dtyp := Available_View (Designated_Type (PtrT));
613      Etyp := Etype (Expression (Orig_Node));
614
615      if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
616
617         --  If the type of the allocator expression is not an interface type
618         --  we can generate code to reference the record component containing
619         --  the pointer to the secondary dispatch table.
620
621         if not Is_Interface (Etyp) then
622            declare
623               Saved_Typ : constant Entity_Id := Etype (Orig_Node);
624
625            begin
626               --  1) Get access to the allocated object
627
628               Rewrite (N,
629                 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
630               Set_Etype (N, Etyp);
631               Set_Analyzed (N);
632
633               --  2) Add the conversion to displace the pointer to reference
634               --     the secondary dispatch table.
635
636               Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
637               Analyze_And_Resolve (N, Dtyp);
638
639               --  3) The 'access to the secondary dispatch table will be used
640               --     as the value returned by the allocator.
641
642               Rewrite (N,
643                 Make_Attribute_Reference (Loc,
644                   Prefix         => Relocate_Node (N),
645                   Attribute_Name => Name_Access));
646               Set_Etype (N, Saved_Typ);
647               Set_Analyzed (N);
648            end;
649
650         --  If the type of the allocator expression is an interface type we
651         --  generate a run-time call to displace "this" to reference the
652         --  component containing the pointer to the secondary dispatch table
653         --  or else raise Constraint_Error if the actual object does not
654         --  implement the target interface. This case corresponds to the
655         --  following example:
656
657         --   function Op (Obj : Iface_1'Class) return access Iface_2'Class is
658         --   begin
659         --      return new Iface_2'Class'(Obj);
660         --   end Op;
661
662         else
663            Rewrite (N,
664              Unchecked_Convert_To (PtrT,
665                Make_Function_Call (Loc,
666                  Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
667                  Parameter_Associations => New_List (
668                    Unchecked_Convert_To (RTE (RE_Address),
669                      Relocate_Node (N)),
670
671                    New_Occurrence_Of
672                      (Elists.Node
673                        (First_Elmt
674                          (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
675                       Loc)))));
676            Analyze_And_Resolve (N, PtrT);
677         end if;
678      end if;
679   end Displace_Allocator_Pointer;
680
681   ---------------------------------
682   -- Expand_Allocator_Expression --
683   ---------------------------------
684
685   procedure Expand_Allocator_Expression (N : Node_Id) is
686      Loc    : constant Source_Ptr := Sloc (N);
687      Exp    : constant Node_Id    := Expression (Expression (N));
688      PtrT   : constant Entity_Id  := Etype (N);
689      DesigT : constant Entity_Id  := Designated_Type (PtrT);
690
691      procedure Apply_Accessibility_Check
692        (Ref            : Node_Id;
693         Built_In_Place : Boolean := False);
694      --  Ada 2005 (AI-344): For an allocator with a class-wide designated
695      --  type, generate an accessibility check to verify that the level of the
696      --  type of the created object is not deeper than the level of the access
697      --  type. If the type of the qualified expression is class-wide, then
698      --  always generate the check (except in the case where it is known to be
699      --  unnecessary, see comment below). Otherwise, only generate the check
700      --  if the level of the qualified expression type is statically deeper
701      --  than the access type.
702      --
703      --  Although the static accessibility will generally have been performed
704      --  as a legality check, it won't have been done in cases where the
705      --  allocator appears in generic body, so a run-time check is needed in
706      --  general. One special case is when the access type is declared in the
707      --  same scope as the class-wide allocator, in which case the check can
708      --  never fail, so it need not be generated.
709      --
710      --  As an open issue, there seem to be cases where the static level
711      --  associated with the class-wide object's underlying type is not
712      --  sufficient to perform the proper accessibility check, such as for
713      --  allocators in nested subprograms or accept statements initialized by
714      --  class-wide formals when the actual originates outside at a deeper
715      --  static level. The nested subprogram case might require passing
716      --  accessibility levels along with class-wide parameters, and the task
717      --  case seems to be an actual gap in the language rules that needs to
718      --  be fixed by the ARG. ???
719
720      -------------------------------
721      -- Apply_Accessibility_Check --
722      -------------------------------
723
724      procedure Apply_Accessibility_Check
725        (Ref            : Node_Id;
726         Built_In_Place : Boolean := False)
727      is
728         Pool_Id   : constant Entity_Id := Associated_Storage_Pool (PtrT);
729         Cond      : Node_Id;
730         Fin_Call  : Node_Id;
731         Free_Stmt : Node_Id;
732         Obj_Ref   : Node_Id;
733         Stmts     : List_Id;
734
735      begin
736         if Ada_Version >= Ada_2005
737           and then Is_Class_Wide_Type (DesigT)
738           and then (Tagged_Type_Expansion or else VM_Target /= No_VM)
739           and then not Scope_Suppress.Suppress (Accessibility_Check)
740           and then
741             (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
742               or else
743                 (Is_Class_Wide_Type (Etype (Exp))
744                   and then Scope (PtrT) /= Current_Scope))
745         then
746            --  If the allocator was built in place, Ref is already a reference
747            --  to the access object initialized to the result of the allocator
748            --  (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
749            --  Remove_Side_Effects for cases where the build-in-place call may
750            --  still be the prefix of the reference (to avoid generating
751            --  duplicate calls). Otherwise, it is the entity associated with
752            --  the object containing the address of the allocated object.
753
754            if Built_In_Place then
755               Remove_Side_Effects (Ref);
756               Obj_Ref := New_Copy_Tree (Ref);
757            else
758               Obj_Ref := New_Occurrence_Of (Ref, Loc);
759            end if;
760
761            --  Step 1: Create the object clean up code
762
763            Stmts := New_List;
764
765            --  Deallocate the object if the accessibility check fails. This
766            --  is done only on targets or profiles that support deallocation.
767
768            --    Free (Obj_Ref);
769
770            if RTE_Available (RE_Free) then
771               Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
772               Set_Storage_Pool (Free_Stmt, Pool_Id);
773
774               Append_To (Stmts, Free_Stmt);
775
776            --  The target or profile cannot deallocate objects
777
778            else
779               Free_Stmt := Empty;
780            end if;
781
782            --  Finalize the object if applicable. Generate:
783
784            --    [Deep_]Finalize (Obj_Ref.all);
785
786            if Needs_Finalization (DesigT) then
787               Fin_Call :=
788                 Make_Final_Call (
789                   Obj_Ref =>
790                     Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
791                   Typ     => DesigT);
792
793               --  When the target or profile supports deallocation, wrap the
794               --  finalization call in a block to ensure proper deallocation
795               --  even if finalization fails. Generate:
796
797               --    begin
798               --       <Fin_Call>
799               --    exception
800               --       when others =>
801               --          <Free_Stmt>
802               --          raise;
803               --    end;
804
805               if Present (Free_Stmt) then
806                  Fin_Call :=
807                    Make_Block_Statement (Loc,
808                      Handled_Statement_Sequence =>
809                        Make_Handled_Sequence_Of_Statements (Loc,
810                          Statements => New_List (Fin_Call),
811
812                        Exception_Handlers => New_List (
813                          Make_Exception_Handler (Loc,
814                            Exception_Choices => New_List (
815                              Make_Others_Choice (Loc)),
816
817                            Statements        => New_List (
818                              New_Copy_Tree (Free_Stmt),
819                              Make_Raise_Statement (Loc))))));
820               end if;
821
822               Prepend_To (Stmts, Fin_Call);
823            end if;
824
825            --  Signal the accessibility failure through a Program_Error
826
827            Append_To (Stmts,
828              Make_Raise_Program_Error (Loc,
829                Condition => New_Occurrence_Of (Standard_True, Loc),
830                Reason    => PE_Accessibility_Check_Failed));
831
832            --  Step 2: Create the accessibility comparison
833
834            --  Generate:
835            --    Ref'Tag
836
837            Obj_Ref :=
838              Make_Attribute_Reference (Loc,
839                Prefix         => Obj_Ref,
840                Attribute_Name => Name_Tag);
841
842            --  For tagged types, determine the accessibility level by looking
843            --  at the type specific data of the dispatch table. Generate:
844
845            --    Type_Specific_Data (Address (Ref'Tag)).Access_Level
846
847            if Tagged_Type_Expansion then
848               Cond := Build_Get_Access_Level (Loc, Obj_Ref);
849
850            --  Use a runtime call to determine the accessibility level when
851            --  compiling on virtual machine targets. Generate:
852
853            --    Get_Access_Level (Ref'Tag)
854
855            else
856               Cond :=
857                 Make_Function_Call (Loc,
858                   Name                   =>
859                     New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
860                   Parameter_Associations => New_List (Obj_Ref));
861            end if;
862
863            Cond :=
864              Make_Op_Gt (Loc,
865                Left_Opnd  => Cond,
866                Right_Opnd =>
867                  Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
868
869            --  Due to the complexity and side effects of the check, utilize an
870            --  if statement instead of the regular Program_Error circuitry.
871
872            Insert_Action (N,
873              Make_Implicit_If_Statement (N,
874                Condition       => Cond,
875                Then_Statements => Stmts));
876         end if;
877      end Apply_Accessibility_Check;
878
879      --  Local variables
880
881      Aggr_In_Place : constant Boolean   := Is_Delayed_Aggregate (Exp);
882      Indic         : constant Node_Id   := Subtype_Mark (Expression (N));
883      T             : constant Entity_Id := Entity (Indic);
884      Node          : Node_Id;
885      Tag_Assign    : Node_Id;
886      Temp          : Entity_Id;
887      Temp_Decl     : Node_Id;
888
889      TagT : Entity_Id := Empty;
890      --  Type used as source for tag assignment
891
892      TagR : Node_Id := Empty;
893      --  Target reference for tag assignment
894
895   --  Start of processing for Expand_Allocator_Expression
896
897   begin
898      --  Handle call to C++ constructor
899
900      if Is_CPP_Constructor_Call (Exp) then
901         Make_CPP_Constructor_Call_In_Allocator
902           (Allocator => N,
903            Function_Call => Exp);
904         return;
905      end if;
906
907      --  In the case of an Ada 2012 allocator whose initial value comes from a
908      --  function call, pass "the accessibility level determined by the point
909      --  of call" (AI05-0234) to the function. Conceptually, this belongs in
910      --  Expand_Call but it couldn't be done there (because the Etype of the
911      --  allocator wasn't set then) so we generate the parameter here. See
912      --  the Boolean variable Defer in (a block within) Expand_Call.
913
914      if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
915         declare
916            Subp : Entity_Id;
917
918         begin
919            if Nkind (Name (Exp)) = N_Explicit_Dereference then
920               Subp := Designated_Type (Etype (Prefix (Name (Exp))));
921            else
922               Subp := Entity (Name (Exp));
923            end if;
924
925            Subp := Ultimate_Alias (Subp);
926
927            if Present (Extra_Accessibility_Of_Result (Subp)) then
928               Add_Extra_Actual_To_Call
929                 (Subprogram_Call => Exp,
930                  Extra_Formal    => Extra_Accessibility_Of_Result (Subp),
931                  Extra_Actual    => Dynamic_Accessibility_Level (PtrT));
932            end if;
933         end;
934      end if;
935
936      --  Case of tagged type or type requiring finalization
937
938      if Is_Tagged_Type (T) or else Needs_Finalization (T) then
939
940         --  Ada 2005 (AI-318-02): If the initialization expression is a call
941         --  to a build-in-place function, then access to the allocated object
942         --  must be passed to the function. Currently we limit such functions
943         --  to those with constrained limited result subtypes, but eventually
944         --  we plan to expand the allowed forms of functions that are treated
945         --  as build-in-place.
946
947         if Ada_Version >= Ada_2005
948           and then Is_Build_In_Place_Function_Call (Exp)
949         then
950            Make_Build_In_Place_Call_In_Allocator (N, Exp);
951            Apply_Accessibility_Check (N, Built_In_Place => True);
952            return;
953         end if;
954
955         --  Actions inserted before:
956         --    Temp : constant ptr_T := new T'(Expression);
957         --    Temp._tag = T'tag;  --  when not class-wide
958         --    [Deep_]Adjust (Temp.all);
959
960         --  We analyze by hand the new internal allocator to avoid any
961         --  recursion and inappropriate call to Initialize.
962
963         --  We don't want to remove side effects when the expression must be
964         --  built in place. In the case of a build-in-place function call,
965         --  that could lead to a duplication of the call, which was already
966         --  substituted for the allocator.
967
968         if not Aggr_In_Place then
969            Remove_Side_Effects (Exp);
970         end if;
971
972         Temp := Make_Temporary (Loc, 'P', N);
973
974         --  For a class wide allocation generate the following code:
975
976         --    type Equiv_Record is record ... end record;
977         --    implicit subtype CW is <Class_Wide_Subytpe>;
978         --    temp : PtrT := new CW'(CW!(expr));
979
980         if Is_Class_Wide_Type (T) then
981            Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
982
983            --  Ada 2005 (AI-251): If the expression is a class-wide interface
984            --  object we generate code to move up "this" to reference the
985            --  base of the object before allocating the new object.
986
987            --  Note that Exp'Address is recursively expanded into a call
988            --  to Base_Address (Exp.Tag)
989
990            if Is_Class_Wide_Type (Etype (Exp))
991              and then Is_Interface (Etype (Exp))
992              and then Tagged_Type_Expansion
993            then
994               Set_Expression
995                 (Expression (N),
996                  Unchecked_Convert_To (Entity (Indic),
997                    Make_Explicit_Dereference (Loc,
998                      Unchecked_Convert_To (RTE (RE_Tag_Ptr),
999                        Make_Attribute_Reference (Loc,
1000                          Prefix         => Exp,
1001                          Attribute_Name => Name_Address)))));
1002            else
1003               Set_Expression
1004                 (Expression (N),
1005                  Unchecked_Convert_To (Entity (Indic), Exp));
1006            end if;
1007
1008            Analyze_And_Resolve (Expression (N), Entity (Indic));
1009         end if;
1010
1011         --  Processing for allocators returning non-interface types
1012
1013         if not Is_Interface (Directly_Designated_Type (PtrT)) then
1014            if Aggr_In_Place then
1015               Temp_Decl :=
1016                 Make_Object_Declaration (Loc,
1017                   Defining_Identifier => Temp,
1018                   Object_Definition   => New_Occurrence_Of (PtrT, Loc),
1019                   Expression          =>
1020                     Make_Allocator (Loc,
1021                       Expression =>
1022                         New_Occurrence_Of (Etype (Exp), Loc)));
1023
1024               --  Copy the Comes_From_Source flag for the allocator we just
1025               --  built, since logically this allocator is a replacement of
1026               --  the original allocator node. This is for proper handling of
1027               --  restriction No_Implicit_Heap_Allocations.
1028
1029               Set_Comes_From_Source
1030                 (Expression (Temp_Decl), Comes_From_Source (N));
1031
1032               Set_No_Initialization (Expression (Temp_Decl));
1033               Insert_Action (N, Temp_Decl);
1034
1035               Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1036               Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1037
1038               --  Attach the object to the associated finalization master.
1039               --  This is done manually on .NET/JVM since those compilers do
1040               --  no support pools and can't benefit from internally generated
1041               --  Allocate / Deallocate procedures.
1042
1043               if VM_Target /= No_VM
1044                 and then Is_Controlled (DesigT)
1045                 and then Present (Finalization_Master (PtrT))
1046               then
1047                  Insert_Action (N,
1048                    Make_Attach_Call (
1049                      Obj_Ref => New_Occurrence_Of (Temp, Loc),
1050                      Ptr_Typ => PtrT));
1051               end if;
1052
1053            else
1054               Node := Relocate_Node (N);
1055               Set_Analyzed (Node);
1056
1057               Temp_Decl :=
1058                 Make_Object_Declaration (Loc,
1059                   Defining_Identifier => Temp,
1060                   Constant_Present    => True,
1061                   Object_Definition   => New_Occurrence_Of (PtrT, Loc),
1062                   Expression          => Node);
1063
1064               Insert_Action (N, Temp_Decl);
1065               Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1066
1067               --  Attach the object to the associated finalization master.
1068               --  This is done manually on .NET/JVM since those compilers do
1069               --  no support pools and can't benefit from internally generated
1070               --  Allocate / Deallocate procedures.
1071
1072               if VM_Target /= No_VM
1073                 and then Is_Controlled (DesigT)
1074                 and then Present (Finalization_Master (PtrT))
1075               then
1076                  Insert_Action (N,
1077                    Make_Attach_Call (
1078                      Obj_Ref =>
1079                        New_Occurrence_Of (Temp, Loc),
1080                      Ptr_Typ => PtrT));
1081               end if;
1082            end if;
1083
1084         --  Ada 2005 (AI-251): Handle allocators whose designated type is an
1085         --  interface type. In this case we use the type of the qualified
1086         --  expression to allocate the object.
1087
1088         else
1089            declare
1090               Def_Id   : constant Entity_Id := Make_Temporary (Loc, 'T');
1091               New_Decl : Node_Id;
1092
1093            begin
1094               New_Decl :=
1095                 Make_Full_Type_Declaration (Loc,
1096                   Defining_Identifier => Def_Id,
1097                   Type_Definition =>
1098                     Make_Access_To_Object_Definition (Loc,
1099                       All_Present            => True,
1100                       Null_Exclusion_Present => False,
1101                       Constant_Present       =>
1102                         Is_Access_Constant (Etype (N)),
1103                       Subtype_Indication     =>
1104                         New_Occurrence_Of (Etype (Exp), Loc)));
1105
1106               Insert_Action (N, New_Decl);
1107
1108               --  Inherit the allocation-related attributes from the original
1109               --  access type.
1110
1111               Set_Finalization_Master (Def_Id, Finalization_Master (PtrT));
1112
1113               Set_Associated_Storage_Pool (Def_Id,
1114                 Associated_Storage_Pool (PtrT));
1115
1116               --  Declare the object using the previous type declaration
1117
1118               if Aggr_In_Place then
1119                  Temp_Decl :=
1120                    Make_Object_Declaration (Loc,
1121                      Defining_Identifier => Temp,
1122                      Object_Definition   => New_Occurrence_Of (Def_Id, Loc),
1123                      Expression          =>
1124                        Make_Allocator (Loc,
1125                          New_Occurrence_Of (Etype (Exp), Loc)));
1126
1127                  --  Copy the Comes_From_Source flag for the allocator we just
1128                  --  built, since logically this allocator is a replacement of
1129                  --  the original allocator node. This is for proper handling
1130                  --  of restriction No_Implicit_Heap_Allocations.
1131
1132                  Set_Comes_From_Source
1133                    (Expression (Temp_Decl), Comes_From_Source (N));
1134
1135                  Set_No_Initialization (Expression (Temp_Decl));
1136                  Insert_Action (N, Temp_Decl);
1137
1138                  Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1139                  Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1140
1141               else
1142                  Node := Relocate_Node (N);
1143                  Set_Analyzed (Node);
1144
1145                  Temp_Decl :=
1146                    Make_Object_Declaration (Loc,
1147                      Defining_Identifier => Temp,
1148                      Constant_Present    => True,
1149                      Object_Definition   => New_Occurrence_Of (Def_Id, Loc),
1150                      Expression          => Node);
1151
1152                  Insert_Action (N, Temp_Decl);
1153                  Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1154               end if;
1155
1156               --  Generate an additional object containing the address of the
1157               --  returned object. The type of this second object declaration
1158               --  is the correct type required for the common processing that
1159               --  is still performed by this subprogram. The displacement of
1160               --  this pointer to reference the component associated with the
1161               --  interface type will be done at the end of common processing.
1162
1163               New_Decl :=
1164                 Make_Object_Declaration (Loc,
1165                   Defining_Identifier => Make_Temporary (Loc, 'P'),
1166                   Object_Definition   => New_Occurrence_Of (PtrT, Loc),
1167                   Expression          =>
1168                     Unchecked_Convert_To (PtrT,
1169                       New_Occurrence_Of (Temp, Loc)));
1170
1171               Insert_Action (N, New_Decl);
1172
1173               Temp_Decl := New_Decl;
1174               Temp      := Defining_Identifier (New_Decl);
1175            end;
1176         end if;
1177
1178         Apply_Accessibility_Check (Temp);
1179
1180         --  Generate the tag assignment
1181
1182         --  Suppress the tag assignment when VM_Target because VM tags are
1183         --  represented implicitly in objects.
1184
1185         if not Tagged_Type_Expansion then
1186            null;
1187
1188         --  Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1189         --  interface objects because in this case the tag does not change.
1190
1191         elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1192            pragma Assert (Is_Class_Wide_Type
1193                            (Directly_Designated_Type (Etype (N))));
1194            null;
1195
1196         elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1197            TagT := T;
1198            TagR := New_Occurrence_Of (Temp, Loc);
1199
1200         elsif Is_Private_Type (T)
1201           and then Is_Tagged_Type (Underlying_Type (T))
1202         then
1203            TagT := Underlying_Type (T);
1204            TagR :=
1205              Unchecked_Convert_To (Underlying_Type (T),
1206                Make_Explicit_Dereference (Loc,
1207                  Prefix => New_Occurrence_Of (Temp, Loc)));
1208         end if;
1209
1210         if Present (TagT) then
1211            declare
1212               Full_T : constant Entity_Id := Underlying_Type (TagT);
1213
1214            begin
1215               Tag_Assign :=
1216                 Make_Assignment_Statement (Loc,
1217                   Name =>
1218                     Make_Selected_Component (Loc,
1219                       Prefix => TagR,
1220                       Selector_Name =>
1221                         New_Occurrence_Of
1222                           (First_Tag_Component (Full_T), Loc)),
1223
1224                   Expression =>
1225                     Unchecked_Convert_To (RTE (RE_Tag),
1226                       New_Occurrence_Of
1227                         (Elists.Node
1228                           (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1229            end;
1230
1231            --  The previous assignment has to be done in any case
1232
1233            Set_Assignment_OK (Name (Tag_Assign));
1234            Insert_Action (N, Tag_Assign);
1235         end if;
1236
1237         if Needs_Finalization (DesigT) and then Needs_Finalization (T) then
1238
1239            --  Generate an Adjust call if the object will be moved. In Ada
1240            --  2005, the object may be inherently limited, in which case
1241            --  there is no Adjust procedure, and the object is built in
1242            --  place. In Ada 95, the object can be limited but not
1243            --  inherently limited if this allocator came from a return
1244            --  statement (we're allocating the result on the secondary
1245            --  stack). In that case, the object will be moved, so we _do_
1246            --  want to Adjust.
1247
1248            if not Aggr_In_Place
1249              and then not Is_Limited_View (T)
1250            then
1251               Insert_Action (N,
1252
1253                 --  An unchecked conversion is needed in the classwide case
1254                 --  because the designated type can be an ancestor of the
1255                 --  subtype mark of the allocator.
1256
1257                 Make_Adjust_Call
1258                   (Obj_Ref =>
1259                      Unchecked_Convert_To (T,
1260                        Make_Explicit_Dereference (Loc,
1261                          Prefix => New_Occurrence_Of (Temp, Loc))),
1262                    Typ     => T));
1263            end if;
1264
1265            --  Generate:
1266            --    Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1267
1268            --  Do not generate this call in the following cases:
1269
1270            --    * .NET/JVM - these targets do not support address arithmetic
1271            --    and unchecked conversion, key elements of Finalize_Address.
1272
1273            --    * CodePeer mode - TSS primitive Finalize_Address is not
1274            --    created in this mode.
1275
1276            if VM_Target = No_VM
1277              and then not CodePeer_Mode
1278              and then Present (Finalization_Master (PtrT))
1279              and then Present (Temp_Decl)
1280              and then Nkind (Expression (Temp_Decl)) = N_Allocator
1281            then
1282               Insert_Action (N,
1283                 Make_Set_Finalize_Address_Call
1284                   (Loc     => Loc,
1285                    Typ     => T,
1286                    Ptr_Typ => PtrT));
1287            end if;
1288         end if;
1289
1290         Rewrite (N, New_Occurrence_Of (Temp, Loc));
1291         Analyze_And_Resolve (N, PtrT);
1292
1293         --  Ada 2005 (AI-251): Displace the pointer to reference the record
1294         --  component containing the secondary dispatch table of the interface
1295         --  type.
1296
1297         if Is_Interface (Directly_Designated_Type (PtrT)) then
1298            Displace_Allocator_Pointer (N);
1299         end if;
1300
1301      elsif Aggr_In_Place then
1302         Temp := Make_Temporary (Loc, 'P', N);
1303         Temp_Decl :=
1304           Make_Object_Declaration (Loc,
1305             Defining_Identifier => Temp,
1306             Object_Definition   => New_Occurrence_Of (PtrT, Loc),
1307             Expression          =>
1308               Make_Allocator (Loc,
1309                 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
1310
1311         --  Copy the Comes_From_Source flag for the allocator we just built,
1312         --  since logically this allocator is a replacement of the original
1313         --  allocator node. This is for proper handling of restriction
1314         --  No_Implicit_Heap_Allocations.
1315
1316         Set_Comes_From_Source
1317           (Expression (Temp_Decl), Comes_From_Source (N));
1318
1319         Set_No_Initialization (Expression (Temp_Decl));
1320         Insert_Action (N, Temp_Decl);
1321
1322         Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1323         Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1324
1325         --  Attach the object to the associated finalization master. Thisis
1326         --  done manually on .NET/JVM since those compilers do no support
1327         --  pools and cannot benefit from internally generated Allocate and
1328         --  Deallocate procedures.
1329
1330         if VM_Target /= No_VM
1331           and then Is_Controlled (DesigT)
1332           and then Present (Finalization_Master (PtrT))
1333         then
1334            Insert_Action (N,
1335              Make_Attach_Call
1336                (Obj_Ref => New_Occurrence_Of (Temp, Loc),
1337                 Ptr_Typ => PtrT));
1338         end if;
1339
1340         Rewrite (N, New_Occurrence_Of (Temp, Loc));
1341         Analyze_And_Resolve (N, PtrT);
1342
1343      elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
1344         Install_Null_Excluding_Check (Exp);
1345
1346      elsif Is_Access_Type (DesigT)
1347        and then Nkind (Exp) = N_Allocator
1348        and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1349      then
1350         --  Apply constraint to designated subtype indication
1351
1352         Apply_Constraint_Check (Expression (Exp),
1353           Designated_Type (DesigT),
1354           No_Sliding => True);
1355
1356         if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1357
1358            --  Propagate constraint_error to enclosing allocator
1359
1360            Rewrite (Exp, New_Copy (Expression (Exp)));
1361         end if;
1362
1363      else
1364         Build_Allocate_Deallocate_Proc (N, True);
1365
1366         --  If we have:
1367         --    type A is access T1;
1368         --    X : A := new T2'(...);
1369         --  T1 and T2 can be different subtypes, and we might need to check
1370         --  both constraints. First check against the type of the qualified
1371         --  expression.
1372
1373         Apply_Constraint_Check (Exp, T, No_Sliding => True);
1374
1375         if Do_Range_Check (Exp) then
1376            Set_Do_Range_Check (Exp, False);
1377            Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1378         end if;
1379
1380         --  A check is also needed in cases where the designated subtype is
1381         --  constrained and differs from the subtype given in the qualified
1382         --  expression. Note that the check on the qualified expression does
1383         --  not allow sliding, but this check does (a relaxation from Ada 83).
1384
1385         if Is_Constrained (DesigT)
1386           and then not Subtypes_Statically_Match (T, DesigT)
1387         then
1388            Apply_Constraint_Check
1389              (Exp, DesigT, No_Sliding => False);
1390
1391            if Do_Range_Check (Exp) then
1392               Set_Do_Range_Check (Exp, False);
1393               Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1394            end if;
1395         end if;
1396
1397         --  For an access to unconstrained packed array, GIGI needs to see an
1398         --  expression with a constrained subtype in order to compute the
1399         --  proper size for the allocator.
1400
1401         if Is_Array_Type (T)
1402           and then not Is_Constrained (T)
1403           and then Is_Packed (T)
1404         then
1405            declare
1406               ConstrT      : constant Entity_Id := Make_Temporary (Loc, 'A');
1407               Internal_Exp : constant Node_Id   := Relocate_Node (Exp);
1408            begin
1409               Insert_Action (Exp,
1410                 Make_Subtype_Declaration (Loc,
1411                   Defining_Identifier => ConstrT,
1412                   Subtype_Indication  =>
1413                     Make_Subtype_From_Expr (Internal_Exp, T)));
1414               Freeze_Itype (ConstrT, Exp);
1415               Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1416            end;
1417         end if;
1418
1419         --  Ada 2005 (AI-318-02): If the initialization expression is a call
1420         --  to a build-in-place function, then access to the allocated object
1421         --  must be passed to the function. Currently we limit such functions
1422         --  to those with constrained limited result subtypes, but eventually
1423         --  we plan to expand the allowed forms of functions that are treated
1424         --  as build-in-place.
1425
1426         if Ada_Version >= Ada_2005
1427           and then Is_Build_In_Place_Function_Call (Exp)
1428         then
1429            Make_Build_In_Place_Call_In_Allocator (N, Exp);
1430         end if;
1431      end if;
1432
1433   exception
1434      when RE_Not_Available =>
1435         return;
1436   end Expand_Allocator_Expression;
1437
1438   -----------------------------
1439   -- Expand_Array_Comparison --
1440   -----------------------------
1441
1442   --  Expansion is only required in the case of array types. For the unpacked
1443   --  case, an appropriate runtime routine is called. For packed cases, and
1444   --  also in some other cases where a runtime routine cannot be called, the
1445   --  form of the expansion is:
1446
1447   --     [body for greater_nn; boolean_expression]
1448
1449   --  The body is built by Make_Array_Comparison_Op, and the form of the
1450   --  Boolean expression depends on the operator involved.
1451
1452   procedure Expand_Array_Comparison (N : Node_Id) is
1453      Loc  : constant Source_Ptr := Sloc (N);
1454      Op1  : Node_Id             := Left_Opnd (N);
1455      Op2  : Node_Id             := Right_Opnd (N);
1456      Typ1 : constant Entity_Id  := Base_Type (Etype (Op1));
1457      Ctyp : constant Entity_Id  := Component_Type (Typ1);
1458
1459      Expr      : Node_Id;
1460      Func_Body : Node_Id;
1461      Func_Name : Entity_Id;
1462
1463      Comp : RE_Id;
1464
1465      Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1466      --  True for byte addressable target
1467
1468      function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
1469      --  Returns True if the length of the given operand is known to be less
1470      --  than 4. Returns False if this length is known to be four or greater
1471      --  or is not known at compile time.
1472
1473      ------------------------
1474      -- Length_Less_Than_4 --
1475      ------------------------
1476
1477      function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1478         Otyp : constant Entity_Id := Etype (Opnd);
1479
1480      begin
1481         if Ekind (Otyp) = E_String_Literal_Subtype then
1482            return String_Literal_Length (Otyp) < 4;
1483
1484         else
1485            declare
1486               Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1487               Lo   : constant Node_Id   := Type_Low_Bound (Ityp);
1488               Hi   : constant Node_Id   := Type_High_Bound (Ityp);
1489               Lov  : Uint;
1490               Hiv  : Uint;
1491
1492            begin
1493               if Compile_Time_Known_Value (Lo) then
1494                  Lov := Expr_Value (Lo);
1495               else
1496                  return False;
1497               end if;
1498
1499               if Compile_Time_Known_Value (Hi) then
1500                  Hiv := Expr_Value (Hi);
1501               else
1502                  return False;
1503               end if;
1504
1505               return Hiv < Lov + 3;
1506            end;
1507         end if;
1508      end Length_Less_Than_4;
1509
1510   --  Start of processing for Expand_Array_Comparison
1511
1512   begin
1513      --  Deal first with unpacked case, where we can call a runtime routine
1514      --  except that we avoid this for targets for which are not addressable
1515      --  by bytes, and for the JVM/CIL, since they do not support direct
1516      --  addressing of array components.
1517
1518      if not Is_Bit_Packed_Array (Typ1)
1519        and then Byte_Addressable
1520        and then VM_Target = No_VM
1521      then
1522         --  The call we generate is:
1523
1524         --  Compare_Array_xn[_Unaligned]
1525         --    (left'address, right'address, left'length, right'length) <op> 0
1526
1527         --  x = U for unsigned, S for signed
1528         --  n = 8,16,32,64 for component size
1529         --  Add _Unaligned if length < 4 and component size is 8.
1530         --  <op> is the standard comparison operator
1531
1532         if Component_Size (Typ1) = 8 then
1533            if Length_Less_Than_4 (Op1)
1534                 or else
1535               Length_Less_Than_4 (Op2)
1536            then
1537               if Is_Unsigned_Type (Ctyp) then
1538                  Comp := RE_Compare_Array_U8_Unaligned;
1539               else
1540                  Comp := RE_Compare_Array_S8_Unaligned;
1541               end if;
1542
1543            else
1544               if Is_Unsigned_Type (Ctyp) then
1545                  Comp := RE_Compare_Array_U8;
1546               else
1547                  Comp := RE_Compare_Array_S8;
1548               end if;
1549            end if;
1550
1551         elsif Component_Size (Typ1) = 16 then
1552            if Is_Unsigned_Type (Ctyp) then
1553               Comp := RE_Compare_Array_U16;
1554            else
1555               Comp := RE_Compare_Array_S16;
1556            end if;
1557
1558         elsif Component_Size (Typ1) = 32 then
1559            if Is_Unsigned_Type (Ctyp) then
1560               Comp := RE_Compare_Array_U32;
1561            else
1562               Comp := RE_Compare_Array_S32;
1563            end if;
1564
1565         else pragma Assert (Component_Size (Typ1) = 64);
1566            if Is_Unsigned_Type (Ctyp) then
1567               Comp := RE_Compare_Array_U64;
1568            else
1569               Comp := RE_Compare_Array_S64;
1570            end if;
1571         end if;
1572
1573         Remove_Side_Effects (Op1, Name_Req => True);
1574         Remove_Side_Effects (Op2, Name_Req => True);
1575
1576         Rewrite (Op1,
1577           Make_Function_Call (Sloc (Op1),
1578             Name => New_Occurrence_Of (RTE (Comp), Loc),
1579
1580             Parameter_Associations => New_List (
1581               Make_Attribute_Reference (Loc,
1582                 Prefix         => Relocate_Node (Op1),
1583                 Attribute_Name => Name_Address),
1584
1585               Make_Attribute_Reference (Loc,
1586                 Prefix         => Relocate_Node (Op2),
1587                 Attribute_Name => Name_Address),
1588
1589               Make_Attribute_Reference (Loc,
1590                 Prefix         => Relocate_Node (Op1),
1591                 Attribute_Name => Name_Length),
1592
1593               Make_Attribute_Reference (Loc,
1594                 Prefix         => Relocate_Node (Op2),
1595                 Attribute_Name => Name_Length))));
1596
1597         Rewrite (Op2,
1598           Make_Integer_Literal (Sloc (Op2),
1599             Intval => Uint_0));
1600
1601         Analyze_And_Resolve (Op1, Standard_Integer);
1602         Analyze_And_Resolve (Op2, Standard_Integer);
1603         return;
1604      end if;
1605
1606      --  Cases where we cannot make runtime call
1607
1608      --  For (a <= b) we convert to not (a > b)
1609
1610      if Chars (N) = Name_Op_Le then
1611         Rewrite (N,
1612           Make_Op_Not (Loc,
1613             Right_Opnd =>
1614                Make_Op_Gt (Loc,
1615                 Left_Opnd  => Op1,
1616                 Right_Opnd => Op2)));
1617         Analyze_And_Resolve (N, Standard_Boolean);
1618         return;
1619
1620      --  For < the Boolean expression is
1621      --    greater__nn (op2, op1)
1622
1623      elsif Chars (N) = Name_Op_Lt then
1624         Func_Body := Make_Array_Comparison_Op (Typ1, N);
1625
1626         --  Switch operands
1627
1628         Op1 := Right_Opnd (N);
1629         Op2 := Left_Opnd  (N);
1630
1631      --  For (a >= b) we convert to not (a < b)
1632
1633      elsif Chars (N) = Name_Op_Ge then
1634         Rewrite (N,
1635           Make_Op_Not (Loc,
1636             Right_Opnd =>
1637               Make_Op_Lt (Loc,
1638                 Left_Opnd  => Op1,
1639                 Right_Opnd => Op2)));
1640         Analyze_And_Resolve (N, Standard_Boolean);
1641         return;
1642
1643      --  For > the Boolean expression is
1644      --    greater__nn (op1, op2)
1645
1646      else
1647         pragma Assert (Chars (N) = Name_Op_Gt);
1648         Func_Body := Make_Array_Comparison_Op (Typ1, N);
1649      end if;
1650
1651      Func_Name := Defining_Unit_Name (Specification (Func_Body));
1652      Expr :=
1653        Make_Function_Call (Loc,
1654          Name => New_Occurrence_Of (Func_Name, Loc),
1655          Parameter_Associations => New_List (Op1, Op2));
1656
1657      Insert_Action (N, Func_Body);
1658      Rewrite (N, Expr);
1659      Analyze_And_Resolve (N, Standard_Boolean);
1660
1661   exception
1662      when RE_Not_Available =>
1663         return;
1664   end Expand_Array_Comparison;
1665
1666   ---------------------------
1667   -- Expand_Array_Equality --
1668   ---------------------------
1669
1670   --  Expand an equality function for multi-dimensional arrays. Here is an
1671   --  example of such a function for Nb_Dimension = 2
1672
1673   --  function Enn (A : atyp; B : btyp) return boolean is
1674   --  begin
1675   --     if (A'length (1) = 0 or else A'length (2) = 0)
1676   --          and then
1677   --        (B'length (1) = 0 or else B'length (2) = 0)
1678   --     then
1679   --        return True;    -- RM 4.5.2(22)
1680   --     end if;
1681
1682   --     if A'length (1) /= B'length (1)
1683   --               or else
1684   --           A'length (2) /= B'length (2)
1685   --     then
1686   --        return False;   -- RM 4.5.2(23)
1687   --     end if;
1688
1689   --     declare
1690   --        A1 : Index_T1 := A'first (1);
1691   --        B1 : Index_T1 := B'first (1);
1692   --     begin
1693   --        loop
1694   --           declare
1695   --              A2 : Index_T2 := A'first (2);
1696   --              B2 : Index_T2 := B'first (2);
1697   --           begin
1698   --              loop
1699   --                 if A (A1, A2) /= B (B1, B2) then
1700   --                    return False;
1701   --                 end if;
1702
1703   --                 exit when A2 = A'last (2);
1704   --                 A2 := Index_T2'succ (A2);
1705   --                 B2 := Index_T2'succ (B2);
1706   --              end loop;
1707   --           end;
1708
1709   --           exit when A1 = A'last (1);
1710   --           A1 := Index_T1'succ (A1);
1711   --           B1 := Index_T1'succ (B1);
1712   --        end loop;
1713   --     end;
1714
1715   --     return true;
1716   --  end Enn;
1717
1718   --  Note on the formal types used (atyp and btyp). If either of the arrays
1719   --  is of a private type, we use the underlying type, and do an unchecked
1720   --  conversion of the actual. If either of the arrays has a bound depending
1721   --  on a discriminant, then we use the base type since otherwise we have an
1722   --  escaped discriminant in the function.
1723
1724   --  If both arrays are constrained and have the same bounds, we can generate
1725   --  a loop with an explicit iteration scheme using a 'Range attribute over
1726   --  the first array.
1727
1728   function Expand_Array_Equality
1729     (Nod    : Node_Id;
1730      Lhs    : Node_Id;
1731      Rhs    : Node_Id;
1732      Bodies : List_Id;
1733      Typ    : Entity_Id) return Node_Id
1734   is
1735      Loc         : constant Source_Ptr := Sloc (Nod);
1736      Decls       : constant List_Id    := New_List;
1737      Index_List1 : constant List_Id    := New_List;
1738      Index_List2 : constant List_Id    := New_List;
1739
1740      Actuals   : List_Id;
1741      Formals   : List_Id;
1742      Func_Name : Entity_Id;
1743      Func_Body : Node_Id;
1744
1745      A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1746      B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1747
1748      Ltyp : Entity_Id;
1749      Rtyp : Entity_Id;
1750      --  The parameter types to be used for the formals
1751
1752      function Arr_Attr
1753        (Arr : Entity_Id;
1754         Nam : Name_Id;
1755         Num : Int) return Node_Id;
1756      --  This builds the attribute reference Arr'Nam (Expr)
1757
1758      function Component_Equality (Typ : Entity_Id) return Node_Id;
1759      --  Create one statement to compare corresponding components, designated
1760      --  by a full set of indexes.
1761
1762      function Get_Arg_Type (N : Node_Id) return Entity_Id;
1763      --  Given one of the arguments, computes the appropriate type to be used
1764      --  for that argument in the corresponding function formal
1765
1766      function Handle_One_Dimension
1767        (N     : Int;
1768         Index : Node_Id) return Node_Id;
1769      --  This procedure returns the following code
1770      --
1771      --    declare
1772      --       Bn : Index_T := B'First (N);
1773      --    begin
1774      --       loop
1775      --          xxx
1776      --          exit when An = A'Last (N);
1777      --          An := Index_T'Succ (An)
1778      --          Bn := Index_T'Succ (Bn)
1779      --       end loop;
1780      --    end;
1781      --
1782      --  If both indexes are constrained and identical, the procedure
1783      --  returns a simpler loop:
1784      --
1785      --      for An in A'Range (N) loop
1786      --         xxx
1787      --      end loop
1788      --
1789      --  N is the dimension for which we are generating a loop. Index is the
1790      --  N'th index node, whose Etype is Index_Type_n in the above code. The
1791      --  xxx statement is either the loop or declare for the next dimension
1792      --  or if this is the last dimension the comparison of corresponding
1793      --  components of the arrays.
1794      --
1795      --  The actual way the code works is to return the comparison of
1796      --  corresponding components for the N+1 call. That's neater.
1797
1798      function Test_Empty_Arrays return Node_Id;
1799      --  This function constructs the test for both arrays being empty
1800      --    (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1801      --      and then
1802      --    (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1803
1804      function Test_Lengths_Correspond return Node_Id;
1805      --  This function constructs the test for arrays having different lengths
1806      --  in at least one index position, in which case the resulting code is:
1807
1808      --     A'length (1) /= B'length (1)
1809      --       or else
1810      --     A'length (2) /= B'length (2)
1811      --       or else
1812      --       ...
1813
1814      --------------
1815      -- Arr_Attr --
1816      --------------
1817
1818      function Arr_Attr
1819        (Arr : Entity_Id;
1820         Nam : Name_Id;
1821         Num : Int) return Node_Id
1822      is
1823      begin
1824         return
1825           Make_Attribute_Reference (Loc,
1826            Attribute_Name => Nam,
1827            Prefix => New_Occurrence_Of (Arr, Loc),
1828            Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1829      end Arr_Attr;
1830
1831      ------------------------
1832      -- Component_Equality --
1833      ------------------------
1834
1835      function Component_Equality (Typ : Entity_Id) return Node_Id is
1836         Test : Node_Id;
1837         L, R : Node_Id;
1838
1839      begin
1840         --  if a(i1...) /= b(j1...) then return false; end if;
1841
1842         L :=
1843           Make_Indexed_Component (Loc,
1844             Prefix      => Make_Identifier (Loc, Chars (A)),
1845             Expressions => Index_List1);
1846
1847         R :=
1848           Make_Indexed_Component (Loc,
1849             Prefix      => Make_Identifier (Loc, Chars (B)),
1850             Expressions => Index_List2);
1851
1852         Test := Expand_Composite_Equality
1853                   (Nod, Component_Type (Typ), L, R, Decls);
1854
1855         --  If some (sub)component is an unchecked_union, the whole operation
1856         --  will raise program error.
1857
1858         if Nkind (Test) = N_Raise_Program_Error then
1859
1860            --  This node is going to be inserted at a location where a
1861            --  statement is expected: clear its Etype so analysis will set
1862            --  it to the expected Standard_Void_Type.
1863
1864            Set_Etype (Test, Empty);
1865            return Test;
1866
1867         else
1868            return
1869              Make_Implicit_If_Statement (Nod,
1870                Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1871                Then_Statements => New_List (
1872                  Make_Simple_Return_Statement (Loc,
1873                    Expression => New_Occurrence_Of (Standard_False, Loc))));
1874         end if;
1875      end Component_Equality;
1876
1877      ------------------
1878      -- Get_Arg_Type --
1879      ------------------
1880
1881      function Get_Arg_Type (N : Node_Id) return Entity_Id is
1882         T : Entity_Id;
1883         X : Node_Id;
1884
1885      begin
1886         T := Etype (N);
1887
1888         if No (T) then
1889            return Typ;
1890
1891         else
1892            T := Underlying_Type (T);
1893
1894            X := First_Index (T);
1895            while Present (X) loop
1896               if Denotes_Discriminant (Type_Low_Bound  (Etype (X)))
1897                    or else
1898                  Denotes_Discriminant (Type_High_Bound (Etype (X)))
1899               then
1900                  T := Base_Type (T);
1901                  exit;
1902               end if;
1903
1904               Next_Index (X);
1905            end loop;
1906
1907            return T;
1908         end if;
1909      end Get_Arg_Type;
1910
1911      --------------------------
1912      -- Handle_One_Dimension --
1913      ---------------------------
1914
1915      function Handle_One_Dimension
1916        (N     : Int;
1917         Index : Node_Id) return Node_Id
1918      is
1919         Need_Separate_Indexes : constant Boolean :=
1920           Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
1921         --  If the index types are identical, and we are working with
1922         --  constrained types, then we can use the same index for both
1923         --  of the arrays.
1924
1925         An : constant Entity_Id := Make_Temporary (Loc, 'A');
1926
1927         Bn       : Entity_Id;
1928         Index_T  : Entity_Id;
1929         Stm_List : List_Id;
1930         Loop_Stm : Node_Id;
1931
1932      begin
1933         if N > Number_Dimensions (Ltyp) then
1934            return Component_Equality (Ltyp);
1935         end if;
1936
1937         --  Case where we generate a loop
1938
1939         Index_T := Base_Type (Etype (Index));
1940
1941         if Need_Separate_Indexes then
1942            Bn := Make_Temporary (Loc, 'B');
1943         else
1944            Bn := An;
1945         end if;
1946
1947         Append (New_Occurrence_Of (An, Loc), Index_List1);
1948         Append (New_Occurrence_Of (Bn, Loc), Index_List2);
1949
1950         Stm_List := New_List (
1951           Handle_One_Dimension (N + 1, Next_Index (Index)));
1952
1953         if Need_Separate_Indexes then
1954
1955            --  Generate guard for loop, followed by increments of indexes
1956
1957            Append_To (Stm_List,
1958               Make_Exit_Statement (Loc,
1959                 Condition =>
1960                   Make_Op_Eq (Loc,
1961                      Left_Opnd => New_Occurrence_Of (An, Loc),
1962                      Right_Opnd => Arr_Attr (A, Name_Last, N))));
1963
1964            Append_To (Stm_List,
1965              Make_Assignment_Statement (Loc,
1966                Name       => New_Occurrence_Of (An, Loc),
1967                Expression =>
1968                  Make_Attribute_Reference (Loc,
1969                    Prefix         => New_Occurrence_Of (Index_T, Loc),
1970                    Attribute_Name => Name_Succ,
1971                    Expressions    => New_List (
1972                      New_Occurrence_Of (An, Loc)))));
1973
1974            Append_To (Stm_List,
1975              Make_Assignment_Statement (Loc,
1976                Name       => New_Occurrence_Of (Bn, Loc),
1977                Expression =>
1978                  Make_Attribute_Reference (Loc,
1979                    Prefix         => New_Occurrence_Of (Index_T, Loc),
1980                    Attribute_Name => Name_Succ,
1981                    Expressions    => New_List (
1982                      New_Occurrence_Of (Bn, Loc)))));
1983         end if;
1984
1985         --  If separate indexes, we need a declare block for An and Bn, and a
1986         --  loop without an iteration scheme.
1987
1988         if Need_Separate_Indexes then
1989            Loop_Stm :=
1990              Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1991
1992            return
1993              Make_Block_Statement (Loc,
1994                Declarations => New_List (
1995                  Make_Object_Declaration (Loc,
1996                    Defining_Identifier => An,
1997                    Object_Definition   => New_Occurrence_Of (Index_T, Loc),
1998                    Expression          => Arr_Attr (A, Name_First, N)),
1999
2000                  Make_Object_Declaration (Loc,
2001                    Defining_Identifier => Bn,
2002                    Object_Definition   => New_Occurrence_Of (Index_T, Loc),
2003                    Expression          => Arr_Attr (B, Name_First, N))),
2004
2005                Handled_Statement_Sequence =>
2006                  Make_Handled_Sequence_Of_Statements (Loc,
2007                    Statements => New_List (Loop_Stm)));
2008
2009         --  If no separate indexes, return loop statement with explicit
2010         --  iteration scheme on its own
2011
2012         else
2013            Loop_Stm :=
2014              Make_Implicit_Loop_Statement (Nod,
2015                Statements       => Stm_List,
2016                Iteration_Scheme =>
2017                  Make_Iteration_Scheme (Loc,
2018                    Loop_Parameter_Specification =>
2019                      Make_Loop_Parameter_Specification (Loc,
2020                        Defining_Identifier         => An,
2021                        Discrete_Subtype_Definition =>
2022                          Arr_Attr (A, Name_Range, N))));
2023            return Loop_Stm;
2024         end if;
2025      end Handle_One_Dimension;
2026
2027      -----------------------
2028      -- Test_Empty_Arrays --
2029      -----------------------
2030
2031      function Test_Empty_Arrays return Node_Id is
2032         Alist : Node_Id;
2033         Blist : Node_Id;
2034
2035         Atest : Node_Id;
2036         Btest : Node_Id;
2037
2038      begin
2039         Alist := Empty;
2040         Blist := Empty;
2041         for J in 1 .. Number_Dimensions (Ltyp) loop
2042            Atest :=
2043              Make_Op_Eq (Loc,
2044                Left_Opnd  => Arr_Attr (A, Name_Length, J),
2045                Right_Opnd => Make_Integer_Literal (Loc, 0));
2046
2047            Btest :=
2048              Make_Op_Eq (Loc,
2049                Left_Opnd  => Arr_Attr (B, Name_Length, J),
2050                Right_Opnd => Make_Integer_Literal (Loc, 0));
2051
2052            if No (Alist) then
2053               Alist := Atest;
2054               Blist := Btest;
2055
2056            else
2057               Alist :=
2058                 Make_Or_Else (Loc,
2059                   Left_Opnd  => Relocate_Node (Alist),
2060                   Right_Opnd => Atest);
2061
2062               Blist :=
2063                 Make_Or_Else (Loc,
2064                   Left_Opnd  => Relocate_Node (Blist),
2065                   Right_Opnd => Btest);
2066            end if;
2067         end loop;
2068
2069         return
2070           Make_And_Then (Loc,
2071             Left_Opnd  => Alist,
2072             Right_Opnd => Blist);
2073      end Test_Empty_Arrays;
2074
2075      -----------------------------
2076      -- Test_Lengths_Correspond --
2077      -----------------------------
2078
2079      function Test_Lengths_Correspond return Node_Id is
2080         Result : Node_Id;
2081         Rtest  : Node_Id;
2082
2083      begin
2084         Result := Empty;
2085         for J in 1 .. Number_Dimensions (Ltyp) loop
2086            Rtest :=
2087              Make_Op_Ne (Loc,
2088                Left_Opnd  => Arr_Attr (A, Name_Length, J),
2089                Right_Opnd => Arr_Attr (B, Name_Length, J));
2090
2091            if No (Result) then
2092               Result := Rtest;
2093            else
2094               Result :=
2095                 Make_Or_Else (Loc,
2096                   Left_Opnd  => Relocate_Node (Result),
2097                   Right_Opnd => Rtest);
2098            end if;
2099         end loop;
2100
2101         return Result;
2102      end Test_Lengths_Correspond;
2103
2104   --  Start of processing for Expand_Array_Equality
2105
2106   begin
2107      Ltyp := Get_Arg_Type (Lhs);
2108      Rtyp := Get_Arg_Type (Rhs);
2109
2110      --  For now, if the argument types are not the same, go to the base type,
2111      --  since the code assumes that the formals have the same type. This is
2112      --  fixable in future ???
2113
2114      if Ltyp /= Rtyp then
2115         Ltyp := Base_Type (Ltyp);
2116         Rtyp := Base_Type (Rtyp);
2117         pragma Assert (Ltyp = Rtyp);
2118      end if;
2119
2120      --  Build list of formals for function
2121
2122      Formals := New_List (
2123        Make_Parameter_Specification (Loc,
2124          Defining_Identifier => A,
2125          Parameter_Type      => New_Occurrence_Of (Ltyp, Loc)),
2126
2127        Make_Parameter_Specification (Loc,
2128          Defining_Identifier => B,
2129          Parameter_Type      => New_Occurrence_Of (Rtyp, Loc)));
2130
2131      Func_Name := Make_Temporary (Loc, 'E');
2132
2133      --  Build statement sequence for function
2134
2135      Func_Body :=
2136        Make_Subprogram_Body (Loc,
2137          Specification =>
2138            Make_Function_Specification (Loc,
2139              Defining_Unit_Name       => Func_Name,
2140              Parameter_Specifications => Formals,
2141              Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
2142
2143          Declarations =>  Decls,
2144
2145          Handled_Statement_Sequence =>
2146            Make_Handled_Sequence_Of_Statements (Loc,
2147              Statements => New_List (
2148
2149                Make_Implicit_If_Statement (Nod,
2150                  Condition => Test_Empty_Arrays,
2151                  Then_Statements => New_List (
2152                    Make_Simple_Return_Statement (Loc,
2153                      Expression =>
2154                        New_Occurrence_Of (Standard_True, Loc)))),
2155
2156                Make_Implicit_If_Statement (Nod,
2157                  Condition => Test_Lengths_Correspond,
2158                  Then_Statements => New_List (
2159                    Make_Simple_Return_Statement (Loc,
2160                      Expression =>
2161                        New_Occurrence_Of (Standard_False, Loc)))),
2162
2163                Handle_One_Dimension (1, First_Index (Ltyp)),
2164
2165                Make_Simple_Return_Statement (Loc,
2166                  Expression => New_Occurrence_Of (Standard_True, Loc)))));
2167
2168         Set_Has_Completion (Func_Name, True);
2169         Set_Is_Inlined (Func_Name);
2170
2171         --  If the array type is distinct from the type of the arguments, it
2172         --  is the full view of a private type. Apply an unchecked conversion
2173         --  to insure that analysis of the call succeeds.
2174
2175         declare
2176            L, R : Node_Id;
2177
2178         begin
2179            L := Lhs;
2180            R := Rhs;
2181
2182            if No (Etype (Lhs))
2183              or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2184            then
2185               L := OK_Convert_To (Ltyp, Lhs);
2186            end if;
2187
2188            if No (Etype (Rhs))
2189              or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2190            then
2191               R := OK_Convert_To (Rtyp, Rhs);
2192            end if;
2193
2194            Actuals := New_List (L, R);
2195         end;
2196
2197         Append_To (Bodies, Func_Body);
2198
2199         return
2200           Make_Function_Call (Loc,
2201             Name                   => New_Occurrence_Of (Func_Name, Loc),
2202             Parameter_Associations => Actuals);
2203   end Expand_Array_Equality;
2204
2205   -----------------------------
2206   -- Expand_Boolean_Operator --
2207   -----------------------------
2208
2209   --  Note that we first get the actual subtypes of the operands, since we
2210   --  always want to deal with types that have bounds.
2211
2212   procedure Expand_Boolean_Operator (N : Node_Id) is
2213      Typ : constant Entity_Id  := Etype (N);
2214
2215   begin
2216      --  Special case of bit packed array where both operands are known to be
2217      --  properly aligned. In this case we use an efficient run time routine
2218      --  to carry out the operation (see System.Bit_Ops).
2219
2220      if Is_Bit_Packed_Array (Typ)
2221        and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2222        and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2223      then
2224         Expand_Packed_Boolean_Operator (N);
2225         return;
2226      end if;
2227
2228      --  For the normal non-packed case, the general expansion is to build
2229      --  function for carrying out the comparison (use Make_Boolean_Array_Op)
2230      --  and then inserting it into the tree. The original operator node is
2231      --  then rewritten as a call to this function. We also use this in the
2232      --  packed case if either operand is a possibly unaligned object.
2233
2234      declare
2235         Loc       : constant Source_Ptr := Sloc (N);
2236         L         : constant Node_Id    := Relocate_Node (Left_Opnd  (N));
2237         R         : constant Node_Id    := Relocate_Node (Right_Opnd (N));
2238         Func_Body : Node_Id;
2239         Func_Name : Entity_Id;
2240
2241      begin
2242         Convert_To_Actual_Subtype (L);
2243         Convert_To_Actual_Subtype (R);
2244         Ensure_Defined (Etype (L), N);
2245         Ensure_Defined (Etype (R), N);
2246         Apply_Length_Check (R, Etype (L));
2247
2248         if Nkind (N) = N_Op_Xor then
2249            Silly_Boolean_Array_Xor_Test (N, Etype (L));
2250         end if;
2251
2252         if Nkind (Parent (N)) = N_Assignment_Statement
2253           and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2254         then
2255            Build_Boolean_Array_Proc_Call (Parent (N), L, R);
2256
2257         elsif Nkind (Parent (N)) = N_Op_Not
2258           and then Nkind (N) = N_Op_And
2259           and then
2260             Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
2261         then
2262            return;
2263         else
2264
2265            Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2266            Func_Name := Defining_Unit_Name (Specification (Func_Body));
2267            Insert_Action (N, Func_Body);
2268
2269            --  Now rewrite the expression with a call
2270
2271            Rewrite (N,
2272              Make_Function_Call (Loc,
2273                Name                   => New_Occurrence_Of (Func_Name, Loc),
2274                Parameter_Associations =>
2275                  New_List (
2276                    L,
2277                    Make_Type_Conversion
2278                      (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
2279
2280            Analyze_And_Resolve (N, Typ);
2281         end if;
2282      end;
2283   end Expand_Boolean_Operator;
2284
2285   ------------------------------------------------
2286   -- Expand_Compare_Minimize_Eliminate_Overflow --
2287   ------------------------------------------------
2288
2289   procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2290      Loc : constant Source_Ptr := Sloc (N);
2291
2292      Result_Type : constant Entity_Id := Etype (N);
2293      --  Capture result type (could be a derived boolean type)
2294
2295      Llo, Lhi : Uint;
2296      Rlo, Rhi : Uint;
2297
2298      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2299      --  Entity for Long_Long_Integer'Base
2300
2301      Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
2302      --  Current overflow checking mode
2303
2304      procedure Set_True;
2305      procedure Set_False;
2306      --  These procedures rewrite N with an occurrence of Standard_True or
2307      --  Standard_False, and then makes a call to Warn_On_Known_Condition.
2308
2309      ---------------
2310      -- Set_False --
2311      ---------------
2312
2313      procedure Set_False is
2314      begin
2315         Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2316         Warn_On_Known_Condition (N);
2317      end Set_False;
2318
2319      --------------
2320      -- Set_True --
2321      --------------
2322
2323      procedure Set_True is
2324      begin
2325         Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2326         Warn_On_Known_Condition (N);
2327      end Set_True;
2328
2329   --  Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2330
2331   begin
2332      --  Nothing to do unless we have a comparison operator with operands
2333      --  that are signed integer types, and we are operating in either
2334      --  MINIMIZED or ELIMINATED overflow checking mode.
2335
2336      if Nkind (N) not in N_Op_Compare
2337        or else Check not in Minimized_Or_Eliminated
2338        or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2339      then
2340         return;
2341      end if;
2342
2343      --  OK, this is the case we are interested in. First step is to process
2344      --  our operands using the Minimize_Eliminate circuitry which applies
2345      --  this processing to the two operand subtrees.
2346
2347      Minimize_Eliminate_Overflows
2348        (Left_Opnd (N),  Llo, Lhi, Top_Level => False);
2349      Minimize_Eliminate_Overflows
2350        (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
2351
2352      --  See if the range information decides the result of the comparison.
2353      --  We can only do this if we in fact have full range information (which
2354      --  won't be the case if either operand is bignum at this stage).
2355
2356      if Llo /= No_Uint and then Rlo /= No_Uint then
2357         case N_Op_Compare (Nkind (N)) is
2358         when N_Op_Eq =>
2359            if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2360               Set_True;
2361            elsif Llo > Rhi or else Lhi < Rlo then
2362               Set_False;
2363            end if;
2364
2365         when N_Op_Ge =>
2366            if Llo >= Rhi then
2367               Set_True;
2368            elsif Lhi < Rlo then
2369               Set_False;
2370            end if;
2371
2372         when N_Op_Gt =>
2373            if Llo > Rhi then
2374               Set_True;
2375            elsif Lhi <= Rlo then
2376               Set_False;
2377            end if;
2378
2379         when N_Op_Le =>
2380            if Llo > Rhi then
2381               Set_False;
2382            elsif Lhi <= Rlo then
2383               Set_True;
2384            end if;
2385
2386         when N_Op_Lt =>
2387            if Llo >= Rhi then
2388               Set_False;
2389            elsif Lhi < Rlo then
2390               Set_True;
2391            end if;
2392
2393         when N_Op_Ne =>
2394            if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2395               Set_False;
2396            elsif Llo > Rhi or else Lhi < Rlo then
2397               Set_True;
2398            end if;
2399         end case;
2400
2401         --  All done if we did the rewrite
2402
2403         if Nkind (N) not in N_Op_Compare then
2404            return;
2405         end if;
2406      end if;
2407
2408      --  Otherwise, time to do the comparison
2409
2410      declare
2411         Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2412         Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2413
2414      begin
2415         --  If the two operands have the same signed integer type we are
2416         --  all set, nothing more to do. This is the case where either
2417         --  both operands were unchanged, or we rewrote both of them to
2418         --  be Long_Long_Integer.
2419
2420         --  Note: Entity for the comparison may be wrong, but it's not worth
2421         --  the effort to change it, since the back end does not use it.
2422
2423         if Is_Signed_Integer_Type (Ltype)
2424           and then Base_Type (Ltype) = Base_Type (Rtype)
2425         then
2426            return;
2427
2428         --  Here if bignums are involved (can only happen in ELIMINATED mode)
2429
2430         elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2431            declare
2432               Left  : Node_Id := Left_Opnd (N);
2433               Right : Node_Id := Right_Opnd (N);
2434               --  Bignum references for left and right operands
2435
2436            begin
2437               if not Is_RTE (Ltype, RE_Bignum) then
2438                  Left := Convert_To_Bignum (Left);
2439               elsif not Is_RTE (Rtype, RE_Bignum) then
2440                  Right := Convert_To_Bignum (Right);
2441               end if;
2442
2443               --  We rewrite our node with:
2444
2445               --    do
2446               --       Bnn : Result_Type;
2447               --       declare
2448               --          M : Mark_Id := SS_Mark;
2449               --       begin
2450               --          Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2451               --          SS_Release (M);
2452               --       end;
2453               --    in
2454               --       Bnn
2455               --    end
2456
2457               declare
2458                  Blk : constant Node_Id   := Make_Bignum_Block (Loc);
2459                  Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2460                  Ent : RE_Id;
2461
2462               begin
2463                  case N_Op_Compare (Nkind (N)) is
2464                     when N_Op_Eq => Ent := RE_Big_EQ;
2465                     when N_Op_Ge => Ent := RE_Big_GE;
2466                     when N_Op_Gt => Ent := RE_Big_GT;
2467                     when N_Op_Le => Ent := RE_Big_LE;
2468                     when N_Op_Lt => Ent := RE_Big_LT;
2469                     when N_Op_Ne => Ent := RE_Big_NE;
2470                  end case;
2471
2472                  --  Insert assignment to Bnn into the bignum block
2473
2474                  Insert_Before
2475                    (First (Statements (Handled_Statement_Sequence (Blk))),
2476                     Make_Assignment_Statement (Loc,
2477                       Name       => New_Occurrence_Of (Bnn, Loc),
2478                       Expression =>
2479                         Make_Function_Call (Loc,
2480                           Name                   =>
2481                             New_Occurrence_Of (RTE (Ent), Loc),
2482                           Parameter_Associations => New_List (Left, Right))));
2483
2484                  --  Now do the rewrite with expression actions
2485
2486                  Rewrite (N,
2487                    Make_Expression_With_Actions (Loc,
2488                      Actions    => New_List (
2489                        Make_Object_Declaration (Loc,
2490                          Defining_Identifier => Bnn,
2491                          Object_Definition   =>
2492                            New_Occurrence_Of (Result_Type, Loc)),
2493                        Blk),
2494                      Expression => New_Occurrence_Of (Bnn, Loc)));
2495                  Analyze_And_Resolve (N, Result_Type);
2496               end;
2497            end;
2498
2499         --  No bignums involved, but types are different, so we must have
2500         --  rewritten one of the operands as a Long_Long_Integer but not
2501         --  the other one.
2502
2503         --  If left operand is Long_Long_Integer, convert right operand
2504         --  and we are done (with a comparison of two Long_Long_Integers).
2505
2506         elsif Ltype = LLIB then
2507            Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2508            Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2509            return;
2510
2511         --  If right operand is Long_Long_Integer, convert left operand
2512         --  and we are done (with a comparison of two Long_Long_Integers).
2513
2514         --  This is the only remaining possibility
2515
2516         else pragma Assert (Rtype = LLIB);
2517            Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2518            Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2519            return;
2520         end if;
2521      end;
2522   end Expand_Compare_Minimize_Eliminate_Overflow;
2523
2524   -------------------------------
2525   -- Expand_Composite_Equality --
2526   -------------------------------
2527
2528   --  This function is only called for comparing internal fields of composite
2529   --  types when these fields are themselves composites. This is a special
2530   --  case because it is not possible to respect normal Ada visibility rules.
2531
2532   function Expand_Composite_Equality
2533     (Nod    : Node_Id;
2534      Typ    : Entity_Id;
2535      Lhs    : Node_Id;
2536      Rhs    : Node_Id;
2537      Bodies : List_Id) return Node_Id
2538   is
2539      Loc       : constant Source_Ptr := Sloc (Nod);
2540      Full_Type : Entity_Id;
2541      Prim      : Elmt_Id;
2542      Eq_Op     : Entity_Id;
2543
2544      function Find_Primitive_Eq return Node_Id;
2545      --  AI05-0123: Locate primitive equality for type if it exists, and
2546      --  build the corresponding call. If operation is abstract, replace
2547      --  call with an explicit raise. Return Empty if there is no primitive.
2548
2549      -----------------------
2550      -- Find_Primitive_Eq --
2551      -----------------------
2552
2553      function Find_Primitive_Eq return Node_Id is
2554         Prim_E : Elmt_Id;
2555         Prim   : Node_Id;
2556
2557      begin
2558         Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2559         while Present (Prim_E) loop
2560            Prim := Node (Prim_E);
2561
2562            --  Locate primitive equality with the right signature
2563
2564            if Chars (Prim) = Name_Op_Eq
2565              and then Etype (First_Formal (Prim)) =
2566                       Etype (Next_Formal (First_Formal (Prim)))
2567              and then Etype (Prim) = Standard_Boolean
2568            then
2569               if Is_Abstract_Subprogram (Prim) then
2570                  return
2571                    Make_Raise_Program_Error (Loc,
2572                      Reason => PE_Explicit_Raise);
2573
2574               else
2575                  return
2576                    Make_Function_Call (Loc,
2577                      Name                   => New_Occurrence_Of (Prim, Loc),
2578                      Parameter_Associations => New_List (Lhs, Rhs));
2579               end if;
2580            end if;
2581
2582            Next_Elmt (Prim_E);
2583         end loop;
2584
2585         --  If not found, predefined operation will be used
2586
2587         return Empty;
2588      end Find_Primitive_Eq;
2589
2590   --  Start of processing for Expand_Composite_Equality
2591
2592   begin
2593      if Is_Private_Type (Typ) then
2594         Full_Type := Underlying_Type (Typ);
2595      else
2596         Full_Type := Typ;
2597      end if;
2598
2599      --  If the private type has no completion the context may be the
2600      --  expansion of a composite equality for a composite type with some
2601      --  still incomplete components. The expression will not be analyzed
2602      --  until the enclosing type is completed, at which point this will be
2603      --  properly expanded, unless there is a bona fide completion error.
2604
2605      if No (Full_Type) then
2606         return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2607      end if;
2608
2609      Full_Type := Base_Type (Full_Type);
2610
2611      --  When the base type itself is private, use the full view to expand
2612      --  the composite equality.
2613
2614      if Is_Private_Type (Full_Type) then
2615         Full_Type := Underlying_Type (Full_Type);
2616      end if;
2617
2618      --  Case of array types
2619
2620      if Is_Array_Type (Full_Type) then
2621
2622         --  If the operand is an elementary type other than a floating-point
2623         --  type, then we can simply use the built-in block bitwise equality,
2624         --  since the predefined equality operators always apply and bitwise
2625         --  equality is fine for all these cases.
2626
2627         if Is_Elementary_Type (Component_Type (Full_Type))
2628           and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2629         then
2630            return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2631
2632         --  For composite component types, and floating-point types, use the
2633         --  expansion. This deals with tagged component types (where we use
2634         --  the applicable equality routine) and floating-point, (where we
2635         --  need to worry about negative zeroes), and also the case of any
2636         --  composite type recursively containing such fields.
2637
2638         else
2639            return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
2640         end if;
2641
2642      --  Case of tagged record types
2643
2644      elsif Is_Tagged_Type (Full_Type) then
2645
2646         --  Call the primitive operation "=" of this type
2647
2648         if Is_Class_Wide_Type (Full_Type) then
2649            Full_Type := Root_Type (Full_Type);
2650         end if;
2651
2652         --  If this is derived from an untagged private type completed with a
2653         --  tagged type, it does not have a full view, so we use the primitive
2654         --  operations of the private type. This check should no longer be
2655         --  necessary when these types receive their full views ???
2656
2657         if Is_Private_Type (Typ)
2658           and then not Is_Tagged_Type (Typ)
2659           and then not Is_Controlled (Typ)
2660           and then Is_Derived_Type (Typ)
2661           and then No (Full_View (Typ))
2662         then
2663            Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2664         else
2665            Prim := First_Elmt (Primitive_Operations (Full_Type));
2666         end if;
2667
2668         loop
2669            Eq_Op := Node (Prim);
2670            exit when Chars (Eq_Op) = Name_Op_Eq
2671              and then Etype (First_Formal (Eq_Op)) =
2672                       Etype (Next_Formal (First_Formal (Eq_Op)))
2673              and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
2674            Next_Elmt (Prim);
2675            pragma Assert (Present (Prim));
2676         end loop;
2677
2678         Eq_Op := Node (Prim);
2679
2680         return
2681           Make_Function_Call (Loc,
2682             Name => New_Occurrence_Of (Eq_Op, Loc),
2683             Parameter_Associations =>
2684               New_List
2685                 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2686                  Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2687
2688      --  Case of untagged record types
2689
2690      elsif Is_Record_Type (Full_Type) then
2691         Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
2692
2693         if Present (Eq_Op) then
2694            if Etype (First_Formal (Eq_Op)) /= Full_Type then
2695
2696               --  Inherited equality from parent type. Convert the actuals to
2697               --  match signature of operation.
2698
2699               declare
2700                  T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2701
2702               begin
2703                  return
2704                    Make_Function_Call (Loc,
2705                      Name                  => New_Occurrence_Of (Eq_Op, Loc),
2706                      Parameter_Associations => New_List (
2707                        OK_Convert_To (T, Lhs),
2708                        OK_Convert_To (T, Rhs)));
2709               end;
2710
2711            else
2712               --  Comparison between Unchecked_Union components
2713
2714               if Is_Unchecked_Union (Full_Type) then
2715                  declare
2716                     Lhs_Type      : Node_Id := Full_Type;
2717                     Rhs_Type      : Node_Id := Full_Type;
2718                     Lhs_Discr_Val : Node_Id;
2719                     Rhs_Discr_Val : Node_Id;
2720
2721                  begin
2722                     --  Lhs subtype
2723
2724                     if Nkind (Lhs) = N_Selected_Component then
2725                        Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2726                     end if;
2727
2728                     --  Rhs subtype
2729
2730                     if Nkind (Rhs) = N_Selected_Component then
2731                        Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2732                     end if;
2733
2734                     --  Lhs of the composite equality
2735
2736                     if Is_Constrained (Lhs_Type) then
2737
2738                        --  Since the enclosing record type can never be an
2739                        --  Unchecked_Union (this code is executed for records
2740                        --  that do not have variants), we may reference its
2741                        --  discriminant(s).
2742
2743                        if Nkind (Lhs) = N_Selected_Component
2744                          and then Has_Per_Object_Constraint
2745                                     (Entity (Selector_Name (Lhs)))
2746                        then
2747                           Lhs_Discr_Val :=
2748                             Make_Selected_Component (Loc,
2749                               Prefix        => Prefix (Lhs),
2750                               Selector_Name =>
2751                                 New_Copy
2752                                   (Get_Discriminant_Value
2753                                      (First_Discriminant (Lhs_Type),
2754                                       Lhs_Type,
2755                                       Stored_Constraint (Lhs_Type))));
2756
2757                        else
2758                           Lhs_Discr_Val :=
2759                             New_Copy
2760                               (Get_Discriminant_Value
2761                                  (First_Discriminant (Lhs_Type),
2762                                   Lhs_Type,
2763                                   Stored_Constraint (Lhs_Type)));
2764
2765                        end if;
2766                     else
2767                        --  It is not possible to infer the discriminant since
2768                        --  the subtype is not constrained.
2769
2770                        return
2771                          Make_Raise_Program_Error (Loc,
2772                            Reason => PE_Unchecked_Union_Restriction);
2773                     end if;
2774
2775                     --  Rhs of the composite equality
2776
2777                     if Is_Constrained (Rhs_Type) then
2778                        if Nkind (Rhs) = N_Selected_Component
2779                          and then Has_Per_Object_Constraint
2780                                     (Entity (Selector_Name (Rhs)))
2781                        then
2782                           Rhs_Discr_Val :=
2783                             Make_Selected_Component (Loc,
2784                               Prefix        => Prefix (Rhs),
2785                               Selector_Name =>
2786                                 New_Copy
2787                                   (Get_Discriminant_Value
2788                                      (First_Discriminant (Rhs_Type),
2789                                       Rhs_Type,
2790                                       Stored_Constraint (Rhs_Type))));
2791
2792                        else
2793                           Rhs_Discr_Val :=
2794                             New_Copy
2795                               (Get_Discriminant_Value
2796                                  (First_Discriminant (Rhs_Type),
2797                                   Rhs_Type,
2798                                   Stored_Constraint (Rhs_Type)));
2799
2800                        end if;
2801                     else
2802                        return
2803                          Make_Raise_Program_Error (Loc,
2804                            Reason => PE_Unchecked_Union_Restriction);
2805                     end if;
2806
2807                     --  Call the TSS equality function with the inferred
2808                     --  discriminant values.
2809
2810                     return
2811                       Make_Function_Call (Loc,
2812                         Name => New_Occurrence_Of (Eq_Op, Loc),
2813                         Parameter_Associations => New_List (
2814                           Lhs,
2815                           Rhs,
2816                           Lhs_Discr_Val,
2817                           Rhs_Discr_Val));
2818                  end;
2819
2820               else
2821                  return
2822                    Make_Function_Call (Loc,
2823                      Name                   => New_Occurrence_Of (Eq_Op, Loc),
2824                      Parameter_Associations => New_List (Lhs, Rhs));
2825               end if;
2826            end if;
2827
2828         --  Equality composes in Ada 2012 for untagged record types. It also
2829         --  composes for bounded strings, because they are part of the
2830         --  predefined environment. We could make it compose for bounded
2831         --  strings by making them tagged, or by making sure all subcomponents
2832         --  are set to the same value, even when not used. Instead, we have
2833         --  this special case in the compiler, because it's more efficient.
2834
2835         elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
2836
2837            --  If no TSS has been created for the type, check whether there is
2838            --  a primitive equality declared for it.
2839
2840            declare
2841               Op : constant Node_Id := Find_Primitive_Eq;
2842
2843            begin
2844               --  Use user-defined primitive if it exists, otherwise use
2845               --  predefined equality.
2846
2847               if Present (Op) then
2848                  return Op;
2849               else
2850                  return Make_Op_Eq (Loc, Lhs, Rhs);
2851               end if;
2852            end;
2853
2854         else
2855            return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2856         end if;
2857
2858      --  Non-composite types (always use predefined equality)
2859
2860      else
2861         return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2862      end if;
2863   end Expand_Composite_Equality;
2864
2865   ------------------------
2866   -- Expand_Concatenate --
2867   ------------------------
2868
2869   procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2870      Loc : constant Source_Ptr := Sloc (Cnode);
2871
2872      Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2873      --  Result type of concatenation
2874
2875      Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2876      --  Component type. Elements of this component type can appear as one
2877      --  of the operands of concatenation as well as arrays.
2878
2879      Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2880      --  Index subtype
2881
2882      Ityp : constant Entity_Id := Base_Type (Istyp);
2883      --  Index type. This is the base type of the index subtype, and is used
2884      --  for all computed bounds (which may be out of range of Istyp in the
2885      --  case of null ranges).
2886
2887      Artyp : Entity_Id;
2888      --  This is the type we use to do arithmetic to compute the bounds and
2889      --  lengths of operands. The choice of this type is a little subtle and
2890      --  is discussed in a separate section at the start of the body code.
2891
2892      Concatenation_Error : exception;
2893      --  Raised if concatenation is sure to raise a CE
2894
2895      Result_May_Be_Null : Boolean := True;
2896      --  Reset to False if at least one operand is encountered which is known
2897      --  at compile time to be non-null. Used for handling the special case
2898      --  of setting the high bound to the last operand high bound for a null
2899      --  result, thus ensuring a proper high bound in the super-flat case.
2900
2901      N : constant Nat := List_Length (Opnds);
2902      --  Number of concatenation operands including possibly null operands
2903
2904      NN : Nat := 0;
2905      --  Number of operands excluding any known to be null, except that the
2906      --  last operand is always retained, in case it provides the bounds for
2907      --  a null result.
2908
2909      Opnd : Node_Id;
2910      --  Current operand being processed in the loop through operands. After
2911      --  this loop is complete, always contains the last operand (which is not
2912      --  the same as Operands (NN), since null operands are skipped).
2913
2914      --  Arrays describing the operands, only the first NN entries of each
2915      --  array are set (NN < N when we exclude known null operands).
2916
2917      Is_Fixed_Length : array (1 .. N) of Boolean;
2918      --  True if length of corresponding operand known at compile time
2919
2920      Operands : array (1 .. N) of Node_Id;
2921      --  Set to the corresponding entry in the Opnds list (but note that null
2922      --  operands are excluded, so not all entries in the list are stored).
2923
2924      Fixed_Length : array (1 .. N) of Uint;
2925      --  Set to length of operand. Entries in this array are set only if the
2926      --  corresponding entry in Is_Fixed_Length is True.
2927
2928      Opnd_Low_Bound : array (1 .. N) of Node_Id;
2929      --  Set to lower bound of operand. Either an integer literal in the case
2930      --  where the bound is known at compile time, else actual lower bound.
2931      --  The operand low bound is of type Ityp.
2932
2933      Var_Length : array (1 .. N) of Entity_Id;
2934      --  Set to an entity of type Natural that contains the length of an
2935      --  operand whose length is not known at compile time. Entries in this
2936      --  array are set only if the corresponding entry in Is_Fixed_Length
2937      --  is False. The entity is of type Artyp.
2938
2939      Aggr_Length : array (0 .. N) of Node_Id;
2940      --  The J'th entry in an expression node that represents the total length
2941      --  of operands 1 through J. It is either an integer literal node, or a
2942      --  reference to a constant entity with the right value, so it is fine
2943      --  to just do a Copy_Node to get an appropriate copy. The extra zero'th
2944      --  entry always is set to zero. The length is of type Artyp.
2945
2946      Low_Bound : Node_Id;
2947      --  A tree node representing the low bound of the result (of type Ityp).
2948      --  This is either an integer literal node, or an identifier reference to
2949      --  a constant entity initialized to the appropriate value.
2950
2951      Last_Opnd_Low_Bound : Node_Id;
2952      --  A tree node representing the low bound of the last operand. This
2953      --  need only be set if the result could be null. It is used for the
2954      --  special case of setting the right low bound for a null result.
2955      --  This is of type Ityp.
2956
2957      Last_Opnd_High_Bound : Node_Id;
2958      --  A tree node representing the high bound of the last operand. This
2959      --  need only be set if the result could be null. It is used for the
2960      --  special case of setting the right high bound for a null result.
2961      --  This is of type Ityp.
2962
2963      High_Bound : Node_Id;
2964      --  A tree node representing the high bound of the result (of type Ityp)
2965
2966      Result : Node_Id;
2967      --  Result of the concatenation (of type Ityp)
2968
2969      Actions : constant List_Id := New_List;
2970      --  Collect actions to be inserted
2971
2972      Known_Non_Null_Operand_Seen : Boolean;
2973      --  Set True during generation of the assignments of operands into
2974      --  result once an operand known to be non-null has been seen.
2975
2976      function Make_Artyp_Literal (Val : Nat) return Node_Id;
2977      --  This function makes an N_Integer_Literal node that is returned in
2978      --  analyzed form with the type set to Artyp. Importantly this literal
2979      --  is not flagged as static, so that if we do computations with it that
2980      --  result in statically detected out of range conditions, we will not
2981      --  generate error messages but instead warning messages.
2982
2983      function To_Artyp (X : Node_Id) return Node_Id;
2984      --  Given a node of type Ityp, returns the corresponding value of type
2985      --  Artyp. For non-enumeration types, this is a plain integer conversion.
2986      --  For enum types, the Pos of the value is returned.
2987
2988      function To_Ityp (X : Node_Id) return Node_Id;
2989      --  The inverse function (uses Val in the case of enumeration types)
2990
2991      ------------------------
2992      -- Make_Artyp_Literal --
2993      ------------------------
2994
2995      function Make_Artyp_Literal (Val : Nat) return Node_Id is
2996         Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2997      begin
2998         Set_Etype (Result, Artyp);
2999         Set_Analyzed (Result, True);
3000         Set_Is_Static_Expression (Result, False);
3001         return Result;
3002      end Make_Artyp_Literal;
3003
3004      --------------
3005      -- To_Artyp --
3006      --------------
3007
3008      function To_Artyp (X : Node_Id) return Node_Id is
3009      begin
3010         if Ityp = Base_Type (Artyp) then
3011            return X;
3012
3013         elsif Is_Enumeration_Type (Ityp) then
3014            return
3015              Make_Attribute_Reference (Loc,
3016                Prefix         => New_Occurrence_Of (Ityp, Loc),
3017                Attribute_Name => Name_Pos,
3018                Expressions    => New_List (X));
3019
3020         else
3021            return Convert_To (Artyp, X);
3022         end if;
3023      end To_Artyp;
3024
3025      -------------
3026      -- To_Ityp --
3027      -------------
3028
3029      function To_Ityp (X : Node_Id) return Node_Id is
3030      begin
3031         if Is_Enumeration_Type (Ityp) then
3032            return
3033              Make_Attribute_Reference (Loc,
3034                Prefix         => New_Occurrence_Of (Ityp, Loc),
3035                Attribute_Name => Name_Val,
3036                Expressions    => New_List (X));
3037
3038         --  Case where we will do a type conversion
3039
3040         else
3041            if Ityp = Base_Type (Artyp) then
3042               return X;
3043            else
3044               return Convert_To (Ityp, X);
3045            end if;
3046         end if;
3047      end To_Ityp;
3048
3049      --  Local Declarations
3050
3051      Lib_Level_Target : constant Boolean :=
3052        Nkind (Parent (Cnode)) = N_Object_Declaration
3053          and then
3054            Is_Library_Level_Entity (Defining_Identifier (Parent (Cnode)));
3055
3056      --  If the concatenation declares a library level entity, we call the
3057      --  built-in concatenation routines to prevent code bloat, regardless
3058      --  of optimization level. This is space-efficient, and prevent linking
3059      --  problems when units are compiled with different optimizations.
3060
3061      Opnd_Typ : Entity_Id;
3062      Ent      : Entity_Id;
3063      Len      : Uint;
3064      J        : Nat;
3065      Clen     : Node_Id;
3066      Set      : Boolean;
3067
3068   --  Start of processing for Expand_Concatenate
3069
3070   begin
3071      --  Choose an appropriate computational type
3072
3073      --  We will be doing calculations of lengths and bounds in this routine
3074      --  and computing one from the other in some cases, e.g. getting the high
3075      --  bound by adding the length-1 to the low bound.
3076
3077      --  We can't just use the index type, or even its base type for this
3078      --  purpose for two reasons. First it might be an enumeration type which
3079      --  is not suitable for computations of any kind, and second it may
3080      --  simply not have enough range. For example if the index type is
3081      --  -128..+127 then lengths can be up to 256, which is out of range of
3082      --  the type.
3083
3084      --  For enumeration types, we can simply use Standard_Integer, this is
3085      --  sufficient since the actual number of enumeration literals cannot
3086      --  possibly exceed the range of integer (remember we will be doing the
3087      --  arithmetic with POS values, not representation values).
3088
3089      if Is_Enumeration_Type (Ityp) then
3090         Artyp := Standard_Integer;
3091
3092      --  If index type is Positive, we use the standard unsigned type, to give
3093      --  more room on the top of the range, obviating the need for an overflow
3094      --  check when creating the upper bound. This is needed to avoid junk
3095      --  overflow checks in the common case of String types.
3096
3097      --  ??? Disabled for now
3098
3099      --  elsif Istyp = Standard_Positive then
3100      --     Artyp := Standard_Unsigned;
3101
3102      --  For modular types, we use a 32-bit modular type for types whose size
3103      --  is in the range 1-31 bits. For 32-bit unsigned types, we use the
3104      --  identity type, and for larger unsigned types we use 64-bits.
3105
3106      elsif Is_Modular_Integer_Type (Ityp) then
3107         if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
3108            Artyp := Standard_Unsigned;
3109         elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
3110            Artyp := Ityp;
3111         else
3112            Artyp := RTE (RE_Long_Long_Unsigned);
3113         end if;
3114
3115      --  Similar treatment for signed types
3116
3117      else
3118         if RM_Size (Ityp) < RM_Size (Standard_Integer) then
3119            Artyp := Standard_Integer;
3120         elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
3121            Artyp := Ityp;
3122         else
3123            Artyp := Standard_Long_Long_Integer;
3124         end if;
3125      end if;
3126
3127      --  Supply dummy entry at start of length array
3128
3129      Aggr_Length (0) := Make_Artyp_Literal (0);
3130
3131      --  Go through operands setting up the above arrays
3132
3133      J := 1;
3134      while J <= N loop
3135         Opnd := Remove_Head (Opnds);
3136         Opnd_Typ := Etype (Opnd);
3137
3138         --  The parent got messed up when we put the operands in a list,
3139         --  so now put back the proper parent for the saved operand, that
3140         --  is to say the concatenation node, to make sure that each operand
3141         --  is seen as a subexpression, e.g. if actions must be inserted.
3142
3143         Set_Parent (Opnd, Cnode);
3144
3145         --  Set will be True when we have setup one entry in the array
3146
3147         Set := False;
3148
3149         --  Singleton element (or character literal) case
3150
3151         if Base_Type (Opnd_Typ) = Ctyp then
3152            NN := NN + 1;
3153            Operands (NN) := Opnd;
3154            Is_Fixed_Length (NN) := True;
3155            Fixed_Length (NN) := Uint_1;
3156            Result_May_Be_Null := False;
3157
3158            --  Set low bound of operand (no need to set Last_Opnd_High_Bound
3159            --  since we know that the result cannot be null).
3160
3161            Opnd_Low_Bound (NN) :=
3162              Make_Attribute_Reference (Loc,
3163                Prefix         => New_Occurrence_Of (Istyp, Loc),
3164                Attribute_Name => Name_First);
3165
3166            Set := True;
3167
3168         --  String literal case (can only occur for strings of course)
3169
3170         elsif Nkind (Opnd) = N_String_Literal then
3171            Len := String_Literal_Length (Opnd_Typ);
3172
3173            if Len /= 0 then
3174               Result_May_Be_Null := False;
3175            end if;
3176
3177            --  Capture last operand low and high bound if result could be null
3178
3179            if J = N and then Result_May_Be_Null then
3180               Last_Opnd_Low_Bound :=
3181                 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3182
3183               Last_Opnd_High_Bound :=
3184                 Make_Op_Subtract (Loc,
3185                   Left_Opnd  =>
3186                     New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
3187                   Right_Opnd => Make_Integer_Literal (Loc, 1));
3188            end if;
3189
3190            --  Skip null string literal
3191
3192            if J < N and then Len = 0 then
3193               goto Continue;
3194            end if;
3195
3196            NN := NN + 1;
3197            Operands (NN) := Opnd;
3198            Is_Fixed_Length (NN) := True;
3199
3200            --  Set length and bounds
3201
3202            Fixed_Length (NN) := Len;
3203
3204            Opnd_Low_Bound (NN) :=
3205              New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3206
3207            Set := True;
3208
3209         --  All other cases
3210
3211         else
3212            --  Check constrained case with known bounds
3213
3214            if Is_Constrained (Opnd_Typ) then
3215               declare
3216                  Index    : constant Node_Id   := First_Index (Opnd_Typ);
3217                  Indx_Typ : constant Entity_Id := Etype (Index);
3218                  Lo       : constant Node_Id   := Type_Low_Bound  (Indx_Typ);
3219                  Hi       : constant Node_Id   := Type_High_Bound (Indx_Typ);
3220
3221               begin
3222                  --  Fixed length constrained array type with known at compile
3223                  --  time bounds is last case of fixed length operand.
3224
3225                  if Compile_Time_Known_Value (Lo)
3226                       and then
3227                     Compile_Time_Known_Value (Hi)
3228                  then
3229                     declare
3230                        Loval : constant Uint := Expr_Value (Lo);
3231                        Hival : constant Uint := Expr_Value (Hi);
3232                        Len   : constant Uint :=
3233                                  UI_Max (Hival - Loval + 1, Uint_0);
3234
3235                     begin
3236                        if Len > 0 then
3237                           Result_May_Be_Null := False;
3238                        end if;
3239
3240                        --  Capture last operand bounds if result could be null
3241
3242                        if J = N and then Result_May_Be_Null then
3243                           Last_Opnd_Low_Bound :=
3244                             Convert_To (Ityp,
3245                               Make_Integer_Literal (Loc, Expr_Value (Lo)));
3246
3247                           Last_Opnd_High_Bound :=
3248                             Convert_To (Ityp,
3249                               Make_Integer_Literal (Loc, Expr_Value (Hi)));
3250                        end if;
3251
3252                        --  Exclude null length case unless last operand
3253
3254                        if J < N and then Len = 0 then
3255                           goto Continue;
3256                        end if;
3257
3258                        NN := NN + 1;
3259                        Operands (NN) := Opnd;
3260                        Is_Fixed_Length (NN) := True;
3261                        Fixed_Length (NN)    := Len;
3262
3263                        Opnd_Low_Bound (NN) :=
3264                          To_Ityp
3265                            (Make_Integer_Literal (Loc, Expr_Value (Lo)));
3266                        Set := True;
3267                     end;
3268                  end if;
3269               end;
3270            end if;
3271
3272            --  All cases where the length is not known at compile time, or the
3273            --  special case of an operand which is known to be null but has a
3274            --  lower bound other than 1 or is other than a string type.
3275
3276            if not Set then
3277               NN := NN + 1;
3278
3279               --  Capture operand bounds
3280
3281               Opnd_Low_Bound (NN) :=
3282                 Make_Attribute_Reference (Loc,
3283                   Prefix         =>
3284                     Duplicate_Subexpr (Opnd, Name_Req => True),
3285                   Attribute_Name => Name_First);
3286
3287               --  Capture last operand bounds if result could be null
3288
3289               if J = N and Result_May_Be_Null then
3290                  Last_Opnd_Low_Bound :=
3291                    Convert_To (Ityp,
3292                      Make_Attribute_Reference (Loc,
3293                        Prefix         =>
3294                          Duplicate_Subexpr (Opnd, Name_Req => True),
3295                        Attribute_Name => Name_First));
3296
3297                  Last_Opnd_High_Bound :=
3298                    Convert_To (Ityp,
3299                      Make_Attribute_Reference (Loc,
3300                        Prefix         =>
3301                          Duplicate_Subexpr (Opnd, Name_Req => True),
3302                        Attribute_Name => Name_Last));
3303               end if;
3304
3305               --  Capture length of operand in entity
3306
3307               Operands (NN) := Opnd;
3308               Is_Fixed_Length (NN) := False;
3309
3310               Var_Length (NN) := Make_Temporary (Loc, 'L');
3311
3312               Append_To (Actions,
3313                 Make_Object_Declaration (Loc,
3314                   Defining_Identifier => Var_Length (NN),
3315                   Constant_Present    => True,
3316                   Object_Definition   => New_Occurrence_Of (Artyp, Loc),
3317                   Expression          =>
3318                     Make_Attribute_Reference (Loc,
3319                       Prefix         =>
3320                         Duplicate_Subexpr (Opnd, Name_Req => True),
3321                       Attribute_Name => Name_Length)));
3322            end if;
3323         end if;
3324
3325         --  Set next entry in aggregate length array
3326
3327         --  For first entry, make either integer literal for fixed length
3328         --  or a reference to the saved length for variable length.
3329
3330         if NN = 1 then
3331            if Is_Fixed_Length (1) then
3332               Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
3333            else
3334               Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
3335            end if;
3336
3337         --  If entry is fixed length and only fixed lengths so far, make
3338         --  appropriate new integer literal adding new length.
3339
3340         elsif Is_Fixed_Length (NN)
3341           and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3342         then
3343            Aggr_Length (NN) :=
3344              Make_Integer_Literal (Loc,
3345                Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3346
3347         --  All other cases, construct an addition node for the length and
3348         --  create an entity initialized to this length.
3349
3350         else
3351            Ent := Make_Temporary (Loc, 'L');
3352
3353            if Is_Fixed_Length (NN) then
3354               Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3355            else
3356               Clen := New_Occurrence_Of (Var_Length (NN), Loc);
3357            end if;
3358
3359            Append_To (Actions,
3360              Make_Object_Declaration (Loc,
3361                Defining_Identifier => Ent,
3362                Constant_Present    => True,
3363                Object_Definition   => New_Occurrence_Of (Artyp, Loc),
3364                Expression          =>
3365                  Make_Op_Add (Loc,
3366                    Left_Opnd  => New_Copy (Aggr_Length (NN - 1)),
3367                    Right_Opnd => Clen)));
3368
3369            Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
3370         end if;
3371
3372      <<Continue>>
3373         J := J + 1;
3374      end loop;
3375
3376      --  If we have only skipped null operands, return the last operand
3377
3378      if NN = 0 then
3379         Result := Opnd;
3380         goto Done;
3381      end if;
3382
3383      --  If we have only one non-null operand, return it and we are done.
3384      --  There is one case in which this cannot be done, and that is when
3385      --  the sole operand is of the element type, in which case it must be
3386      --  converted to an array, and the easiest way of doing that is to go
3387      --  through the normal general circuit.
3388
3389      if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
3390         Result := Operands (1);
3391         goto Done;
3392      end if;
3393
3394      --  Cases where we have a real concatenation
3395
3396      --  Next step is to find the low bound for the result array that we
3397      --  will allocate. The rules for this are in (RM 4.5.6(5-7)).
3398
3399      --  If the ultimate ancestor of the index subtype is a constrained array
3400      --  definition, then the lower bound is that of the index subtype as
3401      --  specified by (RM 4.5.3(6)).
3402
3403      --  The right test here is to go to the root type, and then the ultimate
3404      --  ancestor is the first subtype of this root type.
3405
3406      if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
3407         Low_Bound :=
3408           Make_Attribute_Reference (Loc,
3409             Prefix         =>
3410               New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
3411             Attribute_Name => Name_First);
3412
3413      --  If the first operand in the list has known length we know that
3414      --  the lower bound of the result is the lower bound of this operand.
3415
3416      elsif Is_Fixed_Length (1) then
3417         Low_Bound := Opnd_Low_Bound (1);
3418
3419      --  OK, we don't know the lower bound, we have to build a horrible
3420      --  if expression node of the form
3421
3422      --     if Cond1'Length /= 0 then
3423      --        Opnd1 low bound
3424      --     else
3425      --        if Opnd2'Length /= 0 then
3426      --          Opnd2 low bound
3427      --        else
3428      --           ...
3429
3430      --  The nesting ends either when we hit an operand whose length is known
3431      --  at compile time, or on reaching the last operand, whose low bound we
3432      --  take unconditionally whether or not it is null. It's easiest to do
3433      --  this with a recursive procedure:
3434
3435      else
3436         declare
3437            function Get_Known_Bound (J : Nat) return Node_Id;
3438            --  Returns the lower bound determined by operands J .. NN
3439
3440            ---------------------
3441            -- Get_Known_Bound --
3442            ---------------------
3443
3444            function Get_Known_Bound (J : Nat) return Node_Id is
3445            begin
3446               if Is_Fixed_Length (J) or else J = NN then
3447                  return New_Copy (Opnd_Low_Bound (J));
3448
3449               else
3450                  return
3451                    Make_If_Expression (Loc,
3452                      Expressions => New_List (
3453
3454                        Make_Op_Ne (Loc,
3455                          Left_Opnd  =>
3456                            New_Occurrence_Of (Var_Length (J), Loc),
3457                          Right_Opnd =>
3458                            Make_Integer_Literal (Loc, 0)),
3459
3460                        New_Copy (Opnd_Low_Bound (J)),
3461                        Get_Known_Bound (J + 1)));
3462               end if;
3463            end Get_Known_Bound;
3464
3465         begin
3466            Ent := Make_Temporary (Loc, 'L');
3467
3468            Append_To (Actions,
3469              Make_Object_Declaration (Loc,
3470                Defining_Identifier => Ent,
3471                Constant_Present    => True,
3472                Object_Definition   => New_Occurrence_Of (Ityp, Loc),
3473                Expression          => Get_Known_Bound (1)));
3474
3475            Low_Bound := New_Occurrence_Of (Ent, Loc);
3476         end;
3477      end if;
3478
3479      --  Now we can safely compute the upper bound, normally
3480      --  Low_Bound + Length - 1.
3481
3482      High_Bound :=
3483        To_Ityp (
3484          Make_Op_Add (Loc,
3485            Left_Opnd  => To_Artyp (New_Copy (Low_Bound)),
3486            Right_Opnd =>
3487              Make_Op_Subtract (Loc,
3488                Left_Opnd  => New_Copy (Aggr_Length (NN)),
3489                Right_Opnd => Make_Artyp_Literal (1))));
3490
3491      --  Note that calculation of the high bound may cause overflow in some
3492      --  very weird cases, so in the general case we need an overflow check on
3493      --  the high bound. We can avoid this for the common case of string types
3494      --  and other types whose index is Positive, since we chose a wider range
3495      --  for the arithmetic type.
3496
3497      if Istyp /= Standard_Positive then
3498         Activate_Overflow_Check (High_Bound);
3499      end if;
3500
3501      --  Handle the exceptional case where the result is null, in which case
3502      --  case the bounds come from the last operand (so that we get the proper
3503      --  bounds if the last operand is super-flat).
3504
3505      if Result_May_Be_Null then
3506         Low_Bound :=
3507           Make_If_Expression (Loc,
3508             Expressions => New_List (
3509               Make_Op_Eq (Loc,
3510                 Left_Opnd  => New_Copy (Aggr_Length (NN)),
3511                 Right_Opnd => Make_Artyp_Literal (0)),
3512               Last_Opnd_Low_Bound,
3513               Low_Bound));
3514
3515         High_Bound :=
3516           Make_If_Expression (Loc,
3517             Expressions => New_List (
3518               Make_Op_Eq (Loc,
3519                 Left_Opnd  => New_Copy (Aggr_Length (NN)),
3520                 Right_Opnd => Make_Artyp_Literal (0)),
3521               Last_Opnd_High_Bound,
3522               High_Bound));
3523      end if;
3524
3525      --  Here is where we insert the saved up actions
3526
3527      Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3528
3529      --  Now we construct an array object with appropriate bounds. We mark
3530      --  the target as internal to prevent useless initialization when
3531      --  Initialize_Scalars is enabled. Also since this is the actual result
3532      --  entity, we make sure we have debug information for the result.
3533
3534      Ent := Make_Temporary (Loc, 'S');
3535      Set_Is_Internal (Ent);
3536      Set_Needs_Debug_Info (Ent);
3537
3538      --  If the bound is statically known to be out of range, we do not want
3539      --  to abort, we want a warning and a runtime constraint error. Note that
3540      --  we have arranged that the result will not be treated as a static
3541      --  constant, so we won't get an illegality during this insertion.
3542
3543      Insert_Action (Cnode,
3544        Make_Object_Declaration (Loc,
3545          Defining_Identifier => Ent,
3546          Object_Definition   =>
3547            Make_Subtype_Indication (Loc,
3548              Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
3549              Constraint   =>
3550                Make_Index_Or_Discriminant_Constraint (Loc,
3551                  Constraints => New_List (
3552                    Make_Range (Loc,
3553                      Low_Bound  => Low_Bound,
3554                      High_Bound => High_Bound))))),
3555        Suppress => All_Checks);
3556
3557      --  If the result of the concatenation appears as the initializing
3558      --  expression of an object declaration, we can just rename the
3559      --  result, rather than copying it.
3560
3561      Set_OK_To_Rename (Ent);
3562
3563      --  Catch the static out of range case now
3564
3565      if Raises_Constraint_Error (High_Bound) then
3566         raise Concatenation_Error;
3567      end if;
3568
3569      --  Now we will generate the assignments to do the actual concatenation
3570
3571      --  There is one case in which we will not do this, namely when all the
3572      --  following conditions are met:
3573
3574      --    The result type is Standard.String
3575
3576      --    There are nine or fewer retained (non-null) operands
3577
3578      --    The optimization level is -O0
3579
3580      --    The corresponding System.Concat_n.Str_Concat_n routine is
3581      --    available in the run time.
3582
3583      --    The debug flag gnatd.c is not set
3584
3585      --  If all these conditions are met then we generate a call to the
3586      --  relevant concatenation routine. The purpose of this is to avoid
3587      --  undesirable code bloat at -O0.
3588
3589      if Atyp = Standard_String
3590        and then NN in 2 .. 9
3591        and then (Lib_Level_Target
3592          or else
3593            ((Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3594               and then not Debug_Flag_Dot_C))
3595      then
3596         declare
3597            RR : constant array (Nat range 2 .. 9) of RE_Id :=
3598                   (RE_Str_Concat_2,
3599                    RE_Str_Concat_3,
3600                    RE_Str_Concat_4,
3601                    RE_Str_Concat_5,
3602                    RE_Str_Concat_6,
3603                    RE_Str_Concat_7,
3604                    RE_Str_Concat_8,
3605                    RE_Str_Concat_9);
3606
3607         begin
3608            if RTE_Available (RR (NN)) then
3609               declare
3610                  Opnds : constant List_Id :=
3611                            New_List (New_Occurrence_Of (Ent, Loc));
3612
3613               begin
3614                  for J in 1 .. NN loop
3615                     if Is_List_Member (Operands (J)) then
3616                        Remove (Operands (J));
3617                     end if;
3618
3619                     if Base_Type (Etype (Operands (J))) = Ctyp then
3620                        Append_To (Opnds,
3621                          Make_Aggregate (Loc,
3622                            Component_Associations => New_List (
3623                              Make_Component_Association (Loc,
3624                                Choices => New_List (
3625                                  Make_Integer_Literal (Loc, 1)),
3626                                Expression => Operands (J)))));
3627
3628                     else
3629                        Append_To (Opnds, Operands (J));
3630                     end if;
3631                  end loop;
3632
3633                  Insert_Action (Cnode,
3634                    Make_Procedure_Call_Statement (Loc,
3635                      Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
3636                      Parameter_Associations => Opnds));
3637
3638                  Result := New_Occurrence_Of (Ent, Loc);
3639                  goto Done;
3640               end;
3641            end if;
3642         end;
3643      end if;
3644
3645      --  Not special case so generate the assignments
3646
3647      Known_Non_Null_Operand_Seen := False;
3648
3649      for J in 1 .. NN loop
3650         declare
3651            Lo : constant Node_Id :=
3652                   Make_Op_Add (Loc,
3653                     Left_Opnd  => To_Artyp (New_Copy (Low_Bound)),
3654                     Right_Opnd => Aggr_Length (J - 1));
3655
3656            Hi : constant Node_Id :=
3657                   Make_Op_Add (Loc,
3658                     Left_Opnd  => To_Artyp (New_Copy (Low_Bound)),
3659                     Right_Opnd =>
3660                       Make_Op_Subtract (Loc,
3661                         Left_Opnd  => Aggr_Length (J),
3662                         Right_Opnd => Make_Artyp_Literal (1)));
3663
3664         begin
3665            --  Singleton case, simple assignment
3666
3667            if Base_Type (Etype (Operands (J))) = Ctyp then
3668               Known_Non_Null_Operand_Seen := True;
3669               Insert_Action (Cnode,
3670                 Make_Assignment_Statement (Loc,
3671                   Name       =>
3672                     Make_Indexed_Component (Loc,
3673                       Prefix      => New_Occurrence_Of (Ent, Loc),
3674                       Expressions => New_List (To_Ityp (Lo))),
3675                   Expression => Operands (J)),
3676                 Suppress => All_Checks);
3677
3678            --  Array case, slice assignment, skipped when argument is fixed
3679            --  length and known to be null.
3680
3681            elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3682               declare
3683                  Assign : Node_Id :=
3684                             Make_Assignment_Statement (Loc,
3685                               Name       =>
3686                                 Make_Slice (Loc,
3687                                   Prefix         =>
3688                                     New_Occurrence_Of (Ent, Loc),
3689                                   Discrete_Range =>
3690                                     Make_Range (Loc,
3691                                       Low_Bound  => To_Ityp (Lo),
3692                                       High_Bound => To_Ityp (Hi))),
3693                               Expression => Operands (J));
3694               begin
3695                  if Is_Fixed_Length (J) then
3696                     Known_Non_Null_Operand_Seen := True;
3697
3698                  elsif not Known_Non_Null_Operand_Seen then
3699
3700                     --  Here if operand length is not statically known and no
3701                     --  operand known to be non-null has been processed yet.
3702                     --  If operand length is 0, we do not need to perform the
3703                     --  assignment, and we must avoid the evaluation of the
3704                     --  high bound of the slice, since it may underflow if the
3705                     --  low bound is Ityp'First.
3706
3707                     Assign :=
3708                       Make_Implicit_If_Statement (Cnode,
3709                         Condition       =>
3710                           Make_Op_Ne (Loc,
3711                             Left_Opnd  =>
3712                               New_Occurrence_Of (Var_Length (J), Loc),
3713                             Right_Opnd => Make_Integer_Literal (Loc, 0)),
3714                         Then_Statements => New_List (Assign));
3715                  end if;
3716
3717                  Insert_Action (Cnode, Assign, Suppress => All_Checks);
3718               end;
3719            end if;
3720         end;
3721      end loop;
3722
3723      --  Finally we build the result, which is a reference to the array object
3724
3725      Result := New_Occurrence_Of (Ent, Loc);
3726
3727   <<Done>>
3728      Rewrite (Cnode, Result);
3729      Analyze_And_Resolve (Cnode, Atyp);
3730
3731   exception
3732      when Concatenation_Error =>
3733
3734         --  Kill warning generated for the declaration of the static out of
3735         --  range high bound, and instead generate a Constraint_Error with
3736         --  an appropriate specific message.
3737
3738         Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3739         Apply_Compile_Time_Constraint_Error
3740           (N      => Cnode,
3741            Msg    => "concatenation result upper bound out of range??",
3742            Reason => CE_Range_Check_Failed);
3743   end Expand_Concatenate;
3744
3745   ---------------------------------------------------
3746   -- Expand_Membership_Minimize_Eliminate_Overflow --
3747   ---------------------------------------------------
3748
3749   procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3750      pragma Assert (Nkind (N) = N_In);
3751      --  Despite the name, this routine applies only to N_In, not to
3752      --  N_Not_In. The latter is always rewritten as not (X in Y).
3753
3754      Result_Type : constant Entity_Id := Etype (N);
3755      --  Capture result type, may be a derived boolean type
3756
3757      Loc : constant Source_Ptr := Sloc (N);
3758      Lop : constant Node_Id    := Left_Opnd (N);
3759      Rop : constant Node_Id    := Right_Opnd (N);
3760
3761      --  Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3762      --  is thus tempting to capture these values, but due to the rewrites
3763      --  that occur as a result of overflow checking, these values change
3764      --  as we go along, and it is safe just to always use Etype explicitly.
3765
3766      Restype : constant Entity_Id := Etype (N);
3767      --  Save result type
3768
3769      Lo, Hi : Uint;
3770      --  Bounds in Minimize calls, not used currently
3771
3772      LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3773      --  Entity for Long_Long_Integer'Base (Standard should export this???)
3774
3775   begin
3776      Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
3777
3778      --  If right operand is a subtype name, and the subtype name has no
3779      --  predicate, then we can just replace the right operand with an
3780      --  explicit range T'First .. T'Last, and use the explicit range code.
3781
3782      if Nkind (Rop) /= N_Range
3783        and then No (Predicate_Function (Etype (Rop)))
3784      then
3785         declare
3786            Rtyp : constant Entity_Id := Etype (Rop);
3787         begin
3788            Rewrite (Rop,
3789              Make_Range (Loc,
3790                Low_Bound =>
3791                  Make_Attribute_Reference (Loc,
3792                    Attribute_Name => Name_First,
3793                    Prefix         => New_Occurrence_Of (Rtyp, Loc)),
3794                High_Bound =>
3795                  Make_Attribute_Reference (Loc,
3796                    Attribute_Name => Name_Last,
3797                    Prefix         => New_Occurrence_Of (Rtyp, Loc))));
3798            Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3799         end;
3800      end if;
3801
3802      --  Here for the explicit range case. Note that the bounds of the range
3803      --  have not been processed for minimized or eliminated checks.
3804
3805      if Nkind (Rop) = N_Range then
3806         Minimize_Eliminate_Overflows
3807           (Low_Bound (Rop), Lo, Hi, Top_Level => False);
3808         Minimize_Eliminate_Overflows
3809           (High_Bound (Rop), Lo, Hi, Top_Level => False);
3810
3811         --  We have A in B .. C, treated as  A >= B and then A <= C
3812
3813         --  Bignum case
3814
3815         if Is_RTE (Etype (Lop), RE_Bignum)
3816           or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3817           or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3818         then
3819            declare
3820               Blk    : constant Node_Id   := Make_Bignum_Block (Loc);
3821               Bnn    : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3822               L      : constant Entity_Id :=
3823                          Make_Defining_Identifier (Loc, Name_uL);
3824               Lopnd  : constant Node_Id   := Convert_To_Bignum (Lop);
3825               Lbound : constant Node_Id   :=
3826                          Convert_To_Bignum (Low_Bound (Rop));
3827               Hbound : constant Node_Id   :=
3828                          Convert_To_Bignum (High_Bound (Rop));
3829
3830            --  Now we rewrite the membership test node to look like
3831
3832            --    do
3833            --       Bnn : Result_Type;
3834            --       declare
3835            --          M : Mark_Id := SS_Mark;
3836            --          L : Bignum  := Lopnd;
3837            --       begin
3838            --          Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3839            --          SS_Release (M);
3840            --       end;
3841            --    in
3842            --       Bnn
3843            --    end
3844
3845            begin
3846               --  Insert declaration of L into declarations of bignum block
3847
3848               Insert_After
3849                 (Last (Declarations (Blk)),
3850                  Make_Object_Declaration (Loc,
3851                    Defining_Identifier => L,
3852                    Object_Definition   =>
3853                      New_Occurrence_Of (RTE (RE_Bignum), Loc),
3854                    Expression          => Lopnd));
3855
3856               --  Insert assignment to Bnn into expressions of bignum block
3857
3858               Insert_Before
3859                 (First (Statements (Handled_Statement_Sequence (Blk))),
3860                  Make_Assignment_Statement (Loc,
3861                    Name       => New_Occurrence_Of (Bnn, Loc),
3862                    Expression =>
3863                      Make_And_Then (Loc,
3864                        Left_Opnd =>
3865                          Make_Function_Call (Loc,
3866                            Name                   =>
3867                              New_Occurrence_Of (RTE (RE_Big_GE), Loc),
3868                            Parameter_Associations => New_List (
3869                              New_Occurrence_Of (L, Loc),
3870                              Lbound)),
3871                        Right_Opnd =>
3872                          Make_Function_Call (Loc,
3873                            Name                   =>
3874                              New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3875                            Parameter_Associations => New_List (
3876                              New_Occurrence_Of (L, Loc),
3877                              Hbound)))));
3878
3879               --  Now rewrite the node
3880
3881               Rewrite (N,
3882                 Make_Expression_With_Actions (Loc,
3883                   Actions    => New_List (
3884                     Make_Object_Declaration (Loc,
3885                       Defining_Identifier => Bnn,
3886                       Object_Definition   =>
3887                         New_Occurrence_Of (Result_Type, Loc)),
3888                     Blk),
3889                   Expression => New_Occurrence_Of (Bnn, Loc)));
3890               Analyze_And_Resolve (N, Result_Type);
3891               return;
3892            end;
3893
3894         --  Here if no bignums around
3895
3896         else
3897            --  Case where types are all the same
3898
3899            if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
3900                 and then
3901               Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
3902            then
3903               null;
3904
3905            --  If types are not all the same, it means that we have rewritten
3906            --  at least one of them to be of type Long_Long_Integer, and we
3907            --  will convert the other operands to Long_Long_Integer.
3908
3909            else
3910               Convert_To_And_Rewrite (LLIB, Lop);
3911               Set_Analyzed (Lop, False);
3912               Analyze_And_Resolve (Lop, LLIB);
3913
3914               --  For the right operand, avoid unnecessary recursion into
3915               --  this routine, we know that overflow is not possible.
3916
3917               Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3918               Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3919               Set_Analyzed (Rop, False);
3920               Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
3921            end if;
3922
3923            --  Now the three operands are of the same signed integer type,
3924            --  so we can use the normal expansion routine for membership,
3925            --  setting the flag to prevent recursion into this procedure.
3926
3927            Set_No_Minimize_Eliminate (N);
3928            Expand_N_In (N);
3929         end if;
3930
3931      --  Right operand is a subtype name and the subtype has a predicate. We
3932      --  have to make sure the predicate is checked, and for that we need to
3933      --  use the standard N_In circuitry with appropriate types.
3934
3935      else
3936         pragma Assert (Present (Predicate_Function (Etype (Rop))));
3937
3938         --  If types are "right", just call Expand_N_In preventing recursion
3939
3940         if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
3941            Set_No_Minimize_Eliminate (N);
3942            Expand_N_In (N);
3943
3944         --  Bignum case
3945
3946         elsif Is_RTE (Etype (Lop), RE_Bignum) then
3947
3948            --  For X in T, we want to rewrite our node as
3949
3950            --    do
3951            --       Bnn : Result_Type;
3952
3953            --       declare
3954            --          M   : Mark_Id := SS_Mark;
3955            --          Lnn : Long_Long_Integer'Base
3956            --          Nnn : Bignum;
3957
3958            --       begin
3959            --         Nnn := X;
3960
3961            --         if not Bignum_In_LLI_Range (Nnn) then
3962            --            Bnn := False;
3963            --         else
3964            --            Lnn := From_Bignum (Nnn);
3965            --            Bnn :=
3966            --              Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3967            --                and then T'Base (Lnn) in T;
3968            --         end if;
3969            --
3970            --          SS_Release (M);
3971            --       end
3972            --   in
3973            --       Bnn
3974            --   end
3975
3976            --  A bit gruesome, but there doesn't seem to be a simpler way
3977
3978            declare
3979               Blk : constant Node_Id   := Make_Bignum_Block (Loc);
3980               Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3981               Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
3982               Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
3983               T   : constant Entity_Id := Etype (Rop);
3984               TB  : constant Entity_Id := Base_Type (T);
3985               Nin : Node_Id;
3986
3987            begin
3988               --  Mark the last membership operation to prevent recursion
3989
3990               Nin :=
3991                 Make_In (Loc,
3992                   Left_Opnd  => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
3993                   Right_Opnd => New_Occurrence_Of (T, Loc));
3994               Set_No_Minimize_Eliminate (Nin);
3995
3996               --  Now decorate the block
3997
3998               Insert_After
3999                 (Last (Declarations (Blk)),
4000                  Make_Object_Declaration (Loc,
4001                    Defining_Identifier => Lnn,
4002                    Object_Definition   => New_Occurrence_Of (LLIB, Loc)));
4003
4004               Insert_After
4005                 (Last (Declarations (Blk)),
4006                  Make_Object_Declaration (Loc,
4007                    Defining_Identifier => Nnn,
4008                    Object_Definition   =>
4009                      New_Occurrence_Of (RTE (RE_Bignum), Loc)));
4010
4011               Insert_List_Before
4012                 (First (Statements (Handled_Statement_Sequence (Blk))),
4013                  New_List (
4014                    Make_Assignment_Statement (Loc,
4015                      Name       => New_Occurrence_Of (Nnn, Loc),
4016                      Expression => Relocate_Node (Lop)),
4017
4018                    Make_Implicit_If_Statement (N,
4019                      Condition =>
4020                        Make_Op_Not (Loc,
4021                          Right_Opnd =>
4022                            Make_Function_Call (Loc,
4023                              Name                   =>
4024                                New_Occurrence_Of
4025                                  (RTE (RE_Bignum_In_LLI_Range), Loc),
4026                              Parameter_Associations => New_List (
4027                                New_Occurrence_Of (Nnn, Loc)))),
4028
4029                      Then_Statements => New_List (
4030                        Make_Assignment_Statement (Loc,
4031                          Name       => New_Occurrence_Of (Bnn, Loc),
4032                          Expression =>
4033                            New_Occurrence_Of (Standard_False, Loc))),
4034
4035                      Else_Statements => New_List (
4036                        Make_Assignment_Statement (Loc,
4037                          Name => New_Occurrence_Of (Lnn, Loc),
4038                          Expression =>
4039                            Make_Function_Call (Loc,
4040                              Name                   =>
4041                                New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4042                              Parameter_Associations => New_List (
4043                                  New_Occurrence_Of (Nnn, Loc)))),
4044
4045                        Make_Assignment_Statement (Loc,
4046                          Name       => New_Occurrence_Of (Bnn, Loc),
4047                          Expression =>
4048                            Make_And_Then (Loc,
4049                              Left_Opnd  =>
4050                                Make_In (Loc,
4051                                  Left_Opnd  => New_Occurrence_Of (Lnn, Loc),
4052                                  Right_Opnd =>
4053                                    Make_Range (Loc,
4054                                      Low_Bound  =>
4055                                        Convert_To (LLIB,
4056                                          Make_Attribute_Reference (Loc,
4057                                            Attribute_Name => Name_First,
4058                                            Prefix         =>
4059                                              New_Occurrence_Of (TB, Loc))),
4060
4061                                      High_Bound =>
4062                                        Convert_To (LLIB,
4063                                          Make_Attribute_Reference (Loc,
4064                                            Attribute_Name => Name_Last,
4065                                            Prefix         =>
4066                                              New_Occurrence_Of (TB, Loc))))),
4067
4068                              Right_Opnd => Nin))))));
4069
4070               --  Now we can do the rewrite
4071
4072               Rewrite (N,
4073                 Make_Expression_With_Actions (Loc,
4074                   Actions    => New_List (
4075                     Make_Object_Declaration (Loc,
4076                       Defining_Identifier => Bnn,
4077                       Object_Definition   =>
4078                         New_Occurrence_Of (Result_Type, Loc)),
4079                     Blk),
4080                   Expression => New_Occurrence_Of (Bnn, Loc)));
4081               Analyze_And_Resolve (N, Result_Type);
4082               return;
4083            end;
4084
4085         --  Not bignum case, but types don't match (this means we rewrote the
4086         --  left operand to be Long_Long_Integer).
4087
4088         else
4089            pragma Assert (Base_Type (Etype (Lop)) = LLIB);
4090
4091            --  We rewrite the membership test as (where T is the type with
4092            --  the predicate, i.e. the type of the right operand)
4093
4094            --    Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4095            --      and then T'Base (Lop) in T
4096
4097            declare
4098               T   : constant Entity_Id := Etype (Rop);
4099               TB  : constant Entity_Id := Base_Type (T);
4100               Nin : Node_Id;
4101
4102            begin
4103               --  The last membership test is marked to prevent recursion
4104
4105               Nin :=
4106                 Make_In (Loc,
4107                   Left_Opnd  => Convert_To (TB, Duplicate_Subexpr (Lop)),
4108                   Right_Opnd => New_Occurrence_Of (T, Loc));
4109               Set_No_Minimize_Eliminate (Nin);
4110
4111               --  Now do the rewrite
4112
4113               Rewrite (N,
4114                 Make_And_Then (Loc,
4115                   Left_Opnd  =>
4116                     Make_In (Loc,
4117                       Left_Opnd  => Lop,
4118                       Right_Opnd =>
4119                         Make_Range (Loc,
4120                           Low_Bound  =>
4121                             Convert_To (LLIB,
4122                               Make_Attribute_Reference (Loc,
4123                                 Attribute_Name => Name_First,
4124                                 Prefix => New_Occurrence_Of (TB, Loc))),
4125                           High_Bound =>
4126                             Convert_To (LLIB,
4127                               Make_Attribute_Reference (Loc,
4128                                 Attribute_Name => Name_Last,
4129                                 Prefix => New_Occurrence_Of (TB, Loc))))),
4130                   Right_Opnd => Nin));
4131               Set_Analyzed (N, False);
4132               Analyze_And_Resolve (N, Restype);
4133            end;
4134         end if;
4135      end if;
4136   end Expand_Membership_Minimize_Eliminate_Overflow;
4137
4138   ------------------------
4139   -- Expand_N_Allocator --
4140   ------------------------
4141
4142   procedure Expand_N_Allocator (N : Node_Id) is
4143      Etyp : constant Entity_Id  := Etype (Expression (N));
4144      Loc  : constant Source_Ptr := Sloc (N);
4145      PtrT : constant Entity_Id  := Etype (N);
4146
4147      procedure Rewrite_Coextension (N : Node_Id);
4148      --  Static coextensions have the same lifetime as the entity they
4149      --  constrain. Such occurrences can be rewritten as aliased objects
4150      --  and their unrestricted access used instead of the coextension.
4151
4152      function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
4153      --  Given a constrained array type E, returns a node representing the
4154      --  code to compute the size in storage elements for the given type.
4155      --  This is done without using the attribute (which malfunctions for
4156      --  large sizes ???)
4157
4158      -------------------------
4159      -- Rewrite_Coextension --
4160      -------------------------
4161
4162      procedure Rewrite_Coextension (N : Node_Id) is
4163         Temp_Id   : constant Node_Id := Make_Temporary (Loc, 'C');
4164         Temp_Decl : Node_Id;
4165
4166      begin
4167         --  Generate:
4168         --    Cnn : aliased Etyp;
4169
4170         Temp_Decl :=
4171           Make_Object_Declaration (Loc,
4172             Defining_Identifier => Temp_Id,
4173             Aliased_Present     => True,
4174             Object_Definition   => New_Occurrence_Of (Etyp, Loc));
4175
4176         if Nkind (Expression (N)) = N_Qualified_Expression then
4177            Set_Expression (Temp_Decl, Expression (Expression (N)));
4178         end if;
4179
4180         Insert_Action (N, Temp_Decl);
4181         Rewrite (N,
4182           Make_Attribute_Reference (Loc,
4183             Prefix         => New_Occurrence_Of (Temp_Id, Loc),
4184             Attribute_Name => Name_Unrestricted_Access));
4185
4186         Analyze_And_Resolve (N, PtrT);
4187      end Rewrite_Coextension;
4188
4189      ------------------------------
4190      -- Size_In_Storage_Elements --
4191      ------------------------------
4192
4193      function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4194      begin
4195         --  Logically this just returns E'Max_Size_In_Storage_Elements.
4196         --  However, the reason for the existence of this function is
4197         --  to construct a test for sizes too large, which means near the
4198         --  32-bit limit on a 32-bit machine, and precisely the trouble
4199         --  is that we get overflows when sizes are greater than 2**31.
4200
4201         --  So what we end up doing for array types is to use the expression:
4202
4203         --    number-of-elements * component_type'Max_Size_In_Storage_Elements
4204
4205         --  which avoids this problem. All this is a bit bogus, but it does
4206         --  mean we catch common cases of trying to allocate arrays that
4207         --  are too large, and which in the absence of a check results in
4208         --  undetected chaos ???
4209
4210         --  Note in particular that this is a pessimistic estimate in the
4211         --  case of packed array types, where an array element might occupy
4212         --  just a fraction of a storage element???
4213
4214         declare
4215            Len : Node_Id;
4216            Res : Node_Id;
4217
4218         begin
4219            for J in 1 .. Number_Dimensions (E) loop
4220               Len :=
4221                 Make_Attribute_Reference (Loc,
4222                   Prefix         => New_Occurrence_Of (E, Loc),
4223                   Attribute_Name => Name_Length,
4224                   Expressions    => New_List (Make_Integer_Literal (Loc, J)));
4225
4226               if J = 1 then
4227                  Res := Len;
4228
4229               else
4230                  Res :=
4231                    Make_Op_Multiply (Loc,
4232                      Left_Opnd  => Res,
4233                      Right_Opnd => Len);
4234               end if;
4235            end loop;
4236
4237            return
4238              Make_Op_Multiply (Loc,
4239                Left_Opnd  => Len,
4240                Right_Opnd =>
4241                  Make_Attribute_Reference (Loc,
4242                    Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4243                    Attribute_Name => Name_Max_Size_In_Storage_Elements));
4244         end;
4245      end Size_In_Storage_Elements;
4246
4247      --  Local variables
4248
4249      Dtyp    : constant Entity_Id := Available_View (Designated_Type (PtrT));
4250      Desig   : Entity_Id;
4251      Nod     : Node_Id;
4252      Pool    : Entity_Id;
4253      Rel_Typ : Entity_Id;
4254      Temp    : Entity_Id;
4255
4256   --  Start of processing for Expand_N_Allocator
4257
4258   begin
4259      --  RM E.2.3(22). We enforce that the expected type of an allocator
4260      --  shall not be a remote access-to-class-wide-limited-private type
4261
4262      --  Why is this being done at expansion time, seems clearly wrong ???
4263
4264      Validate_Remote_Access_To_Class_Wide_Type (N);
4265
4266      --  Processing for anonymous access-to-controlled types. These access
4267      --  types receive a special finalization master which appears in the
4268      --  declarations of the enclosing semantic unit. This expansion is done
4269      --  now to ensure that any additional types generated by this routine or
4270      --  Expand_Allocator_Expression inherit the proper type attributes.
4271
4272      if (Ekind (PtrT) = E_Anonymous_Access_Type
4273           or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
4274        and then Needs_Finalization (Dtyp)
4275      then
4276         --  Detect the allocation of an anonymous controlled object where the
4277         --  type of the context is named. For example:
4278
4279         --     procedure Proc (Ptr : Named_Access_Typ);
4280         --     Proc (new Designated_Typ);
4281
4282         --  Regardless of the anonymous-to-named access type conversion, the
4283         --  lifetime of the object must be associated with the named access
4284         --  type. Use the finalization-related attributes of this type.
4285
4286         if Nkind_In (Parent (N), N_Type_Conversion,
4287                                  N_Unchecked_Type_Conversion)
4288           and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4289                                                  E_Access_Type,
4290                                                  E_General_Access_Type)
4291         then
4292            Rel_Typ := Etype (Parent (N));
4293         else
4294            Rel_Typ := Empty;
4295         end if;
4296
4297         --  Anonymous access-to-controlled types allocate on the global pool.
4298         --  Do not set this attribute on .NET/JVM since those targets do not
4299         --  support pools.
4300
4301         if No (Associated_Storage_Pool (PtrT)) and then VM_Target = No_VM then
4302            if Present (Rel_Typ) then
4303               Set_Associated_Storage_Pool (PtrT,
4304                 Associated_Storage_Pool (Rel_Typ));
4305            else
4306               Set_Associated_Storage_Pool (PtrT,
4307                 Get_Global_Pool_For_Access_Type (PtrT));
4308            end if;
4309         end if;
4310
4311         --  The finalization master must be inserted and analyzed as part of
4312         --  the current semantic unit. Note that the master is updated when
4313         --  analysis changes current units.
4314
4315         if Present (Rel_Typ) then
4316            Set_Finalization_Master (PtrT, Finalization_Master (Rel_Typ));
4317         else
4318            Set_Finalization_Master (PtrT, Current_Anonymous_Master);
4319         end if;
4320      end if;
4321
4322      --  Set the storage pool and find the appropriate version of Allocate to
4323      --  call. Do not overwrite the storage pool if it is already set, which
4324      --  can happen for build-in-place function returns (see
4325      --  Exp_Ch4.Expand_N_Extended_Return_Statement).
4326
4327      if No (Storage_Pool (N)) then
4328         Pool := Associated_Storage_Pool (Root_Type (PtrT));
4329
4330         if Present (Pool) then
4331            Set_Storage_Pool (N, Pool);
4332
4333            if Is_RTE (Pool, RE_SS_Pool) then
4334               if VM_Target = No_VM then
4335                  Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4336               end if;
4337
4338            --  In the case of an allocator for a simple storage pool, locate
4339            --  and save a reference to the pool type's Allocate routine.
4340
4341            elsif Present (Get_Rep_Pragma
4342                             (Etype (Pool), Name_Simple_Storage_Pool_Type))
4343            then
4344               declare
4345                  Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
4346                  Alloc_Op  : Entity_Id;
4347               begin
4348                  Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
4349                  while Present (Alloc_Op) loop
4350                     if Scope (Alloc_Op) = Scope (Pool_Type)
4351                       and then Present (First_Formal (Alloc_Op))
4352                       and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4353                     then
4354                        Set_Procedure_To_Call (N, Alloc_Op);
4355                        exit;
4356                     else
4357                        Alloc_Op := Homonym (Alloc_Op);
4358                     end if;
4359                  end loop;
4360               end;
4361
4362            elsif Is_Class_Wide_Type (Etype (Pool)) then
4363               Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4364
4365            else
4366               Set_Procedure_To_Call (N,
4367                 Find_Prim_Op (Etype (Pool), Name_Allocate));
4368            end if;
4369         end if;
4370      end if;
4371
4372      --  Under certain circumstances we can replace an allocator by an access
4373      --  to statically allocated storage. The conditions, as noted in AARM
4374      --  3.10 (10c) are as follows:
4375
4376      --    Size and initial value is known at compile time
4377      --    Access type is access-to-constant
4378
4379      --  The allocator is not part of a constraint on a record component,
4380      --  because in that case the inserted actions are delayed until the
4381      --  record declaration is fully analyzed, which is too late for the
4382      --  analysis of the rewritten allocator.
4383
4384      if Is_Access_Constant (PtrT)
4385        and then Nkind (Expression (N)) = N_Qualified_Expression
4386        and then Compile_Time_Known_Value (Expression (Expression (N)))
4387        and then Size_Known_At_Compile_Time
4388                   (Etype (Expression (Expression (N))))
4389        and then not Is_Record_Type (Current_Scope)
4390      then
4391         --  Here we can do the optimization. For the allocator
4392
4393         --    new x'(y)
4394
4395         --  We insert an object declaration
4396
4397         --    Tnn : aliased x := y;
4398
4399         --  and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4400         --  marked as requiring static allocation.
4401
4402         Temp  := Make_Temporary (Loc, 'T', Expression (Expression (N)));
4403         Desig := Subtype_Mark (Expression (N));
4404
4405         --  If context is constrained, use constrained subtype directly,
4406         --  so that the constant is not labelled as having a nominally
4407         --  unconstrained subtype.
4408
4409         if Entity (Desig) = Base_Type (Dtyp) then
4410            Desig := New_Occurrence_Of (Dtyp, Loc);
4411         end if;
4412
4413         Insert_Action (N,
4414           Make_Object_Declaration (Loc,
4415             Defining_Identifier => Temp,
4416             Aliased_Present     => True,
4417             Constant_Present    => Is_Access_Constant (PtrT),
4418             Object_Definition   => Desig,
4419             Expression          => Expression (Expression (N))));
4420
4421         Rewrite (N,
4422           Make_Attribute_Reference (Loc,
4423             Prefix         => New_Occurrence_Of (Temp, Loc),
4424             Attribute_Name => Name_Unrestricted_Access));
4425
4426         Analyze_And_Resolve (N, PtrT);
4427
4428         --  We set the variable as statically allocated, since we don't want
4429         --  it going on the stack of the current procedure.
4430
4431         Set_Is_Statically_Allocated (Temp);
4432         return;
4433      end if;
4434
4435      --  Same if the allocator is an access discriminant for a local object:
4436      --  instead of an allocator we create a local value and constrain the
4437      --  enclosing object with the corresponding access attribute.
4438
4439      if Is_Static_Coextension (N) then
4440         Rewrite_Coextension (N);
4441         return;
4442      end if;
4443
4444      --  Check for size too large, we do this because the back end misses
4445      --  proper checks here and can generate rubbish allocation calls when
4446      --  we are near the limit. We only do this for the 32-bit address case
4447      --  since that is from a practical point of view where we see a problem.
4448
4449      if System_Address_Size = 32
4450        and then not Storage_Checks_Suppressed (PtrT)
4451        and then not Storage_Checks_Suppressed (Dtyp)
4452        and then not Storage_Checks_Suppressed (Etyp)
4453      then
4454         --  The check we want to generate should look like
4455
4456         --  if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4457         --    raise Storage_Error;
4458         --  end if;
4459
4460         --  where 3.5 gigabytes is a constant large enough to accommodate any
4461         --  reasonable request for. But we can't do it this way because at
4462         --  least at the moment we don't compute this attribute right, and
4463         --  can silently give wrong results when the result gets large. Since
4464         --  this is all about large results, that's bad, so instead we only
4465         --  apply the check for constrained arrays, and manually compute the
4466         --  value of the attribute ???
4467
4468         if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
4469            Insert_Action (N,
4470              Make_Raise_Storage_Error (Loc,
4471                Condition =>
4472                  Make_Op_Gt (Loc,
4473                    Left_Opnd  => Size_In_Storage_Elements (Etyp),
4474                    Right_Opnd =>
4475                      Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
4476                Reason    => SE_Object_Too_Large));
4477         end if;
4478      end if;
4479
4480      --  Handle case of qualified expression (other than optimization above)
4481      --  First apply constraint checks, because the bounds or discriminants
4482      --  in the aggregate might not match the subtype mark in the allocator.
4483
4484      if Nkind (Expression (N)) = N_Qualified_Expression then
4485         Apply_Constraint_Check
4486           (Expression (Expression (N)), Etype (Expression (N)));
4487
4488         Expand_Allocator_Expression (N);
4489         return;
4490      end if;
4491
4492      --  If the allocator is for a type which requires initialization, and
4493      --  there is no initial value (i.e. operand is a subtype indication
4494      --  rather than a qualified expression), then we must generate a call to
4495      --  the initialization routine using an expressions action node:
4496
4497      --     [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4498
4499      --  Here ptr_T is the pointer type for the allocator, and T is the
4500      --  subtype of the allocator. A special case arises if the designated
4501      --  type of the access type is a task or contains tasks. In this case
4502      --  the call to Init (Temp.all ...) is replaced by code that ensures
4503      --  that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4504      --  for details). In addition, if the type T is a task T, then the
4505      --  first argument to Init must be converted to the task record type.
4506
4507      declare
4508         T         : constant Entity_Id := Entity (Expression (N));
4509         Args      : List_Id;
4510         Decls     : List_Id;
4511         Decl      : Node_Id;
4512         Discr     : Elmt_Id;
4513         Init      : Entity_Id;
4514         Init_Arg1 : Node_Id;
4515         Temp_Decl : Node_Id;
4516         Temp_Type : Entity_Id;
4517
4518      begin
4519         if No_Initialization (N) then
4520
4521            --  Even though this might be a simple allocation, create a custom
4522            --  Allocate if the context requires it. Since .NET/JVM compilers
4523            --  do not support pools, this step is skipped.
4524
4525            if VM_Target = No_VM
4526              and then Present (Finalization_Master (PtrT))
4527            then
4528               Build_Allocate_Deallocate_Proc
4529                 (N           => N,
4530                  Is_Allocate => True);
4531            end if;
4532
4533         --  Case of no initialization procedure present
4534
4535         elsif not Has_Non_Null_Base_Init_Proc (T) then
4536
4537            --  Case of simple initialization required
4538
4539            if Needs_Simple_Initialization (T) then
4540               Check_Restriction (No_Default_Initialization, N);
4541               Rewrite (Expression (N),
4542                 Make_Qualified_Expression (Loc,
4543                   Subtype_Mark => New_Occurrence_Of (T, Loc),
4544                   Expression   => Get_Simple_Init_Val (T, N)));
4545
4546               Analyze_And_Resolve (Expression (Expression (N)), T);
4547               Analyze_And_Resolve (Expression (N), T);
4548               Set_Paren_Count     (Expression (Expression (N)), 1);
4549               Expand_N_Allocator  (N);
4550
4551            --  No initialization required
4552
4553            else
4554               null;
4555            end if;
4556
4557         --  Case of initialization procedure present, must be called
4558
4559         else
4560            Check_Restriction (No_Default_Initialization, N);
4561
4562            if not Restriction_Active (No_Default_Initialization) then
4563               Init := Base_Init_Proc (T);
4564               Nod  := N;
4565               Temp := Make_Temporary (Loc, 'P');
4566
4567               --  Construct argument list for the initialization routine call
4568
4569               Init_Arg1 :=
4570                 Make_Explicit_Dereference (Loc,
4571                   Prefix =>
4572                     New_Occurrence_Of (Temp, Loc));
4573
4574               Set_Assignment_OK (Init_Arg1);
4575               Temp_Type := PtrT;
4576
4577               --  The initialization procedure expects a specific type. if the
4578               --  context is access to class wide, indicate that the object
4579               --  being allocated has the right specific type.
4580
4581               if Is_Class_Wide_Type (Dtyp) then
4582                  Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
4583               end if;
4584
4585               --  If designated type is a concurrent type or if it is private
4586               --  type whose definition is a concurrent type, the first
4587               --  argument in the Init routine has to be unchecked conversion
4588               --  to the corresponding record type. If the designated type is
4589               --  a derived type, also convert the argument to its root type.
4590
4591               if Is_Concurrent_Type (T) then
4592                  Init_Arg1 :=
4593                    Unchecked_Convert_To (
4594                      Corresponding_Record_Type (T), Init_Arg1);
4595
4596               elsif Is_Private_Type (T)
4597                 and then Present (Full_View (T))
4598                 and then Is_Concurrent_Type (Full_View (T))
4599               then
4600                  Init_Arg1 :=
4601                    Unchecked_Convert_To
4602                      (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
4603
4604               elsif Etype (First_Formal (Init)) /= Base_Type (T) then
4605                  declare
4606                     Ftyp : constant Entity_Id := Etype (First_Formal (Init));
4607
4608                  begin
4609                     Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
4610                     Set_Etype (Init_Arg1, Ftyp);
4611                  end;
4612               end if;
4613
4614               Args := New_List (Init_Arg1);
4615
4616               --  For the task case, pass the Master_Id of the access type as
4617               --  the value of the _Master parameter, and _Chain as the value
4618               --  of the _Chain parameter (_Chain will be defined as part of
4619               --  the generated code for the allocator).
4620
4621               --  In Ada 2005, the context may be a function that returns an
4622               --  anonymous access type. In that case the Master_Id has been
4623               --  created when expanding the function declaration.
4624
4625               if Has_Task (T) then
4626                  if No (Master_Id (Base_Type (PtrT))) then
4627
4628                     --  The designated type was an incomplete type, and the
4629                     --  access type did not get expanded. Salvage it now.
4630
4631                     if not Restriction_Active (No_Task_Hierarchy) then
4632                        if Present (Parent (Base_Type (PtrT))) then
4633                           Expand_N_Full_Type_Declaration
4634                             (Parent (Base_Type (PtrT)));
4635
4636                        --  The only other possibility is an itype. For this
4637                        --  case, the master must exist in the context. This is
4638                        --  the case when the allocator initializes an access
4639                        --  component in an init-proc.
4640
4641                        else
4642                           pragma Assert (Is_Itype (PtrT));
4643                           Build_Master_Renaming (PtrT, N);
4644                        end if;
4645                     end if;
4646                  end if;
4647
4648                  --  If the context of the allocator is a declaration or an
4649                  --  assignment, we can generate a meaningful image for it,
4650                  --  even though subsequent assignments might remove the
4651                  --  connection between task and entity. We build this image
4652                  --  when the left-hand side is a simple variable, a simple
4653                  --  indexed assignment or a simple selected component.
4654
4655                  if Nkind (Parent (N)) = N_Assignment_Statement then
4656                     declare
4657                        Nam : constant Node_Id := Name (Parent (N));
4658
4659                     begin
4660                        if Is_Entity_Name (Nam) then
4661                           Decls :=
4662                             Build_Task_Image_Decls
4663                               (Loc,
4664                                New_Occurrence_Of
4665                                  (Entity (Nam), Sloc (Nam)), T);
4666
4667                        elsif Nkind_In (Nam, N_Indexed_Component,
4668                                             N_Selected_Component)
4669                          and then Is_Entity_Name (Prefix (Nam))
4670                        then
4671                           Decls :=
4672                             Build_Task_Image_Decls
4673                               (Loc, Nam, Etype (Prefix (Nam)));
4674                        else
4675                           Decls := Build_Task_Image_Decls (Loc, T, T);
4676                        end if;
4677                     end;
4678
4679                  elsif Nkind (Parent (N)) = N_Object_Declaration then
4680                     Decls :=
4681                       Build_Task_Image_Decls
4682                         (Loc, Defining_Identifier (Parent (N)), T);
4683
4684                  else
4685                     Decls := Build_Task_Image_Decls (Loc, T, T);
4686                  end if;
4687
4688                  if Restriction_Active (No_Task_Hierarchy) then
4689                     Append_To (Args,
4690                       New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
4691                  else
4692                     Append_To (Args,
4693                       New_Occurrence_Of
4694                         (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
4695                  end if;
4696
4697                  Append_To (Args, Make_Identifier (Loc, Name_uChain));
4698
4699                  Decl := Last (Decls);
4700                  Append_To (Args,
4701                    New_Occurrence_Of (Defining_Identifier (Decl), Loc));
4702
4703               --  Has_Task is false, Decls not used
4704
4705               else
4706                  Decls := No_List;
4707               end if;
4708
4709               --  Add discriminants if discriminated type
4710
4711               declare
4712                  Dis : Boolean := False;
4713                  Typ : Entity_Id;
4714
4715               begin
4716                  if Has_Discriminants (T) then
4717                     Dis := True;
4718                     Typ := T;
4719
4720                  elsif Is_Private_Type (T)
4721                    and then Present (Full_View (T))
4722                    and then Has_Discriminants (Full_View (T))
4723                  then
4724                     Dis := True;
4725                     Typ := Full_View (T);
4726                  end if;
4727
4728                  if Dis then
4729
4730                     --  If the allocated object will be constrained by the
4731                     --  default values for discriminants, then build a subtype
4732                     --  with those defaults, and change the allocated subtype
4733                     --  to that. Note that this happens in fewer cases in Ada
4734                     --  2005 (AI-363).
4735
4736                     if not Is_Constrained (Typ)
4737                       and then Present (Discriminant_Default_Value
4738                                          (First_Discriminant (Typ)))
4739                       and then (Ada_Version < Ada_2005
4740                                  or else not
4741                                    Object_Type_Has_Constrained_Partial_View
4742                                      (Typ, Current_Scope))
4743                     then
4744                        Typ := Build_Default_Subtype (Typ, N);
4745                        Set_Expression (N, New_Occurrence_Of (Typ, Loc));
4746                     end if;
4747
4748                     Discr := First_Elmt (Discriminant_Constraint (Typ));
4749                     while Present (Discr) loop
4750                        Nod := Node (Discr);
4751                        Append (New_Copy_Tree (Node (Discr)), Args);
4752
4753                        --  AI-416: when the discriminant constraint is an
4754                        --  anonymous access type make sure an accessibility
4755                        --  check is inserted if necessary (3.10.2(22.q/2))
4756
4757                        if Ada_Version >= Ada_2005
4758                          and then
4759                            Ekind (Etype (Nod)) = E_Anonymous_Access_Type
4760                        then
4761                           Apply_Accessibility_Check
4762                             (Nod, Typ, Insert_Node => Nod);
4763                        end if;
4764
4765                        Next_Elmt (Discr);
4766                     end loop;
4767                  end if;
4768               end;
4769
4770               --  We set the allocator as analyzed so that when we analyze
4771               --  the if expression node, we do not get an unwanted recursive
4772               --  expansion of the allocator expression.
4773
4774               Set_Analyzed (N, True);
4775               Nod := Relocate_Node (N);
4776
4777               --  Here is the transformation:
4778               --    input:  new Ctrl_Typ
4779               --    output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4780               --            Ctrl_TypIP (Temp.all, ...);
4781               --            [Deep_]Initialize (Temp.all);
4782
4783               --  Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4784               --  is the subtype of the allocator.
4785
4786               Temp_Decl :=
4787                 Make_Object_Declaration (Loc,
4788                   Defining_Identifier => Temp,
4789                   Constant_Present    => True,
4790                   Object_Definition   => New_Occurrence_Of (Temp_Type, Loc),
4791                   Expression          => Nod);
4792
4793               Set_Assignment_OK (Temp_Decl);
4794               Insert_Action (N, Temp_Decl, Suppress => All_Checks);
4795
4796               Build_Allocate_Deallocate_Proc (Temp_Decl, True);
4797
4798               --  If the designated type is a task type or contains tasks,
4799               --  create block to activate created tasks, and insert
4800               --  declaration for Task_Image variable ahead of call.
4801
4802               if Has_Task (T) then
4803                  declare
4804                     L   : constant List_Id := New_List;
4805                     Blk : Node_Id;
4806                  begin
4807                     Build_Task_Allocate_Block (L, Nod, Args);
4808                     Blk := Last (L);
4809                     Insert_List_Before (First (Declarations (Blk)), Decls);
4810                     Insert_Actions (N, L);
4811                  end;
4812
4813               else
4814                  Insert_Action (N,
4815                    Make_Procedure_Call_Statement (Loc,
4816                      Name                   => New_Occurrence_Of (Init, Loc),
4817                      Parameter_Associations => Args));
4818               end if;
4819
4820               if Needs_Finalization (T) then
4821
4822                  --  Generate:
4823                  --    [Deep_]Initialize (Init_Arg1);
4824
4825                  Insert_Action (N,
4826                    Make_Init_Call
4827                      (Obj_Ref => New_Copy_Tree (Init_Arg1),
4828                       Typ     => T));
4829
4830                  if Present (Finalization_Master (PtrT)) then
4831
4832                     --  Special processing for .NET/JVM, the allocated object
4833                     --  is attached to the finalization master. Generate:
4834
4835                     --    Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
4836
4837                     --  Types derived from [Limited_]Controlled are the only
4838                     --  ones considered since they have fields Prev and Next.
4839
4840                     if VM_Target /= No_VM then
4841                        if Is_Controlled (T) then
4842                           Insert_Action (N,
4843                             Make_Attach_Call
4844                               (Obj_Ref => New_Copy_Tree (Init_Arg1),
4845                                Ptr_Typ => PtrT));
4846                        end if;
4847
4848                     --  Default case, generate:
4849
4850                     --    Set_Finalize_Address
4851                     --      (<PtrT>FM, <T>FD'Unrestricted_Access);
4852
4853                     --  Do not generate this call in CodePeer mode, as TSS
4854                     --  primitive Finalize_Address is not created in this
4855                     --  mode.
4856
4857                     elsif not CodePeer_Mode then
4858                        Insert_Action (N,
4859                          Make_Set_Finalize_Address_Call
4860                            (Loc     => Loc,
4861                             Typ     => T,
4862                             Ptr_Typ => PtrT));
4863                     end if;
4864                  end if;
4865               end if;
4866
4867               Rewrite (N, New_Occurrence_Of (Temp, Loc));
4868               Analyze_And_Resolve (N, PtrT);
4869            end if;
4870         end if;
4871      end;
4872
4873      --  Ada 2005 (AI-251): If the allocator is for a class-wide interface
4874      --  object that has been rewritten as a reference, we displace "this"
4875      --  to reference properly its secondary dispatch table.
4876
4877      if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
4878         Displace_Allocator_Pointer (N);
4879      end if;
4880
4881   exception
4882      when RE_Not_Available =>
4883         return;
4884   end Expand_N_Allocator;
4885
4886   -----------------------
4887   -- Expand_N_And_Then --
4888   -----------------------
4889
4890   procedure Expand_N_And_Then (N : Node_Id)
4891     renames Expand_Short_Circuit_Operator;
4892
4893   ------------------------------
4894   -- Expand_N_Case_Expression --
4895   ------------------------------
4896
4897   procedure Expand_N_Case_Expression (N : Node_Id) is
4898      Loc     : constant Source_Ptr := Sloc (N);
4899      Typ     : constant Entity_Id  := Etype (N);
4900      Cstmt   : Node_Id;
4901      Decl    : Node_Id;
4902      Tnn     : Entity_Id;
4903      Pnn     : Entity_Id;
4904      Actions : List_Id;
4905      Ttyp    : Entity_Id;
4906      Alt     : Node_Id;
4907      Fexp    : Node_Id;
4908
4909   begin
4910      --  Check for MINIMIZED/ELIMINATED overflow mode
4911
4912      if Minimized_Eliminated_Overflow_Check (N) then
4913         Apply_Arithmetic_Overflow_Check (N);
4914         return;
4915      end if;
4916
4917      --  We expand
4918
4919      --    case X is when A => AX, when B => BX ...
4920
4921      --  to
4922
4923      --    do
4924      --       Tnn : typ;
4925      --       case X is
4926      --          when A =>
4927      --             Tnn := AX;
4928      --          when B =>
4929      --             Tnn := BX;
4930      --          ...
4931      --       end case;
4932      --    in Tnn end;
4933
4934      --  However, this expansion is wrong for limited types, and also
4935      --  wrong for unconstrained types (since the bounds may not be the
4936      --  same in all branches). Furthermore it involves an extra copy
4937      --  for large objects. So we take care of this by using the following
4938      --  modified expansion for non-elementary types:
4939
4940      --    do
4941      --       type Pnn is access all typ;
4942      --       Tnn : Pnn;
4943      --       case X is
4944      --          when A =>
4945      --             T := AX'Unrestricted_Access;
4946      --          when B =>
4947      --             T := BX'Unrestricted_Access;
4948      --          ...
4949      --       end case;
4950      --    in Tnn.all end;
4951
4952      Cstmt :=
4953        Make_Case_Statement (Loc,
4954          Expression   => Expression (N),
4955          Alternatives => New_List);
4956
4957      Actions := New_List;
4958
4959      --  Scalar case
4960
4961      if Is_Elementary_Type (Typ) then
4962         Ttyp := Typ;
4963
4964      else
4965         Pnn := Make_Temporary (Loc, 'P');
4966         Append_To (Actions,
4967           Make_Full_Type_Declaration (Loc,
4968             Defining_Identifier => Pnn,
4969             Type_Definition     =>
4970               Make_Access_To_Object_Definition (Loc,
4971                 All_Present        => True,
4972                 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
4973         Ttyp := Pnn;
4974      end if;
4975
4976      Tnn := Make_Temporary (Loc, 'T');
4977
4978      --  Create declaration for target of expression, and indicate that it
4979      --  does not require initialization.
4980
4981      Decl :=
4982        Make_Object_Declaration (Loc,
4983          Defining_Identifier => Tnn,
4984          Object_Definition   => New_Occurrence_Of (Ttyp, Loc));
4985      Set_No_Initialization (Decl);
4986      Append_To (Actions, Decl);
4987
4988      --  Now process the alternatives
4989
4990      Alt := First (Alternatives (N));
4991      while Present (Alt) loop
4992         declare
4993            Aexp  : Node_Id             := Expression (Alt);
4994            Aloc  : constant Source_Ptr := Sloc (Aexp);
4995            Stats : List_Id;
4996
4997         begin
4998            --  As described above, take Unrestricted_Access for case of non-
4999            --  scalar types, to avoid big copies, and special cases.
5000
5001            if not Is_Elementary_Type (Typ) then
5002               Aexp :=
5003                 Make_Attribute_Reference (Aloc,
5004                   Prefix         => Relocate_Node (Aexp),
5005                   Attribute_Name => Name_Unrestricted_Access);
5006            end if;
5007
5008            Stats := New_List (
5009              Make_Assignment_Statement (Aloc,
5010                Name       => New_Occurrence_Of (Tnn, Loc),
5011                Expression => Aexp));
5012
5013            --  Propagate declarations inserted in the node by Insert_Actions
5014            --  (for example, temporaries generated to remove side effects).
5015            --  These actions must remain attached to the alternative, given
5016            --  that they are generated by the corresponding expression.
5017
5018            if Present (Sinfo.Actions (Alt)) then
5019               Prepend_List (Sinfo.Actions (Alt), Stats);
5020            end if;
5021
5022            Append_To
5023              (Alternatives (Cstmt),
5024               Make_Case_Statement_Alternative (Sloc (Alt),
5025                 Discrete_Choices => Discrete_Choices (Alt),
5026                 Statements       => Stats));
5027         end;
5028
5029         Next (Alt);
5030      end loop;
5031
5032      Append_To (Actions, Cstmt);
5033
5034      --  Construct and return final expression with actions
5035
5036      if Is_Elementary_Type (Typ) then
5037         Fexp := New_Occurrence_Of (Tnn, Loc);
5038      else
5039         Fexp :=
5040           Make_Explicit_Dereference (Loc,
5041             Prefix => New_Occurrence_Of (Tnn, Loc));
5042      end if;
5043
5044      Rewrite (N,
5045        Make_Expression_With_Actions (Loc,
5046          Expression => Fexp,
5047          Actions    => Actions));
5048
5049      Analyze_And_Resolve (N, Typ);
5050   end Expand_N_Case_Expression;
5051
5052   -----------------------------------
5053   -- Expand_N_Explicit_Dereference --
5054   -----------------------------------
5055
5056   procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5057   begin
5058      --  Insert explicit dereference call for the checked storage pool case
5059
5060      Insert_Dereference_Action (Prefix (N));
5061
5062      --  If the type is an Atomic type for which Atomic_Sync is enabled, then
5063      --  we set the atomic sync flag.
5064
5065      if Is_Atomic (Etype (N))
5066        and then not Atomic_Synchronization_Disabled (Etype (N))
5067      then
5068         Activate_Atomic_Synchronization (N);
5069      end if;
5070   end Expand_N_Explicit_Dereference;
5071
5072   --------------------------------------
5073   -- Expand_N_Expression_With_Actions --
5074   --------------------------------------
5075
5076   procedure Expand_N_Expression_With_Actions (N : Node_Id) is
5077
5078      function Process_Action (Act : Node_Id) return Traverse_Result;
5079      --  Inspect and process a single action of an expression_with_actions for
5080      --  transient controlled objects. If such objects are found, the routine
5081      --  generates code to clean them up when the context of the expression is
5082      --  evaluated or elaborated.
5083
5084      --------------------
5085      -- Process_Action --
5086      --------------------
5087
5088      function Process_Action (Act : Node_Id) return Traverse_Result is
5089      begin
5090         if Nkind (Act) = N_Object_Declaration
5091           and then Is_Finalizable_Transient (Act, N)
5092         then
5093            Process_Transient_Object (Act, N);
5094            return Abandon;
5095
5096         --  Avoid processing temporary function results multiple times when
5097         --  dealing with nested expression_with_actions.
5098
5099         elsif Nkind (Act) = N_Expression_With_Actions then
5100            return Abandon;
5101
5102         --  Do not process temporary function results in loops. This is done
5103         --  by Expand_N_Loop_Statement and Build_Finalizer.
5104
5105         elsif Nkind (Act) = N_Loop_Statement then
5106            return Abandon;
5107         end if;
5108
5109         return OK;
5110      end Process_Action;
5111
5112      procedure Process_Single_Action is new Traverse_Proc (Process_Action);
5113
5114      --  Local variables
5115
5116      Act : Node_Id;
5117
5118   --  Start of processing for Expand_N_Expression_With_Actions
5119
5120   begin
5121      --  Process the actions as described above
5122
5123      Act := First (Actions (N));
5124      while Present (Act) loop
5125         Process_Single_Action (Act);
5126         Next (Act);
5127      end loop;
5128
5129      --  Deal with case where there are no actions. In this case we simply
5130      --  rewrite the node with its expression since we don't need the actions
5131      --  and the specification of this node does not allow a null action list.
5132
5133      --  Note: we use Rewrite instead of Replace, because Codepeer is using
5134      --  the expanded tree and relying on being able to retrieve the original
5135      --  tree in cases like this. This raises a whole lot of issues of whether
5136      --  we have problems elsewhere, which will be addressed in the future???
5137
5138      if Is_Empty_List (Actions (N)) then
5139         Rewrite (N, Relocate_Node (Expression (N)));
5140      end if;
5141   end Expand_N_Expression_With_Actions;
5142
5143   ----------------------------
5144   -- Expand_N_If_Expression --
5145   ----------------------------
5146
5147   --  Deal with limited types and condition actions
5148
5149   procedure Expand_N_If_Expression (N : Node_Id) is
5150      procedure Process_Actions (Actions : List_Id);
5151      --  Inspect and process a single action list of an if expression for
5152      --  transient controlled objects. If such objects are found, the routine
5153      --  generates code to clean them up when the context of the expression is
5154      --  evaluated or elaborated.
5155
5156      ---------------------
5157      -- Process_Actions --
5158      ---------------------
5159
5160      procedure Process_Actions (Actions : List_Id) is
5161         Act : Node_Id;
5162
5163      begin
5164         Act := First (Actions);
5165         while Present (Act) loop
5166            if Nkind (Act) = N_Object_Declaration
5167              and then Is_Finalizable_Transient (Act, N)
5168            then
5169               Process_Transient_Object (Act, N);
5170            end if;
5171
5172            Next (Act);
5173         end loop;
5174      end Process_Actions;
5175
5176      --  Local variables
5177
5178      Loc    : constant Source_Ptr := Sloc (N);
5179      Cond   : constant Node_Id    := First (Expressions (N));
5180      Thenx  : constant Node_Id    := Next (Cond);
5181      Elsex  : constant Node_Id    := Next (Thenx);
5182      Typ    : constant Entity_Id  := Etype (N);
5183
5184      Actions : List_Id;
5185      Cnn     : Entity_Id;
5186      Decl    : Node_Id;
5187      Expr    : Node_Id;
5188      New_If  : Node_Id;
5189      New_N   : Node_Id;
5190      Ptr_Typ : Entity_Id;
5191
5192   --  Start of processing for Expand_N_If_Expression
5193
5194   begin
5195      --  Check for MINIMIZED/ELIMINATED overflow mode
5196
5197      if Minimized_Eliminated_Overflow_Check (N) then
5198         Apply_Arithmetic_Overflow_Check (N);
5199         return;
5200      end if;
5201
5202      --  Fold at compile time if condition known. We have already folded
5203      --  static if expressions, but it is possible to fold any case in which
5204      --  the condition is known at compile time, even though the result is
5205      --  non-static.
5206
5207      --  Note that we don't do the fold of such cases in Sem_Elab because
5208      --  it can cause infinite loops with the expander adding a conditional
5209      --  expression, and Sem_Elab circuitry removing it repeatedly.
5210
5211      if Compile_Time_Known_Value (Cond) then
5212         if Is_True (Expr_Value (Cond)) then
5213            Expr := Thenx;
5214            Actions := Then_Actions (N);
5215         else
5216            Expr := Elsex;
5217            Actions := Else_Actions (N);
5218         end if;
5219
5220         Remove (Expr);
5221
5222         if Present (Actions) then
5223            Rewrite (N,
5224              Make_Expression_With_Actions (Loc,
5225                Expression => Relocate_Node (Expr),
5226                Actions    => Actions));
5227            Analyze_And_Resolve (N, Typ);
5228         else
5229            Rewrite (N, Relocate_Node (Expr));
5230         end if;
5231
5232         --  Note that the result is never static (legitimate cases of static
5233         --  if expressions were folded in Sem_Eval).
5234
5235         Set_Is_Static_Expression (N, False);
5236         return;
5237      end if;
5238
5239      --  If the type is limited or unconstrained, we expand as follows to
5240      --  avoid any possibility of improper copies.
5241
5242      --  Note: it may be possible to avoid this special processing if the
5243      --  back end uses its own mechanisms for handling by-reference types ???
5244
5245      --      type Ptr is access all Typ;
5246      --      Cnn : Ptr;
5247      --      if cond then
5248      --         <<then actions>>
5249      --         Cnn := then-expr'Unrestricted_Access;
5250      --      else
5251      --         <<else actions>>
5252      --         Cnn := else-expr'Unrestricted_Access;
5253      --      end if;
5254
5255      --  and replace the if expression by a reference to Cnn.all.
5256
5257      --  This special case can be skipped if the back end handles limited
5258      --  types properly and ensures that no incorrect copies are made.
5259
5260      if Is_By_Reference_Type (Typ)
5261        and then not Back_End_Handles_Limited_Types
5262      then
5263         --  When the "then" or "else" expressions involve controlled function
5264         --  calls, generated temporaries are chained on the corresponding list
5265         --  of actions. These temporaries need to be finalized after the if
5266         --  expression is evaluated.
5267
5268         Process_Actions (Then_Actions (N));
5269         Process_Actions (Else_Actions (N));
5270
5271         --  Generate:
5272         --    type Ann is access all Typ;
5273
5274         Ptr_Typ := Make_Temporary (Loc, 'A');
5275
5276         Insert_Action (N,
5277           Make_Full_Type_Declaration (Loc,
5278             Defining_Identifier => Ptr_Typ,
5279             Type_Definition     =>
5280               Make_Access_To_Object_Definition (Loc,
5281                 All_Present        => True,
5282                 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
5283
5284         --  Generate:
5285         --    Cnn : Ann;
5286
5287         Cnn := Make_Temporary (Loc, 'C', N);
5288
5289         Decl :=
5290           Make_Object_Declaration (Loc,
5291             Defining_Identifier => Cnn,
5292             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc));
5293
5294         --  Generate:
5295         --    if Cond then
5296         --       Cnn := <Thenx>'Unrestricted_Access;
5297         --    else
5298         --       Cnn := <Elsex>'Unrestricted_Access;
5299         --    end if;
5300
5301         New_If :=
5302           Make_Implicit_If_Statement (N,
5303             Condition       => Relocate_Node (Cond),
5304             Then_Statements => New_List (
5305               Make_Assignment_Statement (Sloc (Thenx),
5306                 Name       => New_Occurrence_Of (Cnn, Sloc (Thenx)),
5307                 Expression =>
5308                   Make_Attribute_Reference (Loc,
5309                     Prefix         => Relocate_Node (Thenx),
5310                     Attribute_Name => Name_Unrestricted_Access))),
5311
5312             Else_Statements => New_List (
5313               Make_Assignment_Statement (Sloc (Elsex),
5314                 Name       => New_Occurrence_Of (Cnn, Sloc (Elsex)),
5315                 Expression =>
5316                   Make_Attribute_Reference (Loc,
5317                     Prefix         => Relocate_Node (Elsex),
5318                     Attribute_Name => Name_Unrestricted_Access))));
5319
5320            New_N :=
5321              Make_Explicit_Dereference (Loc,
5322                Prefix => New_Occurrence_Of (Cnn, Loc));
5323
5324      --  For other types, we only need to expand if there are other actions
5325      --  associated with either branch.
5326
5327      elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
5328
5329         --  We now wrap the actions into the appropriate expression
5330
5331         if Present (Then_Actions (N)) then
5332            Rewrite (Thenx,
5333              Make_Expression_With_Actions (Sloc (Thenx),
5334                Actions    => Then_Actions (N),
5335                Expression => Relocate_Node (Thenx)));
5336
5337            Set_Then_Actions (N, No_List);
5338            Analyze_And_Resolve (Thenx, Typ);
5339         end if;
5340
5341         if Present (Else_Actions (N)) then
5342            Rewrite (Elsex,
5343              Make_Expression_With_Actions (Sloc (Elsex),
5344                Actions    => Else_Actions (N),
5345                Expression => Relocate_Node (Elsex)));
5346
5347            Set_Else_Actions (N, No_List);
5348            Analyze_And_Resolve (Elsex, Typ);
5349         end if;
5350
5351         return;
5352
5353      --  If no actions then no expansion needed, gigi will handle it using the
5354      --  same approach as a C conditional expression.
5355
5356      else
5357         return;
5358      end if;
5359
5360      --  Fall through here for either the limited expansion, or the case of
5361      --  inserting actions for non-limited types. In both these cases, we must
5362      --  move the SLOC of the parent If statement to the newly created one and
5363      --  change it to the SLOC of the expression which, after expansion, will
5364      --  correspond to what is being evaluated.
5365
5366      if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
5367         Set_Sloc (New_If, Sloc (Parent (N)));
5368         Set_Sloc (Parent (N), Loc);
5369      end if;
5370
5371      --  Make sure Then_Actions and Else_Actions are appropriately moved
5372      --  to the new if statement.
5373
5374      if Present (Then_Actions (N)) then
5375         Insert_List_Before
5376           (First (Then_Statements (New_If)), Then_Actions (N));
5377      end if;
5378
5379      if Present (Else_Actions (N)) then
5380         Insert_List_Before
5381           (First (Else_Statements (New_If)), Else_Actions (N));
5382      end if;
5383
5384      Insert_Action (N, Decl);
5385      Insert_Action (N, New_If);
5386      Rewrite (N, New_N);
5387      Analyze_And_Resolve (N, Typ);
5388   end Expand_N_If_Expression;
5389
5390   -----------------
5391   -- Expand_N_In --
5392   -----------------
5393
5394   procedure Expand_N_In (N : Node_Id) is
5395      Loc    : constant Source_Ptr := Sloc (N);
5396      Restyp : constant Entity_Id  := Etype (N);
5397      Lop    : constant Node_Id    := Left_Opnd (N);
5398      Rop    : constant Node_Id    := Right_Opnd (N);
5399      Static : constant Boolean    := Is_OK_Static_Expression (N);
5400
5401      Ltyp  : Entity_Id;
5402      Rtyp  : Entity_Id;
5403
5404      procedure Substitute_Valid_Check;
5405      --  Replaces node N by Lop'Valid. This is done when we have an explicit
5406      --  test for the left operand being in range of its subtype.
5407
5408      ----------------------------
5409      -- Substitute_Valid_Check --
5410      ----------------------------
5411
5412      procedure Substitute_Valid_Check is
5413      begin
5414         Rewrite (N,
5415           Make_Attribute_Reference (Loc,
5416             Prefix         => Relocate_Node (Lop),
5417             Attribute_Name => Name_Valid));
5418
5419         Analyze_And_Resolve (N, Restyp);
5420
5421         --  Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5422         --  in which case, this usage makes sense, and in any case, we have
5423         --  actually eliminated the danger of optimization above.
5424
5425         if Overflow_Check_Mode not in Minimized_Or_Eliminated then
5426            Error_Msg_N
5427              ("??explicit membership test may be optimized away", N);
5428            Error_Msg_N -- CODEFIX
5429              ("\??use ''Valid attribute instead", N);
5430         end if;
5431
5432         return;
5433      end Substitute_Valid_Check;
5434
5435   --  Start of processing for Expand_N_In
5436
5437   begin
5438      --  If set membership case, expand with separate procedure
5439
5440      if Present (Alternatives (N)) then
5441         Expand_Set_Membership (N);
5442         return;
5443      end if;
5444
5445      --  Not set membership, proceed with expansion
5446
5447      Ltyp := Etype (Left_Opnd  (N));
5448      Rtyp := Etype (Right_Opnd (N));
5449
5450      --  If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5451      --  type, then expand with a separate procedure. Note the use of the
5452      --  flag No_Minimize_Eliminate to prevent infinite recursion.
5453
5454      if Overflow_Check_Mode in Minimized_Or_Eliminated
5455        and then Is_Signed_Integer_Type (Ltyp)
5456        and then not No_Minimize_Eliminate (N)
5457      then
5458         Expand_Membership_Minimize_Eliminate_Overflow (N);
5459         return;
5460      end if;
5461
5462      --  Check case of explicit test for an expression in range of its
5463      --  subtype. This is suspicious usage and we replace it with a 'Valid
5464      --  test and give a warning for scalar types.
5465
5466      if Is_Scalar_Type (Ltyp)
5467
5468        --  Only relevant for source comparisons
5469
5470        and then Comes_From_Source (N)
5471
5472        --  In floating-point this is a standard way to check for finite values
5473        --  and using 'Valid would typically be a pessimization.
5474
5475        and then not Is_Floating_Point_Type (Ltyp)
5476
5477        --  Don't give the message unless right operand is a type entity and
5478        --  the type of the left operand matches this type. Note that this
5479        --  eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5480        --  checks have changed the type of the left operand.
5481
5482        and then Nkind (Rop) in N_Has_Entity
5483        and then Ltyp = Entity (Rop)
5484
5485        --  Skip in VM mode, where we have no sense of invalid values. The
5486        --  warning still seems relevant, but not important enough to worry.
5487
5488        and then VM_Target = No_VM
5489
5490        --  Skip this for predicated types, where such expressions are a
5491        --  reasonable way of testing if something meets the predicate.
5492
5493        and then not Present (Predicate_Function (Ltyp))
5494      then
5495         Substitute_Valid_Check;
5496         return;
5497      end if;
5498
5499      --  Do validity check on operands
5500
5501      if Validity_Checks_On and Validity_Check_Operands then
5502         Ensure_Valid (Left_Opnd (N));
5503         Validity_Check_Range (Right_Opnd (N));
5504      end if;
5505
5506      --  Case of explicit range
5507
5508      if Nkind (Rop) = N_Range then
5509         declare
5510            Lo : constant Node_Id := Low_Bound (Rop);
5511            Hi : constant Node_Id := High_Bound (Rop);
5512
5513            Lo_Orig : constant Node_Id := Original_Node (Lo);
5514            Hi_Orig : constant Node_Id := Original_Node (Hi);
5515
5516            Lcheck : Compare_Result;
5517            Ucheck : Compare_Result;
5518
5519            Warn1 : constant Boolean :=
5520                      Constant_Condition_Warnings
5521                        and then Comes_From_Source (N)
5522                        and then not In_Instance;
5523            --  This must be true for any of the optimization warnings, we
5524            --  clearly want to give them only for source with the flag on. We
5525            --  also skip these warnings in an instance since it may be the
5526            --  case that different instantiations have different ranges.
5527
5528            Warn2 : constant Boolean :=
5529                      Warn1
5530                        and then Nkind (Original_Node (Rop)) = N_Range
5531                        and then Is_Integer_Type (Etype (Lo));
5532            --  For the case where only one bound warning is elided, we also
5533            --  insist on an explicit range and an integer type. The reason is
5534            --  that the use of enumeration ranges including an end point is
5535            --  common, as is the use of a subtype name, one of whose bounds is
5536            --  the same as the type of the expression.
5537
5538         begin
5539            --  If test is explicit x'First .. x'Last, replace by valid check
5540
5541            --  Could use some individual comments for this complex test ???
5542
5543            if Is_Scalar_Type (Ltyp)
5544
5545              --  And left operand is X'First where X matches left operand
5546              --  type (this eliminates cases of type mismatch, including
5547              --  the cases where ELIMINATED/MINIMIZED mode has changed the
5548              --  type of the left operand.
5549
5550              and then Nkind (Lo_Orig) = N_Attribute_Reference
5551              and then Attribute_Name (Lo_Orig) = Name_First
5552              and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
5553              and then Entity (Prefix (Lo_Orig)) = Ltyp
5554
5555            --  Same tests for right operand
5556
5557              and then Nkind (Hi_Orig) = N_Attribute_Reference
5558              and then Attribute_Name (Hi_Orig) = Name_Last
5559              and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
5560              and then Entity (Prefix (Hi_Orig)) = Ltyp
5561
5562              --  Relevant only for source cases
5563
5564              and then Comes_From_Source (N)
5565
5566              --  Omit for VM cases, where we don't have invalid values
5567
5568              and then VM_Target = No_VM
5569            then
5570               Substitute_Valid_Check;
5571               goto Leave;
5572            end if;
5573
5574            --  If bounds of type are known at compile time, and the end points
5575            --  are known at compile time and identical, this is another case
5576            --  for substituting a valid test. We only do this for discrete
5577            --  types, since it won't arise in practice for float types.
5578
5579            if Comes_From_Source (N)
5580              and then Is_Discrete_Type (Ltyp)
5581              and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
5582              and then Compile_Time_Known_Value (Type_Low_Bound  (Ltyp))
5583              and then Compile_Time_Known_Value (Lo)
5584              and then Compile_Time_Known_Value (Hi)
5585              and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
5586              and then Expr_Value (Type_Low_Bound  (Ltyp)) = Expr_Value (Lo)
5587
5588              --  Kill warnings in instances, since they may be cases where we
5589              --  have a test in the generic that makes sense with some types
5590              --  and not with other types.
5591
5592              and then not In_Instance
5593            then
5594               Substitute_Valid_Check;
5595               goto Leave;
5596            end if;
5597
5598            --  If we have an explicit range, do a bit of optimization based on
5599            --  range analysis (we may be able to kill one or both checks).
5600
5601            Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
5602            Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
5603
5604            --  If either check is known to fail, replace result by False since
5605            --  the other check does not matter. Preserve the static flag for
5606            --  legality checks, because we are constant-folding beyond RM 4.9.
5607
5608            if Lcheck = LT or else Ucheck = GT then
5609               if Warn1 then
5610                  Error_Msg_N ("?c?range test optimized away", N);
5611                  Error_Msg_N ("\?c?value is known to be out of range", N);
5612               end if;
5613
5614               Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5615               Analyze_And_Resolve (N, Restyp);
5616               Set_Is_Static_Expression (N, Static);
5617               goto Leave;
5618
5619            --  If both checks are known to succeed, replace result by True,
5620            --  since we know we are in range.
5621
5622            elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
5623               if Warn1 then
5624                  Error_Msg_N ("?c?range test optimized away", N);
5625                  Error_Msg_N ("\?c?value is known to be in range", N);
5626               end if;
5627
5628               Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5629               Analyze_And_Resolve (N, Restyp);
5630               Set_Is_Static_Expression (N, Static);
5631               goto Leave;
5632
5633            --  If lower bound check succeeds and upper bound check is not
5634            --  known to succeed or fail, then replace the range check with
5635            --  a comparison against the upper bound.
5636
5637            elsif Lcheck in Compare_GE then
5638               if Warn2 and then not In_Instance then
5639                  Error_Msg_N ("??lower bound test optimized away", Lo);
5640                  Error_Msg_N ("\??value is known to be in range", Lo);
5641               end if;
5642
5643               Rewrite (N,
5644                 Make_Op_Le (Loc,
5645                   Left_Opnd  => Lop,
5646                   Right_Opnd => High_Bound (Rop)));
5647               Analyze_And_Resolve (N, Restyp);
5648               goto Leave;
5649
5650            --  If upper bound check succeeds and lower bound check is not
5651            --  known to succeed or fail, then replace the range check with
5652            --  a comparison against the lower bound.
5653
5654            elsif Ucheck in Compare_LE then
5655               if Warn2 and then not In_Instance then
5656                  Error_Msg_N ("??upper bound test optimized away", Hi);
5657                  Error_Msg_N ("\??value is known to be in range", Hi);
5658               end if;
5659
5660               Rewrite (N,
5661                 Make_Op_Ge (Loc,
5662                   Left_Opnd  => Lop,
5663                   Right_Opnd => Low_Bound (Rop)));
5664               Analyze_And_Resolve (N, Restyp);
5665               goto Leave;
5666            end if;
5667
5668            --  We couldn't optimize away the range check, but there is one
5669            --  more issue. If we are checking constant conditionals, then we
5670            --  see if we can determine the outcome assuming everything is
5671            --  valid, and if so give an appropriate warning.
5672
5673            if Warn1 and then not Assume_No_Invalid_Values then
5674               Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
5675               Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
5676
5677               --  Result is out of range for valid value
5678
5679               if Lcheck = LT or else Ucheck = GT then
5680                  Error_Msg_N
5681                    ("?c?value can only be in range if it is invalid", N);
5682
5683               --  Result is in range for valid value
5684
5685               elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
5686                  Error_Msg_N
5687                    ("?c?value can only be out of range if it is invalid", N);
5688
5689               --  Lower bound check succeeds if value is valid
5690
5691               elsif Warn2 and then Lcheck in Compare_GE then
5692                  Error_Msg_N
5693                    ("?c?lower bound check only fails if it is invalid", Lo);
5694
5695               --  Upper bound  check succeeds if value is valid
5696
5697               elsif Warn2 and then Ucheck in Compare_LE then
5698                  Error_Msg_N
5699                    ("?c?upper bound check only fails for invalid values", Hi);
5700               end if;
5701            end if;
5702         end;
5703
5704         --  For all other cases of an explicit range, nothing to be done
5705
5706         goto Leave;
5707
5708      --  Here right operand is a subtype mark
5709
5710      else
5711         declare
5712            Typ       : Entity_Id        := Etype (Rop);
5713            Is_Acc    : constant Boolean := Is_Access_Type (Typ);
5714            Cond      : Node_Id          := Empty;
5715            New_N     : Node_Id;
5716            Obj       : Node_Id          := Lop;
5717            SCIL_Node : Node_Id;
5718
5719         begin
5720            Remove_Side_Effects (Obj);
5721
5722            --  For tagged type, do tagged membership operation
5723
5724            if Is_Tagged_Type (Typ) then
5725
5726               --  No expansion will be performed when VM_Target, as the VM
5727               --  back-ends will handle the membership tests directly (tags
5728               --  are not explicitly represented in Java objects, so the
5729               --  normal tagged membership expansion is not what we want).
5730
5731               if Tagged_Type_Expansion then
5732                  Tagged_Membership (N, SCIL_Node, New_N);
5733                  Rewrite (N, New_N);
5734                  Analyze_And_Resolve (N, Restyp);
5735
5736                  --  Update decoration of relocated node referenced by the
5737                  --  SCIL node.
5738
5739                  if Generate_SCIL and then Present (SCIL_Node) then
5740                     Set_SCIL_Node (N, SCIL_Node);
5741                  end if;
5742               end if;
5743
5744               goto Leave;
5745
5746            --  If type is scalar type, rewrite as x in t'First .. t'Last.
5747            --  This reason we do this is that the bounds may have the wrong
5748            --  type if they come from the original type definition. Also this
5749            --  way we get all the processing above for an explicit range.
5750
5751            --  Don't do this for predicated types, since in this case we
5752            --  want to check the predicate.
5753
5754            elsif Is_Scalar_Type (Typ) then
5755               if No (Predicate_Function (Typ)) then
5756                  Rewrite (Rop,
5757                    Make_Range (Loc,
5758                      Low_Bound =>
5759                        Make_Attribute_Reference (Loc,
5760                          Attribute_Name => Name_First,
5761                          Prefix         => New_Occurrence_Of (Typ, Loc)),
5762
5763                      High_Bound =>
5764                        Make_Attribute_Reference (Loc,
5765                          Attribute_Name => Name_Last,
5766                          Prefix         => New_Occurrence_Of (Typ, Loc))));
5767                  Analyze_And_Resolve (N, Restyp);
5768               end if;
5769
5770               goto Leave;
5771
5772            --  Ada 2005 (AI-216): Program_Error is raised when evaluating
5773            --  a membership test if the subtype mark denotes a constrained
5774            --  Unchecked_Union subtype and the expression lacks inferable
5775            --  discriminants.
5776
5777            elsif Is_Unchecked_Union (Base_Type (Typ))
5778              and then Is_Constrained (Typ)
5779              and then not Has_Inferable_Discriminants (Lop)
5780            then
5781               Insert_Action (N,
5782                 Make_Raise_Program_Error (Loc,
5783                   Reason => PE_Unchecked_Union_Restriction));
5784
5785               --  Prevent Gigi from generating incorrect code by rewriting the
5786               --  test as False. What is this undocumented thing about ???
5787
5788               Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5789               goto Leave;
5790            end if;
5791
5792            --  Here we have a non-scalar type
5793
5794            if Is_Acc then
5795               Typ := Designated_Type (Typ);
5796            end if;
5797
5798            if not Is_Constrained (Typ) then
5799               Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5800               Analyze_And_Resolve (N, Restyp);
5801
5802            --  For the constrained array case, we have to check the subscripts
5803            --  for an exact match if the lengths are non-zero (the lengths
5804            --  must match in any case).
5805
5806            elsif Is_Array_Type (Typ) then
5807               Check_Subscripts : declare
5808                  function Build_Attribute_Reference
5809                    (E   : Node_Id;
5810                     Nam : Name_Id;
5811                     Dim : Nat) return Node_Id;
5812                  --  Build attribute reference E'Nam (Dim)
5813
5814                  -------------------------------
5815                  -- Build_Attribute_Reference --
5816                  -------------------------------
5817
5818                  function Build_Attribute_Reference
5819                    (E   : Node_Id;
5820                     Nam : Name_Id;
5821                     Dim : Nat) return Node_Id
5822                  is
5823                  begin
5824                     return
5825                       Make_Attribute_Reference (Loc,
5826                         Prefix         => E,
5827                         Attribute_Name => Nam,
5828                         Expressions    => New_List (
5829                           Make_Integer_Literal (Loc, Dim)));
5830                  end Build_Attribute_Reference;
5831
5832               --  Start of processing for Check_Subscripts
5833
5834               begin
5835                  for J in 1 .. Number_Dimensions (Typ) loop
5836                     Evolve_And_Then (Cond,
5837                       Make_Op_Eq (Loc,
5838                         Left_Opnd  =>
5839                           Build_Attribute_Reference
5840                             (Duplicate_Subexpr_No_Checks (Obj),
5841                              Name_First, J),
5842                         Right_Opnd =>
5843                           Build_Attribute_Reference
5844                             (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5845
5846                     Evolve_And_Then (Cond,
5847                       Make_Op_Eq (Loc,
5848                         Left_Opnd  =>
5849                           Build_Attribute_Reference
5850                             (Duplicate_Subexpr_No_Checks (Obj),
5851                              Name_Last, J),
5852                         Right_Opnd =>
5853                           Build_Attribute_Reference
5854                             (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5855                  end loop;
5856
5857                  if Is_Acc then
5858                     Cond :=
5859                       Make_Or_Else (Loc,
5860                         Left_Opnd =>
5861                           Make_Op_Eq (Loc,
5862                             Left_Opnd  => Obj,
5863                             Right_Opnd => Make_Null (Loc)),
5864                         Right_Opnd => Cond);
5865                  end if;
5866
5867                  Rewrite (N, Cond);
5868                  Analyze_And_Resolve (N, Restyp);
5869               end Check_Subscripts;
5870
5871            --  These are the cases where constraint checks may be required,
5872            --  e.g. records with possible discriminants
5873
5874            else
5875               --  Expand the test into a series of discriminant comparisons.
5876               --  The expression that is built is the negation of the one that
5877               --  is used for checking discriminant constraints.
5878
5879               Obj := Relocate_Node (Left_Opnd (N));
5880
5881               if Has_Discriminants (Typ) then
5882                  Cond := Make_Op_Not (Loc,
5883                    Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5884
5885                  if Is_Acc then
5886                     Cond := Make_Or_Else (Loc,
5887                       Left_Opnd =>
5888                         Make_Op_Eq (Loc,
5889                           Left_Opnd  => Obj,
5890                           Right_Opnd => Make_Null (Loc)),
5891                       Right_Opnd => Cond);
5892                  end if;
5893
5894               else
5895                  Cond := New_Occurrence_Of (Standard_True, Loc);
5896               end if;
5897
5898               Rewrite (N, Cond);
5899               Analyze_And_Resolve (N, Restyp);
5900            end if;
5901
5902            --  Ada 2012 (AI05-0149): Handle membership tests applied to an
5903            --  expression of an anonymous access type. This can involve an
5904            --  accessibility test and a tagged type membership test in the
5905            --  case of tagged designated types.
5906
5907            if Ada_Version >= Ada_2012
5908              and then Is_Acc
5909              and then Ekind (Ltyp) = E_Anonymous_Access_Type
5910            then
5911               declare
5912                  Expr_Entity : Entity_Id := Empty;
5913                  New_N       : Node_Id;
5914                  Param_Level : Node_Id;
5915                  Type_Level  : Node_Id;
5916
5917               begin
5918                  if Is_Entity_Name (Lop) then
5919                     Expr_Entity := Param_Entity (Lop);
5920
5921                     if not Present (Expr_Entity) then
5922                        Expr_Entity := Entity (Lop);
5923                     end if;
5924                  end if;
5925
5926                  --  If a conversion of the anonymous access value to the
5927                  --  tested type would be illegal, then the result is False.
5928
5929                  if not Valid_Conversion
5930                           (Lop, Rtyp, Lop, Report_Errs => False)
5931                  then
5932                     Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5933                     Analyze_And_Resolve (N, Restyp);
5934
5935                  --  Apply an accessibility check if the access object has an
5936                  --  associated access level and when the level of the type is
5937                  --  less deep than the level of the access parameter. This
5938                  --  only occur for access parameters and stand-alone objects
5939                  --  of an anonymous access type.
5940
5941                  else
5942                     if Present (Expr_Entity)
5943                       and then
5944                         Present
5945                           (Effective_Extra_Accessibility (Expr_Entity))
5946                       and then UI_Gt (Object_Access_Level (Lop),
5947                                       Type_Access_Level (Rtyp))
5948                     then
5949                        Param_Level :=
5950                          New_Occurrence_Of
5951                            (Effective_Extra_Accessibility (Expr_Entity), Loc);
5952
5953                        Type_Level :=
5954                          Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
5955
5956                        --  Return True only if the accessibility level of the
5957                        --  expression entity is not deeper than the level of
5958                        --  the tested access type.
5959
5960                        Rewrite (N,
5961                          Make_And_Then (Loc,
5962                            Left_Opnd  => Relocate_Node (N),
5963                            Right_Opnd => Make_Op_Le (Loc,
5964                                            Left_Opnd  => Param_Level,
5965                                            Right_Opnd => Type_Level)));
5966
5967                        Analyze_And_Resolve (N);
5968                     end if;
5969
5970                     --  If the designated type is tagged, do tagged membership
5971                     --  operation.
5972
5973                     --  *** NOTE: we have to check not null before doing the
5974                     --  tagged membership test (but maybe that can be done
5975                     --  inside Tagged_Membership?).
5976
5977                     if Is_Tagged_Type (Typ) then
5978                        Rewrite (N,
5979                          Make_And_Then (Loc,
5980                            Left_Opnd  => Relocate_Node (N),
5981                            Right_Opnd =>
5982                              Make_Op_Ne (Loc,
5983                                Left_Opnd  => Obj,
5984                                Right_Opnd => Make_Null (Loc))));
5985
5986                        --  No expansion will be performed when VM_Target, as
5987                        --  the VM back-ends will handle the membership tests
5988                        --  directly (tags are not explicitly represented in
5989                        --  Java objects, so the normal tagged membership
5990                        --  expansion is not what we want).
5991
5992                        if Tagged_Type_Expansion then
5993
5994                           --  Note that we have to pass Original_Node, because
5995                           --  the membership test might already have been
5996                           --  rewritten by earlier parts of membership test.
5997
5998                           Tagged_Membership
5999                             (Original_Node (N), SCIL_Node, New_N);
6000
6001                           --  Update decoration of relocated node referenced
6002                           --  by the SCIL node.
6003
6004                           if Generate_SCIL and then Present (SCIL_Node) then
6005                              Set_SCIL_Node (New_N, SCIL_Node);
6006                           end if;
6007
6008                           Rewrite (N,
6009                             Make_And_Then (Loc,
6010                               Left_Opnd  => Relocate_Node (N),
6011                               Right_Opnd => New_N));
6012
6013                           Analyze_And_Resolve (N, Restyp);
6014                        end if;
6015                     end if;
6016                  end if;
6017               end;
6018            end if;
6019         end;
6020      end if;
6021
6022   --  At this point, we have done the processing required for the basic
6023   --  membership test, but not yet dealt with the predicate.
6024
6025   <<Leave>>
6026
6027      --  If a predicate is present, then we do the predicate test, but we
6028      --  most certainly want to omit this if we are within the predicate
6029      --  function itself, since otherwise we have an infinite recursion.
6030      --  The check should also not be emitted when testing against a range
6031      --  (the check is only done when the right operand is a subtype; see
6032      --  RM12-4.5.2 (28.1/3-30/3)).
6033
6034      declare
6035         PFunc : constant Entity_Id := Predicate_Function (Rtyp);
6036
6037      begin
6038         if Present (PFunc)
6039           and then Current_Scope /= PFunc
6040           and then Nkind (Rop) /= N_Range
6041         then
6042            Rewrite (N,
6043              Make_And_Then (Loc,
6044                Left_Opnd  => Relocate_Node (N),
6045                Right_Opnd => Make_Predicate_Call (Rtyp, Lop, Mem => True)));
6046
6047            --  Analyze new expression, mark left operand as analyzed to
6048            --  avoid infinite recursion adding predicate calls. Similarly,
6049            --  suppress further range checks on the call.
6050
6051            Set_Analyzed (Left_Opnd (N));
6052            Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6053
6054            --  All done, skip attempt at compile time determination of result
6055
6056            return;
6057         end if;
6058      end;
6059   end Expand_N_In;
6060
6061   --------------------------------
6062   -- Expand_N_Indexed_Component --
6063   --------------------------------
6064
6065   procedure Expand_N_Indexed_Component (N : Node_Id) is
6066      Loc : constant Source_Ptr := Sloc (N);
6067      Typ : constant Entity_Id  := Etype (N);
6068      P   : constant Node_Id    := Prefix (N);
6069      T   : constant Entity_Id  := Etype (P);
6070      Atp : Entity_Id;
6071
6072   begin
6073      --  A special optimization, if we have an indexed component that is
6074      --  selecting from a slice, then we can eliminate the slice, since, for
6075      --  example, x (i .. j)(k) is identical to x(k). The only difference is
6076      --  the range check required by the slice. The range check for the slice
6077      --  itself has already been generated. The range check for the
6078      --  subscripting operation is ensured by converting the subject to
6079      --  the subtype of the slice.
6080
6081      --  This optimization not only generates better code, avoiding slice
6082      --  messing especially in the packed case, but more importantly bypasses
6083      --  some problems in handling this peculiar case, for example, the issue
6084      --  of dealing specially with object renamings.
6085
6086      if Nkind (P) = N_Slice then
6087         Rewrite (N,
6088           Make_Indexed_Component (Loc,
6089             Prefix => Prefix (P),
6090             Expressions => New_List (
6091               Convert_To
6092                 (Etype (First_Index (Etype (P))),
6093                  First (Expressions (N))))));
6094         Analyze_And_Resolve (N, Typ);
6095         return;
6096      end if;
6097
6098      --  Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6099      --  function, then additional actuals must be passed.
6100
6101      if Ada_Version >= Ada_2005
6102        and then Is_Build_In_Place_Function_Call (P)
6103      then
6104         Make_Build_In_Place_Call_In_Anonymous_Context (P);
6105      end if;
6106
6107      --  If the prefix is an access type, then we unconditionally rewrite if
6108      --  as an explicit dereference. This simplifies processing for several
6109      --  cases, including packed array cases and certain cases in which checks
6110      --  must be generated. We used to try to do this only when it was
6111      --  necessary, but it cleans up the code to do it all the time.
6112
6113      if Is_Access_Type (T) then
6114         Insert_Explicit_Dereference (P);
6115         Analyze_And_Resolve (P, Designated_Type (T));
6116         Atp := Designated_Type (T);
6117      else
6118         Atp := T;
6119      end if;
6120
6121      --  Generate index and validity checks
6122
6123      Generate_Index_Checks (N);
6124
6125      if Validity_Checks_On and then Validity_Check_Subscripts then
6126         Apply_Subscript_Validity_Checks (N);
6127      end if;
6128
6129      --  If selecting from an array with atomic components, and atomic sync
6130      --  is not suppressed for this array type, set atomic sync flag.
6131
6132      if (Has_Atomic_Components (Atp)
6133           and then not Atomic_Synchronization_Disabled (Atp))
6134        or else (Is_Atomic (Typ)
6135                  and then not Atomic_Synchronization_Disabled (Typ))
6136      then
6137         Activate_Atomic_Synchronization (N);
6138      end if;
6139
6140      --  All done for the non-packed case
6141
6142      if not Is_Packed (Etype (Prefix (N))) then
6143         return;
6144      end if;
6145
6146      --  For packed arrays that are not bit-packed (i.e. the case of an array
6147      --  with one or more index types with a non-contiguous enumeration type),
6148      --  we can always use the normal packed element get circuit.
6149
6150      if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6151         Expand_Packed_Element_Reference (N);
6152         return;
6153      end if;
6154
6155      --  For a reference to a component of a bit packed array, we have to
6156      --  convert it to a reference to the corresponding Packed_Array_Type.
6157      --  We only want to do this for simple references, and not for:
6158
6159      --    Left side of assignment, or prefix of left side of assignment, or
6160      --    prefix of the prefix, to handle packed arrays of packed arrays,
6161      --      This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6162
6163      --    Renaming objects in renaming associations
6164      --      This case is handled when a use of the renamed variable occurs
6165
6166      --    Actual parameters for a procedure call
6167      --      This case is handled in Exp_Ch6.Expand_Actuals
6168
6169      --    The second expression in a 'Read attribute reference
6170
6171      --    The prefix of an address or bit or size attribute reference
6172
6173      --  The following circuit detects these exceptions
6174
6175      declare
6176         Child : Node_Id := N;
6177         Parnt : Node_Id := Parent (N);
6178
6179      begin
6180         loop
6181            if Nkind (Parnt) = N_Unchecked_Expression then
6182               null;
6183
6184            elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
6185                                   N_Procedure_Call_Statement)
6186              or else (Nkind (Parnt) = N_Parameter_Association
6187                        and then
6188                          Nkind (Parent (Parnt)) =  N_Procedure_Call_Statement)
6189            then
6190               return;
6191
6192            elsif Nkind (Parnt) = N_Attribute_Reference
6193              and then Nam_In (Attribute_Name (Parnt), Name_Address,
6194                                                       Name_Bit,
6195                                                       Name_Size)
6196              and then Prefix (Parnt) = Child
6197            then
6198               return;
6199
6200            elsif Nkind (Parnt) = N_Assignment_Statement
6201              and then Name (Parnt) = Child
6202            then
6203               return;
6204
6205            --  If the expression is an index of an indexed component, it must
6206            --  be expanded regardless of context.
6207
6208            elsif Nkind (Parnt) = N_Indexed_Component
6209              and then Child /= Prefix (Parnt)
6210            then
6211               Expand_Packed_Element_Reference (N);
6212               return;
6213
6214            elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
6215              and then Name (Parent (Parnt)) = Parnt
6216            then
6217               return;
6218
6219            elsif Nkind (Parnt) = N_Attribute_Reference
6220              and then Attribute_Name (Parnt) = Name_Read
6221              and then Next (First (Expressions (Parnt))) = Child
6222            then
6223               return;
6224
6225            elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
6226              and then Prefix (Parnt) = Child
6227            then
6228               null;
6229
6230            else
6231               Expand_Packed_Element_Reference (N);
6232               return;
6233            end if;
6234
6235            --  Keep looking up tree for unchecked expression, or if we are the
6236            --  prefix of a possible assignment left side.
6237
6238            Child := Parnt;
6239            Parnt := Parent (Child);
6240         end loop;
6241      end;
6242   end Expand_N_Indexed_Component;
6243
6244   ---------------------
6245   -- Expand_N_Not_In --
6246   ---------------------
6247
6248   --  Replace a not in b by not (a in b) so that the expansions for (a in b)
6249   --  can be done. This avoids needing to duplicate this expansion code.
6250
6251   procedure Expand_N_Not_In (N : Node_Id) is
6252      Loc : constant Source_Ptr := Sloc (N);
6253      Typ : constant Entity_Id  := Etype (N);
6254      Cfs : constant Boolean    := Comes_From_Source (N);
6255
6256   begin
6257      Rewrite (N,
6258        Make_Op_Not (Loc,
6259          Right_Opnd =>
6260            Make_In (Loc,
6261              Left_Opnd  => Left_Opnd (N),
6262              Right_Opnd => Right_Opnd (N))));
6263
6264      --  If this is a set membership, preserve list of alternatives
6265
6266      Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
6267
6268      --  We want this to appear as coming from source if original does (see
6269      --  transformations in Expand_N_In).
6270
6271      Set_Comes_From_Source (N, Cfs);
6272      Set_Comes_From_Source (Right_Opnd (N), Cfs);
6273
6274      --  Now analyze transformed node
6275
6276      Analyze_And_Resolve (N, Typ);
6277   end Expand_N_Not_In;
6278
6279   -------------------
6280   -- Expand_N_Null --
6281   -------------------
6282
6283   --  The only replacement required is for the case of a null of a type that
6284   --  is an access to protected subprogram, or a subtype thereof. We represent
6285   --  such access values as a record, and so we must replace the occurrence of
6286   --  null by the equivalent record (with a null address and a null pointer in
6287   --  it), so that the backend creates the proper value.
6288
6289   procedure Expand_N_Null (N : Node_Id) is
6290      Loc : constant Source_Ptr := Sloc (N);
6291      Typ : constant Entity_Id  := Base_Type (Etype (N));
6292      Agg : Node_Id;
6293
6294   begin
6295      if Is_Access_Protected_Subprogram_Type (Typ) then
6296         Agg :=
6297           Make_Aggregate (Loc,
6298             Expressions => New_List (
6299               New_Occurrence_Of (RTE (RE_Null_Address), Loc),
6300               Make_Null (Loc)));
6301
6302         Rewrite (N, Agg);
6303         Analyze_And_Resolve (N, Equivalent_Type (Typ));
6304
6305         --  For subsequent semantic analysis, the node must retain its type.
6306         --  Gigi in any case replaces this type by the corresponding record
6307         --  type before processing the node.
6308
6309         Set_Etype (N, Typ);
6310      end if;
6311
6312   exception
6313      when RE_Not_Available =>
6314         return;
6315   end Expand_N_Null;
6316
6317   ---------------------
6318   -- Expand_N_Op_Abs --
6319   ---------------------
6320
6321   procedure Expand_N_Op_Abs (N : Node_Id) is
6322      Loc  : constant Source_Ptr := Sloc (N);
6323      Expr : constant Node_Id := Right_Opnd (N);
6324
6325   begin
6326      Unary_Op_Validity_Checks (N);
6327
6328      --  Check for MINIMIZED/ELIMINATED overflow mode
6329
6330      if Minimized_Eliminated_Overflow_Check (N) then
6331         Apply_Arithmetic_Overflow_Check (N);
6332         return;
6333      end if;
6334
6335      --  Deal with software overflow checking
6336
6337      if not Backend_Overflow_Checks_On_Target
6338        and then Is_Signed_Integer_Type (Etype (N))
6339        and then Do_Overflow_Check (N)
6340      then
6341         --  The only case to worry about is when the argument is equal to the
6342         --  largest negative number, so what we do is to insert the check:
6343
6344         --     [constraint_error when Expr = typ'Base'First]
6345
6346         --  with the usual Duplicate_Subexpr use coding for expr
6347
6348         Insert_Action (N,
6349           Make_Raise_Constraint_Error (Loc,
6350             Condition =>
6351               Make_Op_Eq (Loc,
6352                 Left_Opnd  => Duplicate_Subexpr (Expr),
6353                 Right_Opnd =>
6354                   Make_Attribute_Reference (Loc,
6355                     Prefix =>
6356                       New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
6357                     Attribute_Name => Name_First)),
6358             Reason => CE_Overflow_Check_Failed));
6359      end if;
6360
6361      --  Vax floating-point types case
6362
6363      if Vax_Float (Etype (N)) then
6364         Expand_Vax_Arith (N);
6365      end if;
6366   end Expand_N_Op_Abs;
6367
6368   ---------------------
6369   -- Expand_N_Op_Add --
6370   ---------------------
6371
6372   procedure Expand_N_Op_Add (N : Node_Id) is
6373      Typ : constant Entity_Id := Etype (N);
6374
6375   begin
6376      Binary_Op_Validity_Checks (N);
6377
6378      --  Check for MINIMIZED/ELIMINATED overflow mode
6379
6380      if Minimized_Eliminated_Overflow_Check (N) then
6381         Apply_Arithmetic_Overflow_Check (N);
6382         return;
6383      end if;
6384
6385      --  N + 0 = 0 + N = N for integer types
6386
6387      if Is_Integer_Type (Typ) then
6388         if Compile_Time_Known_Value (Right_Opnd (N))
6389           and then Expr_Value (Right_Opnd (N)) = Uint_0
6390         then
6391            Rewrite (N, Left_Opnd (N));
6392            return;
6393
6394         elsif Compile_Time_Known_Value (Left_Opnd (N))
6395           and then Expr_Value (Left_Opnd (N)) = Uint_0
6396         then
6397            Rewrite (N, Right_Opnd (N));
6398            return;
6399         end if;
6400      end if;
6401
6402      --  Arithmetic overflow checks for signed integer/fixed point types
6403
6404      if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
6405         Apply_Arithmetic_Overflow_Check (N);
6406         return;
6407
6408      --  Vax floating-point types case
6409
6410      elsif Vax_Float (Typ) then
6411         Expand_Vax_Arith (N);
6412      end if;
6413   end Expand_N_Op_Add;
6414
6415   ---------------------
6416   -- Expand_N_Op_And --
6417   ---------------------
6418
6419   procedure Expand_N_Op_And (N : Node_Id) is
6420      Typ : constant Entity_Id := Etype (N);
6421
6422   begin
6423      Binary_Op_Validity_Checks (N);
6424
6425      if Is_Array_Type (Etype (N)) then
6426         Expand_Boolean_Operator (N);
6427
6428      elsif Is_Boolean_Type (Etype (N)) then
6429         Adjust_Condition (Left_Opnd (N));
6430         Adjust_Condition (Right_Opnd (N));
6431         Set_Etype (N, Standard_Boolean);
6432         Adjust_Result_Type (N, Typ);
6433
6434      elsif Is_Intrinsic_Subprogram (Entity (N)) then
6435         Expand_Intrinsic_Call (N, Entity (N));
6436
6437      end if;
6438   end Expand_N_Op_And;
6439
6440   ------------------------
6441   -- Expand_N_Op_Concat --
6442   ------------------------
6443
6444   procedure Expand_N_Op_Concat (N : Node_Id) is
6445      Opnds : List_Id;
6446      --  List of operands to be concatenated
6447
6448      Cnode : Node_Id;
6449      --  Node which is to be replaced by the result of concatenating the nodes
6450      --  in the list Opnds.
6451
6452   begin
6453      --  Ensure validity of both operands
6454
6455      Binary_Op_Validity_Checks (N);
6456
6457      --  If we are the left operand of a concatenation higher up the tree,
6458      --  then do nothing for now, since we want to deal with a series of
6459      --  concatenations as a unit.
6460
6461      if Nkind (Parent (N)) = N_Op_Concat
6462        and then N = Left_Opnd (Parent (N))
6463      then
6464         return;
6465      end if;
6466
6467      --  We get here with a concatenation whose left operand may be a
6468      --  concatenation itself with a consistent type. We need to process
6469      --  these concatenation operands from left to right, which means
6470      --  from the deepest node in the tree to the highest node.
6471
6472      Cnode := N;
6473      while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
6474         Cnode := Left_Opnd (Cnode);
6475      end loop;
6476
6477      --  Now Cnode is the deepest concatenation, and its parents are the
6478      --  concatenation nodes above, so now we process bottom up, doing the
6479      --  operands.
6480
6481      --  The outer loop runs more than once if more than one concatenation
6482      --  type is involved.
6483
6484      Outer : loop
6485         Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
6486         Set_Parent (Opnds, N);
6487
6488         --  The inner loop gathers concatenation operands
6489
6490         Inner : while Cnode /= N
6491                   and then Base_Type (Etype (Cnode)) =
6492                            Base_Type (Etype (Parent (Cnode)))
6493         loop
6494            Cnode := Parent (Cnode);
6495            Append (Right_Opnd (Cnode), Opnds);
6496         end loop Inner;
6497
6498         Expand_Concatenate (Cnode, Opnds);
6499
6500         exit Outer when Cnode = N;
6501         Cnode := Parent (Cnode);
6502      end loop Outer;
6503   end Expand_N_Op_Concat;
6504
6505   ------------------------
6506   -- Expand_N_Op_Divide --
6507   ------------------------
6508
6509   procedure Expand_N_Op_Divide (N : Node_Id) is
6510      Loc   : constant Source_Ptr := Sloc (N);
6511      Lopnd : constant Node_Id    := Left_Opnd (N);
6512      Ropnd : constant Node_Id    := Right_Opnd (N);
6513      Ltyp  : constant Entity_Id  := Etype (Lopnd);
6514      Rtyp  : constant Entity_Id  := Etype (Ropnd);
6515      Typ   : Entity_Id           := Etype (N);
6516      Rknow : constant Boolean    := Is_Integer_Type (Typ)
6517                                       and then
6518                                         Compile_Time_Known_Value (Ropnd);
6519      Rval  : Uint;
6520
6521   begin
6522      Binary_Op_Validity_Checks (N);
6523
6524      --  Check for MINIMIZED/ELIMINATED overflow mode
6525
6526      if Minimized_Eliminated_Overflow_Check (N) then
6527         Apply_Arithmetic_Overflow_Check (N);
6528         return;
6529      end if;
6530
6531      --  Otherwise proceed with expansion of division
6532
6533      if Rknow then
6534         Rval := Expr_Value (Ropnd);
6535      end if;
6536
6537      --  N / 1 = N for integer types
6538
6539      if Rknow and then Rval = Uint_1 then
6540         Rewrite (N, Lopnd);
6541         return;
6542      end if;
6543
6544      --  Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6545      --  Is_Power_Of_2_For_Shift is set means that we know that our left
6546      --  operand is an unsigned integer, as required for this to work.
6547
6548      if Nkind (Ropnd) = N_Op_Expon
6549        and then Is_Power_Of_2_For_Shift (Ropnd)
6550
6551      --  We cannot do this transformation in configurable run time mode if we
6552      --  have 64-bit integers and long shifts are not available.
6553
6554        and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
6555      then
6556         Rewrite (N,
6557           Make_Op_Shift_Right (Loc,
6558             Left_Opnd  => Lopnd,
6559             Right_Opnd =>
6560               Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
6561         Analyze_And_Resolve (N, Typ);
6562         return;
6563      end if;
6564
6565      --  Do required fixup of universal fixed operation
6566
6567      if Typ = Universal_Fixed then
6568         Fixup_Universal_Fixed_Operation (N);
6569         Typ := Etype (N);
6570      end if;
6571
6572      --  Divisions with fixed-point results
6573
6574      if Is_Fixed_Point_Type (Typ) then
6575
6576         --  No special processing if Treat_Fixed_As_Integer is set, since
6577         --  from a semantic point of view such operations are simply integer
6578         --  operations and will be treated that way.
6579
6580         if not Treat_Fixed_As_Integer (N) then
6581            if Is_Integer_Type (Rtyp) then
6582               Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
6583            else
6584               Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
6585            end if;
6586         end if;
6587
6588      --  Other cases of division of fixed-point operands. Again we exclude the
6589      --  case where Treat_Fixed_As_Integer is set.
6590
6591      elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
6592        and then not Treat_Fixed_As_Integer (N)
6593      then
6594         if Is_Integer_Type (Typ) then
6595            Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
6596         else
6597            pragma Assert (Is_Floating_Point_Type (Typ));
6598            Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
6599         end if;
6600
6601      --  Mixed-mode operations can appear in a non-static universal context,
6602      --  in which case the integer argument must be converted explicitly.
6603
6604      elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
6605         Rewrite (Ropnd,
6606           Convert_To (Universal_Real, Relocate_Node (Ropnd)));
6607
6608         Analyze_And_Resolve (Ropnd, Universal_Real);
6609
6610      elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
6611         Rewrite (Lopnd,
6612           Convert_To (Universal_Real, Relocate_Node (Lopnd)));
6613
6614         Analyze_And_Resolve (Lopnd, Universal_Real);
6615
6616      --  Non-fixed point cases, do integer zero divide and overflow checks
6617
6618      elsif Is_Integer_Type (Typ) then
6619         Apply_Divide_Checks (N);
6620
6621      --  Deal with Vax_Float
6622
6623      elsif Vax_Float (Typ) then
6624         Expand_Vax_Arith (N);
6625         return;
6626      end if;
6627   end Expand_N_Op_Divide;
6628
6629   --------------------
6630   -- Expand_N_Op_Eq --
6631   --------------------
6632
6633   procedure Expand_N_Op_Eq (N : Node_Id) is
6634      Loc    : constant Source_Ptr := Sloc (N);
6635      Typ    : constant Entity_Id  := Etype (N);
6636      Lhs    : constant Node_Id    := Left_Opnd (N);
6637      Rhs    : constant Node_Id    := Right_Opnd (N);
6638      Bodies : constant List_Id    := New_List;
6639      A_Typ  : constant Entity_Id  := Etype (Lhs);
6640
6641      Typl    : Entity_Id := A_Typ;
6642      Op_Name : Entity_Id;
6643      Prim    : Elmt_Id;
6644
6645      procedure Build_Equality_Call (Eq : Entity_Id);
6646      --  If a constructed equality exists for the type or for its parent,
6647      --  build and analyze call, adding conversions if the operation is
6648      --  inherited.
6649
6650      function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
6651      --  Determines whether a type has a subcomponent of an unconstrained
6652      --  Unchecked_Union subtype. Typ is a record type.
6653
6654      -------------------------
6655      -- Build_Equality_Call --
6656      -------------------------
6657
6658      procedure Build_Equality_Call (Eq : Entity_Id) is
6659         Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
6660         L_Exp   : Node_Id := Relocate_Node (Lhs);
6661         R_Exp   : Node_Id := Relocate_Node (Rhs);
6662
6663      begin
6664         if Base_Type (Op_Type) /= Base_Type (A_Typ)
6665           and then not Is_Class_Wide_Type (A_Typ)
6666         then
6667            L_Exp := OK_Convert_To (Op_Type, L_Exp);
6668            R_Exp := OK_Convert_To (Op_Type, R_Exp);
6669         end if;
6670
6671         --  If we have an Unchecked_Union, we need to add the inferred
6672         --  discriminant values as actuals in the function call. At this
6673         --  point, the expansion has determined that both operands have
6674         --  inferable discriminants.
6675
6676         if Is_Unchecked_Union (Op_Type) then
6677            declare
6678               Lhs_Type : constant Node_Id := Etype (L_Exp);
6679               Rhs_Type : constant Node_Id := Etype (R_Exp);
6680
6681               Lhs_Discr_Vals : Elist_Id;
6682               --  List of inferred discriminant values for left operand.
6683
6684               Rhs_Discr_Vals : Elist_Id;
6685               --  List of inferred discriminant values for right operand.
6686
6687               Discr : Entity_Id;
6688
6689            begin
6690               Lhs_Discr_Vals := New_Elmt_List;
6691               Rhs_Discr_Vals := New_Elmt_List;
6692
6693               --  Per-object constrained selected components require special
6694               --  attention. If the enclosing scope of the component is an
6695               --  Unchecked_Union, we cannot reference its discriminants
6696               --  directly. This is why we use the extra parameters of the
6697               --  equality function of the enclosing Unchecked_Union.
6698
6699               --  type UU_Type (Discr : Integer := 0) is
6700               --     . . .
6701               --  end record;
6702               --  pragma Unchecked_Union (UU_Type);
6703
6704               --  1. Unchecked_Union enclosing record:
6705
6706               --     type Enclosing_UU_Type (Discr : Integer := 0) is record
6707               --        . . .
6708               --        Comp : UU_Type (Discr);
6709               --        . . .
6710               --     end Enclosing_UU_Type;
6711               --     pragma Unchecked_Union (Enclosing_UU_Type);
6712
6713               --     Obj1 : Enclosing_UU_Type;
6714               --     Obj2 : Enclosing_UU_Type (1);
6715
6716               --     [. . .] Obj1 = Obj2 [. . .]
6717
6718               --     Generated code:
6719
6720               --     if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6721
6722               --  A and B are the formal parameters of the equality function
6723               --  of Enclosing_UU_Type. The function always has two extra
6724               --  formals to capture the inferred discriminant values for
6725               --  each discriminant of the type.
6726
6727               --  2. Non-Unchecked_Union enclosing record:
6728
6729               --     type
6730               --       Enclosing_Non_UU_Type (Discr : Integer := 0)
6731               --     is record
6732               --        . . .
6733               --        Comp : UU_Type (Discr);
6734               --        . . .
6735               --     end Enclosing_Non_UU_Type;
6736
6737               --     Obj1 : Enclosing_Non_UU_Type;
6738               --     Obj2 : Enclosing_Non_UU_Type (1);
6739
6740               --     ...  Obj1 = Obj2 ...
6741
6742               --     Generated code:
6743
6744               --     if not (uu_typeEQ (obj1.comp, obj2.comp,
6745               --                        obj1.discr, obj2.discr)) then
6746
6747               --  In this case we can directly reference the discriminants of
6748               --  the enclosing record.
6749
6750               --  Process left operand of equality
6751
6752               if Nkind (Lhs) = N_Selected_Component
6753                 and then
6754                   Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
6755               then
6756                  --  If enclosing record is an Unchecked_Union, use formals
6757                  --  corresponding to each discriminant. The name of the
6758                  --  formal is that of the discriminant, with added suffix,
6759                  --  see Exp_Ch3.Build_Record_Equality for details.
6760
6761                  if Is_Unchecked_Union
6762                       (Scope (Entity (Selector_Name (Lhs))))
6763                  then
6764                     Discr :=
6765                       First_Discriminant
6766                         (Scope (Entity (Selector_Name (Lhs))));
6767                     while Present (Discr) loop
6768                        Append_Elmt (
6769                          Make_Identifier (Loc,
6770                            Chars => New_External_Name (Chars (Discr), 'A')),
6771                          To => Lhs_Discr_Vals);
6772                        Next_Discriminant (Discr);
6773                     end loop;
6774
6775                  --  If enclosing record is of a non-Unchecked_Union type, it
6776                  --  is possible to reference its discriminants directly.
6777
6778                  else
6779                     Discr := First_Discriminant (Lhs_Type);
6780                     while Present (Discr) loop
6781                        Append_Elmt (
6782                          Make_Selected_Component (Loc,
6783                            Prefix => Prefix (Lhs),
6784                            Selector_Name =>
6785                              New_Copy
6786                                (Get_Discriminant_Value (Discr,
6787                                    Lhs_Type,
6788                                    Stored_Constraint (Lhs_Type)))),
6789                          To => Lhs_Discr_Vals);
6790                        Next_Discriminant (Discr);
6791                     end loop;
6792                  end if;
6793
6794               --  Otherwise operand is on object with a constrained type.
6795               --  Infer the discriminant values from the constraint.
6796
6797               else
6798
6799                  Discr := First_Discriminant (Lhs_Type);
6800                  while Present (Discr) loop
6801                     Append_Elmt (
6802                       New_Copy
6803                         (Get_Discriminant_Value (Discr,
6804                             Lhs_Type,
6805                             Stored_Constraint (Lhs_Type))),
6806                       To => Lhs_Discr_Vals);
6807                     Next_Discriminant (Discr);
6808                  end loop;
6809               end if;
6810
6811               --  Similar processing for right operand of equality
6812
6813               if Nkind (Rhs) = N_Selected_Component
6814                 and then
6815                   Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
6816               then
6817                  if Is_Unchecked_Union
6818                    (Scope (Entity (Selector_Name (Rhs))))
6819                  then
6820                     Discr :=
6821                       First_Discriminant
6822                         (Scope (Entity (Selector_Name (Rhs))));
6823                     while Present (Discr) loop
6824                        Append_Elmt (
6825                          Make_Identifier (Loc,
6826                            Chars => New_External_Name (Chars (Discr), 'B')),
6827                          To => Rhs_Discr_Vals);
6828                        Next_Discriminant (Discr);
6829                     end loop;
6830
6831                  else
6832                     Discr := First_Discriminant (Rhs_Type);
6833                     while Present (Discr) loop
6834                        Append_Elmt (
6835                          Make_Selected_Component (Loc,
6836                            Prefix        => Prefix (Rhs),
6837                            Selector_Name =>
6838                              New_Copy (Get_Discriminant_Value
6839                                          (Discr,
6840                                           Rhs_Type,
6841                                           Stored_Constraint (Rhs_Type)))),
6842                          To => Rhs_Discr_Vals);
6843                        Next_Discriminant (Discr);
6844                     end loop;
6845                  end if;
6846
6847               else
6848                  Discr := First_Discriminant (Rhs_Type);
6849                  while Present (Discr) loop
6850                     Append_Elmt (
6851                       New_Copy (Get_Discriminant_Value
6852                                   (Discr,
6853                                    Rhs_Type,
6854                                    Stored_Constraint (Rhs_Type))),
6855                       To => Rhs_Discr_Vals);
6856                     Next_Discriminant (Discr);
6857                  end loop;
6858               end if;
6859
6860               --  Now merge the list of discriminant values so that values
6861               --  of corresponding discriminants are adjacent.
6862
6863               declare
6864                  Params : List_Id;
6865                  L_Elmt : Elmt_Id;
6866                  R_Elmt : Elmt_Id;
6867
6868               begin
6869                  Params := New_List (L_Exp, R_Exp);
6870                  L_Elmt := First_Elmt (Lhs_Discr_Vals);
6871                  R_Elmt := First_Elmt (Rhs_Discr_Vals);
6872                  while Present (L_Elmt) loop
6873                     Append_To (Params, Node (L_Elmt));
6874                     Append_To (Params, Node (R_Elmt));
6875                     Next_Elmt (L_Elmt);
6876                     Next_Elmt (R_Elmt);
6877                  end loop;
6878
6879                  Rewrite (N,
6880                    Make_Function_Call (Loc,
6881                      Name                   => New_Occurrence_Of (Eq, Loc),
6882                      Parameter_Associations => Params));
6883               end;
6884            end;
6885
6886         --  Normal case, not an unchecked union
6887
6888         else
6889            Rewrite (N,
6890              Make_Function_Call (Loc,
6891                Name                   => New_Occurrence_Of (Eq, Loc),
6892                Parameter_Associations => New_List (L_Exp, R_Exp)));
6893         end if;
6894
6895         Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6896      end Build_Equality_Call;
6897
6898      ------------------------------------
6899      -- Has_Unconstrained_UU_Component --
6900      ------------------------------------
6901
6902      function Has_Unconstrained_UU_Component
6903        (Typ : Node_Id) return Boolean
6904      is
6905         Tdef  : constant Node_Id :=
6906                   Type_Definition (Declaration_Node (Base_Type (Typ)));
6907         Clist : Node_Id;
6908         Vpart : Node_Id;
6909
6910         function Component_Is_Unconstrained_UU
6911           (Comp : Node_Id) return Boolean;
6912         --  Determines whether the subtype of the component is an
6913         --  unconstrained Unchecked_Union.
6914
6915         function Variant_Is_Unconstrained_UU
6916           (Variant : Node_Id) return Boolean;
6917         --  Determines whether a component of the variant has an unconstrained
6918         --  Unchecked_Union subtype.
6919
6920         -----------------------------------
6921         -- Component_Is_Unconstrained_UU --
6922         -----------------------------------
6923
6924         function Component_Is_Unconstrained_UU
6925           (Comp : Node_Id) return Boolean
6926         is
6927         begin
6928            if Nkind (Comp) /= N_Component_Declaration then
6929               return False;
6930            end if;
6931
6932            declare
6933               Sindic : constant Node_Id :=
6934                          Subtype_Indication (Component_Definition (Comp));
6935
6936            begin
6937               --  Unconstrained nominal type. In the case of a constraint
6938               --  present, the node kind would have been N_Subtype_Indication.
6939
6940               if Nkind (Sindic) = N_Identifier then
6941                  return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
6942               end if;
6943
6944               return False;
6945            end;
6946         end Component_Is_Unconstrained_UU;
6947
6948         ---------------------------------
6949         -- Variant_Is_Unconstrained_UU --
6950         ---------------------------------
6951
6952         function Variant_Is_Unconstrained_UU
6953           (Variant : Node_Id) return Boolean
6954         is
6955            Clist : constant Node_Id := Component_List (Variant);
6956
6957         begin
6958            if Is_Empty_List (Component_Items (Clist)) then
6959               return False;
6960            end if;
6961
6962            --  We only need to test one component
6963
6964            declare
6965               Comp : Node_Id := First (Component_Items (Clist));
6966
6967            begin
6968               while Present (Comp) loop
6969                  if Component_Is_Unconstrained_UU (Comp) then
6970                     return True;
6971                  end if;
6972
6973                  Next (Comp);
6974               end loop;
6975            end;
6976
6977            --  None of the components withing the variant were of
6978            --  unconstrained Unchecked_Union type.
6979
6980            return False;
6981         end Variant_Is_Unconstrained_UU;
6982
6983      --  Start of processing for Has_Unconstrained_UU_Component
6984
6985      begin
6986         if Null_Present (Tdef) then
6987            return False;
6988         end if;
6989
6990         Clist := Component_List (Tdef);
6991         Vpart := Variant_Part (Clist);
6992
6993         --  Inspect available components
6994
6995         if Present (Component_Items (Clist)) then
6996            declare
6997               Comp : Node_Id := First (Component_Items (Clist));
6998
6999            begin
7000               while Present (Comp) loop
7001
7002                  --  One component is sufficient
7003
7004                  if Component_Is_Unconstrained_UU (Comp) then
7005                     return True;
7006                  end if;
7007
7008                  Next (Comp);
7009               end loop;
7010            end;
7011         end if;
7012
7013         --  Inspect available components withing variants
7014
7015         if Present (Vpart) then
7016            declare
7017               Variant : Node_Id := First (Variants (Vpart));
7018
7019            begin
7020               while Present (Variant) loop
7021
7022                  --  One component within a variant is sufficient
7023
7024                  if Variant_Is_Unconstrained_UU (Variant) then
7025                     return True;
7026                  end if;
7027
7028                  Next (Variant);
7029               end loop;
7030            end;
7031         end if;
7032
7033         --  Neither the available components, nor the components inside the
7034         --  variant parts were of an unconstrained Unchecked_Union subtype.
7035
7036         return False;
7037      end Has_Unconstrained_UU_Component;
7038
7039   --  Start of processing for Expand_N_Op_Eq
7040
7041   begin
7042      Binary_Op_Validity_Checks (N);
7043
7044      --  Deal with private types
7045
7046      if Ekind (Typl) = E_Private_Type then
7047         Typl := Underlying_Type (Typl);
7048      elsif Ekind (Typl) = E_Private_Subtype then
7049         Typl := Underlying_Type (Base_Type (Typl));
7050      else
7051         null;
7052      end if;
7053
7054      --  It may happen in error situations that the underlying type is not
7055      --  set. The error will be detected later, here we just defend the
7056      --  expander code.
7057
7058      if No (Typl) then
7059         return;
7060      end if;
7061
7062      Typl := Base_Type (Typl);
7063
7064      --  Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7065      --  means we no longer have a comparison operation, we are all done.
7066
7067      Expand_Compare_Minimize_Eliminate_Overflow (N);
7068
7069      if Nkind (N) /= N_Op_Eq then
7070         return;
7071      end if;
7072
7073      --  Boolean types (requiring handling of non-standard case)
7074
7075      if Is_Boolean_Type (Typl) then
7076         Adjust_Condition (Left_Opnd (N));
7077         Adjust_Condition (Right_Opnd (N));
7078         Set_Etype (N, Standard_Boolean);
7079         Adjust_Result_Type (N, Typ);
7080
7081      --  Array types
7082
7083      elsif Is_Array_Type (Typl) then
7084
7085         --  If we are doing full validity checking, and it is possible for the
7086         --  array elements to be invalid then expand out array comparisons to
7087         --  make sure that we check the array elements.
7088
7089         if Validity_Check_Operands
7090           and then not Is_Known_Valid (Component_Type (Typl))
7091         then
7092            declare
7093               Save_Force_Validity_Checks : constant Boolean :=
7094                                              Force_Validity_Checks;
7095            begin
7096               Force_Validity_Checks := True;
7097               Rewrite (N,
7098                 Expand_Array_Equality
7099                  (N,
7100                   Relocate_Node (Lhs),
7101                   Relocate_Node (Rhs),
7102                   Bodies,
7103                   Typl));
7104               Insert_Actions (N, Bodies);
7105               Analyze_And_Resolve (N, Standard_Boolean);
7106               Force_Validity_Checks := Save_Force_Validity_Checks;
7107            end;
7108
7109         --  Packed case where both operands are known aligned
7110
7111         elsif Is_Bit_Packed_Array (Typl)
7112           and then not Is_Possibly_Unaligned_Object (Lhs)
7113           and then not Is_Possibly_Unaligned_Object (Rhs)
7114         then
7115            Expand_Packed_Eq (N);
7116
7117         --  Where the component type is elementary we can use a block bit
7118         --  comparison (if supported on the target) exception in the case
7119         --  of floating-point (negative zero issues require element by
7120         --  element comparison), and atomic types (where we must be sure
7121         --  to load elements independently) and possibly unaligned arrays.
7122
7123         elsif Is_Elementary_Type (Component_Type (Typl))
7124           and then not Is_Floating_Point_Type (Component_Type (Typl))
7125           and then not Is_Atomic (Component_Type (Typl))
7126           and then not Is_Possibly_Unaligned_Object (Lhs)
7127           and then not Is_Possibly_Unaligned_Object (Rhs)
7128           and then Support_Composite_Compare_On_Target
7129         then
7130            null;
7131
7132         --  For composite and floating-point cases, expand equality loop to
7133         --  make sure of using proper comparisons for tagged types, and
7134         --  correctly handling the floating-point case.
7135
7136         else
7137            Rewrite (N,
7138              Expand_Array_Equality
7139                (N,
7140                 Relocate_Node (Lhs),
7141                 Relocate_Node (Rhs),
7142                 Bodies,
7143                 Typl));
7144            Insert_Actions      (N, Bodies,           Suppress => All_Checks);
7145            Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7146         end if;
7147
7148      --  Record Types
7149
7150      elsif Is_Record_Type (Typl) then
7151
7152         --  For tagged types, use the primitive "="
7153
7154         if Is_Tagged_Type (Typl) then
7155
7156            --  No need to do anything else compiling under restriction
7157            --  No_Dispatching_Calls. During the semantic analysis we
7158            --  already notified such violation.
7159
7160            if Restriction_Active (No_Dispatching_Calls) then
7161               return;
7162            end if;
7163
7164            --  If this is derived from an untagged private type completed with
7165            --  a tagged type, it does not have a full view, so we use the
7166            --  primitive operations of the private type. This check should no
7167            --  longer be necessary when these types get their full views???
7168
7169            if Is_Private_Type (A_Typ)
7170              and then not Is_Tagged_Type (A_Typ)
7171              and then Is_Derived_Type (A_Typ)
7172              and then No (Full_View (A_Typ))
7173            then
7174               --  Search for equality operation, checking that the operands
7175               --  have the same type. Note that we must find a matching entry,
7176               --  or something is very wrong.
7177
7178               Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
7179
7180               while Present (Prim) loop
7181                  exit when Chars (Node (Prim)) = Name_Op_Eq
7182                    and then Etype (First_Formal (Node (Prim))) =
7183                             Etype (Next_Formal (First_Formal (Node (Prim))))
7184                    and then
7185                      Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7186
7187                  Next_Elmt (Prim);
7188               end loop;
7189
7190               pragma Assert (Present (Prim));
7191               Op_Name := Node (Prim);
7192
7193            --  Find the type's predefined equality or an overriding
7194            --  user- defined equality. The reason for not simply calling
7195            --  Find_Prim_Op here is that there may be a user-defined
7196            --  overloaded equality op that precedes the equality that we want,
7197            --  so we have to explicitly search (e.g., there could be an
7198            --  equality with two different parameter types).
7199
7200            else
7201               if Is_Class_Wide_Type (Typl) then
7202                  Typl := Root_Type (Typl);
7203               end if;
7204
7205               Prim := First_Elmt (Primitive_Operations (Typl));
7206               while Present (Prim) loop
7207                  exit when Chars (Node (Prim)) = Name_Op_Eq
7208                    and then Etype (First_Formal (Node (Prim))) =
7209                             Etype (Next_Formal (First_Formal (Node (Prim))))
7210                    and then
7211                      Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7212
7213                  Next_Elmt (Prim);
7214               end loop;
7215
7216               pragma Assert (Present (Prim));
7217               Op_Name := Node (Prim);
7218            end if;
7219
7220            Build_Equality_Call (Op_Name);
7221
7222         --  Ada 2005 (AI-216): Program_Error is raised when evaluating the
7223         --  predefined equality operator for a type which has a subcomponent
7224         --  of an Unchecked_Union type whose nominal subtype is unconstrained.
7225
7226         elsif Has_Unconstrained_UU_Component (Typl) then
7227            Insert_Action (N,
7228              Make_Raise_Program_Error (Loc,
7229                Reason => PE_Unchecked_Union_Restriction));
7230
7231            --  Prevent Gigi from generating incorrect code by rewriting the
7232            --  equality as a standard False. (is this documented somewhere???)
7233
7234            Rewrite (N,
7235              New_Occurrence_Of (Standard_False, Loc));
7236
7237         elsif Is_Unchecked_Union (Typl) then
7238
7239            --  If we can infer the discriminants of the operands, we make a
7240            --  call to the TSS equality function.
7241
7242            if Has_Inferable_Discriminants (Lhs)
7243                 and then
7244               Has_Inferable_Discriminants (Rhs)
7245            then
7246               Build_Equality_Call
7247                 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7248
7249            else
7250               --  Ada 2005 (AI-216): Program_Error is raised when evaluating
7251               --  the predefined equality operator for an Unchecked_Union type
7252               --  if either of the operands lack inferable discriminants.
7253
7254               Insert_Action (N,
7255                 Make_Raise_Program_Error (Loc,
7256                   Reason => PE_Unchecked_Union_Restriction));
7257
7258               --  Prevent Gigi from generating incorrect code by rewriting
7259               --  the equality as a standard False (documented where???).
7260
7261               Rewrite (N,
7262                 New_Occurrence_Of (Standard_False, Loc));
7263
7264            end if;
7265
7266         --  If a type support function is present (for complex cases), use it
7267
7268         elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
7269            Build_Equality_Call
7270              (TSS (Root_Type (Typl), TSS_Composite_Equality));
7271
7272         --  When comparing two Bounded_Strings, use the primitive equality of
7273         --  the root Super_String type.
7274
7275         elsif Is_Bounded_String (Typl) then
7276            Prim :=
7277              First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
7278
7279            while Present (Prim) loop
7280               exit when Chars (Node (Prim)) = Name_Op_Eq
7281                 and then Etype (First_Formal (Node (Prim))) =
7282                          Etype (Next_Formal (First_Formal (Node (Prim))))
7283                 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7284
7285               Next_Elmt (Prim);
7286            end loop;
7287
7288            --  A Super_String type should always have a primitive equality
7289
7290            pragma Assert (Present (Prim));
7291            Build_Equality_Call (Node (Prim));
7292
7293         --  Otherwise expand the component by component equality. Note that
7294         --  we never use block-bit comparisons for records, because of the
7295         --  problems with gaps. The backend will often be able to recombine
7296         --  the separate comparisons that we generate here.
7297
7298         else
7299            Remove_Side_Effects (Lhs);
7300            Remove_Side_Effects (Rhs);
7301            Rewrite (N,
7302              Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
7303
7304            Insert_Actions      (N, Bodies,           Suppress => All_Checks);
7305            Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7306         end if;
7307      end if;
7308
7309      --  Test if result is known at compile time
7310
7311      Rewrite_Comparison (N);
7312
7313      --  If we still have comparison for Vax_Float, process it
7314
7315      if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare  then
7316         Expand_Vax_Comparison (N);
7317         return;
7318      end if;
7319
7320      Optimize_Length_Comparison (N);
7321   end Expand_N_Op_Eq;
7322
7323   -----------------------
7324   -- Expand_N_Op_Expon --
7325   -----------------------
7326
7327   procedure Expand_N_Op_Expon (N : Node_Id) is
7328      Loc    : constant Source_Ptr := Sloc (N);
7329      Typ    : constant Entity_Id  := Etype (N);
7330      Rtyp   : constant Entity_Id  := Root_Type (Typ);
7331      Base   : constant Node_Id    := Relocate_Node (Left_Opnd (N));
7332      Bastyp : constant Node_Id    := Etype (Base);
7333      Exp    : constant Node_Id    := Relocate_Node (Right_Opnd (N));
7334      Exptyp : constant Entity_Id  := Etype (Exp);
7335      Ovflo  : constant Boolean    := Do_Overflow_Check (N);
7336      Expv   : Uint;
7337      Temp   : Node_Id;
7338      Rent   : RE_Id;
7339      Ent    : Entity_Id;
7340      Etyp   : Entity_Id;
7341      Xnode  : Node_Id;
7342
7343   begin
7344      Binary_Op_Validity_Checks (N);
7345
7346      --  CodePeer wants to see the unexpanded N_Op_Expon node
7347
7348      if CodePeer_Mode then
7349         return;
7350      end if;
7351
7352      --  If either operand is of a private type, then we have the use of an
7353      --  intrinsic operator, and we get rid of the privateness, by using root
7354      --  types of underlying types for the actual operation. Otherwise the
7355      --  private types will cause trouble if we expand multiplications or
7356      --  shifts etc. We also do this transformation if the result type is
7357      --  different from the base type.
7358
7359      if Is_Private_Type (Etype (Base))
7360        or else Is_Private_Type (Typ)
7361        or else Is_Private_Type (Exptyp)
7362        or else Rtyp /= Root_Type (Bastyp)
7363      then
7364         declare
7365            Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
7366            Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
7367         begin
7368            Rewrite (N,
7369              Unchecked_Convert_To (Typ,
7370                Make_Op_Expon (Loc,
7371                  Left_Opnd  => Unchecked_Convert_To (Bt, Base),
7372                  Right_Opnd => Unchecked_Convert_To (Et, Exp))));
7373            Analyze_And_Resolve (N, Typ);
7374            return;
7375         end;
7376      end if;
7377
7378      --  Check for MINIMIZED/ELIMINATED overflow mode
7379
7380      if Minimized_Eliminated_Overflow_Check (N) then
7381         Apply_Arithmetic_Overflow_Check (N);
7382         return;
7383      end if;
7384
7385      --  Test for case of known right argument where we can replace the
7386      --  exponentiation by an equivalent expression using multiplication.
7387
7388      --  Note: use CRT_Safe version of Compile_Time_Known_Value because in
7389      --  configurable run-time mode, we may not have the exponentiation
7390      --  routine available, and we don't want the legality of the program
7391      --  to depend on how clever the compiler is in knowing values.
7392
7393      if CRT_Safe_Compile_Time_Known_Value (Exp) then
7394         Expv := Expr_Value (Exp);
7395
7396         --  We only fold small non-negative exponents. You might think we
7397         --  could fold small negative exponents for the real case, but we
7398         --  can't because we are required to raise Constraint_Error for
7399         --  the case of 0.0 ** (negative) even if Machine_Overflows = False.
7400         --  See ACVC test C4A012B.
7401
7402         if Expv >= 0 and then Expv <= 4 then
7403
7404            --  X ** 0 = 1 (or 1.0)
7405
7406            if Expv = 0 then
7407
7408               --  Call Remove_Side_Effects to ensure that any side effects
7409               --  in the ignored left operand (in particular function calls
7410               --  to user defined functions) are properly executed.
7411
7412               Remove_Side_Effects (Base);
7413
7414               if Ekind (Typ) in Integer_Kind then
7415                  Xnode := Make_Integer_Literal (Loc, Intval => 1);
7416               else
7417                  Xnode := Make_Real_Literal (Loc, Ureal_1);
7418               end if;
7419
7420            --  X ** 1 = X
7421
7422            elsif Expv = 1 then
7423               Xnode := Base;
7424
7425            --  X ** 2 = X * X
7426
7427            elsif Expv = 2 then
7428               Xnode :=
7429                 Make_Op_Multiply (Loc,
7430                   Left_Opnd  => Duplicate_Subexpr (Base),
7431                   Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
7432
7433            --  X ** 3 = X * X * X
7434
7435            elsif Expv = 3 then
7436               Xnode :=
7437                 Make_Op_Multiply (Loc,
7438                   Left_Opnd =>
7439                     Make_Op_Multiply (Loc,
7440                       Left_Opnd  => Duplicate_Subexpr (Base),
7441                       Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
7442                   Right_Opnd  => Duplicate_Subexpr_No_Checks (Base));
7443
7444            --  X ** 4  ->
7445
7446            --  do
7447            --    En : constant base'type := base * base;
7448            --  in
7449            --    En * En
7450
7451            else
7452               pragma Assert (Expv = 4);
7453               Temp := Make_Temporary (Loc, 'E', Base);
7454
7455               Xnode :=
7456                 Make_Expression_With_Actions (Loc,
7457                   Actions    => New_List (
7458                     Make_Object_Declaration (Loc,
7459                       Defining_Identifier => Temp,
7460                       Constant_Present    => True,
7461                       Object_Definition   => New_Occurrence_Of (Typ, Loc),
7462                       Expression =>
7463                         Make_Op_Multiply (Loc,
7464                           Left_Opnd  =>
7465                             Duplicate_Subexpr (Base),
7466                           Right_Opnd =>
7467                             Duplicate_Subexpr_No_Checks (Base)))),
7468
7469                   Expression =>
7470                     Make_Op_Multiply (Loc,
7471                       Left_Opnd  => New_Occurrence_Of (Temp, Loc),
7472                       Right_Opnd => New_Occurrence_Of (Temp, Loc)));
7473            end if;
7474
7475            Rewrite (N, Xnode);
7476            Analyze_And_Resolve (N, Typ);
7477            return;
7478         end if;
7479      end if;
7480
7481      --  Case of (2 ** expression) appearing as an argument of an integer
7482      --  multiplication, or as the right argument of a division of a non-
7483      --  negative integer. In such cases we leave the node untouched, setting
7484      --  the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7485      --  of the higher level node converts it into a shift.
7486
7487      --  Another case is 2 ** N in any other context. We simply convert
7488      --  this to 1 * 2 ** N, and then the above transformation applies.
7489
7490      --  Note: this transformation is not applicable for a modular type with
7491      --  a non-binary modulus in the multiplication case, since we get a wrong
7492      --  result if the shift causes an overflow before the modular reduction.
7493
7494      --  Note: we used to check that Exptyp was an unsigned type. But that is
7495      --  an unnecessary check, since if Exp is negative, we have a run-time
7496      --  error that is either caught (so we get the right result) or we have
7497      --  suppressed the check, in which case the code is erroneous anyway.
7498
7499      if Nkind (Base) = N_Integer_Literal
7500        and then CRT_Safe_Compile_Time_Known_Value (Base)
7501        and then Expr_Value (Base) = Uint_2
7502        and then Is_Integer_Type (Root_Type (Exptyp))
7503        and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
7504        and then not Ovflo
7505      then
7506         --  First the multiply and divide cases
7507
7508         if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
7509            declare
7510               P : constant Node_Id := Parent (N);
7511               L : constant Node_Id := Left_Opnd (P);
7512               R : constant Node_Id := Right_Opnd (P);
7513
7514            begin
7515               if (Nkind (P) = N_Op_Multiply
7516                   and then not Non_Binary_Modulus (Typ)
7517                   and then
7518                     ((Is_Integer_Type (Etype (L)) and then R = N)
7519                         or else
7520                      (Is_Integer_Type (Etype (R)) and then L = N))
7521                   and then not Do_Overflow_Check (P))
7522                 or else
7523                  (Nkind (P) = N_Op_Divide
7524                    and then Is_Integer_Type (Etype (L))
7525                    and then Is_Unsigned_Type (Etype (L))
7526                    and then R = N
7527                    and then not Do_Overflow_Check (P))
7528               then
7529                  Set_Is_Power_Of_2_For_Shift (N);
7530                  return;
7531               end if;
7532            end;
7533
7534         --  Now the other cases
7535
7536         elsif not Non_Binary_Modulus (Typ) then
7537            Rewrite (N,
7538              Make_Op_Multiply (Loc,
7539                Left_Opnd  => Make_Integer_Literal (Loc, 1),
7540                Right_Opnd => Relocate_Node (N)));
7541            Analyze_And_Resolve (N, Typ);
7542            return;
7543         end if;
7544      end if;
7545
7546      --  Fall through if exponentiation must be done using a runtime routine
7547
7548      --  First deal with modular case
7549
7550      if Is_Modular_Integer_Type (Rtyp) then
7551
7552         --  Non-binary case, we call the special exponentiation routine for
7553         --  the non-binary case, converting the argument to Long_Long_Integer
7554         --  and passing the modulus value. Then the result is converted back
7555         --  to the base type.
7556
7557         if Non_Binary_Modulus (Rtyp) then
7558            Rewrite (N,
7559              Convert_To (Typ,
7560                Make_Function_Call (Loc,
7561                  Name => New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
7562                  Parameter_Associations => New_List (
7563                    Convert_To (Standard_Integer, Base),
7564                    Make_Integer_Literal (Loc, Modulus (Rtyp)),
7565                    Exp))));
7566
7567         --  Binary case, in this case, we call one of two routines, either the
7568         --  unsigned integer case, or the unsigned long long integer case,
7569         --  with a final "and" operation to do the required mod.
7570
7571         else
7572            if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
7573               Ent := RTE (RE_Exp_Unsigned);
7574            else
7575               Ent := RTE (RE_Exp_Long_Long_Unsigned);
7576            end if;
7577
7578            Rewrite (N,
7579              Convert_To (Typ,
7580                Make_Op_And (Loc,
7581                  Left_Opnd =>
7582                    Make_Function_Call (Loc,
7583                      Name => New_Occurrence_Of (Ent, Loc),
7584                      Parameter_Associations => New_List (
7585                        Convert_To (Etype (First_Formal (Ent)), Base),
7586                        Exp)),
7587                   Right_Opnd =>
7588                     Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
7589
7590         end if;
7591
7592         --  Common exit point for modular type case
7593
7594         Analyze_And_Resolve (N, Typ);
7595         return;
7596
7597      --  Signed integer cases, done using either Integer or Long_Long_Integer.
7598      --  It is not worth having routines for Short_[Short_]Integer, since for
7599      --  most machines it would not help, and it would generate more code that
7600      --  might need certification when a certified run time is required.
7601
7602      --  In the integer cases, we have two routines, one for when overflow
7603      --  checks are required, and one when they are not required, since there
7604      --  is a real gain in omitting checks on many machines.
7605
7606      elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
7607        or else (Rtyp = Base_Type (Standard_Long_Integer)
7608                  and then
7609                    Esize (Standard_Long_Integer) > Esize (Standard_Integer))
7610        or else Rtyp = Universal_Integer
7611      then
7612         Etyp := Standard_Long_Long_Integer;
7613
7614         --  Overflow checking is the only choice on the AAMP target, where
7615         --  arithmetic instructions check overflow automatically, so only
7616         --  one version of the exponentiation unit is needed.
7617
7618         if Ovflo or AAMP_On_Target then
7619            Rent := RE_Exp_Long_Long_Integer;
7620         else
7621            Rent := RE_Exn_Long_Long_Integer;
7622         end if;
7623
7624      elsif Is_Signed_Integer_Type (Rtyp) then
7625         Etyp := Standard_Integer;
7626
7627         --  Overflow checking is the only choice on the AAMP target, where
7628         --  arithmetic instructions check overflow automatically, so only
7629         --  one version of the exponentiation unit is needed.
7630
7631         if Ovflo or AAMP_On_Target then
7632            Rent := RE_Exp_Integer;
7633         else
7634            Rent := RE_Exn_Integer;
7635         end if;
7636
7637      --  Floating-point cases, always done using Long_Long_Float. We do not
7638      --  need separate routines for the overflow case here, since in the case
7639      --  of floating-point, we generate infinities anyway as a rule (either
7640      --  that or we automatically trap overflow), and if there is an infinity
7641      --  generated and a range check is required, the check will fail anyway.
7642
7643      else
7644         pragma Assert (Is_Floating_Point_Type (Rtyp));
7645         Etyp := Standard_Long_Long_Float;
7646         Rent := RE_Exn_Long_Long_Float;
7647      end if;
7648
7649      --  Common processing for integer cases and floating-point cases.
7650      --  If we are in the right type, we can call runtime routine directly
7651
7652      if Typ = Etyp
7653        and then Rtyp /= Universal_Integer
7654        and then Rtyp /= Universal_Real
7655      then
7656         Rewrite (N,
7657           Make_Function_Call (Loc,
7658             Name                   => New_Occurrence_Of (RTE (Rent), Loc),
7659             Parameter_Associations => New_List (Base, Exp)));
7660
7661      --  Otherwise we have to introduce conversions (conversions are also
7662      --  required in the universal cases, since the runtime routine is
7663      --  typed using one of the standard types).
7664
7665      else
7666         Rewrite (N,
7667           Convert_To (Typ,
7668             Make_Function_Call (Loc,
7669               Name => New_Occurrence_Of (RTE (Rent), Loc),
7670               Parameter_Associations => New_List (
7671                 Convert_To (Etyp, Base),
7672                 Exp))));
7673      end if;
7674
7675      Analyze_And_Resolve (N, Typ);
7676      return;
7677
7678   exception
7679      when RE_Not_Available =>
7680         return;
7681   end Expand_N_Op_Expon;
7682
7683   --------------------
7684   -- Expand_N_Op_Ge --
7685   --------------------
7686
7687   procedure Expand_N_Op_Ge (N : Node_Id) is
7688      Typ  : constant Entity_Id := Etype (N);
7689      Op1  : constant Node_Id   := Left_Opnd (N);
7690      Op2  : constant Node_Id   := Right_Opnd (N);
7691      Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7692
7693   begin
7694      Binary_Op_Validity_Checks (N);
7695
7696      --  Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7697      --  means we no longer have a comparison operation, we are all done.
7698
7699      Expand_Compare_Minimize_Eliminate_Overflow (N);
7700
7701      if Nkind (N) /= N_Op_Ge then
7702         return;
7703      end if;
7704
7705      --  Array type case
7706
7707      if Is_Array_Type (Typ1) then
7708         Expand_Array_Comparison (N);
7709         return;
7710      end if;
7711
7712      --  Deal with boolean operands
7713
7714      if Is_Boolean_Type (Typ1) then
7715         Adjust_Condition (Op1);
7716         Adjust_Condition (Op2);
7717         Set_Etype (N, Standard_Boolean);
7718         Adjust_Result_Type (N, Typ);
7719      end if;
7720
7721      Rewrite_Comparison (N);
7722
7723      --  If we still have comparison, and Vax_Float type, process it
7724
7725      if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7726         Expand_Vax_Comparison (N);
7727         return;
7728      end if;
7729
7730      Optimize_Length_Comparison (N);
7731   end Expand_N_Op_Ge;
7732
7733   --------------------
7734   -- Expand_N_Op_Gt --
7735   --------------------
7736
7737   procedure Expand_N_Op_Gt (N : Node_Id) is
7738      Typ  : constant Entity_Id := Etype (N);
7739      Op1  : constant Node_Id   := Left_Opnd (N);
7740      Op2  : constant Node_Id   := Right_Opnd (N);
7741      Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7742
7743   begin
7744      Binary_Op_Validity_Checks (N);
7745
7746      --  Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7747      --  means we no longer have a comparison operation, we are all done.
7748
7749      Expand_Compare_Minimize_Eliminate_Overflow (N);
7750
7751      if Nkind (N) /= N_Op_Gt then
7752         return;
7753      end if;
7754
7755      --  Deal with array type operands
7756
7757      if Is_Array_Type (Typ1) then
7758         Expand_Array_Comparison (N);
7759         return;
7760      end if;
7761
7762      --  Deal with boolean type operands
7763
7764      if Is_Boolean_Type (Typ1) then
7765         Adjust_Condition (Op1);
7766         Adjust_Condition (Op2);
7767         Set_Etype (N, Standard_Boolean);
7768         Adjust_Result_Type (N, Typ);
7769      end if;
7770
7771      Rewrite_Comparison (N);
7772
7773      --  If we still have comparison, and Vax_Float type, process it
7774
7775      if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7776         Expand_Vax_Comparison (N);
7777         return;
7778      end if;
7779
7780      Optimize_Length_Comparison (N);
7781   end Expand_N_Op_Gt;
7782
7783   --------------------
7784   -- Expand_N_Op_Le --
7785   --------------------
7786
7787   procedure Expand_N_Op_Le (N : Node_Id) is
7788      Typ  : constant Entity_Id := Etype (N);
7789      Op1  : constant Node_Id   := Left_Opnd (N);
7790      Op2  : constant Node_Id   := Right_Opnd (N);
7791      Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7792
7793   begin
7794      Binary_Op_Validity_Checks (N);
7795
7796      --  Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7797      --  means we no longer have a comparison operation, we are all done.
7798
7799      Expand_Compare_Minimize_Eliminate_Overflow (N);
7800
7801      if Nkind (N) /= N_Op_Le then
7802         return;
7803      end if;
7804
7805      --  Deal with array type operands
7806
7807      if Is_Array_Type (Typ1) then
7808         Expand_Array_Comparison (N);
7809         return;
7810      end if;
7811
7812      --  Deal with Boolean type operands
7813
7814      if Is_Boolean_Type (Typ1) then
7815         Adjust_Condition (Op1);
7816         Adjust_Condition (Op2);
7817         Set_Etype (N, Standard_Boolean);
7818         Adjust_Result_Type (N, Typ);
7819      end if;
7820
7821      Rewrite_Comparison (N);
7822
7823      --  If we still have comparison, and Vax_Float type, process it
7824
7825      if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7826         Expand_Vax_Comparison (N);
7827         return;
7828      end if;
7829
7830      Optimize_Length_Comparison (N);
7831   end Expand_N_Op_Le;
7832
7833   --------------------
7834   -- Expand_N_Op_Lt --
7835   --------------------
7836
7837   procedure Expand_N_Op_Lt (N : Node_Id) is
7838      Typ  : constant Entity_Id := Etype (N);
7839      Op1  : constant Node_Id   := Left_Opnd (N);
7840      Op2  : constant Node_Id   := Right_Opnd (N);
7841      Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
7842
7843   begin
7844      Binary_Op_Validity_Checks (N);
7845
7846      --  Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7847      --  means we no longer have a comparison operation, we are all done.
7848
7849      Expand_Compare_Minimize_Eliminate_Overflow (N);
7850
7851      if Nkind (N) /= N_Op_Lt then
7852         return;
7853      end if;
7854
7855      --  Deal with array type operands
7856
7857      if Is_Array_Type (Typ1) then
7858         Expand_Array_Comparison (N);
7859         return;
7860      end if;
7861
7862      --  Deal with Boolean type operands
7863
7864      if Is_Boolean_Type (Typ1) then
7865         Adjust_Condition (Op1);
7866         Adjust_Condition (Op2);
7867         Set_Etype (N, Standard_Boolean);
7868         Adjust_Result_Type (N, Typ);
7869      end if;
7870
7871      Rewrite_Comparison (N);
7872
7873      --  If we still have comparison, and Vax_Float type, process it
7874
7875      if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
7876         Expand_Vax_Comparison (N);
7877         return;
7878      end if;
7879
7880      Optimize_Length_Comparison (N);
7881   end Expand_N_Op_Lt;
7882
7883   -----------------------
7884   -- Expand_N_Op_Minus --
7885   -----------------------
7886
7887   procedure Expand_N_Op_Minus (N : Node_Id) is
7888      Loc : constant Source_Ptr := Sloc (N);
7889      Typ : constant Entity_Id  := Etype (N);
7890
7891   begin
7892      Unary_Op_Validity_Checks (N);
7893
7894      --  Check for MINIMIZED/ELIMINATED overflow mode
7895
7896      if Minimized_Eliminated_Overflow_Check (N) then
7897         Apply_Arithmetic_Overflow_Check (N);
7898         return;
7899      end if;
7900
7901      if not Backend_Overflow_Checks_On_Target
7902         and then Is_Signed_Integer_Type (Etype (N))
7903         and then Do_Overflow_Check (N)
7904      then
7905         --  Software overflow checking expands -expr into (0 - expr)
7906
7907         Rewrite (N,
7908           Make_Op_Subtract (Loc,
7909             Left_Opnd  => Make_Integer_Literal (Loc, 0),
7910             Right_Opnd => Right_Opnd (N)));
7911
7912         Analyze_And_Resolve (N, Typ);
7913
7914      --  Vax floating-point types case
7915
7916      elsif Vax_Float (Etype (N)) then
7917         Expand_Vax_Arith (N);
7918      end if;
7919   end Expand_N_Op_Minus;
7920
7921   ---------------------
7922   -- Expand_N_Op_Mod --
7923   ---------------------
7924
7925   procedure Expand_N_Op_Mod (N : Node_Id) is
7926      Loc   : constant Source_Ptr := Sloc (N);
7927      Typ   : constant Entity_Id  := Etype (N);
7928      DDC   : constant Boolean    := Do_Division_Check (N);
7929
7930      Left  : Node_Id;
7931      Right : Node_Id;
7932
7933      LLB : Uint;
7934      Llo : Uint;
7935      Lhi : Uint;
7936      LOK : Boolean;
7937      Rlo : Uint;
7938      Rhi : Uint;
7939      ROK : Boolean;
7940
7941      pragma Warnings (Off, Lhi);
7942
7943   begin
7944      Binary_Op_Validity_Checks (N);
7945
7946      --  Check for MINIMIZED/ELIMINATED overflow mode
7947
7948      if Minimized_Eliminated_Overflow_Check (N) then
7949         Apply_Arithmetic_Overflow_Check (N);
7950         return;
7951      end if;
7952
7953      if Is_Integer_Type (Etype (N)) then
7954         Apply_Divide_Checks (N);
7955
7956         --  All done if we don't have a MOD any more, which can happen as a
7957         --  result of overflow expansion in MINIMIZED or ELIMINATED modes.
7958
7959         if Nkind (N) /= N_Op_Mod then
7960            return;
7961         end if;
7962      end if;
7963
7964      --  Proceed with expansion of mod operator
7965
7966      Left  := Left_Opnd (N);
7967      Right := Right_Opnd (N);
7968
7969      Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
7970      Determine_Range (Left,  LOK, Llo, Lhi, Assume_Valid => True);
7971
7972      --  Convert mod to rem if operands are both known to be non-negative, or
7973      --  both known to be non-positive (these are the cases in which rem and
7974      --  mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
7975      --  likely that this will improve the quality of code, (the operation now
7976      --  corresponds to the hardware remainder), and it does not seem likely
7977      --  that it could be harmful. It also avoids some cases of the elaborate
7978      --  expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
7979
7980      if (LOK and ROK)
7981        and then ((Llo >= 0 and then Rlo >= 0)
7982                    or else
7983                  (Lhi <= 0 and then Rhi <= 0))
7984      then
7985         Rewrite (N,
7986           Make_Op_Rem (Sloc (N),
7987             Left_Opnd  => Left_Opnd (N),
7988             Right_Opnd => Right_Opnd (N)));
7989
7990         --  Instead of reanalyzing the node we do the analysis manually. This
7991         --  avoids anomalies when the replacement is done in an instance and
7992         --  is epsilon more efficient.
7993
7994         Set_Entity            (N, Standard_Entity (S_Op_Rem));
7995         Set_Etype             (N, Typ);
7996         Set_Do_Division_Check (N, DDC);
7997         Expand_N_Op_Rem (N);
7998         Set_Analyzed (N);
7999         return;
8000
8001      --  Otherwise, normal mod processing
8002
8003      else
8004         --  Apply optimization x mod 1 = 0. We don't really need that with
8005         --  gcc, but it is useful with other back ends (e.g. AAMP), and is
8006         --  certainly harmless.
8007
8008         if Is_Integer_Type (Etype (N))
8009           and then Compile_Time_Known_Value (Right)
8010           and then Expr_Value (Right) = Uint_1
8011         then
8012            --  Call Remove_Side_Effects to ensure that any side effects in
8013            --  the ignored left operand (in particular function calls to
8014            --  user defined functions) are properly executed.
8015
8016            Remove_Side_Effects (Left);
8017
8018            Rewrite (N, Make_Integer_Literal (Loc, 0));
8019            Analyze_And_Resolve (N, Typ);
8020            return;
8021         end if;
8022
8023         --  If we still have a mod operator and we are in Modify_Tree_For_C
8024         --  mode, and we have a signed integer type, then here is where we do
8025         --  the rewrite in terms of Rem. Note this rewrite bypasses the need
8026         --  for the special handling of the annoying case of largest negative
8027         --  number mod minus one.
8028
8029         if Nkind (N) = N_Op_Mod
8030           and then Is_Signed_Integer_Type (Typ)
8031           and then Modify_Tree_For_C
8032         then
8033            --  In the general case, we expand A mod B as
8034
8035            --    Tnn : constant typ := A rem B;
8036            --    ..
8037            --    (if (A >= 0) = (B >= 0) then Tnn
8038            --     elsif Tnn = 0 then 0
8039            --     else Tnn + B)
8040
8041            --  The comparison can be written simply as A >= 0 if we know that
8042            --  B >= 0 which is a very common case.
8043
8044            --  An important optimization is when B is known at compile time
8045            --  to be 2**K for some constant. In this case we can simply AND
8046            --  the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8047            --  and that works for both the positive and negative cases.
8048
8049            declare
8050               P2 : constant Nat := Power_Of_Two (Right);
8051
8052            begin
8053               if P2 /= 0 then
8054                  Rewrite (N,
8055                    Unchecked_Convert_To (Typ,
8056                      Make_Op_And (Loc,
8057                        Left_Opnd  =>
8058                          Unchecked_Convert_To
8059                            (Corresponding_Unsigned_Type (Typ), Left),
8060                        Right_Opnd =>
8061                          Make_Integer_Literal (Loc, 2 ** P2 - 1))));
8062                  Analyze_And_Resolve (N, Typ);
8063                  return;
8064               end if;
8065            end;
8066
8067            --  Here for the full rewrite
8068
8069            declare
8070               Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
8071               Cmp : Node_Id;
8072
8073            begin
8074               Cmp :=
8075                 Make_Op_Ge (Loc,
8076                   Left_Opnd  => Duplicate_Subexpr_No_Checks (Left),
8077                   Right_Opnd => Make_Integer_Literal (Loc, 0));
8078
8079               if not LOK or else Rlo < 0 then
8080                  Cmp :=
8081                     Make_Op_Eq (Loc,
8082                       Left_Opnd  => Cmp,
8083                       Right_Opnd =>
8084                         Make_Op_Ge (Loc,
8085                           Left_Opnd  => Duplicate_Subexpr_No_Checks (Right),
8086                           Right_Opnd => Make_Integer_Literal (Loc, 0)));
8087               end if;
8088
8089               Insert_Action (N,
8090                 Make_Object_Declaration (Loc,
8091                   Defining_Identifier => Tnn,
8092                   Constant_Present    => True,
8093                   Object_Definition   => New_Occurrence_Of (Typ, Loc),
8094                   Expression          =>
8095                     Make_Op_Rem (Loc,
8096                       Left_Opnd  => Left,
8097                       Right_Opnd => Right)));
8098
8099               Rewrite (N,
8100                 Make_If_Expression (Loc,
8101                   Expressions => New_List (
8102                     Cmp,
8103                     New_Occurrence_Of (Tnn, Loc),
8104                     Make_If_Expression (Loc,
8105                       Is_Elsif    => True,
8106                       Expressions => New_List (
8107                         Make_Op_Eq (Loc,
8108                           Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
8109                           Right_Opnd => Make_Integer_Literal (Loc, 0)),
8110                         Make_Integer_Literal (Loc, 0),
8111                         Make_Op_Add (Loc,
8112                           Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
8113                           Right_Opnd =>
8114                             Duplicate_Subexpr_No_Checks (Right)))))));
8115
8116               Analyze_And_Resolve (N, Typ);
8117               return;
8118            end;
8119         end if;
8120
8121         --  Deal with annoying case of largest negative number mod minus one.
8122         --  Gigi may not handle this case correctly, because on some targets,
8123         --  the mod value is computed using a divide instruction which gives
8124         --  an overflow trap for this case.
8125
8126         --  It would be a bit more efficient to figure out which targets
8127         --  this is really needed for, but in practice it is reasonable
8128         --  to do the following special check in all cases, since it means
8129         --  we get a clearer message, and also the overhead is minimal given
8130         --  that division is expensive in any case.
8131
8132         --  In fact the check is quite easy, if the right operand is -1, then
8133         --  the mod value is always 0, and we can just ignore the left operand
8134         --  completely in this case.
8135
8136         --  This only applies if we still have a mod operator. Skip if we
8137         --  have already rewritten this (e.g. in the case of eliminated
8138         --  overflow checks which have driven us into bignum mode).
8139
8140         if Nkind (N) = N_Op_Mod then
8141
8142            --  The operand type may be private (e.g. in the expansion of an
8143            --  intrinsic operation) so we must use the underlying type to get
8144            --  the bounds, and convert the literals explicitly.
8145
8146            LLB :=
8147              Expr_Value
8148                (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
8149
8150            if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
8151              and then ((not LOK) or else (Llo = LLB))
8152            then
8153               Rewrite (N,
8154                 Make_If_Expression (Loc,
8155                   Expressions => New_List (
8156                     Make_Op_Eq (Loc,
8157                       Left_Opnd => Duplicate_Subexpr (Right),
8158                       Right_Opnd =>
8159                         Unchecked_Convert_To (Typ,
8160                           Make_Integer_Literal (Loc, -1))),
8161                     Unchecked_Convert_To (Typ,
8162                       Make_Integer_Literal (Loc, Uint_0)),
8163                     Relocate_Node (N))));
8164
8165               Set_Analyzed (Next (Next (First (Expressions (N)))));
8166               Analyze_And_Resolve (N, Typ);
8167            end if;
8168         end if;
8169      end if;
8170   end Expand_N_Op_Mod;
8171
8172   --------------------------
8173   -- Expand_N_Op_Multiply --
8174   --------------------------
8175
8176   procedure Expand_N_Op_Multiply (N : Node_Id) is
8177      Loc : constant Source_Ptr := Sloc (N);
8178      Lop : constant Node_Id    := Left_Opnd (N);
8179      Rop : constant Node_Id    := Right_Opnd (N);
8180
8181      Lp2 : constant Boolean :=
8182              Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
8183      Rp2 : constant Boolean :=
8184              Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
8185
8186      Ltyp : constant Entity_Id  := Etype (Lop);
8187      Rtyp : constant Entity_Id  := Etype (Rop);
8188      Typ  : Entity_Id           := Etype (N);
8189
8190   begin
8191      Binary_Op_Validity_Checks (N);
8192
8193      --  Check for MINIMIZED/ELIMINATED overflow mode
8194
8195      if Minimized_Eliminated_Overflow_Check (N) then
8196         Apply_Arithmetic_Overflow_Check (N);
8197         return;
8198      end if;
8199
8200      --  Special optimizations for integer types
8201
8202      if Is_Integer_Type (Typ) then
8203
8204         --  N * 0 = 0 for integer types
8205
8206         if Compile_Time_Known_Value (Rop)
8207           and then Expr_Value (Rop) = Uint_0
8208         then
8209            --  Call Remove_Side_Effects to ensure that any side effects in
8210            --  the ignored left operand (in particular function calls to
8211            --  user defined functions) are properly executed.
8212
8213            Remove_Side_Effects (Lop);
8214
8215            Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8216            Analyze_And_Resolve (N, Typ);
8217            return;
8218         end if;
8219
8220         --  Similar handling for 0 * N = 0
8221
8222         if Compile_Time_Known_Value (Lop)
8223           and then Expr_Value (Lop) = Uint_0
8224         then
8225            Remove_Side_Effects (Rop);
8226            Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
8227            Analyze_And_Resolve (N, Typ);
8228            return;
8229         end if;
8230
8231         --  N * 1 = 1 * N = N for integer types
8232
8233         --  This optimisation is not done if we are going to
8234         --  rewrite the product 1 * 2 ** N to a shift.
8235
8236         if Compile_Time_Known_Value (Rop)
8237           and then Expr_Value (Rop) = Uint_1
8238           and then not Lp2
8239         then
8240            Rewrite (N, Lop);
8241            return;
8242
8243         elsif Compile_Time_Known_Value (Lop)
8244           and then Expr_Value (Lop) = Uint_1
8245           and then not Rp2
8246         then
8247            Rewrite (N, Rop);
8248            return;
8249         end if;
8250      end if;
8251
8252      --  Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8253      --  Is_Power_Of_2_For_Shift is set means that we know that our left
8254      --  operand is an integer, as required for this to work.
8255
8256      if Rp2 then
8257         if Lp2 then
8258
8259            --  Convert 2 ** A * 2 ** B into  2 ** (A + B)
8260
8261            Rewrite (N,
8262              Make_Op_Expon (Loc,
8263                Left_Opnd => Make_Integer_Literal (Loc, 2),
8264                Right_Opnd =>
8265                  Make_Op_Add (Loc,
8266                    Left_Opnd  => Right_Opnd (Lop),
8267                    Right_Opnd => Right_Opnd (Rop))));
8268            Analyze_And_Resolve (N, Typ);
8269            return;
8270
8271         else
8272            --  If the result is modular, perform the reduction of the result
8273            --  appropriately.
8274
8275            if Is_Modular_Integer_Type (Typ)
8276              and then not Non_Binary_Modulus (Typ)
8277            then
8278               Rewrite (N,
8279                 Make_Op_And (Loc,
8280                   Left_Opnd  =>
8281                     Make_Op_Shift_Left (Loc,
8282                       Left_Opnd  => Lop,
8283                       Right_Opnd =>
8284                         Convert_To (Standard_Natural, Right_Opnd (Rop))),
8285                   Right_Opnd =>
8286                     Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8287
8288            else
8289               Rewrite (N,
8290                 Make_Op_Shift_Left (Loc,
8291                   Left_Opnd  => Lop,
8292                   Right_Opnd =>
8293                     Convert_To (Standard_Natural, Right_Opnd (Rop))));
8294            end if;
8295
8296            Analyze_And_Resolve (N, Typ);
8297            return;
8298         end if;
8299
8300      --  Same processing for the operands the other way round
8301
8302      elsif Lp2 then
8303         if Is_Modular_Integer_Type (Typ)
8304           and then not Non_Binary_Modulus (Typ)
8305         then
8306            Rewrite (N,
8307              Make_Op_And (Loc,
8308                Left_Opnd  =>
8309                  Make_Op_Shift_Left (Loc,
8310                    Left_Opnd  => Rop,
8311                    Right_Opnd =>
8312                      Convert_To (Standard_Natural, Right_Opnd (Lop))),
8313                Right_Opnd =>
8314                   Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
8315
8316         else
8317            Rewrite (N,
8318              Make_Op_Shift_Left (Loc,
8319                Left_Opnd  => Rop,
8320                Right_Opnd =>
8321                  Convert_To (Standard_Natural, Right_Opnd (Lop))));
8322         end if;
8323
8324         Analyze_And_Resolve (N, Typ);
8325         return;
8326      end if;
8327
8328      --  Do required fixup of universal fixed operation
8329
8330      if Typ = Universal_Fixed then
8331         Fixup_Universal_Fixed_Operation (N);
8332         Typ := Etype (N);
8333      end if;
8334
8335      --  Multiplications with fixed-point results
8336
8337      if Is_Fixed_Point_Type (Typ) then
8338
8339         --  No special processing if Treat_Fixed_As_Integer is set, since from
8340         --  a semantic point of view such operations are simply integer
8341         --  operations and will be treated that way.
8342
8343         if not Treat_Fixed_As_Integer (N) then
8344
8345            --  Case of fixed * integer => fixed
8346
8347            if Is_Integer_Type (Rtyp) then
8348               Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
8349
8350            --  Case of integer * fixed => fixed
8351
8352            elsif Is_Integer_Type (Ltyp) then
8353               Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
8354
8355            --  Case of fixed * fixed => fixed
8356
8357            else
8358               Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
8359            end if;
8360         end if;
8361
8362      --  Other cases of multiplication of fixed-point operands. Again we
8363      --  exclude the cases where Treat_Fixed_As_Integer flag is set.
8364
8365      elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
8366        and then not Treat_Fixed_As_Integer (N)
8367      then
8368         if Is_Integer_Type (Typ) then
8369            Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
8370         else
8371            pragma Assert (Is_Floating_Point_Type (Typ));
8372            Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
8373         end if;
8374
8375      --  Mixed-mode operations can appear in a non-static universal context,
8376      --  in which case the integer argument must be converted explicitly.
8377
8378      elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
8379         Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
8380         Analyze_And_Resolve (Rop, Universal_Real);
8381
8382      elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
8383         Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
8384         Analyze_And_Resolve (Lop, Universal_Real);
8385
8386      --  Non-fixed point cases, check software overflow checking required
8387
8388      elsif Is_Signed_Integer_Type (Etype (N)) then
8389         Apply_Arithmetic_Overflow_Check (N);
8390
8391      --  Deal with VAX float case
8392
8393      elsif Vax_Float (Typ) then
8394         Expand_Vax_Arith (N);
8395         return;
8396      end if;
8397   end Expand_N_Op_Multiply;
8398
8399   --------------------
8400   -- Expand_N_Op_Ne --
8401   --------------------
8402
8403   procedure Expand_N_Op_Ne (N : Node_Id) is
8404      Typ : constant Entity_Id := Etype (Left_Opnd (N));
8405
8406   begin
8407      --  Case of elementary type with standard operator
8408
8409      if Is_Elementary_Type (Typ)
8410        and then Sloc (Entity (N)) = Standard_Location
8411      then
8412         Binary_Op_Validity_Checks (N);
8413
8414         --  Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
8415         --  means we no longer have a /= operation, we are all done.
8416
8417         Expand_Compare_Minimize_Eliminate_Overflow (N);
8418
8419         if Nkind (N) /= N_Op_Ne then
8420            return;
8421         end if;
8422
8423         --  Boolean types (requiring handling of non-standard case)
8424
8425         if Is_Boolean_Type (Typ) then
8426            Adjust_Condition (Left_Opnd (N));
8427            Adjust_Condition (Right_Opnd (N));
8428            Set_Etype (N, Standard_Boolean);
8429            Adjust_Result_Type (N, Typ);
8430         end if;
8431
8432         Rewrite_Comparison (N);
8433
8434         --  If we still have comparison for Vax_Float, process it
8435
8436         if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare  then
8437            Expand_Vax_Comparison (N);
8438            return;
8439         end if;
8440
8441      --  For all cases other than elementary types, we rewrite node as the
8442      --  negation of an equality operation, and reanalyze. The equality to be
8443      --  used is defined in the same scope and has the same signature. This
8444      --  signature must be set explicitly since in an instance it may not have
8445      --  the same visibility as in the generic unit. This avoids duplicating
8446      --  or factoring the complex code for record/array equality tests etc.
8447
8448      else
8449         declare
8450            Loc : constant Source_Ptr := Sloc (N);
8451            Neg : Node_Id;
8452            Ne  : constant Entity_Id := Entity (N);
8453
8454         begin
8455            Binary_Op_Validity_Checks (N);
8456
8457            Neg :=
8458              Make_Op_Not (Loc,
8459                Right_Opnd =>
8460                  Make_Op_Eq (Loc,
8461                    Left_Opnd =>  Left_Opnd (N),
8462                    Right_Opnd => Right_Opnd (N)));
8463            Set_Paren_Count (Right_Opnd (Neg), 1);
8464
8465            if Scope (Ne) /= Standard_Standard then
8466               Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
8467            end if;
8468
8469            --  For navigation purposes, we want to treat the inequality as an
8470            --  implicit reference to the corresponding equality. Preserve the
8471            --  Comes_From_ source flag to generate proper Xref entries.
8472
8473            Preserve_Comes_From_Source (Neg, N);
8474            Preserve_Comes_From_Source (Right_Opnd (Neg), N);
8475            Rewrite (N, Neg);
8476            Analyze_And_Resolve (N, Standard_Boolean);
8477         end;
8478      end if;
8479
8480      Optimize_Length_Comparison (N);
8481   end Expand_N_Op_Ne;
8482
8483   ---------------------
8484   -- Expand_N_Op_Not --
8485   ---------------------
8486
8487   --  If the argument is other than a Boolean array type, there is no special
8488   --  expansion required, except for VMS operations on signed integers.
8489
8490   --  For the packed case, we call the special routine in Exp_Pakd, except
8491   --  that if the component size is greater than one, we use the standard
8492   --  routine generating a gruesome loop (it is so peculiar to have packed
8493   --  arrays with non-standard Boolean representations anyway, so it does not
8494   --  matter that we do not handle this case efficiently).
8495
8496   --  For the unpacked case (and for the special packed case where we have non
8497   --  standard Booleans, as discussed above), we generate and insert into the
8498   --  tree the following function definition:
8499
8500   --     function Nnnn (A : arr) is
8501   --       B : arr;
8502   --     begin
8503   --       for J in a'range loop
8504   --          B (J) := not A (J);
8505   --       end loop;
8506   --       return B;
8507   --     end Nnnn;
8508
8509   --  Here arr is the actual subtype of the parameter (and hence always
8510   --  constrained). Then we replace the not with a call to this function.
8511
8512   procedure Expand_N_Op_Not (N : Node_Id) is
8513      Loc  : constant Source_Ptr := Sloc (N);
8514      Typ  : constant Entity_Id  := Etype (N);
8515      Opnd : Node_Id;
8516      Arr  : Entity_Id;
8517      A    : Entity_Id;
8518      B    : Entity_Id;
8519      J    : Entity_Id;
8520      A_J  : Node_Id;
8521      B_J  : Node_Id;
8522
8523      Func_Name      : Entity_Id;
8524      Loop_Statement : Node_Id;
8525
8526   begin
8527      Unary_Op_Validity_Checks (N);
8528
8529      --  For boolean operand, deal with non-standard booleans
8530
8531      if Is_Boolean_Type (Typ) then
8532         Adjust_Condition (Right_Opnd (N));
8533         Set_Etype (N, Standard_Boolean);
8534         Adjust_Result_Type (N, Typ);
8535         return;
8536      end if;
8537
8538      --  For the VMS "not" on signed integer types, use conversion to and from
8539      --  a predefined modular type.
8540
8541      if Is_VMS_Operator (Entity (N)) then
8542         declare
8543            Rtyp : Entity_Id;
8544            Utyp : Entity_Id;
8545
8546         begin
8547            --  If this is a derived type, retrieve original VMS type so that
8548            --  the proper sized type is used for intermediate values.
8549
8550            if Is_Derived_Type (Typ) then
8551               Rtyp := First_Subtype (Etype (Typ));
8552            else
8553               Rtyp := Typ;
8554            end if;
8555
8556            --  The proper unsigned type must have a size compatible with the
8557            --  operand, to prevent misalignment.
8558
8559            if RM_Size (Rtyp) <= 8 then
8560               Utyp := RTE (RE_Unsigned_8);
8561
8562            elsif RM_Size (Rtyp) <= 16 then
8563               Utyp := RTE (RE_Unsigned_16);
8564
8565            elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
8566               Utyp := RTE (RE_Unsigned_32);
8567
8568            else
8569               Utyp := RTE (RE_Long_Long_Unsigned);
8570            end if;
8571
8572            Rewrite (N,
8573              Unchecked_Convert_To (Typ,
8574                Make_Op_Not (Loc,
8575                  Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
8576            Analyze_And_Resolve (N, Typ);
8577            return;
8578         end;
8579      end if;
8580
8581      --  Only array types need any other processing
8582
8583      if not Is_Array_Type (Typ) then
8584         return;
8585      end if;
8586
8587      --  Case of array operand. If bit packed with a component size of 1,
8588      --  handle it in Exp_Pakd if the operand is known to be aligned.
8589
8590      if Is_Bit_Packed_Array (Typ)
8591        and then Component_Size (Typ) = 1
8592        and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
8593      then
8594         Expand_Packed_Not (N);
8595         return;
8596      end if;
8597
8598      --  Case of array operand which is not bit-packed. If the context is
8599      --  a safe assignment, call in-place operation, If context is a larger
8600      --  boolean expression in the context of a safe assignment, expansion is
8601      --  done by enclosing operation.
8602
8603      Opnd := Relocate_Node (Right_Opnd (N));
8604      Convert_To_Actual_Subtype (Opnd);
8605      Arr := Etype (Opnd);
8606      Ensure_Defined (Arr, N);
8607      Silly_Boolean_Array_Not_Test (N, Arr);
8608
8609      if Nkind (Parent (N)) = N_Assignment_Statement then
8610         if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
8611            Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8612            return;
8613
8614         --  Special case the negation of a binary operation
8615
8616         elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
8617           and then Safe_In_Place_Array_Op
8618                      (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
8619         then
8620            Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
8621            return;
8622         end if;
8623
8624      elsif Nkind (Parent (N)) in N_Binary_Op
8625        and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
8626      then
8627         declare
8628            Op1 : constant Node_Id := Left_Opnd  (Parent (N));
8629            Op2 : constant Node_Id := Right_Opnd (Parent (N));
8630            Lhs : constant Node_Id := Name (Parent (Parent (N)));
8631
8632         begin
8633            if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
8634
8635               --  (not A) op (not B) can be reduced to a single call
8636
8637               if N = Op1 and then Nkind (Op2) = N_Op_Not then
8638                  return;
8639
8640               elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
8641                  return;
8642
8643               --  A xor (not B) can also be special-cased
8644
8645               elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
8646                  return;
8647               end if;
8648            end if;
8649         end;
8650      end if;
8651
8652      A := Make_Defining_Identifier (Loc, Name_uA);
8653      B := Make_Defining_Identifier (Loc, Name_uB);
8654      J := Make_Defining_Identifier (Loc, Name_uJ);
8655
8656      A_J :=
8657        Make_Indexed_Component (Loc,
8658          Prefix      => New_Occurrence_Of (A, Loc),
8659          Expressions => New_List (New_Occurrence_Of (J, Loc)));
8660
8661      B_J :=
8662        Make_Indexed_Component (Loc,
8663          Prefix      => New_Occurrence_Of (B, Loc),
8664          Expressions => New_List (New_Occurrence_Of (J, Loc)));
8665
8666      Loop_Statement :=
8667        Make_Implicit_Loop_Statement (N,
8668          Identifier => Empty,
8669
8670          Iteration_Scheme =>
8671            Make_Iteration_Scheme (Loc,
8672              Loop_Parameter_Specification =>
8673                Make_Loop_Parameter_Specification (Loc,
8674                  Defining_Identifier         => J,
8675                  Discrete_Subtype_Definition =>
8676                    Make_Attribute_Reference (Loc,
8677                      Prefix         => Make_Identifier (Loc, Chars (A)),
8678                      Attribute_Name => Name_Range))),
8679
8680          Statements => New_List (
8681            Make_Assignment_Statement (Loc,
8682              Name       => B_J,
8683              Expression => Make_Op_Not (Loc, A_J))));
8684
8685      Func_Name := Make_Temporary (Loc, 'N');
8686      Set_Is_Inlined (Func_Name);
8687
8688      Insert_Action (N,
8689        Make_Subprogram_Body (Loc,
8690          Specification =>
8691            Make_Function_Specification (Loc,
8692              Defining_Unit_Name => Func_Name,
8693              Parameter_Specifications => New_List (
8694                Make_Parameter_Specification (Loc,
8695                  Defining_Identifier => A,
8696                  Parameter_Type      => New_Occurrence_Of (Typ, Loc))),
8697              Result_Definition => New_Occurrence_Of (Typ, Loc)),
8698
8699          Declarations => New_List (
8700            Make_Object_Declaration (Loc,
8701              Defining_Identifier => B,
8702              Object_Definition   => New_Occurrence_Of (Arr, Loc))),
8703
8704          Handled_Statement_Sequence =>
8705            Make_Handled_Sequence_Of_Statements (Loc,
8706              Statements => New_List (
8707                Loop_Statement,
8708                Make_Simple_Return_Statement (Loc,
8709                  Expression => Make_Identifier (Loc, Chars (B)))))));
8710
8711      Rewrite (N,
8712        Make_Function_Call (Loc,
8713          Name                   => New_Occurrence_Of (Func_Name, Loc),
8714          Parameter_Associations => New_List (Opnd)));
8715
8716      Analyze_And_Resolve (N, Typ);
8717   end Expand_N_Op_Not;
8718
8719   --------------------
8720   -- Expand_N_Op_Or --
8721   --------------------
8722
8723   procedure Expand_N_Op_Or (N : Node_Id) is
8724      Typ : constant Entity_Id := Etype (N);
8725
8726   begin
8727      Binary_Op_Validity_Checks (N);
8728
8729      if Is_Array_Type (Etype (N)) then
8730         Expand_Boolean_Operator (N);
8731
8732      elsif Is_Boolean_Type (Etype (N)) then
8733         Adjust_Condition (Left_Opnd (N));
8734         Adjust_Condition (Right_Opnd (N));
8735         Set_Etype (N, Standard_Boolean);
8736         Adjust_Result_Type (N, Typ);
8737
8738      elsif Is_Intrinsic_Subprogram (Entity (N)) then
8739         Expand_Intrinsic_Call (N, Entity (N));
8740
8741      end if;
8742   end Expand_N_Op_Or;
8743
8744   ----------------------
8745   -- Expand_N_Op_Plus --
8746   ----------------------
8747
8748   procedure Expand_N_Op_Plus (N : Node_Id) is
8749   begin
8750      Unary_Op_Validity_Checks (N);
8751
8752      --  Check for MINIMIZED/ELIMINATED overflow mode
8753
8754      if Minimized_Eliminated_Overflow_Check (N) then
8755         Apply_Arithmetic_Overflow_Check (N);
8756         return;
8757      end if;
8758   end Expand_N_Op_Plus;
8759
8760   ---------------------
8761   -- Expand_N_Op_Rem --
8762   ---------------------
8763
8764   procedure Expand_N_Op_Rem (N : Node_Id) is
8765      Loc : constant Source_Ptr := Sloc (N);
8766      Typ : constant Entity_Id  := Etype (N);
8767
8768      Left  : Node_Id;
8769      Right : Node_Id;
8770
8771      Lo : Uint;
8772      Hi : Uint;
8773      OK : Boolean;
8774
8775      Lneg : Boolean;
8776      Rneg : Boolean;
8777      --  Set if corresponding operand can be negative
8778
8779      pragma Unreferenced (Hi);
8780
8781   begin
8782      Binary_Op_Validity_Checks (N);
8783
8784      --  Check for MINIMIZED/ELIMINATED overflow mode
8785
8786      if Minimized_Eliminated_Overflow_Check (N) then
8787         Apply_Arithmetic_Overflow_Check (N);
8788         return;
8789      end if;
8790
8791      if Is_Integer_Type (Etype (N)) then
8792         Apply_Divide_Checks (N);
8793
8794         --  All done if we don't have a REM any more, which can happen as a
8795         --  result of overflow expansion in MINIMIZED or ELIMINATED modes.
8796
8797         if Nkind (N) /= N_Op_Rem then
8798            return;
8799         end if;
8800      end if;
8801
8802      --  Proceed with expansion of REM
8803
8804      Left  := Left_Opnd (N);
8805      Right := Right_Opnd (N);
8806
8807      --  Apply optimization x rem 1 = 0. We don't really need that with gcc,
8808      --  but it is useful with other back ends (e.g. AAMP), and is certainly
8809      --  harmless.
8810
8811      if Is_Integer_Type (Etype (N))
8812        and then Compile_Time_Known_Value (Right)
8813        and then Expr_Value (Right) = Uint_1
8814      then
8815         --  Call Remove_Side_Effects to ensure that any side effects in the
8816         --  ignored left operand (in particular function calls to user defined
8817         --  functions) are properly executed.
8818
8819         Remove_Side_Effects (Left);
8820
8821         Rewrite (N, Make_Integer_Literal (Loc, 0));
8822         Analyze_And_Resolve (N, Typ);
8823         return;
8824      end if;
8825
8826      --  Deal with annoying case of largest negative number remainder minus
8827      --  one. Gigi may not handle this case correctly, because on some
8828      --  targets, the mod value is computed using a divide instruction
8829      --  which gives an overflow trap for this case.
8830
8831      --  It would be a bit more efficient to figure out which targets this
8832      --  is really needed for, but in practice it is reasonable to do the
8833      --  following special check in all cases, since it means we get a clearer
8834      --  message, and also the overhead is minimal given that division is
8835      --  expensive in any case.
8836
8837      --  In fact the check is quite easy, if the right operand is -1, then
8838      --  the remainder is always 0, and we can just ignore the left operand
8839      --  completely in this case.
8840
8841      Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
8842      Lneg := (not OK) or else Lo < 0;
8843
8844      Determine_Range (Left,  OK, Lo, Hi, Assume_Valid => True);
8845      Rneg := (not OK) or else Lo < 0;
8846
8847      --  We won't mess with trying to find out if the left operand can really
8848      --  be the largest negative number (that's a pain in the case of private
8849      --  types and this is really marginal). We will just assume that we need
8850      --  the test if the left operand can be negative at all.
8851
8852      if Lneg and Rneg then
8853         Rewrite (N,
8854           Make_If_Expression (Loc,
8855             Expressions => New_List (
8856               Make_Op_Eq (Loc,
8857                 Left_Opnd  => Duplicate_Subexpr (Right),
8858                 Right_Opnd =>
8859                   Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
8860
8861               Unchecked_Convert_To (Typ,
8862                 Make_Integer_Literal (Loc, Uint_0)),
8863
8864               Relocate_Node (N))));
8865
8866         Set_Analyzed (Next (Next (First (Expressions (N)))));
8867         Analyze_And_Resolve (N, Typ);
8868      end if;
8869   end Expand_N_Op_Rem;
8870
8871   -----------------------------
8872   -- Expand_N_Op_Rotate_Left --
8873   -----------------------------
8874
8875   procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
8876   begin
8877      Binary_Op_Validity_Checks (N);
8878
8879      --  If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8880      --  so we rewrite in terms of logical shifts
8881
8882      --    Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8883
8884      --  where Bits is the shift count mod Esize (the mod operation here
8885      --  deals with ludicrous large shift counts, which are apparently OK).
8886
8887      --  What about non-binary modulus ???
8888
8889      declare
8890         Loc : constant Source_Ptr := Sloc (N);
8891         Rtp : constant Entity_Id  := Etype (Right_Opnd (N));
8892         Typ : constant Entity_Id  := Etype (N);
8893
8894      begin
8895         if Modify_Tree_For_C then
8896            Rewrite (Right_Opnd (N),
8897              Make_Op_Rem (Loc,
8898                Left_Opnd  => Relocate_Node (Right_Opnd (N)),
8899                Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8900
8901            Analyze_And_Resolve (Right_Opnd (N), Rtp);
8902
8903            Rewrite (N,
8904              Make_Op_Or (Loc,
8905                Left_Opnd =>
8906                  Make_Op_Shift_Left (Loc,
8907                    Left_Opnd  => Left_Opnd (N),
8908                    Right_Opnd => Right_Opnd (N)),
8909
8910                Right_Opnd =>
8911                  Make_Op_Shift_Right (Loc,
8912                    Left_Opnd  => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8913                    Right_Opnd =>
8914                      Make_Op_Subtract (Loc,
8915                        Left_Opnd  => Make_Integer_Literal (Loc, Esize (Typ)),
8916                        Right_Opnd =>
8917                          Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8918
8919            Analyze_And_Resolve (N, Typ);
8920         end if;
8921      end;
8922   end Expand_N_Op_Rotate_Left;
8923
8924   ------------------------------
8925   -- Expand_N_Op_Rotate_Right --
8926   ------------------------------
8927
8928   procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
8929   begin
8930      Binary_Op_Validity_Checks (N);
8931
8932      --  If we are in Modify_Tree_For_C mode, there is no rotate right in C,
8933      --  so we rewrite in terms of logical shifts
8934
8935      --    Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
8936
8937      --  where Bits is the shift count mod Esize (the mod operation here
8938      --  deals with ludicrous large shift counts, which are apparently OK).
8939
8940      --  What about non-binary modulus ???
8941
8942      declare
8943         Loc : constant Source_Ptr := Sloc (N);
8944         Rtp : constant Entity_Id  := Etype (Right_Opnd (N));
8945         Typ : constant Entity_Id  := Etype (N);
8946
8947      begin
8948         Rewrite (Right_Opnd (N),
8949           Make_Op_Rem (Loc,
8950             Left_Opnd  => Relocate_Node (Right_Opnd (N)),
8951             Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
8952
8953         Analyze_And_Resolve (Right_Opnd (N), Rtp);
8954
8955         if Modify_Tree_For_C then
8956            Rewrite (N,
8957              Make_Op_Or (Loc,
8958                Left_Opnd =>
8959                  Make_Op_Shift_Right (Loc,
8960                    Left_Opnd  => Left_Opnd (N),
8961                    Right_Opnd => Right_Opnd (N)),
8962
8963                Right_Opnd =>
8964                  Make_Op_Shift_Left (Loc,
8965                    Left_Opnd  => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
8966                    Right_Opnd =>
8967                      Make_Op_Subtract (Loc,
8968                        Left_Opnd  => Make_Integer_Literal (Loc, Esize (Typ)),
8969                        Right_Opnd =>
8970                          Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
8971
8972            Analyze_And_Resolve (N, Typ);
8973         end if;
8974      end;
8975   end Expand_N_Op_Rotate_Right;
8976
8977   ----------------------------
8978   -- Expand_N_Op_Shift_Left --
8979   ----------------------------
8980
8981   --  Note: nothing in this routine depends on left as opposed to right shifts
8982   --  so we share the routine for expanding shift right operations.
8983
8984   procedure Expand_N_Op_Shift_Left (N : Node_Id) is
8985   begin
8986      Binary_Op_Validity_Checks (N);
8987
8988      --  If we are in Modify_Tree_For_C mode, then ensure that the right
8989      --  operand is not greater than the word size (since that would not
8990      --  be defined properly by the corresponding C shift operator).
8991
8992      if Modify_Tree_For_C then
8993         declare
8994            Right : constant Node_Id    := Right_Opnd (N);
8995            Loc   : constant Source_Ptr := Sloc (Right);
8996            Typ   : constant Entity_Id  := Etype (N);
8997            Siz   : constant Uint       := Esize (Typ);
8998            Orig  : Node_Id;
8999            OK    : Boolean;
9000            Lo    : Uint;
9001            Hi    : Uint;
9002
9003         begin
9004            if Compile_Time_Known_Value (Right) then
9005               if Expr_Value (Right) >= Siz then
9006                  Rewrite (N, Make_Integer_Literal (Loc, 0));
9007                  Analyze_And_Resolve (N, Typ);
9008               end if;
9009
9010            --  Not compile time known, find range
9011
9012            else
9013               Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9014
9015               --  Nothing to do if known to be OK range, otherwise expand
9016
9017               if not OK or else Hi >= Siz then
9018
9019                  --  Prevent recursion on copy of shift node
9020
9021                  Orig := Relocate_Node (N);
9022                  Set_Analyzed (Orig);
9023
9024                  --  Now do the rewrite
9025
9026                  Rewrite (N,
9027                     Make_If_Expression (Loc,
9028                       Expressions => New_List (
9029                         Make_Op_Ge (Loc,
9030                           Left_Opnd  => Duplicate_Subexpr_Move_Checks (Right),
9031                           Right_Opnd => Make_Integer_Literal (Loc, Siz)),
9032                         Make_Integer_Literal (Loc, 0),
9033                         Orig)));
9034                  Analyze_And_Resolve (N, Typ);
9035               end if;
9036            end if;
9037         end;
9038      end if;
9039   end Expand_N_Op_Shift_Left;
9040
9041   -----------------------------
9042   -- Expand_N_Op_Shift_Right --
9043   -----------------------------
9044
9045   procedure Expand_N_Op_Shift_Right (N : Node_Id) is
9046   begin
9047      --  Share shift left circuit
9048
9049      Expand_N_Op_Shift_Left (N);
9050   end Expand_N_Op_Shift_Right;
9051
9052   ----------------------------------------
9053   -- Expand_N_Op_Shift_Right_Arithmetic --
9054   ----------------------------------------
9055
9056   procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
9057   begin
9058      Binary_Op_Validity_Checks (N);
9059
9060      --  If we are in Modify_Tree_For_C mode, there is no shift right
9061      --  arithmetic in C, so we rewrite in terms of logical shifts.
9062
9063      --    Shift_Right (Num, Bits) or
9064      --      (if Num >= Sign
9065      --       then not (Shift_Right (Mask, bits))
9066      --       else 0)
9067
9068      --  Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9069
9070      --  Note: in almost all C compilers it would work to just shift a
9071      --  signed integer right, but it's undefined and we cannot rely on it.
9072
9073      --  Note: the above works fine for shift counts greater than or equal
9074      --  to the word size, since in this case (not (Shift_Right (Mask, bits)))
9075      --  generates all 1'bits.
9076
9077      --  What about non-binary modulus ???
9078
9079      declare
9080         Loc   : constant Source_Ptr := Sloc (N);
9081         Typ   : constant Entity_Id  := Etype (N);
9082         Sign  : constant Uint       := 2 ** (Esize (Typ) - 1);
9083         Mask  : constant Uint       := (2 ** Esize (Typ)) - 1;
9084         Left  : constant Node_Id    := Left_Opnd (N);
9085         Right : constant Node_Id    := Right_Opnd (N);
9086         Maskx : Node_Id;
9087
9088      begin
9089         if Modify_Tree_For_C then
9090
9091            --  Here if not (Shift_Right (Mask, bits)) can be computed at
9092            --  compile time as a single constant.
9093
9094            if Compile_Time_Known_Value (Right) then
9095               declare
9096                  Val : constant Uint := Expr_Value (Right);
9097
9098               begin
9099                  if Val >= Esize (Typ) then
9100                     Maskx := Make_Integer_Literal (Loc, Mask);
9101
9102                  else
9103                     Maskx :=
9104                       Make_Integer_Literal (Loc,
9105                         Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
9106                  end if;
9107               end;
9108
9109            else
9110               Maskx :=
9111                 Make_Op_Not (Loc,
9112                   Right_Opnd =>
9113                     Make_Op_Shift_Right (Loc,
9114                       Left_Opnd  => Make_Integer_Literal (Loc, Mask),
9115                       Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
9116            end if;
9117
9118            --  Now do the rewrite
9119
9120            Rewrite (N,
9121              Make_Op_Or (Loc,
9122                Left_Opnd =>
9123                  Make_Op_Shift_Right (Loc,
9124                    Left_Opnd  => Left,
9125                    Right_Opnd => Right),
9126                Right_Opnd =>
9127                  Make_If_Expression (Loc,
9128                    Expressions => New_List (
9129                      Make_Op_Ge (Loc,
9130                        Left_Opnd  => Duplicate_Subexpr_No_Checks (Left),
9131                        Right_Opnd => Make_Integer_Literal (Loc, Sign)),
9132                      Maskx,
9133                      Make_Integer_Literal (Loc, 0)))));
9134            Analyze_And_Resolve (N, Typ);
9135         end if;
9136      end;
9137   end Expand_N_Op_Shift_Right_Arithmetic;
9138
9139   --------------------------
9140   -- Expand_N_Op_Subtract --
9141   --------------------------
9142
9143   procedure Expand_N_Op_Subtract (N : Node_Id) is
9144      Typ : constant Entity_Id := Etype (N);
9145
9146   begin
9147      Binary_Op_Validity_Checks (N);
9148
9149      --  Check for MINIMIZED/ELIMINATED overflow mode
9150
9151      if Minimized_Eliminated_Overflow_Check (N) then
9152         Apply_Arithmetic_Overflow_Check (N);
9153         return;
9154      end if;
9155
9156      --  N - 0 = N for integer types
9157
9158      if Is_Integer_Type (Typ)
9159        and then Compile_Time_Known_Value (Right_Opnd (N))
9160        and then Expr_Value (Right_Opnd (N)) = 0
9161      then
9162         Rewrite (N, Left_Opnd (N));
9163         return;
9164      end if;
9165
9166      --  Arithmetic overflow checks for signed integer/fixed point types
9167
9168      if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
9169         Apply_Arithmetic_Overflow_Check (N);
9170
9171      --  VAX floating-point types case
9172
9173      elsif Vax_Float (Typ) then
9174         Expand_Vax_Arith (N);
9175      end if;
9176   end Expand_N_Op_Subtract;
9177
9178   ---------------------
9179   -- Expand_N_Op_Xor --
9180   ---------------------
9181
9182   procedure Expand_N_Op_Xor (N : Node_Id) is
9183      Typ : constant Entity_Id := Etype (N);
9184
9185   begin
9186      Binary_Op_Validity_Checks (N);
9187
9188      if Is_Array_Type (Etype (N)) then
9189         Expand_Boolean_Operator (N);
9190
9191      elsif Is_Boolean_Type (Etype (N)) then
9192         Adjust_Condition (Left_Opnd (N));
9193         Adjust_Condition (Right_Opnd (N));
9194         Set_Etype (N, Standard_Boolean);
9195         Adjust_Result_Type (N, Typ);
9196
9197      elsif Is_Intrinsic_Subprogram (Entity (N)) then
9198         Expand_Intrinsic_Call (N, Entity (N));
9199
9200      end if;
9201   end Expand_N_Op_Xor;
9202
9203   ----------------------
9204   -- Expand_N_Or_Else --
9205   ----------------------
9206
9207   procedure Expand_N_Or_Else (N : Node_Id)
9208     renames Expand_Short_Circuit_Operator;
9209
9210   -----------------------------------
9211   -- Expand_N_Qualified_Expression --
9212   -----------------------------------
9213
9214   procedure Expand_N_Qualified_Expression (N : Node_Id) is
9215      Operand     : constant Node_Id   := Expression (N);
9216      Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
9217
9218   begin
9219      --  Do validity check if validity checking operands
9220
9221      if Validity_Checks_On and Validity_Check_Operands then
9222         Ensure_Valid (Operand);
9223      end if;
9224
9225      --  Apply possible constraint check
9226
9227      Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
9228
9229      if Do_Range_Check (Operand) then
9230         Set_Do_Range_Check (Operand, False);
9231         Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
9232      end if;
9233   end Expand_N_Qualified_Expression;
9234
9235   ------------------------------------
9236   -- Expand_N_Quantified_Expression --
9237   ------------------------------------
9238
9239   --  We expand:
9240
9241   --    for all X in range => Cond
9242
9243   --  into:
9244
9245   --        T := True;
9246   --        for X in range loop
9247   --           if not Cond then
9248   --              T := False;
9249   --              exit;
9250   --           end if;
9251   --        end loop;
9252
9253   --  Similarly, an existentially quantified expression:
9254
9255   --    for some X in range => Cond
9256
9257   --  becomes:
9258
9259   --        T := False;
9260   --        for X in range loop
9261   --           if Cond then
9262   --              T := True;
9263   --              exit;
9264   --           end if;
9265   --        end loop;
9266
9267   --  In both cases, the iteration may be over a container in which case it is
9268   --  given by an iterator specification, not a loop parameter specification.
9269
9270   procedure Expand_N_Quantified_Expression (N : Node_Id) is
9271      Actions   : constant List_Id    := New_List;
9272      For_All   : constant Boolean    := All_Present (N);
9273      Iter_Spec : constant Node_Id    := Iterator_Specification (N);
9274      Loc       : constant Source_Ptr := Sloc (N);
9275      Loop_Spec : constant Node_Id    := Loop_Parameter_Specification (N);
9276      Cond      : Node_Id;
9277      Flag      : Entity_Id;
9278      Scheme    : Node_Id;
9279      Stmts     : List_Id;
9280
9281   begin
9282      --  Create the declaration of the flag which tracks the status of the
9283      --  quantified expression. Generate:
9284
9285      --    Flag : Boolean := (True | False);
9286
9287      Flag := Make_Temporary (Loc, 'T', N);
9288
9289      Append_To (Actions,
9290        Make_Object_Declaration (Loc,
9291          Defining_Identifier => Flag,
9292          Object_Definition   => New_Occurrence_Of (Standard_Boolean, Loc),
9293          Expression          =>
9294            New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
9295
9296      --  Construct the circuitry which tracks the status of the quantified
9297      --  expression. Generate:
9298
9299      --    if [not] Cond then
9300      --       Flag := (False | True);
9301      --       exit;
9302      --    end if;
9303
9304      Cond := Relocate_Node (Condition (N));
9305
9306      if For_All then
9307         Cond := Make_Op_Not (Loc, Cond);
9308      end if;
9309
9310      Stmts := New_List (
9311        Make_Implicit_If_Statement (N,
9312          Condition       => Cond,
9313          Then_Statements => New_List (
9314            Make_Assignment_Statement (Loc,
9315              Name       => New_Occurrence_Of (Flag, Loc),
9316              Expression =>
9317                New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
9318            Make_Exit_Statement (Loc))));
9319
9320      --  Build the loop equivalent of the quantified expression
9321
9322      if Present (Iter_Spec) then
9323         Scheme :=
9324           Make_Iteration_Scheme (Loc,
9325             Iterator_Specification => Iter_Spec);
9326      else
9327         Scheme :=
9328           Make_Iteration_Scheme (Loc,
9329             Loop_Parameter_Specification => Loop_Spec);
9330      end if;
9331
9332      Append_To (Actions,
9333        Make_Loop_Statement (Loc,
9334          Iteration_Scheme => Scheme,
9335          Statements       => Stmts,
9336          End_Label        => Empty));
9337
9338      --  Transform the quantified expression
9339
9340      Rewrite (N,
9341        Make_Expression_With_Actions (Loc,
9342          Expression => New_Occurrence_Of (Flag, Loc),
9343          Actions    => Actions));
9344      Analyze_And_Resolve (N, Standard_Boolean);
9345   end Expand_N_Quantified_Expression;
9346
9347   ---------------------------------
9348   -- Expand_N_Selected_Component --
9349   ---------------------------------
9350
9351   procedure Expand_N_Selected_Component (N : Node_Id) is
9352      Loc   : constant Source_Ptr := Sloc (N);
9353      Par   : constant Node_Id    := Parent (N);
9354      P     : constant Node_Id    := Prefix (N);
9355      S     : constant Node_Id    := Selector_Name (N);
9356      Ptyp  : Entity_Id           := Underlying_Type (Etype (P));
9357      Disc  : Entity_Id;
9358      New_N : Node_Id;
9359      Dcon  : Elmt_Id;
9360      Dval  : Node_Id;
9361
9362      function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
9363      --  Gigi needs a temporary for prefixes that depend on a discriminant,
9364      --  unless the context of an assignment can provide size information.
9365      --  Don't we have a general routine that does this???
9366
9367      function Is_Subtype_Declaration return Boolean;
9368      --  The replacement of a discriminant reference by its value is required
9369      --  if this is part of the initialization of an temporary generated by a
9370      --  change of representation. This shows up as the construction of a
9371      --  discriminant constraint for a subtype declared at the same point as
9372      --  the entity in the prefix of the selected component. We recognize this
9373      --  case when the context of the reference is:
9374      --    subtype ST is T(Obj.D);
9375      --  where the entity for Obj comes from source, and ST has the same sloc.
9376
9377      -----------------------
9378      -- In_Left_Hand_Side --
9379      -----------------------
9380
9381      function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
9382      begin
9383         return (Nkind (Parent (Comp)) = N_Assignment_Statement
9384                  and then Comp = Name (Parent (Comp)))
9385           or else (Present (Parent (Comp))
9386                     and then Nkind (Parent (Comp)) in N_Subexpr
9387                     and then In_Left_Hand_Side (Parent (Comp)));
9388      end In_Left_Hand_Side;
9389
9390      -----------------------------
9391      --  Is_Subtype_Declaration --
9392      -----------------------------
9393
9394      function Is_Subtype_Declaration return Boolean is
9395         Par : constant Node_Id := Parent (N);
9396      begin
9397         return
9398           Nkind (Par) = N_Index_Or_Discriminant_Constraint
9399             and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
9400             and then Comes_From_Source (Entity (Prefix (N)))
9401             and then Sloc (Par) = Sloc (Entity (Prefix (N)));
9402      end Is_Subtype_Declaration;
9403
9404   --  Start of processing for Expand_N_Selected_Component
9405
9406   begin
9407      --  Insert explicit dereference if required
9408
9409      if Is_Access_Type (Ptyp) then
9410
9411         --  First set prefix type to proper access type, in case it currently
9412         --  has a private (non-access) view of this type.
9413
9414         Set_Etype (P, Ptyp);
9415
9416         Insert_Explicit_Dereference (P);
9417         Analyze_And_Resolve (P, Designated_Type (Ptyp));
9418
9419         if Ekind (Etype (P)) = E_Private_Subtype
9420           and then Is_For_Access_Subtype (Etype (P))
9421         then
9422            Set_Etype (P, Base_Type (Etype (P)));
9423         end if;
9424
9425         Ptyp := Etype (P);
9426      end if;
9427
9428      --  Deal with discriminant check required
9429
9430      if Do_Discriminant_Check (N) then
9431         if Present (Discriminant_Checking_Func
9432                      (Original_Record_Component (Entity (S))))
9433         then
9434            --  Present the discriminant checking function to the backend, so
9435            --  that it can inline the call to the function.
9436
9437            Add_Inlined_Body
9438              (Discriminant_Checking_Func
9439                (Original_Record_Component (Entity (S))));
9440
9441            --  Now reset the flag and generate the call
9442
9443            Set_Do_Discriminant_Check (N, False);
9444            Generate_Discriminant_Check (N);
9445
9446         --  In the case of Unchecked_Union, no discriminant checking is
9447         --  actually performed.
9448
9449         else
9450            Set_Do_Discriminant_Check (N, False);
9451         end if;
9452      end if;
9453
9454      --  Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9455      --  function, then additional actuals must be passed.
9456
9457      if Ada_Version >= Ada_2005
9458        and then Is_Build_In_Place_Function_Call (P)
9459      then
9460         Make_Build_In_Place_Call_In_Anonymous_Context (P);
9461      end if;
9462
9463      --  Gigi cannot handle unchecked conversions that are the prefix of a
9464      --  selected component with discriminants. This must be checked during
9465      --  expansion, because during analysis the type of the selector is not
9466      --  known at the point the prefix is analyzed. If the conversion is the
9467      --  target of an assignment, then we cannot force the evaluation.
9468
9469      if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
9470        and then Has_Discriminants (Etype (N))
9471        and then not In_Left_Hand_Side (N)
9472      then
9473         Force_Evaluation (Prefix (N));
9474      end if;
9475
9476      --  Remaining processing applies only if selector is a discriminant
9477
9478      if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
9479
9480         --  If the selector is a discriminant of a constrained record type,
9481         --  we may be able to rewrite the expression with the actual value
9482         --  of the discriminant, a useful optimization in some cases.
9483
9484         if Is_Record_Type (Ptyp)
9485           and then Has_Discriminants (Ptyp)
9486           and then Is_Constrained (Ptyp)
9487         then
9488            --  Do this optimization for discrete types only, and not for
9489            --  access types (access discriminants get us into trouble).
9490
9491            if not Is_Discrete_Type (Etype (N)) then
9492               null;
9493
9494            --  Don't do this on the left hand of an assignment statement.
9495            --  Normally one would think that references like this would not
9496            --  occur, but they do in generated code, and mean that we really
9497            --  do want to assign the discriminant.
9498
9499            elsif Nkind (Par) = N_Assignment_Statement
9500              and then Name (Par) = N
9501            then
9502               null;
9503
9504            --  Don't do this optimization for the prefix of an attribute or
9505            --  the name of an object renaming declaration since these are
9506            --  contexts where we do not want the value anyway.
9507
9508            elsif (Nkind (Par) = N_Attribute_Reference
9509                    and then Prefix (Par) = N)
9510              or else Is_Renamed_Object (N)
9511            then
9512               null;
9513
9514            --  Don't do this optimization if we are within the code for a
9515            --  discriminant check, since the whole point of such a check may
9516            --  be to verify the condition on which the code below depends.
9517
9518            elsif Is_In_Discriminant_Check (N) then
9519               null;
9520
9521            --  Green light to see if we can do the optimization. There is
9522            --  still one condition that inhibits the optimization below but
9523            --  now is the time to check the particular discriminant.
9524
9525            else
9526               --  Loop through discriminants to find the matching discriminant
9527               --  constraint to see if we can copy it.
9528
9529               Disc := First_Discriminant (Ptyp);
9530               Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
9531               Discr_Loop : while Present (Dcon) loop
9532                  Dval := Node (Dcon);
9533
9534                  --  Check if this is the matching discriminant and if the
9535                  --  discriminant value is simple enough to make sense to
9536                  --  copy. We don't want to copy complex expressions, and
9537                  --  indeed to do so can cause trouble (before we put in
9538                  --  this guard, a discriminant expression containing an
9539                  --  AND THEN was copied, causing problems for coverage
9540                  --  analysis tools).
9541
9542                  --  However, if the reference is part of the initialization
9543                  --  code generated for an object declaration, we must use
9544                  --  the discriminant value from the subtype constraint,
9545                  --  because the selected component may be a reference to the
9546                  --  object being initialized, whose discriminant is not yet
9547                  --  set. This only happens in complex cases involving changes
9548                  --  or representation.
9549
9550                  if Disc = Entity (Selector_Name (N))
9551                    and then (Is_Entity_Name (Dval)
9552                               or else Compile_Time_Known_Value (Dval)
9553                               or else Is_Subtype_Declaration)
9554                  then
9555                     --  Here we have the matching discriminant. Check for
9556                     --  the case of a discriminant of a component that is
9557                     --  constrained by an outer discriminant, which cannot
9558                     --  be optimized away.
9559
9560                     if Denotes_Discriminant
9561                          (Dval, Check_Concurrent => True)
9562                     then
9563                        exit Discr_Loop;
9564
9565                     elsif Nkind (Original_Node (Dval)) = N_Selected_Component
9566                       and then
9567                         Denotes_Discriminant
9568                           (Selector_Name (Original_Node (Dval)), True)
9569                     then
9570                        exit Discr_Loop;
9571
9572                     --  Do not retrieve value if constraint is not static. It
9573                     --  is generally not useful, and the constraint may be a
9574                     --  rewritten outer discriminant in which case it is in
9575                     --  fact incorrect.
9576
9577                     elsif Is_Entity_Name (Dval)
9578                       and then
9579                         Nkind (Parent (Entity (Dval))) = N_Object_Declaration
9580                       and then Present (Expression (Parent (Entity (Dval))))
9581                       and then not
9582                         Is_Static_Expression
9583                           (Expression (Parent (Entity (Dval))))
9584                     then
9585                        exit Discr_Loop;
9586
9587                     --  In the context of a case statement, the expression may
9588                     --  have the base type of the discriminant, and we need to
9589                     --  preserve the constraint to avoid spurious errors on
9590                     --  missing cases.
9591
9592                     elsif Nkind (Parent (N)) = N_Case_Statement
9593                       and then Etype (Dval) /= Etype (Disc)
9594                     then
9595                        Rewrite (N,
9596                          Make_Qualified_Expression (Loc,
9597                            Subtype_Mark =>
9598                              New_Occurrence_Of (Etype (Disc), Loc),
9599                            Expression   =>
9600                              New_Copy_Tree (Dval)));
9601                        Analyze_And_Resolve (N, Etype (Disc));
9602
9603                        --  In case that comes out as a static expression,
9604                        --  reset it (a selected component is never static).
9605
9606                        Set_Is_Static_Expression (N, False);
9607                        return;
9608
9609                     --  Otherwise we can just copy the constraint, but the
9610                     --  result is certainly not static. In some cases the
9611                     --  discriminant constraint has been analyzed in the
9612                     --  context of the original subtype indication, but for
9613                     --  itypes the constraint might not have been analyzed
9614                     --  yet, and this must be done now.
9615
9616                     else
9617                        Rewrite (N, New_Copy_Tree (Dval));
9618                        Analyze_And_Resolve (N);
9619                        Set_Is_Static_Expression (N, False);
9620                        return;
9621                     end if;
9622                  end if;
9623
9624                  Next_Elmt (Dcon);
9625                  Next_Discriminant (Disc);
9626               end loop Discr_Loop;
9627
9628               --  Note: the above loop should always find a matching
9629               --  discriminant, but if it does not, we just missed an
9630               --  optimization due to some glitch (perhaps a previous
9631               --  error), so ignore.
9632
9633            end if;
9634         end if;
9635
9636         --  The only remaining processing is in the case of a discriminant of
9637         --  a concurrent object, where we rewrite the prefix to denote the
9638         --  corresponding record type. If the type is derived and has renamed
9639         --  discriminants, use corresponding discriminant, which is the one
9640         --  that appears in the corresponding record.
9641
9642         if not Is_Concurrent_Type (Ptyp) then
9643            return;
9644         end if;
9645
9646         Disc := Entity (Selector_Name (N));
9647
9648         if Is_Derived_Type (Ptyp)
9649           and then Present (Corresponding_Discriminant (Disc))
9650         then
9651            Disc := Corresponding_Discriminant (Disc);
9652         end if;
9653
9654         New_N :=
9655           Make_Selected_Component (Loc,
9656             Prefix =>
9657               Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
9658                 New_Copy_Tree (P)),
9659             Selector_Name => Make_Identifier (Loc, Chars (Disc)));
9660
9661         Rewrite (N, New_N);
9662         Analyze (N);
9663      end if;
9664
9665      --  Set Atomic_Sync_Required if necessary for atomic component
9666
9667      if Nkind (N) = N_Selected_Component then
9668         declare
9669            E   : constant Entity_Id := Entity (Selector_Name (N));
9670            Set : Boolean;
9671
9672         begin
9673            --  If component is atomic, but type is not, setting depends on
9674            --  disable/enable state for the component.
9675
9676            if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
9677               Set := not Atomic_Synchronization_Disabled (E);
9678
9679            --  If component is not atomic, but its type is atomic, setting
9680            --  depends on disable/enable state for the type.
9681
9682            elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9683               Set := not Atomic_Synchronization_Disabled (Etype (E));
9684
9685            --  If both component and type are atomic, we disable if either
9686            --  component or its type have sync disabled.
9687
9688            elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
9689               Set := (not Atomic_Synchronization_Disabled (E))
9690                        and then
9691                      (not Atomic_Synchronization_Disabled (Etype (E)));
9692
9693            else
9694               Set := False;
9695            end if;
9696
9697            --  Set flag if required
9698
9699            if Set then
9700               Activate_Atomic_Synchronization (N);
9701            end if;
9702         end;
9703      end if;
9704   end Expand_N_Selected_Component;
9705
9706   --------------------
9707   -- Expand_N_Slice --
9708   --------------------
9709
9710   procedure Expand_N_Slice (N : Node_Id) is
9711      Loc : constant Source_Ptr := Sloc (N);
9712      Typ : constant Entity_Id  := Etype (N);
9713
9714      function Is_Procedure_Actual (N : Node_Id) return Boolean;
9715      --  Check whether the argument is an actual for a procedure call, in
9716      --  which case the expansion of a bit-packed slice is deferred until the
9717      --  call itself is expanded. The reason this is required is that we might
9718      --  have an IN OUT or OUT parameter, and the copy out is essential, and
9719      --  that copy out would be missed if we created a temporary here in
9720      --  Expand_N_Slice. Note that we don't bother to test specifically for an
9721      --  IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9722      --  is harmless to defer expansion in the IN case, since the call
9723      --  processing will still generate the appropriate copy in operation,
9724      --  which will take care of the slice.
9725
9726      procedure Make_Temporary_For_Slice;
9727      --  Create a named variable for the value of the slice, in cases where
9728      --  the back-end cannot handle it properly, e.g. when packed types or
9729      --  unaligned slices are involved.
9730
9731      -------------------------
9732      -- Is_Procedure_Actual --
9733      -------------------------
9734
9735      function Is_Procedure_Actual (N : Node_Id) return Boolean is
9736         Par : Node_Id := Parent (N);
9737
9738      begin
9739         loop
9740            --  If our parent is a procedure call we can return
9741
9742            if Nkind (Par) = N_Procedure_Call_Statement then
9743               return True;
9744
9745            --  If our parent is a type conversion, keep climbing the tree,
9746            --  since a type conversion can be a procedure actual. Also keep
9747            --  climbing if parameter association or a qualified expression,
9748            --  since these are additional cases that do can appear on
9749            --  procedure actuals.
9750
9751            elsif Nkind_In (Par, N_Type_Conversion,
9752                                 N_Parameter_Association,
9753                                 N_Qualified_Expression)
9754            then
9755               Par := Parent (Par);
9756
9757               --  Any other case is not what we are looking for
9758
9759            else
9760               return False;
9761            end if;
9762         end loop;
9763      end Is_Procedure_Actual;
9764
9765      ------------------------------
9766      -- Make_Temporary_For_Slice --
9767      ------------------------------
9768
9769      procedure Make_Temporary_For_Slice is
9770         Ent  : constant Entity_Id := Make_Temporary (Loc, 'T', N);
9771         Decl : Node_Id;
9772
9773      begin
9774         Decl :=
9775           Make_Object_Declaration (Loc,
9776             Defining_Identifier => Ent,
9777             Object_Definition   => New_Occurrence_Of (Typ, Loc));
9778
9779         Set_No_Initialization (Decl);
9780
9781         Insert_Actions (N, New_List (
9782           Decl,
9783           Make_Assignment_Statement (Loc,
9784             Name       => New_Occurrence_Of (Ent, Loc),
9785             Expression => Relocate_Node (N))));
9786
9787         Rewrite (N, New_Occurrence_Of (Ent, Loc));
9788         Analyze_And_Resolve (N, Typ);
9789      end Make_Temporary_For_Slice;
9790
9791      --  Local variables
9792
9793      Pref     : constant Node_Id := Prefix (N);
9794      Pref_Typ : Entity_Id        := Etype (Pref);
9795
9796   --  Start of processing for Expand_N_Slice
9797
9798   begin
9799      --  Special handling for access types
9800
9801      if Is_Access_Type (Pref_Typ) then
9802         Pref_Typ := Designated_Type (Pref_Typ);
9803
9804         Rewrite (Pref,
9805           Make_Explicit_Dereference (Sloc (N),
9806            Prefix => Relocate_Node (Pref)));
9807
9808         Analyze_And_Resolve (Pref, Pref_Typ);
9809      end if;
9810
9811      --  Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9812      --  function, then additional actuals must be passed.
9813
9814      if Ada_Version >= Ada_2005
9815        and then Is_Build_In_Place_Function_Call (Pref)
9816      then
9817         Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
9818      end if;
9819
9820      --  The remaining case to be handled is packed slices. We can leave
9821      --  packed slices as they are in the following situations:
9822
9823      --    1. Right or left side of an assignment (we can handle this
9824      --       situation correctly in the assignment statement expansion).
9825
9826      --    2. Prefix of indexed component (the slide is optimized away in this
9827      --       case, see the start of Expand_N_Slice.)
9828
9829      --    3. Object renaming declaration, since we want the name of the
9830      --       slice, not the value.
9831
9832      --    4. Argument to procedure call, since copy-in/copy-out handling may
9833      --       be required, and this is handled in the expansion of call
9834      --       itself.
9835
9836      --    5. Prefix of an address attribute (this is an error which is caught
9837      --       elsewhere, and the expansion would interfere with generating the
9838      --       error message).
9839
9840      if not Is_Packed (Typ) then
9841
9842         --  Apply transformation for actuals of a function call, where
9843         --  Expand_Actuals is not used.
9844
9845         if Nkind (Parent (N)) = N_Function_Call
9846           and then Is_Possibly_Unaligned_Slice (N)
9847         then
9848            Make_Temporary_For_Slice;
9849         end if;
9850
9851      elsif Nkind (Parent (N)) = N_Assignment_Statement
9852        or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
9853                  and then Parent (N) = Name (Parent (Parent (N))))
9854      then
9855         return;
9856
9857      elsif Nkind (Parent (N)) = N_Indexed_Component
9858        or else Is_Renamed_Object (N)
9859        or else Is_Procedure_Actual (N)
9860      then
9861         return;
9862
9863      elsif Nkind (Parent (N)) = N_Attribute_Reference
9864        and then Attribute_Name (Parent (N)) = Name_Address
9865      then
9866         return;
9867
9868      else
9869         Make_Temporary_For_Slice;
9870      end if;
9871   end Expand_N_Slice;
9872
9873   ------------------------------
9874   -- Expand_N_Type_Conversion --
9875   ------------------------------
9876
9877   procedure Expand_N_Type_Conversion (N : Node_Id) is
9878      Loc          : constant Source_Ptr := Sloc (N);
9879      Operand      : constant Node_Id    := Expression (N);
9880      Target_Type  : constant Entity_Id  := Etype (N);
9881      Operand_Type : Entity_Id           := Etype (Operand);
9882
9883      procedure Handle_Changed_Representation;
9884      --  This is called in the case of record and array type conversions to
9885      --  see if there is a change of representation to be handled. Change of
9886      --  representation is actually handled at the assignment statement level,
9887      --  and what this procedure does is rewrite node N conversion as an
9888      --  assignment to temporary. If there is no change of representation,
9889      --  then the conversion node is unchanged.
9890
9891      procedure Raise_Accessibility_Error;
9892      --  Called when we know that an accessibility check will fail. Rewrites
9893      --  node N to an appropriate raise statement and outputs warning msgs.
9894      --  The Etype of the raise node is set to Target_Type.
9895
9896      procedure Real_Range_Check;
9897      --  Handles generation of range check for real target value
9898
9899      function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
9900      --  True iff Present (Effective_Extra_Accessibility (Id)) successfully
9901      --  evaluates to True.
9902
9903      -----------------------------------
9904      -- Handle_Changed_Representation --
9905      -----------------------------------
9906
9907      procedure Handle_Changed_Representation is
9908         Temp : Entity_Id;
9909         Decl : Node_Id;
9910         Odef : Node_Id;
9911         Disc : Node_Id;
9912         N_Ix : Node_Id;
9913         Cons : List_Id;
9914
9915      begin
9916         --  Nothing else to do if no change of representation
9917
9918         if Same_Representation (Operand_Type, Target_Type) then
9919            return;
9920
9921         --  The real change of representation work is done by the assignment
9922         --  statement processing. So if this type conversion is appearing as
9923         --  the expression of an assignment statement, nothing needs to be
9924         --  done to the conversion.
9925
9926         elsif Nkind (Parent (N)) = N_Assignment_Statement then
9927            return;
9928
9929         --  Otherwise we need to generate a temporary variable, and do the
9930         --  change of representation assignment into that temporary variable.
9931         --  The conversion is then replaced by a reference to this variable.
9932
9933         else
9934            Cons := No_List;
9935
9936            --  If type is unconstrained we have to add a constraint, copied
9937            --  from the actual value of the left hand side.
9938
9939            if not Is_Constrained (Target_Type) then
9940               if Has_Discriminants (Operand_Type) then
9941                  Disc := First_Discriminant (Operand_Type);
9942
9943                  if Disc /= First_Stored_Discriminant (Operand_Type) then
9944                     Disc := First_Stored_Discriminant (Operand_Type);
9945                  end if;
9946
9947                  Cons := New_List;
9948                  while Present (Disc) loop
9949                     Append_To (Cons,
9950                       Make_Selected_Component (Loc,
9951                         Prefix        =>
9952                           Duplicate_Subexpr_Move_Checks (Operand),
9953                         Selector_Name =>
9954                           Make_Identifier (Loc, Chars (Disc))));
9955                     Next_Discriminant (Disc);
9956                  end loop;
9957
9958               elsif Is_Array_Type (Operand_Type) then
9959                  N_Ix := First_Index (Target_Type);
9960                  Cons := New_List;
9961
9962                  for J in 1 .. Number_Dimensions (Operand_Type) loop
9963
9964                     --  We convert the bounds explicitly. We use an unchecked
9965                     --  conversion because bounds checks are done elsewhere.
9966
9967                     Append_To (Cons,
9968                       Make_Range (Loc,
9969                         Low_Bound =>
9970                           Unchecked_Convert_To (Etype (N_Ix),
9971                             Make_Attribute_Reference (Loc,
9972                               Prefix =>
9973                                 Duplicate_Subexpr_No_Checks
9974                                   (Operand, Name_Req => True),
9975                               Attribute_Name => Name_First,
9976                               Expressions    => New_List (
9977                                 Make_Integer_Literal (Loc, J)))),
9978
9979                         High_Bound =>
9980                           Unchecked_Convert_To (Etype (N_Ix),
9981                             Make_Attribute_Reference (Loc,
9982                               Prefix =>
9983                                 Duplicate_Subexpr_No_Checks
9984                                   (Operand, Name_Req => True),
9985                               Attribute_Name => Name_Last,
9986                               Expressions    => New_List (
9987                                 Make_Integer_Literal (Loc, J))))));
9988
9989                     Next_Index (N_Ix);
9990                  end loop;
9991               end if;
9992            end if;
9993
9994            Odef := New_Occurrence_Of (Target_Type, Loc);
9995
9996            if Present (Cons) then
9997               Odef :=
9998                 Make_Subtype_Indication (Loc,
9999                   Subtype_Mark => Odef,
10000                   Constraint =>
10001                     Make_Index_Or_Discriminant_Constraint (Loc,
10002                       Constraints => Cons));
10003            end if;
10004
10005            Temp := Make_Temporary (Loc, 'C');
10006            Decl :=
10007              Make_Object_Declaration (Loc,
10008                Defining_Identifier => Temp,
10009                Object_Definition   => Odef);
10010
10011            Set_No_Initialization (Decl, True);
10012
10013            --  Insert required actions. It is essential to suppress checks
10014            --  since we have suppressed default initialization, which means
10015            --  that the variable we create may have no discriminants.
10016
10017            Insert_Actions (N,
10018              New_List (
10019                Decl,
10020                Make_Assignment_Statement (Loc,
10021                  Name => New_Occurrence_Of (Temp, Loc),
10022                  Expression => Relocate_Node (N))),
10023                Suppress => All_Checks);
10024
10025            Rewrite (N, New_Occurrence_Of (Temp, Loc));
10026            return;
10027         end if;
10028      end Handle_Changed_Representation;
10029
10030      -------------------------------
10031      -- Raise_Accessibility_Error --
10032      -------------------------------
10033
10034      procedure Raise_Accessibility_Error is
10035      begin
10036         Error_Msg_Warn := SPARK_Mode /= On;
10037         Rewrite (N,
10038           Make_Raise_Program_Error (Sloc (N),
10039             Reason => PE_Accessibility_Check_Failed));
10040         Set_Etype (N, Target_Type);
10041
10042         Error_Msg_N ("<<accessibility check failure", N);
10043         Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
10044      end Raise_Accessibility_Error;
10045
10046      ----------------------
10047      -- Real_Range_Check --
10048      ----------------------
10049
10050      --  Case of conversions to floating-point or fixed-point. If range checks
10051      --  are enabled and the target type has a range constraint, we convert:
10052
10053      --     typ (x)
10054
10055      --       to
10056
10057      --     Tnn : typ'Base := typ'Base (x);
10058      --     [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10059      --     Tnn
10060
10061      --  This is necessary when there is a conversion of integer to float or
10062      --  to fixed-point to ensure that the correct checks are made. It is not
10063      --  necessary for float to float where it is enough to simply set the
10064      --  Do_Range_Check flag.
10065
10066      procedure Real_Range_Check is
10067         Btyp : constant Entity_Id := Base_Type (Target_Type);
10068         Lo   : constant Node_Id   := Type_Low_Bound  (Target_Type);
10069         Hi   : constant Node_Id   := Type_High_Bound (Target_Type);
10070         Xtyp : constant Entity_Id := Etype (Operand);
10071         Conv : Node_Id;
10072         Tnn  : Entity_Id;
10073
10074      begin
10075         --  Nothing to do if conversion was rewritten
10076
10077         if Nkind (N) /= N_Type_Conversion then
10078            return;
10079         end if;
10080
10081         --  Nothing to do if range checks suppressed, or target has the same
10082         --  range as the base type (or is the base type).
10083
10084         if Range_Checks_Suppressed (Target_Type)
10085           or else (Lo = Type_Low_Bound  (Btyp)
10086                      and then
10087                    Hi = Type_High_Bound (Btyp))
10088         then
10089            return;
10090         end if;
10091
10092         --  Nothing to do if expression is an entity on which checks have been
10093         --  suppressed.
10094
10095         if Is_Entity_Name (Operand)
10096           and then Range_Checks_Suppressed (Entity (Operand))
10097         then
10098            return;
10099         end if;
10100
10101         --  Nothing to do if bounds are all static and we can tell that the
10102         --  expression is within the bounds of the target. Note that if the
10103         --  operand is of an unconstrained floating-point type, then we do
10104         --  not trust it to be in range (might be infinite)
10105
10106         declare
10107            S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
10108            S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
10109
10110         begin
10111            if (not Is_Floating_Point_Type (Xtyp)
10112                 or else Is_Constrained (Xtyp))
10113              and then Compile_Time_Known_Value (S_Lo)
10114              and then Compile_Time_Known_Value (S_Hi)
10115              and then Compile_Time_Known_Value (Hi)
10116              and then Compile_Time_Known_Value (Lo)
10117            then
10118               declare
10119                  D_Lov : constant Ureal := Expr_Value_R (Lo);
10120                  D_Hiv : constant Ureal := Expr_Value_R (Hi);
10121                  S_Lov : Ureal;
10122                  S_Hiv : Ureal;
10123
10124               begin
10125                  if Is_Real_Type (Xtyp) then
10126                     S_Lov := Expr_Value_R (S_Lo);
10127                     S_Hiv := Expr_Value_R (S_Hi);
10128                  else
10129                     S_Lov := UR_From_Uint (Expr_Value (S_Lo));
10130                     S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
10131                  end if;
10132
10133                  if D_Hiv > D_Lov
10134                    and then S_Lov >= D_Lov
10135                    and then S_Hiv <= D_Hiv
10136                  then
10137                     Set_Do_Range_Check (Operand, False);
10138                     return;
10139                  end if;
10140               end;
10141            end if;
10142         end;
10143
10144         --  For float to float conversions, we are done
10145
10146         if Is_Floating_Point_Type (Xtyp)
10147              and then
10148            Is_Floating_Point_Type (Btyp)
10149         then
10150            return;
10151         end if;
10152
10153         --  Otherwise rewrite the conversion as described above
10154
10155         Conv := Relocate_Node (N);
10156         Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
10157         Set_Etype (Conv, Btyp);
10158
10159         --  Enable overflow except for case of integer to float conversions,
10160         --  where it is never required, since we can never have overflow in
10161         --  this case.
10162
10163         if not Is_Integer_Type (Etype (Operand)) then
10164            Enable_Overflow_Check (Conv);
10165         end if;
10166
10167         Tnn := Make_Temporary (Loc, 'T', Conv);
10168
10169         Insert_Actions (N, New_List (
10170           Make_Object_Declaration (Loc,
10171             Defining_Identifier => Tnn,
10172             Object_Definition   => New_Occurrence_Of (Btyp, Loc),
10173             Constant_Present    => True,
10174             Expression          => Conv),
10175
10176           Make_Raise_Constraint_Error (Loc,
10177             Condition =>
10178              Make_Or_Else (Loc,
10179                Left_Opnd =>
10180                  Make_Op_Lt (Loc,
10181                    Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
10182                    Right_Opnd =>
10183                      Make_Attribute_Reference (Loc,
10184                        Attribute_Name => Name_First,
10185                        Prefix =>
10186                          New_Occurrence_Of (Target_Type, Loc))),
10187
10188                Right_Opnd =>
10189                  Make_Op_Gt (Loc,
10190                    Left_Opnd  => New_Occurrence_Of (Tnn, Loc),
10191                    Right_Opnd =>
10192                      Make_Attribute_Reference (Loc,
10193                        Attribute_Name => Name_Last,
10194                        Prefix =>
10195                          New_Occurrence_Of (Target_Type, Loc)))),
10196             Reason => CE_Range_Check_Failed)));
10197
10198         Rewrite (N, New_Occurrence_Of (Tnn, Loc));
10199         Analyze_And_Resolve (N, Btyp);
10200      end Real_Range_Check;
10201
10202      -----------------------------
10203      -- Has_Extra_Accessibility --
10204      -----------------------------
10205
10206      --  Returns true for a formal of an anonymous access type or for
10207      --  an Ada 2012-style stand-alone object of an anonymous access type.
10208
10209      function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
10210      begin
10211         if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
10212            return Present (Effective_Extra_Accessibility (Id));
10213         else
10214            return False;
10215         end if;
10216      end Has_Extra_Accessibility;
10217
10218   --  Start of processing for Expand_N_Type_Conversion
10219
10220   begin
10221      --  First remove check marks put by the semantic analysis on the type
10222      --  conversion between array types. We need these checks, and they will
10223      --  be generated by this expansion routine, but we do not depend on these
10224      --  flags being set, and since we do intend to expand the checks in the
10225      --  front end, we don't want them on the tree passed to the back end.
10226
10227      if Is_Array_Type (Target_Type) then
10228         if Is_Constrained (Target_Type) then
10229            Set_Do_Length_Check (N, False);
10230         else
10231            Set_Do_Range_Check (Operand, False);
10232         end if;
10233      end if;
10234
10235      --  Nothing at all to do if conversion is to the identical type so remove
10236      --  the conversion completely, it is useless, except that it may carry
10237      --  an Assignment_OK attribute, which must be propagated to the operand.
10238
10239      if Operand_Type = Target_Type then
10240         if Assignment_OK (N) then
10241            Set_Assignment_OK (Operand);
10242         end if;
10243
10244         Rewrite (N, Relocate_Node (Operand));
10245         goto Done;
10246      end if;
10247
10248      --  Nothing to do if this is the second argument of read. This is a
10249      --  "backwards" conversion that will be handled by the specialized code
10250      --  in attribute processing.
10251
10252      if Nkind (Parent (N)) = N_Attribute_Reference
10253        and then Attribute_Name (Parent (N)) = Name_Read
10254        and then Next (First (Expressions (Parent (N)))) = N
10255      then
10256         goto Done;
10257      end if;
10258
10259      --  Check for case of converting to a type that has an invariant
10260      --  associated with it. This required an invariant check. We convert
10261
10262      --    typ (expr)
10263
10264      --  into
10265
10266      --    do invariant_check (typ (expr)) in typ (expr);
10267
10268      --  using Duplicate_Subexpr to avoid multiple side effects
10269
10270      --  Note: the Comes_From_Source check, and then the resetting of this
10271      --  flag prevents what would otherwise be an infinite recursion.
10272
10273      if Has_Invariants (Target_Type)
10274        and then Present (Invariant_Procedure (Target_Type))
10275        and then Comes_From_Source (N)
10276      then
10277         Set_Comes_From_Source (N, False);
10278         Rewrite (N,
10279           Make_Expression_With_Actions (Loc,
10280             Actions    => New_List (
10281               Make_Invariant_Call (Duplicate_Subexpr (N))),
10282             Expression => Duplicate_Subexpr_No_Checks (N)));
10283         Analyze_And_Resolve (N, Target_Type);
10284         goto Done;
10285      end if;
10286
10287      --  Here if we may need to expand conversion
10288
10289      --  If the operand of the type conversion is an arithmetic operation on
10290      --  signed integers, and the based type of the signed integer type in
10291      --  question is smaller than Standard.Integer, we promote both of the
10292      --  operands to type Integer.
10293
10294      --  For example, if we have
10295
10296      --     target-type (opnd1 + opnd2)
10297
10298      --  and opnd1 and opnd2 are of type short integer, then we rewrite
10299      --  this as:
10300
10301      --     target-type (integer(opnd1) + integer(opnd2))
10302
10303      --  We do this because we are always allowed to compute in a larger type
10304      --  if we do the right thing with the result, and in this case we are
10305      --  going to do a conversion which will do an appropriate check to make
10306      --  sure that things are in range of the target type in any case. This
10307      --  avoids some unnecessary intermediate overflows.
10308
10309      --  We might consider a similar transformation in the case where the
10310      --  target is a real type or a 64-bit integer type, and the operand
10311      --  is an arithmetic operation using a 32-bit integer type. However,
10312      --  we do not bother with this case, because it could cause significant
10313      --  inefficiencies on 32-bit machines. On a 64-bit machine it would be
10314      --  much cheaper, but we don't want different behavior on 32-bit and
10315      --  64-bit machines. Note that the exclusion of the 64-bit case also
10316      --  handles the configurable run-time cases where 64-bit arithmetic
10317      --  may simply be unavailable.
10318
10319      --  Note: this circuit is partially redundant with respect to the circuit
10320      --  in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10321      --  the processing here. Also we still need the Checks circuit, since we
10322      --  have to be sure not to generate junk overflow checks in the first
10323      --  place, since it would be trick to remove them here.
10324
10325      if Integer_Promotion_Possible (N) then
10326
10327         --  All conditions met, go ahead with transformation
10328
10329         declare
10330            Opnd : Node_Id;
10331            L, R : Node_Id;
10332
10333         begin
10334            R :=
10335              Make_Type_Conversion (Loc,
10336                Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
10337                Expression   => Relocate_Node (Right_Opnd (Operand)));
10338
10339            Opnd := New_Op_Node (Nkind (Operand), Loc);
10340            Set_Right_Opnd (Opnd, R);
10341
10342            if Nkind (Operand) in N_Binary_Op then
10343               L :=
10344                 Make_Type_Conversion (Loc,
10345                   Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
10346                   Expression   => Relocate_Node (Left_Opnd (Operand)));
10347
10348               Set_Left_Opnd  (Opnd, L);
10349            end if;
10350
10351            Rewrite (N,
10352              Make_Type_Conversion (Loc,
10353                Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
10354                Expression   => Opnd));
10355
10356            Analyze_And_Resolve (N, Target_Type);
10357            goto Done;
10358         end;
10359      end if;
10360
10361      --  Do validity check if validity checking operands
10362
10363      if Validity_Checks_On and Validity_Check_Operands then
10364         Ensure_Valid (Operand);
10365      end if;
10366
10367      --  Special case of converting from non-standard boolean type
10368
10369      if Is_Boolean_Type (Operand_Type)
10370        and then (Nonzero_Is_True (Operand_Type))
10371      then
10372         Adjust_Condition (Operand);
10373         Set_Etype (Operand, Standard_Boolean);
10374         Operand_Type := Standard_Boolean;
10375      end if;
10376
10377      --  Case of converting to an access type
10378
10379      if Is_Access_Type (Target_Type) then
10380
10381         --  Apply an accessibility check when the conversion operand is an
10382         --  access parameter (or a renaming thereof), unless conversion was
10383         --  expanded from an Unchecked_ or Unrestricted_Access attribute.
10384         --  Note that other checks may still need to be applied below (such
10385         --  as tagged type checks).
10386
10387         if Is_Entity_Name (Operand)
10388           and then Has_Extra_Accessibility (Entity (Operand))
10389           and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
10390           and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
10391                      or else Attribute_Name (Original_Node (N)) = Name_Access)
10392         then
10393            Apply_Accessibility_Check
10394              (Operand, Target_Type, Insert_Node => Operand);
10395
10396         --  If the level of the operand type is statically deeper than the
10397         --  level of the target type, then force Program_Error. Note that this
10398         --  can only occur for cases where the attribute is within the body of
10399         --  an instantiation (otherwise the conversion will already have been
10400         --  rejected as illegal). Note: warnings are issued by the analyzer
10401         --  for the instance cases.
10402
10403         elsif In_Instance_Body
10404           and then Type_Access_Level (Operand_Type) >
10405                    Type_Access_Level (Target_Type)
10406         then
10407            Raise_Accessibility_Error;
10408
10409         --  When the operand is a selected access discriminant the check needs
10410         --  to be made against the level of the object denoted by the prefix
10411         --  of the selected name. Force Program_Error for this case as well
10412         --  (this accessibility violation can only happen if within the body
10413         --  of an instantiation).
10414
10415         elsif In_Instance_Body
10416           and then Ekind (Operand_Type) = E_Anonymous_Access_Type
10417           and then Nkind (Operand) = N_Selected_Component
10418           and then Object_Access_Level (Operand) >
10419                      Type_Access_Level (Target_Type)
10420         then
10421            Raise_Accessibility_Error;
10422            goto Done;
10423         end if;
10424      end if;
10425
10426      --  Case of conversions of tagged types and access to tagged types
10427
10428      --  When needed, that is to say when the expression is class-wide, Add
10429      --  runtime a tag check for (strict) downward conversion by using the
10430      --  membership test, generating:
10431
10432      --      [constraint_error when Operand not in Target_Type'Class]
10433
10434      --  or in the access type case
10435
10436      --      [constraint_error
10437      --        when Operand /= null
10438      --          and then Operand.all not in
10439      --            Designated_Type (Target_Type)'Class]
10440
10441      if (Is_Access_Type (Target_Type)
10442           and then Is_Tagged_Type (Designated_Type (Target_Type)))
10443        or else Is_Tagged_Type (Target_Type)
10444      then
10445         --  Do not do any expansion in the access type case if the parent is a
10446         --  renaming, since this is an error situation which will be caught by
10447         --  Sem_Ch8, and the expansion can interfere with this error check.
10448
10449         if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
10450            goto Done;
10451         end if;
10452
10453         --  Otherwise, proceed with processing tagged conversion
10454
10455         Tagged_Conversion : declare
10456            Actual_Op_Typ   : Entity_Id;
10457            Actual_Targ_Typ : Entity_Id;
10458            Make_Conversion : Boolean := False;
10459            Root_Op_Typ     : Entity_Id;
10460
10461            procedure Make_Tag_Check (Targ_Typ : Entity_Id);
10462            --  Create a membership check to test whether Operand is a member
10463            --  of Targ_Typ. If the original Target_Type is an access, include
10464            --  a test for null value. The check is inserted at N.
10465
10466            --------------------
10467            -- Make_Tag_Check --
10468            --------------------
10469
10470            procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
10471               Cond : Node_Id;
10472
10473            begin
10474               --  Generate:
10475               --    [Constraint_Error
10476               --       when Operand /= null
10477               --         and then Operand.all not in Targ_Typ]
10478
10479               if Is_Access_Type (Target_Type) then
10480                  Cond :=
10481                    Make_And_Then (Loc,
10482                      Left_Opnd =>
10483                        Make_Op_Ne (Loc,
10484                          Left_Opnd  => Duplicate_Subexpr_No_Checks (Operand),
10485                          Right_Opnd => Make_Null (Loc)),
10486
10487                      Right_Opnd =>
10488                        Make_Not_In (Loc,
10489                          Left_Opnd  =>
10490                            Make_Explicit_Dereference (Loc,
10491                              Prefix => Duplicate_Subexpr_No_Checks (Operand)),
10492                          Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
10493
10494               --  Generate:
10495               --    [Constraint_Error when Operand not in Targ_Typ]
10496
10497               else
10498                  Cond :=
10499                    Make_Not_In (Loc,
10500                      Left_Opnd  => Duplicate_Subexpr_No_Checks (Operand),
10501                      Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
10502               end if;
10503
10504               Insert_Action (N,
10505                 Make_Raise_Constraint_Error (Loc,
10506                   Condition => Cond,
10507                   Reason    => CE_Tag_Check_Failed));
10508            end Make_Tag_Check;
10509
10510         --  Start of processing for Tagged_Conversion
10511
10512         begin
10513            --  Handle entities from the limited view
10514
10515            if Is_Access_Type (Operand_Type) then
10516               Actual_Op_Typ :=
10517                 Available_View (Designated_Type (Operand_Type));
10518            else
10519               Actual_Op_Typ := Operand_Type;
10520            end if;
10521
10522            if Is_Access_Type (Target_Type) then
10523               Actual_Targ_Typ :=
10524                 Available_View (Designated_Type (Target_Type));
10525            else
10526               Actual_Targ_Typ := Target_Type;
10527            end if;
10528
10529            Root_Op_Typ := Root_Type (Actual_Op_Typ);
10530
10531            --  Ada 2005 (AI-251): Handle interface type conversion
10532
10533            if Is_Interface (Actual_Op_Typ) then
10534               Expand_Interface_Conversion (N);
10535               goto Done;
10536            end if;
10537
10538            if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
10539
10540               --  Create a runtime tag check for a downward class-wide type
10541               --  conversion.
10542
10543               if Is_Class_Wide_Type (Actual_Op_Typ)
10544                 and then Actual_Op_Typ /= Actual_Targ_Typ
10545                 and then Root_Op_Typ /= Actual_Targ_Typ
10546                 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
10547                                       Use_Full_View => True)
10548               then
10549                  Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
10550                  Make_Conversion := True;
10551               end if;
10552
10553               --  AI05-0073: If the result subtype of the function is defined
10554               --  by an access_definition designating a specific tagged type
10555               --  T, a check is made that the result value is null or the tag
10556               --  of the object designated by the result value identifies T.
10557               --  Constraint_Error is raised if this check fails.
10558
10559               if Nkind (Parent (N)) = N_Simple_Return_Statement then
10560                  declare
10561                     Func     : Entity_Id;
10562                     Func_Typ : Entity_Id;
10563
10564                  begin
10565                     --  Climb scope stack looking for the enclosing function
10566
10567                     Func := Current_Scope;
10568                     while Present (Func)
10569                       and then Ekind (Func) /= E_Function
10570                     loop
10571                        Func := Scope (Func);
10572                     end loop;
10573
10574                     --  The function's return subtype must be defined using
10575                     --  an access definition.
10576
10577                     if Nkind (Result_Definition (Parent (Func))) =
10578                          N_Access_Definition
10579                     then
10580                        Func_Typ := Directly_Designated_Type (Etype (Func));
10581
10582                        --  The return subtype denotes a specific tagged type,
10583                        --  in other words, a non class-wide type.
10584
10585                        if Is_Tagged_Type (Func_Typ)
10586                          and then not Is_Class_Wide_Type (Func_Typ)
10587                        then
10588                           Make_Tag_Check (Actual_Targ_Typ);
10589                           Make_Conversion := True;
10590                        end if;
10591                     end if;
10592                  end;
10593               end if;
10594
10595               --  We have generated a tag check for either a class-wide type
10596               --  conversion or for AI05-0073.
10597
10598               if Make_Conversion then
10599                  declare
10600                     Conv : Node_Id;
10601                  begin
10602                     Conv :=
10603                       Make_Unchecked_Type_Conversion (Loc,
10604                         Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
10605                         Expression   => Relocate_Node (Expression (N)));
10606                     Rewrite (N, Conv);
10607                     Analyze_And_Resolve (N, Target_Type);
10608                  end;
10609               end if;
10610            end if;
10611         end Tagged_Conversion;
10612
10613      --  Case of other access type conversions
10614
10615      elsif Is_Access_Type (Target_Type) then
10616         Apply_Constraint_Check (Operand, Target_Type);
10617
10618      --  Case of conversions from a fixed-point type
10619
10620      --  These conversions require special expansion and processing, found in
10621      --  the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10622      --  since from a semantic point of view, these are simple integer
10623      --  conversions, which do not need further processing.
10624
10625      elsif Is_Fixed_Point_Type (Operand_Type)
10626        and then not Conversion_OK (N)
10627      then
10628         --  We should never see universal fixed at this case, since the
10629         --  expansion of the constituent divide or multiply should have
10630         --  eliminated the explicit mention of universal fixed.
10631
10632         pragma Assert (Operand_Type /= Universal_Fixed);
10633
10634         --  Check for special case of the conversion to universal real that
10635         --  occurs as a result of the use of a round attribute. In this case,
10636         --  the real type for the conversion is taken from the target type of
10637         --  the Round attribute and the result must be marked as rounded.
10638
10639         if Target_Type = Universal_Real
10640           and then Nkind (Parent (N)) = N_Attribute_Reference
10641           and then Attribute_Name (Parent (N)) = Name_Round
10642         then
10643            Set_Rounded_Result (N);
10644            Set_Etype (N, Etype (Parent (N)));
10645         end if;
10646
10647         --  Otherwise do correct fixed-conversion, but skip these if the
10648         --  Conversion_OK flag is set, because from a semantic point of view
10649         --  these are simple integer conversions needing no further processing
10650         --  (the backend will simply treat them as integers).
10651
10652         if not Conversion_OK (N) then
10653            if Is_Fixed_Point_Type (Etype (N)) then
10654               Expand_Convert_Fixed_To_Fixed (N);
10655               Real_Range_Check;
10656
10657            elsif Is_Integer_Type (Etype (N)) then
10658               Expand_Convert_Fixed_To_Integer (N);
10659
10660            else
10661               pragma Assert (Is_Floating_Point_Type (Etype (N)));
10662               Expand_Convert_Fixed_To_Float (N);
10663               Real_Range_Check;
10664            end if;
10665         end if;
10666
10667      --  Case of conversions to a fixed-point type
10668
10669      --  These conversions require special expansion and processing, found in
10670      --  the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10671      --  since from a semantic point of view, these are simple integer
10672      --  conversions, which do not need further processing.
10673
10674      elsif Is_Fixed_Point_Type (Target_Type)
10675        and then not Conversion_OK (N)
10676      then
10677         if Is_Integer_Type (Operand_Type) then
10678            Expand_Convert_Integer_To_Fixed (N);
10679            Real_Range_Check;
10680         else
10681            pragma Assert (Is_Floating_Point_Type (Operand_Type));
10682            Expand_Convert_Float_To_Fixed (N);
10683            Real_Range_Check;
10684         end if;
10685
10686      --  Case of float-to-integer conversions
10687
10688      --  We also handle float-to-fixed conversions with Conversion_OK set
10689      --  since semantically the fixed-point target is treated as though it
10690      --  were an integer in such cases.
10691
10692      elsif Is_Floating_Point_Type (Operand_Type)
10693        and then
10694          (Is_Integer_Type (Target_Type)
10695            or else
10696          (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
10697      then
10698         --  One more check here, gcc is still not able to do conversions of
10699         --  this type with proper overflow checking, and so gigi is doing an
10700         --  approximation of what is required by doing floating-point compares
10701         --  with the end-point. But that can lose precision in some cases, and
10702         --  give a wrong result. Converting the operand to Universal_Real is
10703         --  helpful, but still does not catch all cases with 64-bit integers
10704         --  on targets with only 64-bit floats.
10705
10706         --  The above comment seems obsoleted by Apply_Float_Conversion_Check
10707         --  Can this code be removed ???
10708
10709         if Do_Range_Check (Operand) then
10710            Rewrite (Operand,
10711              Make_Type_Conversion (Loc,
10712                Subtype_Mark =>
10713                  New_Occurrence_Of (Universal_Real, Loc),
10714                Expression =>
10715                  Relocate_Node (Operand)));
10716
10717            Set_Etype (Operand, Universal_Real);
10718            Enable_Range_Check (Operand);
10719            Set_Do_Range_Check (Expression (Operand), False);
10720         end if;
10721
10722      --  Case of array conversions
10723
10724      --  Expansion of array conversions, add required length/range checks but
10725      --  only do this if there is no change of representation. For handling of
10726      --  this case, see Handle_Changed_Representation.
10727
10728      elsif Is_Array_Type (Target_Type) then
10729         if Is_Constrained (Target_Type) then
10730            Apply_Length_Check (Operand, Target_Type);
10731         else
10732            Apply_Range_Check (Operand, Target_Type);
10733         end if;
10734
10735         Handle_Changed_Representation;
10736
10737      --  Case of conversions of discriminated types
10738
10739      --  Add required discriminant checks if target is constrained. Again this
10740      --  change is skipped if we have a change of representation.
10741
10742      elsif Has_Discriminants (Target_Type)
10743        and then Is_Constrained (Target_Type)
10744      then
10745         Apply_Discriminant_Check (Operand, Target_Type);
10746         Handle_Changed_Representation;
10747
10748      --  Case of all other record conversions. The only processing required
10749      --  is to check for a change of representation requiring the special
10750      --  assignment processing.
10751
10752      elsif Is_Record_Type (Target_Type) then
10753
10754         --  Ada 2005 (AI-216): Program_Error is raised when converting from
10755         --  a derived Unchecked_Union type to an unconstrained type that is
10756         --  not Unchecked_Union if the operand lacks inferable discriminants.
10757
10758         if Is_Derived_Type (Operand_Type)
10759           and then Is_Unchecked_Union (Base_Type (Operand_Type))
10760           and then not Is_Constrained (Target_Type)
10761           and then not Is_Unchecked_Union (Base_Type (Target_Type))
10762           and then not Has_Inferable_Discriminants (Operand)
10763         then
10764            --  To prevent Gigi from generating illegal code, we generate a
10765            --  Program_Error node, but we give it the target type of the
10766            --  conversion (is this requirement documented somewhere ???)
10767
10768            declare
10769               PE : constant Node_Id := Make_Raise_Program_Error (Loc,
10770                      Reason => PE_Unchecked_Union_Restriction);
10771
10772            begin
10773               Set_Etype (PE, Target_Type);
10774               Rewrite (N, PE);
10775
10776            end;
10777         else
10778            Handle_Changed_Representation;
10779         end if;
10780
10781      --  Case of conversions of enumeration types
10782
10783      elsif Is_Enumeration_Type (Target_Type) then
10784
10785         --  Special processing is required if there is a change of
10786         --  representation (from enumeration representation clauses).
10787
10788         if not Same_Representation (Target_Type, Operand_Type) then
10789
10790            --  Convert: x(y) to x'val (ytyp'val (y))
10791
10792            Rewrite (N,
10793              Make_Attribute_Reference (Loc,
10794                Prefix         => New_Occurrence_Of (Target_Type, Loc),
10795                Attribute_Name => Name_Val,
10796                Expressions    => New_List (
10797                  Make_Attribute_Reference (Loc,
10798                    Prefix         => New_Occurrence_Of (Operand_Type, Loc),
10799                    Attribute_Name => Name_Pos,
10800                    Expressions    => New_List (Operand)))));
10801
10802            Analyze_And_Resolve (N, Target_Type);
10803         end if;
10804
10805      --  Case of conversions to floating-point
10806
10807      elsif Is_Floating_Point_Type (Target_Type) then
10808         Real_Range_Check;
10809      end if;
10810
10811      --  At this stage, either the conversion node has been transformed into
10812      --  some other equivalent expression, or left as a conversion that can be
10813      --  handled by Gigi, in the following cases:
10814
10815      --    Conversions with no change of representation or type
10816
10817      --    Numeric conversions involving integer, floating- and fixed-point
10818      --    values. Fixed-point values are allowed only if Conversion_OK is
10819      --    set, i.e. if the fixed-point values are to be treated as integers.
10820
10821      --  No other conversions should be passed to Gigi
10822
10823      --  Check: are these rules stated in sinfo??? if so, why restate here???
10824
10825      --  The only remaining step is to generate a range check if we still have
10826      --  a type conversion at this stage and Do_Range_Check is set. For now we
10827      --  do this only for conversions of discrete types.
10828
10829      if Nkind (N) = N_Type_Conversion
10830        and then Is_Discrete_Type (Etype (N))
10831      then
10832         declare
10833            Expr : constant Node_Id := Expression (N);
10834            Ftyp : Entity_Id;
10835            Ityp : Entity_Id;
10836
10837         begin
10838            if Do_Range_Check (Expr)
10839              and then Is_Discrete_Type (Etype (Expr))
10840            then
10841               Set_Do_Range_Check (Expr, False);
10842
10843               --  Before we do a range check, we have to deal with treating a
10844               --  fixed-point operand as an integer. The way we do this is
10845               --  simply to do an unchecked conversion to an appropriate
10846               --  integer type large enough to hold the result.
10847
10848               --  This code is not active yet, because we are only dealing
10849               --  with discrete types so far ???
10850
10851               if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
10852                 and then Treat_Fixed_As_Integer (Expr)
10853               then
10854                  Ftyp := Base_Type (Etype (Expr));
10855
10856                  if Esize (Ftyp) >= Esize (Standard_Integer) then
10857                     Ityp := Standard_Long_Long_Integer;
10858                  else
10859                     Ityp := Standard_Integer;
10860                  end if;
10861
10862                  Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
10863               end if;
10864
10865               --  Reset overflow flag, since the range check will include
10866               --  dealing with possible overflow, and generate the check. If
10867               --  Address is either a source type or target type, suppress
10868               --  range check to avoid typing anomalies when it is a visible
10869               --  integer type.
10870
10871               Set_Do_Overflow_Check (N, False);
10872               if not Is_Descendent_Of_Address (Etype (Expr))
10873                 and then not Is_Descendent_Of_Address (Target_Type)
10874               then
10875                  Generate_Range_Check
10876                    (Expr, Target_Type, CE_Range_Check_Failed);
10877               end if;
10878            end if;
10879         end;
10880      end if;
10881
10882      --  Final step, if the result is a type conversion involving Vax_Float
10883      --  types, then it is subject for further special processing.
10884
10885      if Nkind (N) = N_Type_Conversion
10886        and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
10887      then
10888         Expand_Vax_Conversion (N);
10889         goto Done;
10890      end if;
10891
10892      --  Here at end of processing
10893
10894   <<Done>>
10895      --  Apply predicate check if required. Note that we can't just call
10896      --  Apply_Predicate_Check here, because the type looks right after
10897      --  the conversion and it would omit the check. The Comes_From_Source
10898      --  guard is necessary to prevent infinite recursions when we generate
10899      --  internal conversions for the purpose of checking predicates.
10900
10901      if Present (Predicate_Function (Target_Type))
10902        and then Target_Type /= Operand_Type
10903        and then Comes_From_Source (N)
10904      then
10905         declare
10906            New_Expr : constant Node_Id := Duplicate_Subexpr (N);
10907
10908         begin
10909            --  Avoid infinite recursion on the subsequent expansion of
10910            --  of the copy of the original type conversion.
10911
10912            Set_Comes_From_Source (New_Expr, False);
10913            Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
10914         end;
10915      end if;
10916   end Expand_N_Type_Conversion;
10917
10918   -----------------------------------
10919   -- Expand_N_Unchecked_Expression --
10920   -----------------------------------
10921
10922   --  Remove the unchecked expression node from the tree. Its job was simply
10923   --  to make sure that its constituent expression was handled with checks
10924   --  off, and now that that is done, we can remove it from the tree, and
10925   --  indeed must, since Gigi does not expect to see these nodes.
10926
10927   procedure Expand_N_Unchecked_Expression (N : Node_Id) is
10928      Exp : constant Node_Id := Expression (N);
10929   begin
10930      Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
10931      Rewrite (N, Exp);
10932   end Expand_N_Unchecked_Expression;
10933
10934   ----------------------------------------
10935   -- Expand_N_Unchecked_Type_Conversion --
10936   ----------------------------------------
10937
10938   --  If this cannot be handled by Gigi and we haven't already made a
10939   --  temporary for it, do it now.
10940
10941   procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
10942      Target_Type  : constant Entity_Id := Etype (N);
10943      Operand      : constant Node_Id   := Expression (N);
10944      Operand_Type : constant Entity_Id := Etype (Operand);
10945
10946   begin
10947      --  Nothing at all to do if conversion is to the identical type so remove
10948      --  the conversion completely, it is useless, except that it may carry
10949      --  an Assignment_OK indication which must be propagated to the operand.
10950
10951      if Operand_Type = Target_Type then
10952
10953         --  Code duplicates Expand_N_Unchecked_Expression above, factor???
10954
10955         if Assignment_OK (N) then
10956            Set_Assignment_OK (Operand);
10957         end if;
10958
10959         Rewrite (N, Relocate_Node (Operand));
10960         return;
10961      end if;
10962
10963      --  If we have a conversion of a compile time known value to a target
10964      --  type and the value is in range of the target type, then we can simply
10965      --  replace the construct by an integer literal of the correct type. We
10966      --  only apply this to integer types being converted. Possibly it may
10967      --  apply in other cases, but it is too much trouble to worry about.
10968
10969      --  Note that we do not do this transformation if the Kill_Range_Check
10970      --  flag is set, since then the value may be outside the expected range.
10971      --  This happens in the Normalize_Scalars case.
10972
10973      --  We also skip this if either the target or operand type is biased
10974      --  because in this case, the unchecked conversion is supposed to
10975      --  preserve the bit pattern, not the integer value.
10976
10977      if Is_Integer_Type (Target_Type)
10978        and then not Has_Biased_Representation (Target_Type)
10979        and then Is_Integer_Type (Operand_Type)
10980        and then not Has_Biased_Representation (Operand_Type)
10981        and then Compile_Time_Known_Value (Operand)
10982        and then not Kill_Range_Check (N)
10983      then
10984         declare
10985            Val : constant Uint := Expr_Value (Operand);
10986
10987         begin
10988            if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
10989                 and then
10990               Compile_Time_Known_Value (Type_High_Bound (Target_Type))
10991                 and then
10992               Val >= Expr_Value (Type_Low_Bound (Target_Type))
10993                 and then
10994               Val <= Expr_Value (Type_High_Bound (Target_Type))
10995            then
10996               Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
10997
10998               --  If Address is the target type, just set the type to avoid a
10999               --  spurious type error on the literal when Address is a visible
11000               --  integer type.
11001
11002               if Is_Descendent_Of_Address (Target_Type) then
11003                  Set_Etype (N, Target_Type);
11004               else
11005                  Analyze_And_Resolve (N, Target_Type);
11006               end if;
11007
11008               return;
11009            end if;
11010         end;
11011      end if;
11012
11013      --  Nothing to do if conversion is safe
11014
11015      if Safe_Unchecked_Type_Conversion (N) then
11016         return;
11017      end if;
11018
11019      --  Otherwise force evaluation unless Assignment_OK flag is set (this
11020      --  flag indicates ??? More comments needed here)
11021
11022      if Assignment_OK (N) then
11023         null;
11024      else
11025         Force_Evaluation (N);
11026      end if;
11027   end Expand_N_Unchecked_Type_Conversion;
11028
11029   ----------------------------
11030   -- Expand_Record_Equality --
11031   ----------------------------
11032
11033   --  For non-variant records, Equality is expanded when needed into:
11034
11035   --      and then Lhs.Discr1 = Rhs.Discr1
11036   --      and then ...
11037   --      and then Lhs.Discrn = Rhs.Discrn
11038   --      and then Lhs.Cmp1 = Rhs.Cmp1
11039   --      and then ...
11040   --      and then Lhs.Cmpn = Rhs.Cmpn
11041
11042   --  The expression is folded by the back-end for adjacent fields. This
11043   --  function is called for tagged record in only one occasion: for imple-
11044   --  menting predefined primitive equality (see Predefined_Primitives_Bodies)
11045   --  otherwise the primitive "=" is used directly.
11046
11047   function Expand_Record_Equality
11048     (Nod    : Node_Id;
11049      Typ    : Entity_Id;
11050      Lhs    : Node_Id;
11051      Rhs    : Node_Id;
11052      Bodies : List_Id) return Node_Id
11053   is
11054      Loc : constant Source_Ptr := Sloc (Nod);
11055
11056      Result : Node_Id;
11057      C      : Entity_Id;
11058
11059      First_Time : Boolean := True;
11060
11061      function Element_To_Compare (C : Entity_Id) return Entity_Id;
11062      --  Return the next discriminant or component to compare, starting with
11063      --  C, skipping inherited components.
11064
11065      ------------------------
11066      -- Element_To_Compare --
11067      ------------------------
11068
11069      function Element_To_Compare (C : Entity_Id) return Entity_Id is
11070         Comp : Entity_Id;
11071
11072      begin
11073         Comp := C;
11074         loop
11075            --  Exit loop when the next element to be compared is found, or
11076            --  there is no more such element.
11077
11078            exit when No (Comp);
11079
11080            exit when Ekind_In (Comp, E_Discriminant, E_Component)
11081              and then not (
11082
11083              --  Skip inherited components
11084
11085              --  Note: for a tagged type, we always generate the "=" primitive
11086              --  for the base type (not on the first subtype), so the test for
11087              --  Comp /= Original_Record_Component (Comp) is True for
11088              --  inherited components only.
11089
11090              (Is_Tagged_Type (Typ)
11091                and then Comp /= Original_Record_Component (Comp))
11092
11093              --  Skip _Tag
11094
11095              or else Chars (Comp) = Name_uTag
11096
11097              --  The .NET/JVM version of type Root_Controlled contains two
11098              --  fields which should not be considered part of the object. To
11099              --  achieve proper equiality between two controlled objects on
11100              --  .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11101
11102              or else (Chars (Comp) = Name_uParent
11103                        and then VM_Target /= No_VM
11104                        and then Etype (Comp) = RTE (RE_Root_Controlled))
11105
11106              --  Skip interface elements (secondary tags???)
11107
11108              or else Is_Interface (Etype (Comp)));
11109
11110            Next_Entity (Comp);
11111         end loop;
11112
11113         return Comp;
11114      end Element_To_Compare;
11115
11116   --  Start of processing for Expand_Record_Equality
11117
11118   begin
11119      --  Generates the following code: (assuming that Typ has one Discr and
11120      --  component C2 is also a record)
11121
11122      --   True
11123      --     and then Lhs.Discr1 = Rhs.Discr1
11124      --     and then Lhs.C1 = Rhs.C1
11125      --     and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11126      --     and then ...
11127      --     and then Lhs.Cmpn = Rhs.Cmpn
11128
11129      Result := New_Occurrence_Of (Standard_True, Loc);
11130      C := Element_To_Compare (First_Entity (Typ));
11131      while Present (C) loop
11132         declare
11133            New_Lhs : Node_Id;
11134            New_Rhs : Node_Id;
11135            Check   : Node_Id;
11136
11137         begin
11138            if First_Time then
11139               First_Time := False;
11140               New_Lhs := Lhs;
11141               New_Rhs := Rhs;
11142            else
11143               New_Lhs := New_Copy_Tree (Lhs);
11144               New_Rhs := New_Copy_Tree (Rhs);
11145            end if;
11146
11147            Check :=
11148              Expand_Composite_Equality (Nod, Etype (C),
11149               Lhs =>
11150                 Make_Selected_Component (Loc,
11151                   Prefix        => New_Lhs,
11152                   Selector_Name => New_Occurrence_Of (C, Loc)),
11153               Rhs =>
11154                 Make_Selected_Component (Loc,
11155                   Prefix        => New_Rhs,
11156                   Selector_Name => New_Occurrence_Of (C, Loc)),
11157               Bodies => Bodies);
11158
11159            --  If some (sub)component is an unchecked_union, the whole
11160            --  operation will raise program error.
11161
11162            if Nkind (Check) = N_Raise_Program_Error then
11163               Result := Check;
11164               Set_Etype (Result, Standard_Boolean);
11165               exit;
11166            else
11167               Result :=
11168                 Make_And_Then (Loc,
11169                   Left_Opnd  => Result,
11170                   Right_Opnd => Check);
11171            end if;
11172         end;
11173
11174         C := Element_To_Compare (Next_Entity (C));
11175      end loop;
11176
11177      return Result;
11178   end Expand_Record_Equality;
11179
11180   ---------------------------
11181   -- Expand_Set_Membership --
11182   ---------------------------
11183
11184   procedure Expand_Set_Membership (N : Node_Id) is
11185      Lop : constant Node_Id := Left_Opnd (N);
11186      Alt : Node_Id;
11187      Res : Node_Id;
11188
11189      function Make_Cond (Alt : Node_Id) return Node_Id;
11190      --  If the alternative is a subtype mark, create a simple membership
11191      --  test. Otherwise create an equality test for it.
11192
11193      ---------------
11194      -- Make_Cond --
11195      ---------------
11196
11197      function Make_Cond (Alt : Node_Id) return Node_Id is
11198         Cond : Node_Id;
11199         L    : constant Node_Id := New_Copy (Lop);
11200         R    : constant Node_Id := Relocate_Node (Alt);
11201
11202      begin
11203         if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
11204           or else Nkind (Alt) = N_Range
11205         then
11206            Cond :=
11207              Make_In (Sloc (Alt),
11208                Left_Opnd  => L,
11209                Right_Opnd => R);
11210         else
11211            Cond :=
11212              Make_Op_Eq (Sloc (Alt),
11213                Left_Opnd  => L,
11214                Right_Opnd => R);
11215         end if;
11216
11217         return Cond;
11218      end Make_Cond;
11219
11220   --  Start of processing for Expand_Set_Membership
11221
11222   begin
11223      Remove_Side_Effects (Lop);
11224
11225      Alt := Last (Alternatives (N));
11226      Res := Make_Cond (Alt);
11227
11228      Prev (Alt);
11229      while Present (Alt) loop
11230         Res :=
11231           Make_Or_Else (Sloc (Alt),
11232             Left_Opnd  => Make_Cond (Alt),
11233             Right_Opnd => Res);
11234         Prev (Alt);
11235      end loop;
11236
11237      Rewrite (N, Res);
11238      Analyze_And_Resolve (N, Standard_Boolean);
11239   end Expand_Set_Membership;
11240
11241   -----------------------------------
11242   -- Expand_Short_Circuit_Operator --
11243   -----------------------------------
11244
11245   --  Deal with special expansion if actions are present for the right operand
11246   --  and deal with optimizing case of arguments being True or False. We also
11247   --  deal with the special case of non-standard boolean values.
11248
11249   procedure Expand_Short_Circuit_Operator (N : Node_Id) is
11250      Loc     : constant Source_Ptr := Sloc (N);
11251      Typ     : constant Entity_Id  := Etype (N);
11252      Left    : constant Node_Id    := Left_Opnd (N);
11253      Right   : constant Node_Id    := Right_Opnd (N);
11254      LocR    : constant Source_Ptr := Sloc (Right);
11255      Actlist : List_Id;
11256
11257      Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
11258      Shortcut_Ent   : constant Entity_Id := Boolean_Literals (Shortcut_Value);
11259      --  If Left = Shortcut_Value then Right need not be evaluated
11260
11261   begin
11262      --  Deal with non-standard booleans
11263
11264      if Is_Boolean_Type (Typ) then
11265         Adjust_Condition (Left);
11266         Adjust_Condition (Right);
11267         Set_Etype (N, Standard_Boolean);
11268      end if;
11269
11270      --  Check for cases where left argument is known to be True or False
11271
11272      if Compile_Time_Known_Value (Left) then
11273
11274         --  Mark SCO for left condition as compile time known
11275
11276         if Generate_SCO and then Comes_From_Source (Left) then
11277            Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
11278         end if;
11279
11280         --  Rewrite True AND THEN Right / False OR ELSE Right to Right.
11281         --  Any actions associated with Right will be executed unconditionally
11282         --  and can thus be inserted into the tree unconditionally.
11283
11284         if Expr_Value_E (Left) /= Shortcut_Ent then
11285            if Present (Actions (N)) then
11286               Insert_Actions (N, Actions (N));
11287            end if;
11288
11289            Rewrite (N, Right);
11290
11291         --  Rewrite False AND THEN Right / True OR ELSE Right to Left.
11292         --  In this case we can forget the actions associated with Right,
11293         --  since they will never be executed.
11294
11295         else
11296            Kill_Dead_Code (Right);
11297            Kill_Dead_Code (Actions (N));
11298            Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11299         end if;
11300
11301         Adjust_Result_Type (N, Typ);
11302         return;
11303      end if;
11304
11305      --  If Actions are present for the right operand, we have to do some
11306      --  special processing. We can't just let these actions filter back into
11307      --  code preceding the short circuit (which is what would have happened
11308      --  if we had not trapped them in the short-circuit form), since they
11309      --  must only be executed if the right operand of the short circuit is
11310      --  executed and not otherwise.
11311
11312      if Present (Actions (N)) then
11313         Actlist := Actions (N);
11314
11315         --  We now use an Expression_With_Actions node for the right operand
11316         --  of the short-circuit form. Note that this solves the traceability
11317         --  problems for coverage analysis.
11318
11319         Rewrite (Right,
11320                  Make_Expression_With_Actions (LocR,
11321                    Expression => Relocate_Node (Right),
11322                    Actions    => Actlist));
11323         Set_Actions (N, No_List);
11324         Analyze_And_Resolve (Right, Standard_Boolean);
11325
11326         Adjust_Result_Type (N, Typ);
11327         return;
11328      end if;
11329
11330      --  No actions present, check for cases of right argument True/False
11331
11332      if Compile_Time_Known_Value (Right) then
11333
11334         --  Mark SCO for left condition as compile time known
11335
11336         if Generate_SCO and then Comes_From_Source (Right) then
11337            Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
11338         end if;
11339
11340         --  Change (Left and then True), (Left or else False) to Left.
11341         --  Note that we know there are no actions associated with the right
11342         --  operand, since we just checked for this case above.
11343
11344         if Expr_Value_E (Right) /= Shortcut_Ent then
11345            Rewrite (N, Left);
11346
11347         --  Change (Left and then False), (Left or else True) to Right,
11348         --  making sure to preserve any side effects associated with the Left
11349         --  operand.
11350
11351         else
11352            Remove_Side_Effects (Left);
11353            Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
11354         end if;
11355      end if;
11356
11357      Adjust_Result_Type (N, Typ);
11358   end Expand_Short_Circuit_Operator;
11359
11360   -------------------------------------
11361   -- Fixup_Universal_Fixed_Operation --
11362   -------------------------------------
11363
11364   procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
11365      Conv : constant Node_Id := Parent (N);
11366
11367   begin
11368      --  We must have a type conversion immediately above us
11369
11370      pragma Assert (Nkind (Conv) = N_Type_Conversion);
11371
11372      --  Normally the type conversion gives our target type. The exception
11373      --  occurs in the case of the Round attribute, where the conversion
11374      --  will be to universal real, and our real type comes from the Round
11375      --  attribute (as well as an indication that we must round the result)
11376
11377      if Nkind (Parent (Conv)) = N_Attribute_Reference
11378        and then Attribute_Name (Parent (Conv)) = Name_Round
11379      then
11380         Set_Etype (N, Etype (Parent (Conv)));
11381         Set_Rounded_Result (N);
11382
11383      --  Normal case where type comes from conversion above us
11384
11385      else
11386         Set_Etype (N, Etype (Conv));
11387      end if;
11388   end Fixup_Universal_Fixed_Operation;
11389
11390   ---------------------------------
11391   -- Has_Inferable_Discriminants --
11392   ---------------------------------
11393
11394   function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
11395
11396      function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
11397      --  Determines whether the left-most prefix of a selected component is a
11398      --  formal parameter in a subprogram. Assumes N is a selected component.
11399
11400      --------------------------------
11401      -- Prefix_Is_Formal_Parameter --
11402      --------------------------------
11403
11404      function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
11405         Sel_Comp : Node_Id;
11406
11407      begin
11408         --  Move to the left-most prefix by climbing up the tree
11409
11410         Sel_Comp := N;
11411         while Present (Parent (Sel_Comp))
11412           and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
11413         loop
11414            Sel_Comp := Parent (Sel_Comp);
11415         end loop;
11416
11417         return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
11418      end Prefix_Is_Formal_Parameter;
11419
11420   --  Start of processing for Has_Inferable_Discriminants
11421
11422   begin
11423      --  For selected components, the subtype of the selector must be a
11424      --  constrained Unchecked_Union. If the component is subject to a
11425      --  per-object constraint, then the enclosing object must have inferable
11426      --  discriminants.
11427
11428      if Nkind (N) = N_Selected_Component then
11429         if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
11430
11431            --  A small hack. If we have a per-object constrained selected
11432            --  component of a formal parameter, return True since we do not
11433            --  know the actual parameter association yet.
11434
11435            if Prefix_Is_Formal_Parameter (N) then
11436               return True;
11437
11438            --  Otherwise, check the enclosing object and the selector
11439
11440            else
11441               return Has_Inferable_Discriminants (Prefix (N))
11442                 and then Has_Inferable_Discriminants (Selector_Name (N));
11443            end if;
11444
11445         --  The call to Has_Inferable_Discriminants will determine whether
11446         --  the selector has a constrained Unchecked_Union nominal type.
11447
11448         else
11449            return Has_Inferable_Discriminants (Selector_Name (N));
11450         end if;
11451
11452      --  A qualified expression has inferable discriminants if its subtype
11453      --  mark is a constrained Unchecked_Union subtype.
11454
11455      elsif Nkind (N) = N_Qualified_Expression then
11456         return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
11457           and then Is_Constrained (Etype (Subtype_Mark (N)));
11458
11459      --  For all other names, it is sufficient to have a constrained
11460      --  Unchecked_Union nominal subtype.
11461
11462      else
11463         return Is_Unchecked_Union (Base_Type (Etype (N)))
11464           and then Is_Constrained (Etype (N));
11465      end if;
11466   end Has_Inferable_Discriminants;
11467
11468   -------------------------------
11469   -- Insert_Dereference_Action --
11470   -------------------------------
11471
11472   procedure Insert_Dereference_Action (N : Node_Id) is
11473
11474      function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
11475      --  Return true if type of P is derived from Checked_Pool;
11476
11477      -----------------------------
11478      -- Is_Checked_Storage_Pool --
11479      -----------------------------
11480
11481      function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
11482         T : Entity_Id;
11483
11484      begin
11485         if No (P) then
11486            return False;
11487         end if;
11488
11489         T := Etype (P);
11490         while T /= Etype (T) loop
11491            if Is_RTE (T, RE_Checked_Pool) then
11492               return True;
11493            else
11494               T := Etype (T);
11495            end if;
11496         end loop;
11497
11498         return False;
11499      end Is_Checked_Storage_Pool;
11500
11501      --  Local variables
11502
11503      Typ   : constant Entity_Id  := Etype (N);
11504      Desig : constant Entity_Id  := Available_View (Designated_Type (Typ));
11505      Loc   : constant Source_Ptr := Sloc (N);
11506      Pool  : constant Entity_Id  := Associated_Storage_Pool (Typ);
11507      Pnod  : constant Node_Id    := Parent (N);
11508
11509      Addr  : Entity_Id;
11510      Alig  : Entity_Id;
11511      Deref : Node_Id;
11512      Size  : Entity_Id;
11513      Stmt  : Node_Id;
11514
11515   --  Start of processing for Insert_Dereference_Action
11516
11517   begin
11518      pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
11519
11520      --  Do not re-expand a dereference which has already been processed by
11521      --  this routine.
11522
11523      if Has_Dereference_Action (Pnod) then
11524         return;
11525
11526      --  Do not perform this type of expansion for internally-generated
11527      --  dereferences.
11528
11529      elsif not Comes_From_Source (Original_Node (Pnod)) then
11530         return;
11531
11532      --  A dereference action is only applicable to objects which have been
11533      --  allocated on a checked pool.
11534
11535      elsif not Is_Checked_Storage_Pool (Pool) then
11536         return;
11537      end if;
11538
11539      --  Extract the address of the dereferenced object. Generate:
11540
11541      --    Addr : System.Address := <N>'Pool_Address;
11542
11543      Addr := Make_Temporary (Loc, 'P');
11544
11545      Insert_Action (N,
11546        Make_Object_Declaration (Loc,
11547          Defining_Identifier => Addr,
11548          Object_Definition   =>
11549            New_Occurrence_Of (RTE (RE_Address), Loc),
11550          Expression          =>
11551            Make_Attribute_Reference (Loc,
11552              Prefix         => Duplicate_Subexpr_Move_Checks (N),
11553              Attribute_Name => Name_Pool_Address)));
11554
11555      --  Calculate the size of the dereferenced object. Generate:
11556
11557      --    Size : Storage_Count := <N>.all'Size / Storage_Unit;
11558
11559      Deref :=
11560        Make_Explicit_Dereference (Loc,
11561          Prefix => Duplicate_Subexpr_Move_Checks (N));
11562      Set_Has_Dereference_Action (Deref);
11563
11564      Size := Make_Temporary (Loc, 'S');
11565
11566      Insert_Action (N,
11567        Make_Object_Declaration (Loc,
11568          Defining_Identifier => Size,
11569
11570          Object_Definition   =>
11571            New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
11572
11573          Expression          =>
11574            Make_Op_Divide (Loc,
11575              Left_Opnd   =>
11576                Make_Attribute_Reference (Loc,
11577                  Prefix         => Deref,
11578                  Attribute_Name => Name_Size),
11579               Right_Opnd =>
11580                 Make_Integer_Literal (Loc, System_Storage_Unit))));
11581
11582      --  Calculate the alignment of the dereferenced object. Generate:
11583      --    Alig : constant Storage_Count := <N>.all'Alignment;
11584
11585      Deref :=
11586        Make_Explicit_Dereference (Loc,
11587          Prefix => Duplicate_Subexpr_Move_Checks (N));
11588      Set_Has_Dereference_Action (Deref);
11589
11590      Alig := Make_Temporary (Loc, 'A');
11591
11592      Insert_Action (N,
11593        Make_Object_Declaration (Loc,
11594          Defining_Identifier => Alig,
11595          Object_Definition   =>
11596            New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
11597          Expression          =>
11598            Make_Attribute_Reference (Loc,
11599              Prefix         => Deref,
11600              Attribute_Name => Name_Alignment)));
11601
11602      --  A dereference of a controlled object requires special processing. The
11603      --  finalization machinery requests additional space from the underlying
11604      --  pool to allocate and hide two pointers. As a result, a checked pool
11605      --  may mark the wrong memory as valid. Since checked pools do not have
11606      --  knowledge of hidden pointers, we have to bring the two pointers back
11607      --  in view in order to restore the original state of the object.
11608
11609      if Needs_Finalization (Desig) then
11610
11611         --  Adjust the address and size of the dereferenced object. Generate:
11612         --    Adjust_Controlled_Dereference (Addr, Size, Alig);
11613
11614         Stmt :=
11615           Make_Procedure_Call_Statement (Loc,
11616             Name                   =>
11617               New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
11618             Parameter_Associations => New_List (
11619               New_Occurrence_Of (Addr, Loc),
11620               New_Occurrence_Of (Size, Loc),
11621               New_Occurrence_Of (Alig, Loc)));
11622
11623         --  Class-wide types complicate things because we cannot determine
11624         --  statically whether the actual object is truly controlled. We must
11625         --  generate a runtime check to detect this property. Generate:
11626         --
11627         --    if Needs_Finalization (<N>.all'Tag) then
11628         --       <Stmt>;
11629         --    end if;
11630
11631         if Is_Class_Wide_Type (Desig) then
11632            Deref :=
11633              Make_Explicit_Dereference (Loc,
11634                Prefix => Duplicate_Subexpr_Move_Checks (N));
11635            Set_Has_Dereference_Action (Deref);
11636
11637            Stmt :=
11638              Make_Implicit_If_Statement (N,
11639                Condition       =>
11640                  Make_Function_Call (Loc,
11641                    Name                   =>
11642                      New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
11643                    Parameter_Associations => New_List (
11644                      Make_Attribute_Reference (Loc,
11645                        Prefix         => Deref,
11646                        Attribute_Name => Name_Tag))),
11647                Then_Statements => New_List (Stmt));
11648         end if;
11649
11650         Insert_Action (N, Stmt);
11651      end if;
11652
11653      --  Generate:
11654      --    Dereference (Pool, Addr, Size, Alig);
11655
11656      Insert_Action (N,
11657        Make_Procedure_Call_Statement (Loc,
11658          Name                   =>
11659            New_Occurrence_Of
11660              (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
11661          Parameter_Associations => New_List (
11662            New_Occurrence_Of (Pool, Loc),
11663            New_Occurrence_Of (Addr, Loc),
11664            New_Occurrence_Of (Size, Loc),
11665            New_Occurrence_Of (Alig, Loc))));
11666
11667      --  Mark the explicit dereference as processed to avoid potential
11668      --  infinite expansion.
11669
11670      Set_Has_Dereference_Action (Pnod);
11671
11672   exception
11673      when RE_Not_Available =>
11674         return;
11675   end Insert_Dereference_Action;
11676
11677   --------------------------------
11678   -- Integer_Promotion_Possible --
11679   --------------------------------
11680
11681   function Integer_Promotion_Possible (N : Node_Id) return Boolean is
11682      Operand           : constant Node_Id   := Expression (N);
11683      Operand_Type      : constant Entity_Id := Etype (Operand);
11684      Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
11685
11686   begin
11687      pragma Assert (Nkind (N) = N_Type_Conversion);
11688
11689      return
11690
11691           --  We only do the transformation for source constructs. We assume
11692           --  that the expander knows what it is doing when it generates code.
11693
11694           Comes_From_Source (N)
11695
11696           --  If the operand type is Short_Integer or Short_Short_Integer,
11697           --  then we will promote to Integer, which is available on all
11698           --  targets, and is sufficient to ensure no intermediate overflow.
11699           --  Furthermore it is likely to be as efficient or more efficient
11700           --  than using the smaller type for the computation so we do this
11701           --  unconditionally.
11702
11703           and then
11704             (Root_Operand_Type = Base_Type (Standard_Short_Integer)
11705                or else
11706              Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
11707
11708           --  Test for interesting operation, which includes addition,
11709           --  division, exponentiation, multiplication, subtraction, absolute
11710           --  value and unary negation. Unary "+" is omitted since it is a
11711           --  no-op and thus can't overflow.
11712
11713           and then Nkind_In (Operand, N_Op_Abs,
11714                                       N_Op_Add,
11715                                       N_Op_Divide,
11716                                       N_Op_Expon,
11717                                       N_Op_Minus,
11718                                       N_Op_Multiply,
11719                                       N_Op_Subtract);
11720   end Integer_Promotion_Possible;
11721
11722   ------------------------------
11723   -- Make_Array_Comparison_Op --
11724   ------------------------------
11725
11726   --  This is a hand-coded expansion of the following generic function:
11727
11728   --  generic
11729   --    type elem is  (<>);
11730   --    type index is (<>);
11731   --    type a is array (index range <>) of elem;
11732
11733   --  function Gnnn (X : a; Y: a) return boolean is
11734   --    J : index := Y'first;
11735
11736   --  begin
11737   --    if X'length = 0 then
11738   --       return false;
11739
11740   --    elsif Y'length = 0 then
11741   --       return true;
11742
11743   --    else
11744   --      for I in X'range loop
11745   --        if X (I) = Y (J) then
11746   --          if J = Y'last then
11747   --            exit;
11748   --          else
11749   --            J := index'succ (J);
11750   --          end if;
11751
11752   --        else
11753   --           return X (I) > Y (J);
11754   --        end if;
11755   --      end loop;
11756
11757   --      return X'length > Y'length;
11758   --    end if;
11759   --  end Gnnn;
11760
11761   --  Note that since we are essentially doing this expansion by hand, we
11762   --  do not need to generate an actual or formal generic part, just the
11763   --  instantiated function itself.
11764
11765   function Make_Array_Comparison_Op
11766     (Typ : Entity_Id;
11767      Nod : Node_Id) return Node_Id
11768   is
11769      Loc : constant Source_Ptr := Sloc (Nod);
11770
11771      X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
11772      Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
11773      I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
11774      J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
11775
11776      Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
11777
11778      Loop_Statement : Node_Id;
11779      Loop_Body      : Node_Id;
11780      If_Stat        : Node_Id;
11781      Inner_If       : Node_Id;
11782      Final_Expr     : Node_Id;
11783      Func_Body      : Node_Id;
11784      Func_Name      : Entity_Id;
11785      Formals        : List_Id;
11786      Length1        : Node_Id;
11787      Length2        : Node_Id;
11788
11789   begin
11790      --  if J = Y'last then
11791      --     exit;
11792      --  else
11793      --     J := index'succ (J);
11794      --  end if;
11795
11796      Inner_If :=
11797        Make_Implicit_If_Statement (Nod,
11798          Condition =>
11799            Make_Op_Eq (Loc,
11800              Left_Opnd => New_Occurrence_Of (J, Loc),
11801              Right_Opnd =>
11802                Make_Attribute_Reference (Loc,
11803                  Prefix => New_Occurrence_Of (Y, Loc),
11804                  Attribute_Name => Name_Last)),
11805
11806          Then_Statements => New_List (
11807                Make_Exit_Statement (Loc)),
11808
11809          Else_Statements =>
11810            New_List (
11811              Make_Assignment_Statement (Loc,
11812                Name => New_Occurrence_Of (J, Loc),
11813                Expression =>
11814                  Make_Attribute_Reference (Loc,
11815                    Prefix => New_Occurrence_Of (Index, Loc),
11816                    Attribute_Name => Name_Succ,
11817                    Expressions => New_List (New_Occurrence_Of (J, Loc))))));
11818
11819      --  if X (I) = Y (J) then
11820      --     if ... end if;
11821      --  else
11822      --     return X (I) > Y (J);
11823      --  end if;
11824
11825      Loop_Body :=
11826        Make_Implicit_If_Statement (Nod,
11827          Condition =>
11828            Make_Op_Eq (Loc,
11829              Left_Opnd =>
11830                Make_Indexed_Component (Loc,
11831                  Prefix      => New_Occurrence_Of (X, Loc),
11832                  Expressions => New_List (New_Occurrence_Of (I, Loc))),
11833
11834              Right_Opnd =>
11835                Make_Indexed_Component (Loc,
11836                  Prefix      => New_Occurrence_Of (Y, Loc),
11837                  Expressions => New_List (New_Occurrence_Of (J, Loc)))),
11838
11839          Then_Statements => New_List (Inner_If),
11840
11841          Else_Statements => New_List (
11842            Make_Simple_Return_Statement (Loc,
11843              Expression =>
11844                Make_Op_Gt (Loc,
11845                  Left_Opnd =>
11846                    Make_Indexed_Component (Loc,
11847                      Prefix      => New_Occurrence_Of (X, Loc),
11848                      Expressions => New_List (New_Occurrence_Of (I, Loc))),
11849
11850                  Right_Opnd =>
11851                    Make_Indexed_Component (Loc,
11852                      Prefix      => New_Occurrence_Of (Y, Loc),
11853                      Expressions => New_List (
11854                        New_Occurrence_Of (J, Loc)))))));
11855
11856      --  for I in X'range loop
11857      --     if ... end if;
11858      --  end loop;
11859
11860      Loop_Statement :=
11861        Make_Implicit_Loop_Statement (Nod,
11862          Identifier => Empty,
11863
11864          Iteration_Scheme =>
11865            Make_Iteration_Scheme (Loc,
11866              Loop_Parameter_Specification =>
11867                Make_Loop_Parameter_Specification (Loc,
11868                  Defining_Identifier => I,
11869                  Discrete_Subtype_Definition =>
11870                    Make_Attribute_Reference (Loc,
11871                      Prefix => New_Occurrence_Of (X, Loc),
11872                      Attribute_Name => Name_Range))),
11873
11874          Statements => New_List (Loop_Body));
11875
11876      --    if X'length = 0 then
11877      --       return false;
11878      --    elsif Y'length = 0 then
11879      --       return true;
11880      --    else
11881      --      for ... loop ... end loop;
11882      --      return X'length > Y'length;
11883      --    end if;
11884
11885      Length1 :=
11886        Make_Attribute_Reference (Loc,
11887          Prefix => New_Occurrence_Of (X, Loc),
11888          Attribute_Name => Name_Length);
11889
11890      Length2 :=
11891        Make_Attribute_Reference (Loc,
11892          Prefix => New_Occurrence_Of (Y, Loc),
11893          Attribute_Name => Name_Length);
11894
11895      Final_Expr :=
11896        Make_Op_Gt (Loc,
11897          Left_Opnd  => Length1,
11898          Right_Opnd => Length2);
11899
11900      If_Stat :=
11901        Make_Implicit_If_Statement (Nod,
11902          Condition =>
11903            Make_Op_Eq (Loc,
11904              Left_Opnd =>
11905                Make_Attribute_Reference (Loc,
11906                  Prefix => New_Occurrence_Of (X, Loc),
11907                  Attribute_Name => Name_Length),
11908              Right_Opnd =>
11909                Make_Integer_Literal (Loc, 0)),
11910
11911          Then_Statements =>
11912            New_List (
11913              Make_Simple_Return_Statement (Loc,
11914                Expression => New_Occurrence_Of (Standard_False, Loc))),
11915
11916          Elsif_Parts => New_List (
11917            Make_Elsif_Part (Loc,
11918              Condition =>
11919                Make_Op_Eq (Loc,
11920                  Left_Opnd =>
11921                    Make_Attribute_Reference (Loc,
11922                      Prefix => New_Occurrence_Of (Y, Loc),
11923                      Attribute_Name => Name_Length),
11924                  Right_Opnd =>
11925                    Make_Integer_Literal (Loc, 0)),
11926
11927              Then_Statements =>
11928                New_List (
11929                  Make_Simple_Return_Statement (Loc,
11930                     Expression => New_Occurrence_Of (Standard_True, Loc))))),
11931
11932          Else_Statements => New_List (
11933            Loop_Statement,
11934            Make_Simple_Return_Statement (Loc,
11935              Expression => Final_Expr)));
11936
11937      --  (X : a; Y: a)
11938
11939      Formals := New_List (
11940        Make_Parameter_Specification (Loc,
11941          Defining_Identifier => X,
11942          Parameter_Type      => New_Occurrence_Of (Typ, Loc)),
11943
11944        Make_Parameter_Specification (Loc,
11945          Defining_Identifier => Y,
11946          Parameter_Type      => New_Occurrence_Of (Typ, Loc)));
11947
11948      --  function Gnnn (...) return boolean is
11949      --    J : index := Y'first;
11950      --  begin
11951      --    if ... end if;
11952      --  end Gnnn;
11953
11954      Func_Name := Make_Temporary (Loc, 'G');
11955
11956      Func_Body :=
11957        Make_Subprogram_Body (Loc,
11958          Specification =>
11959            Make_Function_Specification (Loc,
11960              Defining_Unit_Name       => Func_Name,
11961              Parameter_Specifications => Formals,
11962              Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
11963
11964          Declarations => New_List (
11965            Make_Object_Declaration (Loc,
11966              Defining_Identifier => J,
11967              Object_Definition   => New_Occurrence_Of (Index, Loc),
11968              Expression =>
11969                Make_Attribute_Reference (Loc,
11970                  Prefix => New_Occurrence_Of (Y, Loc),
11971                  Attribute_Name => Name_First))),
11972
11973          Handled_Statement_Sequence =>
11974            Make_Handled_Sequence_Of_Statements (Loc,
11975              Statements => New_List (If_Stat)));
11976
11977      return Func_Body;
11978   end Make_Array_Comparison_Op;
11979
11980   ---------------------------
11981   -- Make_Boolean_Array_Op --
11982   ---------------------------
11983
11984   --  For logical operations on boolean arrays, expand in line the following,
11985   --  replacing 'and' with 'or' or 'xor' where needed:
11986
11987   --    function Annn (A : typ; B: typ) return typ is
11988   --       C : typ;
11989   --    begin
11990   --       for J in A'range loop
11991   --          C (J) := A (J) op B (J);
11992   --       end loop;
11993   --       return C;
11994   --    end Annn;
11995
11996   --  Here typ is the boolean array type
11997
11998   function Make_Boolean_Array_Op
11999     (Typ : Entity_Id;
12000      N   : Node_Id) return Node_Id
12001   is
12002      Loc : constant Source_Ptr := Sloc (N);
12003
12004      A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
12005      B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
12006      C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
12007      J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
12008
12009      A_J : Node_Id;
12010      B_J : Node_Id;
12011      C_J : Node_Id;
12012      Op  : Node_Id;
12013
12014      Formals        : List_Id;
12015      Func_Name      : Entity_Id;
12016      Func_Body      : Node_Id;
12017      Loop_Statement : Node_Id;
12018
12019   begin
12020      A_J :=
12021        Make_Indexed_Component (Loc,
12022          Prefix      => New_Occurrence_Of (A, Loc),
12023          Expressions => New_List (New_Occurrence_Of (J, Loc)));
12024
12025      B_J :=
12026        Make_Indexed_Component (Loc,
12027          Prefix      => New_Occurrence_Of (B, Loc),
12028          Expressions => New_List (New_Occurrence_Of (J, Loc)));
12029
12030      C_J :=
12031        Make_Indexed_Component (Loc,
12032          Prefix      => New_Occurrence_Of (C, Loc),
12033          Expressions => New_List (New_Occurrence_Of (J, Loc)));
12034
12035      if Nkind (N) = N_Op_And then
12036         Op :=
12037           Make_Op_And (Loc,
12038             Left_Opnd  => A_J,
12039             Right_Opnd => B_J);
12040
12041      elsif Nkind (N) = N_Op_Or then
12042         Op :=
12043           Make_Op_Or (Loc,
12044             Left_Opnd  => A_J,
12045             Right_Opnd => B_J);
12046
12047      else
12048         Op :=
12049           Make_Op_Xor (Loc,
12050             Left_Opnd  => A_J,
12051             Right_Opnd => B_J);
12052      end if;
12053
12054      Loop_Statement :=
12055        Make_Implicit_Loop_Statement (N,
12056          Identifier => Empty,
12057
12058          Iteration_Scheme =>
12059            Make_Iteration_Scheme (Loc,
12060              Loop_Parameter_Specification =>
12061                Make_Loop_Parameter_Specification (Loc,
12062                  Defining_Identifier => J,
12063                  Discrete_Subtype_Definition =>
12064                    Make_Attribute_Reference (Loc,
12065                      Prefix => New_Occurrence_Of (A, Loc),
12066                      Attribute_Name => Name_Range))),
12067
12068          Statements => New_List (
12069            Make_Assignment_Statement (Loc,
12070              Name       => C_J,
12071              Expression => Op)));
12072
12073      Formals := New_List (
12074        Make_Parameter_Specification (Loc,
12075          Defining_Identifier => A,
12076          Parameter_Type      => New_Occurrence_Of (Typ, Loc)),
12077
12078        Make_Parameter_Specification (Loc,
12079          Defining_Identifier => B,
12080          Parameter_Type      => New_Occurrence_Of (Typ, Loc)));
12081
12082      Func_Name := Make_Temporary (Loc, 'A');
12083      Set_Is_Inlined (Func_Name);
12084
12085      Func_Body :=
12086        Make_Subprogram_Body (Loc,
12087          Specification =>
12088            Make_Function_Specification (Loc,
12089              Defining_Unit_Name       => Func_Name,
12090              Parameter_Specifications => Formals,
12091              Result_Definition        => New_Occurrence_Of (Typ, Loc)),
12092
12093          Declarations => New_List (
12094            Make_Object_Declaration (Loc,
12095              Defining_Identifier => C,
12096              Object_Definition   => New_Occurrence_Of (Typ, Loc))),
12097
12098          Handled_Statement_Sequence =>
12099            Make_Handled_Sequence_Of_Statements (Loc,
12100              Statements => New_List (
12101                Loop_Statement,
12102                Make_Simple_Return_Statement (Loc,
12103                  Expression => New_Occurrence_Of (C, Loc)))));
12104
12105      return Func_Body;
12106   end Make_Boolean_Array_Op;
12107
12108   -----------------------------------------
12109   -- Minimized_Eliminated_Overflow_Check --
12110   -----------------------------------------
12111
12112   function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
12113   begin
12114      return
12115        Is_Signed_Integer_Type (Etype (N))
12116          and then Overflow_Check_Mode in Minimized_Or_Eliminated;
12117   end Minimized_Eliminated_Overflow_Check;
12118
12119   --------------------------------
12120   -- Optimize_Length_Comparison --
12121   --------------------------------
12122
12123   procedure Optimize_Length_Comparison (N : Node_Id) is
12124      Loc    : constant Source_Ptr := Sloc (N);
12125      Typ    : constant Entity_Id  := Etype (N);
12126      Result : Node_Id;
12127
12128      Left  : Node_Id;
12129      Right : Node_Id;
12130      --  First and Last attribute reference nodes, which end up as left and
12131      --  right operands of the optimized result.
12132
12133      Is_Zero : Boolean;
12134      --  True for comparison operand of zero
12135
12136      Comp : Node_Id;
12137      --  Comparison operand, set only if Is_Zero is false
12138
12139      Ent : Entity_Id;
12140      --  Entity whose length is being compared
12141
12142      Index : Node_Id;
12143      --  Integer_Literal node for length attribute expression, or Empty
12144      --  if there is no such expression present.
12145
12146      Ityp  : Entity_Id;
12147      --  Type of array index to which 'Length is applied
12148
12149      Op : Node_Kind := Nkind (N);
12150      --  Kind of comparison operator, gets flipped if operands backwards
12151
12152      function Is_Optimizable (N : Node_Id) return Boolean;
12153      --  Tests N to see if it is an optimizable comparison value (defined as
12154      --  constant zero or one, or something else where the value is known to
12155      --  be positive and in the range of 32-bits, and where the corresponding
12156      --  Length value is also known to be 32-bits. If result is true, sets
12157      --  Is_Zero, Ityp, and Comp accordingly.
12158
12159      function Is_Entity_Length (N : Node_Id) return Boolean;
12160      --  Tests if N is a length attribute applied to a simple entity. If so,
12161      --  returns True, and sets Ent to the entity, and Index to the integer
12162      --  literal provided as an attribute expression, or to Empty if none.
12163      --  Also returns True if the expression is a generated type conversion
12164      --  whose expression is of the desired form. This latter case arises
12165      --  when Apply_Universal_Integer_Attribute_Check installs a conversion
12166      --  to check for being in range, which is not needed in this context.
12167      --  Returns False if neither condition holds.
12168
12169      function Prepare_64 (N : Node_Id) return Node_Id;
12170      --  Given a discrete expression, returns a Long_Long_Integer typed
12171      --  expression representing the underlying value of the expression.
12172      --  This is done with an unchecked conversion to the result type. We
12173      --  use unchecked conversion to handle the enumeration type case.
12174
12175      ----------------------
12176      -- Is_Entity_Length --
12177      ----------------------
12178
12179      function Is_Entity_Length (N : Node_Id) return Boolean is
12180      begin
12181         if Nkind (N) = N_Attribute_Reference
12182           and then Attribute_Name (N) = Name_Length
12183           and then Is_Entity_Name (Prefix (N))
12184         then
12185            Ent := Entity (Prefix (N));
12186
12187            if Present (Expressions (N)) then
12188               Index := First (Expressions (N));
12189            else
12190               Index := Empty;
12191            end if;
12192
12193            return True;
12194
12195         elsif Nkind (N) = N_Type_Conversion
12196           and then not Comes_From_Source (N)
12197         then
12198            return Is_Entity_Length (Expression (N));
12199
12200         else
12201            return False;
12202         end if;
12203      end Is_Entity_Length;
12204
12205      --------------------
12206      -- Is_Optimizable --
12207      --------------------
12208
12209      function Is_Optimizable (N : Node_Id) return Boolean is
12210         Val  : Uint;
12211         OK   : Boolean;
12212         Lo   : Uint;
12213         Hi   : Uint;
12214         Indx : Node_Id;
12215
12216      begin
12217         if Compile_Time_Known_Value (N) then
12218            Val := Expr_Value (N);
12219
12220            if Val = Uint_0 then
12221               Is_Zero := True;
12222               Comp    := Empty;
12223               return True;
12224
12225            elsif Val = Uint_1 then
12226               Is_Zero := False;
12227               Comp    := Empty;
12228               return True;
12229            end if;
12230         end if;
12231
12232         --  Here we have to make sure of being within 32-bits
12233
12234         Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
12235
12236         if not OK
12237           or else Lo < Uint_1
12238           or else Hi > UI_From_Int (Int'Last)
12239         then
12240            return False;
12241         end if;
12242
12243         --  Comparison value was within range, so now we must check the index
12244         --  value to make sure it is also within 32-bits.
12245
12246         Indx := First_Index (Etype (Ent));
12247
12248         if Present (Index) then
12249            for J in 2 .. UI_To_Int (Intval (Index)) loop
12250               Next_Index (Indx);
12251            end loop;
12252         end if;
12253
12254         Ityp := Etype (Indx);
12255
12256         if Esize (Ityp) > 32 then
12257            return False;
12258         end if;
12259
12260         Is_Zero := False;
12261         Comp := N;
12262         return True;
12263      end Is_Optimizable;
12264
12265      ----------------
12266      -- Prepare_64 --
12267      ----------------
12268
12269      function Prepare_64 (N : Node_Id) return Node_Id is
12270      begin
12271         return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
12272      end Prepare_64;
12273
12274   --  Start of processing for Optimize_Length_Comparison
12275
12276   begin
12277      --  Nothing to do if not a comparison
12278
12279      if Op not in N_Op_Compare then
12280         return;
12281      end if;
12282
12283      --  Nothing to do if special -gnatd.P debug flag set
12284
12285      if Debug_Flag_Dot_PP then
12286         return;
12287      end if;
12288
12289      --  Ent'Length op 0/1
12290
12291      if Is_Entity_Length (Left_Opnd (N))
12292        and then Is_Optimizable (Right_Opnd (N))
12293      then
12294         null;
12295
12296      --  0/1 op Ent'Length
12297
12298      elsif Is_Entity_Length (Right_Opnd (N))
12299        and then Is_Optimizable (Left_Opnd (N))
12300      then
12301         --  Flip comparison to opposite sense
12302
12303         case Op is
12304            when N_Op_Lt => Op := N_Op_Gt;
12305            when N_Op_Le => Op := N_Op_Ge;
12306            when N_Op_Gt => Op := N_Op_Lt;
12307            when N_Op_Ge => Op := N_Op_Le;
12308            when others  => null;
12309         end case;
12310
12311      --  Else optimization not possible
12312
12313      else
12314         return;
12315      end if;
12316
12317      --  Fall through if we will do the optimization
12318
12319      --  Cases to handle:
12320
12321      --    X'Length = 0  => X'First > X'Last
12322      --    X'Length = 1  => X'First = X'Last
12323      --    X'Length = n  => X'First + (n - 1) = X'Last
12324
12325      --    X'Length /= 0 => X'First <= X'Last
12326      --    X'Length /= 1 => X'First /= X'Last
12327      --    X'Length /= n => X'First + (n - 1) /= X'Last
12328
12329      --    X'Length >= 0 => always true, warn
12330      --    X'Length >= 1 => X'First <= X'Last
12331      --    X'Length >= n => X'First + (n - 1) <= X'Last
12332
12333      --    X'Length > 0  => X'First <= X'Last
12334      --    X'Length > 1  => X'First < X'Last
12335      --    X'Length > n  => X'First + (n - 1) < X'Last
12336
12337      --    X'Length <= 0 => X'First > X'Last (warn, could be =)
12338      --    X'Length <= 1 => X'First >= X'Last
12339      --    X'Length <= n => X'First + (n - 1) >= X'Last
12340
12341      --    X'Length < 0  => always false (warn)
12342      --    X'Length < 1  => X'First > X'Last
12343      --    X'Length < n  => X'First + (n - 1) > X'Last
12344
12345      --  Note: for the cases of n (not constant 0,1), we require that the
12346      --  corresponding index type be integer or shorter (i.e. not 64-bit),
12347      --  and the same for the comparison value. Then we do the comparison
12348      --  using 64-bit arithmetic (actually long long integer), so that we
12349      --  cannot have overflow intefering with the result.
12350
12351      --  First deal with warning cases
12352
12353      if Is_Zero then
12354         case Op is
12355
12356            --  X'Length >= 0
12357
12358            when N_Op_Ge =>
12359               Rewrite (N,
12360                 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
12361               Analyze_And_Resolve (N, Typ);
12362               Warn_On_Known_Condition (N);
12363               return;
12364
12365            --  X'Length < 0
12366
12367            when N_Op_Lt =>
12368               Rewrite (N,
12369                 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
12370               Analyze_And_Resolve (N, Typ);
12371               Warn_On_Known_Condition (N);
12372               return;
12373
12374            when N_Op_Le =>
12375               if Constant_Condition_Warnings
12376                 and then Comes_From_Source (Original_Node (N))
12377               then
12378                  Error_Msg_N ("could replace by ""'=""?c?", N);
12379               end if;
12380
12381               Op := N_Op_Eq;
12382
12383            when others =>
12384               null;
12385         end case;
12386      end if;
12387
12388      --  Build the First reference we will use
12389
12390      Left :=
12391        Make_Attribute_Reference (Loc,
12392          Prefix         => New_Occurrence_Of (Ent, Loc),
12393          Attribute_Name => Name_First);
12394
12395      if Present (Index) then
12396         Set_Expressions (Left, New_List (New_Copy (Index)));
12397      end if;
12398
12399      --  If general value case, then do the addition of (n - 1), and
12400      --  also add the needed conversions to type Long_Long_Integer.
12401
12402      if Present (Comp) then
12403         Left :=
12404           Make_Op_Add (Loc,
12405             Left_Opnd  => Prepare_64 (Left),
12406             Right_Opnd =>
12407               Make_Op_Subtract (Loc,
12408                 Left_Opnd  => Prepare_64 (Comp),
12409                 Right_Opnd => Make_Integer_Literal (Loc, 1)));
12410      end if;
12411
12412      --  Build the Last reference we will use
12413
12414      Right :=
12415        Make_Attribute_Reference (Loc,
12416          Prefix         => New_Occurrence_Of (Ent, Loc),
12417          Attribute_Name => Name_Last);
12418
12419      if Present (Index) then
12420         Set_Expressions (Right, New_List (New_Copy (Index)));
12421      end if;
12422
12423      --  If general operand, convert Last reference to Long_Long_Integer
12424
12425      if Present (Comp) then
12426         Right := Prepare_64 (Right);
12427      end if;
12428
12429      --  Check for cases to optimize
12430
12431      --  X'Length = 0  => X'First > X'Last
12432      --  X'Length < 1  => X'First > X'Last
12433      --  X'Length < n  => X'First + (n - 1) > X'Last
12434
12435      if (Is_Zero and then Op = N_Op_Eq)
12436        or else (not Is_Zero and then Op = N_Op_Lt)
12437      then
12438         Result :=
12439           Make_Op_Gt (Loc,
12440             Left_Opnd  => Left,
12441             Right_Opnd => Right);
12442
12443      --  X'Length = 1  => X'First = X'Last
12444      --  X'Length = n  => X'First + (n - 1) = X'Last
12445
12446      elsif not Is_Zero and then Op = N_Op_Eq then
12447         Result :=
12448           Make_Op_Eq (Loc,
12449             Left_Opnd  => Left,
12450             Right_Opnd => Right);
12451
12452      --  X'Length /= 0 => X'First <= X'Last
12453      --  X'Length > 0  => X'First <= X'Last
12454
12455      elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
12456         Result :=
12457           Make_Op_Le (Loc,
12458             Left_Opnd  => Left,
12459             Right_Opnd => Right);
12460
12461      --  X'Length /= 1 => X'First /= X'Last
12462      --  X'Length /= n => X'First + (n - 1) /= X'Last
12463
12464      elsif not Is_Zero and then Op = N_Op_Ne then
12465         Result :=
12466           Make_Op_Ne (Loc,
12467             Left_Opnd  => Left,
12468             Right_Opnd => Right);
12469
12470      --  X'Length >= 1 => X'First <= X'Last
12471      --  X'Length >= n => X'First + (n - 1) <= X'Last
12472
12473      elsif not Is_Zero and then Op = N_Op_Ge then
12474         Result :=
12475           Make_Op_Le (Loc,
12476             Left_Opnd  => Left,
12477                       Right_Opnd => Right);
12478
12479      --  X'Length > 1  => X'First < X'Last
12480      --  X'Length > n  => X'First + (n = 1) < X'Last
12481
12482      elsif not Is_Zero and then Op = N_Op_Gt then
12483         Result :=
12484           Make_Op_Lt (Loc,
12485             Left_Opnd  => Left,
12486             Right_Opnd => Right);
12487
12488      --  X'Length <= 1 => X'First >= X'Last
12489      --  X'Length <= n => X'First + (n - 1) >= X'Last
12490
12491      elsif not Is_Zero and then Op = N_Op_Le then
12492         Result :=
12493           Make_Op_Ge (Loc,
12494             Left_Opnd  => Left,
12495             Right_Opnd => Right);
12496
12497      --  Should not happen at this stage
12498
12499      else
12500         raise Program_Error;
12501      end if;
12502
12503      --  Rewrite and finish up
12504
12505      Rewrite (N, Result);
12506      Analyze_And_Resolve (N, Typ);
12507      return;
12508   end Optimize_Length_Comparison;
12509
12510   ------------------------------
12511   -- Process_Transient_Object --
12512   ------------------------------
12513
12514   procedure Process_Transient_Object
12515     (Decl     : Node_Id;
12516      Rel_Node : Node_Id)
12517   is
12518      Hook_Context         : Node_Id;
12519      --  Node on which to insert the hook pointer (as an action)
12520
12521      Finalization_Context : Node_Id;
12522      --  Node after which to insert finalization actions
12523
12524      Finalize_Always : Boolean;
12525      --  If False, call to finalizer includes a test of whether the
12526      --  hook pointer is null.
12527
12528      procedure Find_Enclosing_Contexts (N : Node_Id);
12529      --  Find the logical context where N appears, and initializae
12530      --  Hook_Context and Finalization_Context accordingly. Also
12531      --  sets Finalize_Always.
12532
12533      -----------------------------
12534      -- Find_Enclosing_Contexts --
12535      -----------------------------
12536
12537      procedure Find_Enclosing_Contexts (N : Node_Id) is
12538         Par : Node_Id;
12539         Top : Node_Id;
12540
12541         Wrapped_Node : Node_Id;
12542         --  Note: if we are in a transient scope, we want to reuse it as
12543         --  the context for actions insertion, if possible. But if N is itself
12544         --  part of the stored actions for the current transient scope,
12545         --  then we need to insert at the appropriate (inner) location in
12546         --  the not as an action on Node_To_Be_Wrapped.
12547
12548         In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
12549
12550      begin
12551         --  When the node is inside a case/if expression, the lifetime of any
12552         --  temporary controlled object is extended. Find a suitable insertion
12553         --  node by locating the topmost case or if expressions.
12554
12555         if In_Cond_Expr then
12556            Par := N;
12557            Top := N;
12558            while Present (Par) loop
12559               if Nkind_In (Original_Node (Par), N_Case_Expression,
12560                                                 N_If_Expression)
12561               then
12562                  Top := Par;
12563
12564               --  Prevent the search from going too far
12565
12566               elsif Is_Body_Or_Package_Declaration (Par) then
12567                  exit;
12568               end if;
12569
12570               Par := Parent (Par);
12571            end loop;
12572
12573            --  The topmost case or if expression is now recovered, but it may
12574            --  still not be the correct place to add generated code. Climb to
12575            --  find a parent that is part of a declarative or statement list,
12576            --  and is not a list of actuals in a call.
12577
12578            Par := Top;
12579            while Present (Par) loop
12580               if Is_List_Member (Par)
12581                 and then not Nkind_In (Par, N_Component_Association,
12582                                             N_Discriminant_Association,
12583                                             N_Parameter_Association,
12584                                             N_Pragma_Argument_Association)
12585                 and then not Nkind_In
12586                                (Parent (Par), N_Function_Call,
12587                                               N_Procedure_Call_Statement,
12588                                               N_Entry_Call_Statement)
12589
12590               then
12591                  Hook_Context := Par;
12592                  goto Hook_Context_Found;
12593
12594               --  Prevent the search from going too far
12595
12596               elsif Is_Body_Or_Package_Declaration (Par) then
12597                  exit;
12598               end if;
12599
12600               Par := Parent (Par);
12601            end loop;
12602
12603            Hook_Context := Par;
12604            goto Hook_Context_Found;
12605
12606         else
12607            Par := N;
12608            while Present (Par) loop
12609
12610               --  Keep climbing past various operators
12611
12612               if Nkind (Parent (Par)) in N_Op
12613                 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
12614               then
12615                  Par := Parent (Par);
12616               else
12617                  exit;
12618               end if;
12619            end loop;
12620
12621            Top := Par;
12622
12623            --  The node may be located in a pragma in which case return the
12624            --  pragma itself:
12625
12626            --    pragma Precondition (... and then Ctrl_Func_Call ...);
12627
12628            --  Similar case occurs when the node is related to an object
12629            --  declaration or assignment:
12630
12631            --    Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
12632
12633            --  Another case to consider is when the node is part of a return
12634            --  statement:
12635
12636            --    return ... and then Ctrl_Func_Call ...;
12637
12638            --  Another case is when the node acts as a formal in a procedure
12639            --  call statement:
12640
12641            --    Proc (... and then Ctrl_Func_Call ...);
12642
12643            if Scope_Is_Transient then
12644               Wrapped_Node := Node_To_Be_Wrapped;
12645            else
12646               Wrapped_Node := Empty;
12647            end if;
12648
12649            while Present (Par) loop
12650               if Par = Wrapped_Node
12651                 or else Nkind_In (Par, N_Assignment_Statement,
12652                                        N_Object_Declaration,
12653                                        N_Pragma,
12654                                        N_Procedure_Call_Statement,
12655                                        N_Simple_Return_Statement)
12656               then
12657                  Hook_Context := Par;
12658                  goto Hook_Context_Found;
12659
12660               --  Prevent the search from going too far
12661
12662               elsif Is_Body_Or_Package_Declaration (Par) then
12663                  exit;
12664               end if;
12665
12666               Par := Parent (Par);
12667            end loop;
12668
12669            --  Return the topmost short circuit operator
12670
12671            Hook_Context := Top;
12672         end if;
12673
12674      <<Hook_Context_Found>>
12675
12676         --  Special case for Boolean EWAs: capture expression in a temporary,
12677         --  whose declaration will serve as the context around which to insert
12678         --  finalization code. The finalization thus remains local to the
12679         --  specific condition being evaluated.
12680
12681         if Is_Boolean_Type (Etype (N)) then
12682
12683            --  In this case, the finalization context is chosen so that
12684            --  we know at finalization point that the hook pointer is
12685            --  never null, so no need for a test, we can call the finalizer
12686            --  unconditionally, except in the case where the object is
12687            --  created in a specific branch of a conditional expression.
12688
12689            Finalize_Always :=
12690               not (In_Cond_Expr
12691                     or else
12692                       Nkind_In (Original_Node (N), N_Case_Expression,
12693                                                    N_If_Expression));
12694
12695            declare
12696               Loc  : constant Source_Ptr := Sloc (N);
12697               Temp : constant Entity_Id := Make_Temporary (Loc, 'E', N);
12698
12699            begin
12700               Append_To (Actions (N),
12701                 Make_Object_Declaration (Loc,
12702                   Defining_Identifier => Temp,
12703                   Constant_Present    => True,
12704                   Object_Definition   =>
12705                     New_Occurrence_Of (Etype (N), Loc),
12706                   Expression          => Expression (N)));
12707               Finalization_Context := Last (Actions (N));
12708
12709               Analyze (Last (Actions (N)));
12710
12711               Set_Expression (N, New_Occurrence_Of (Temp, Loc));
12712               Analyze (Expression (N));
12713            end;
12714
12715         else
12716            Finalize_Always := False;
12717            Finalization_Context := Hook_Context;
12718         end if;
12719      end Find_Enclosing_Contexts;
12720
12721      --  Local variables
12722
12723      Loc       : constant Source_Ptr := Sloc (Decl);
12724      Obj_Id    : constant Entity_Id  := Defining_Identifier (Decl);
12725      Obj_Typ   : constant Node_Id    := Etype (Obj_Id);
12726      Desig_Typ : Entity_Id;
12727      Expr      : Node_Id;
12728      Fin_Stmts : List_Id;
12729      Ptr_Id    : Entity_Id;
12730      Temp_Id   : Entity_Id;
12731      Temp_Ins  : Node_Id;
12732
12733   --  Start of processing for Process_Transient_Object
12734
12735   begin
12736      Find_Enclosing_Contexts (Rel_Node);
12737
12738      --  Step 1: Create the access type which provides a reference to the
12739      --  transient controlled object.
12740
12741      if Is_Access_Type (Obj_Typ) then
12742         Desig_Typ := Directly_Designated_Type (Obj_Typ);
12743      else
12744         Desig_Typ := Obj_Typ;
12745      end if;
12746
12747      Desig_Typ := Base_Type (Desig_Typ);
12748
12749      --  Generate:
12750      --    Ann : access [all] <Desig_Typ>;
12751
12752      Ptr_Id := Make_Temporary (Loc, 'A');
12753
12754      Insert_Action (Hook_Context,
12755        Make_Full_Type_Declaration (Loc,
12756          Defining_Identifier => Ptr_Id,
12757          Type_Definition     =>
12758            Make_Access_To_Object_Definition (Loc,
12759              All_Present        => Ekind (Obj_Typ) = E_General_Access_Type,
12760              Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))));
12761
12762      --  Step 2: Create a temporary which acts as a hook to the transient
12763      --  controlled object. Generate:
12764
12765      --    Temp : Ptr_Id := null;
12766
12767      Temp_Id := Make_Temporary (Loc, 'T');
12768
12769      Insert_Action (Hook_Context,
12770        Make_Object_Declaration (Loc,
12771          Defining_Identifier => Temp_Id,
12772          Object_Definition   => New_Occurrence_Of (Ptr_Id, Loc)));
12773
12774      --  Mark the temporary as created for the purposes of exporting the
12775      --  transient controlled object out of the expression_with_action or if
12776      --  expression. This signals the machinery in Build_Finalizer to treat
12777      --  this case specially.
12778
12779      Set_Status_Flag_Or_Transient_Decl (Temp_Id, Decl);
12780
12781      --  Step 3: Hook the transient object to the temporary
12782
12783      --  This must be inserted right after the object declaration, so that
12784      --  the assignment is executed if, and only if, the object is actually
12785      --  created (whereas the declaration of the hook pointer, and the
12786      --  finalization call, may be inserted at an outer level, and may
12787      --  remain unused for some executions, if the actual creation of
12788      --  the object is conditional).
12789
12790      --  The use of unchecked conversion / unrestricted access is needed to
12791      --  avoid an accessibility violation. Note that the finalization code is
12792      --  structured in such a way that the "hook" is processed only when it
12793      --  points to an existing object.
12794
12795      if Is_Access_Type (Obj_Typ) then
12796         Expr :=
12797           Unchecked_Convert_To (Ptr_Id, New_Occurrence_Of (Obj_Id, Loc));
12798      else
12799         Expr :=
12800           Make_Attribute_Reference (Loc,
12801             Prefix         => New_Occurrence_Of (Obj_Id, Loc),
12802             Attribute_Name => Name_Unrestricted_Access);
12803      end if;
12804
12805      --  Generate:
12806      --    Temp := Ptr_Id (Obj_Id);
12807      --      <or>
12808      --    Temp := Obj_Id'Unrestricted_Access;
12809
12810      --  When the transient object is initialized by an aggregate, the hook
12811      --  must capture the object after the last component assignment takes
12812      --  place. Only then is the object fully initialized.
12813
12814      if Ekind (Obj_Id) = E_Variable
12815        and then Present (Last_Aggregate_Assignment (Obj_Id))
12816      then
12817         Temp_Ins := Last_Aggregate_Assignment (Obj_Id);
12818
12819      --  Otherwise the hook seizes the related object immediately
12820
12821      else
12822         Temp_Ins := Decl;
12823      end if;
12824
12825      Insert_After_And_Analyze (Temp_Ins,
12826        Make_Assignment_Statement (Loc,
12827          Name       => New_Occurrence_Of (Temp_Id, Loc),
12828          Expression => Expr));
12829
12830      --  Step 4: Finalize the transient controlled object after the context
12831      --  has been evaluated/elaborated. Generate:
12832
12833      --    if Temp /= null then
12834      --       [Deep_]Finalize (Temp.all);
12835      --       Temp := null;
12836      --    end if;
12837
12838      --  When the node is part of a return statement, there is no need to
12839      --  insert a finalization call, as the general finalization mechanism
12840      --  (see Build_Finalizer) would take care of the transient controlled
12841      --  object on subprogram exit. Note that it would also be impossible to
12842      --  insert the finalization code after the return statement as this will
12843      --  render it unreachable.
12844
12845      if Nkind (Finalization_Context) /= N_Simple_Return_Statement then
12846         Fin_Stmts := New_List (
12847           Make_Final_Call
12848             (Obj_Ref =>
12849                Make_Explicit_Dereference (Loc,
12850                  Prefix => New_Occurrence_Of (Temp_Id, Loc)),
12851              Typ     => Desig_Typ),
12852
12853           Make_Assignment_Statement (Loc,
12854             Name       => New_Occurrence_Of (Temp_Id, Loc),
12855             Expression => Make_Null (Loc)));
12856
12857         if not Finalize_Always then
12858            Fin_Stmts := New_List (
12859              Make_Implicit_If_Statement (Decl,
12860                Condition =>
12861                  Make_Op_Ne (Loc,
12862                    Left_Opnd  => New_Occurrence_Of (Temp_Id, Loc),
12863                    Right_Opnd => Make_Null (Loc)),
12864                Then_Statements => Fin_Stmts));
12865         end if;
12866
12867         Insert_Actions_After (Finalization_Context, Fin_Stmts);
12868      end if;
12869   end Process_Transient_Object;
12870
12871   ------------------------
12872   -- Rewrite_Comparison --
12873   ------------------------
12874
12875   procedure Rewrite_Comparison (N : Node_Id) is
12876      Warning_Generated : Boolean := False;
12877      --  Set to True if first pass with Assume_Valid generates a warning in
12878      --  which case we skip the second pass to avoid warning overloaded.
12879
12880      Result : Node_Id;
12881      --  Set to Standard_True or Standard_False
12882
12883   begin
12884      if Nkind (N) = N_Type_Conversion then
12885         Rewrite_Comparison (Expression (N));
12886         return;
12887
12888      elsif Nkind (N) not in N_Op_Compare then
12889         return;
12890      end if;
12891
12892      --  Now start looking at the comparison in detail. We potentially go
12893      --  through this loop twice. The first time, Assume_Valid is set False
12894      --  in the call to Compile_Time_Compare. If this call results in a
12895      --  clear result of always True or Always False, that's decisive and
12896      --  we are done. Otherwise we repeat the processing with Assume_Valid
12897      --  set to True to generate additional warnings. We can skip that step
12898      --  if Constant_Condition_Warnings is False.
12899
12900      for AV in False .. True loop
12901         declare
12902            Typ : constant Entity_Id := Etype (N);
12903            Op1 : constant Node_Id   := Left_Opnd (N);
12904            Op2 : constant Node_Id   := Right_Opnd (N);
12905
12906            Res : constant Compare_Result :=
12907                    Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
12908            --  Res indicates if compare outcome can be compile time determined
12909
12910            True_Result  : Boolean;
12911            False_Result : Boolean;
12912
12913         begin
12914            case N_Op_Compare (Nkind (N)) is
12915            when N_Op_Eq =>
12916               True_Result  := Res = EQ;
12917               False_Result := Res = LT or else Res = GT or else Res = NE;
12918
12919            when N_Op_Ge =>
12920               True_Result  := Res in Compare_GE;
12921               False_Result := Res = LT;
12922
12923               if Res = LE
12924                 and then Constant_Condition_Warnings
12925                 and then Comes_From_Source (Original_Node (N))
12926                 and then Nkind (Original_Node (N)) = N_Op_Ge
12927                 and then not In_Instance
12928                 and then Is_Integer_Type (Etype (Left_Opnd (N)))
12929                 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
12930               then
12931                  Error_Msg_N
12932                    ("can never be greater than, could replace by ""'=""?c?",
12933                     N);
12934                  Warning_Generated := True;
12935               end if;
12936
12937            when N_Op_Gt =>
12938               True_Result  := Res = GT;
12939               False_Result := Res in Compare_LE;
12940
12941            when N_Op_Lt =>
12942               True_Result  := Res = LT;
12943               False_Result := Res in Compare_GE;
12944
12945            when N_Op_Le =>
12946               True_Result  := Res in Compare_LE;
12947               False_Result := Res = GT;
12948
12949               if Res = GE
12950                 and then Constant_Condition_Warnings
12951                 and then Comes_From_Source (Original_Node (N))
12952                 and then Nkind (Original_Node (N)) = N_Op_Le
12953                 and then not In_Instance
12954                 and then Is_Integer_Type (Etype (Left_Opnd (N)))
12955                 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
12956               then
12957                  Error_Msg_N
12958                    ("can never be less than, could replace by ""'=""?c?", N);
12959                  Warning_Generated := True;
12960               end if;
12961
12962            when N_Op_Ne =>
12963               True_Result  := Res = NE or else Res = GT or else Res = LT;
12964               False_Result := Res = EQ;
12965            end case;
12966
12967            --  If this is the first iteration, then we actually convert the
12968            --  comparison into True or False, if the result is certain.
12969
12970            if AV = False then
12971               if True_Result or False_Result then
12972                  Result := Boolean_Literals (True_Result);
12973                  Rewrite (N,
12974                    Convert_To (Typ,
12975                      New_Occurrence_Of (Result, Sloc (N))));
12976                  Analyze_And_Resolve (N, Typ);
12977                  Warn_On_Known_Condition (N);
12978                  return;
12979               end if;
12980
12981            --  If this is the second iteration (AV = True), and the original
12982            --  node comes from source and we are not in an instance, then give
12983            --  a warning if we know result would be True or False. Note: we
12984            --  know Constant_Condition_Warnings is set if we get here.
12985
12986            elsif Comes_From_Source (Original_Node (N))
12987              and then not In_Instance
12988            then
12989               if True_Result then
12990                  Error_Msg_N
12991                    ("condition can only be False if invalid values present??",
12992                     N);
12993               elsif False_Result then
12994                  Error_Msg_N
12995                    ("condition can only be True if invalid values present??",
12996                     N);
12997               end if;
12998            end if;
12999         end;
13000
13001         --  Skip second iteration if not warning on constant conditions or
13002         --  if the first iteration already generated a warning of some kind or
13003         --  if we are in any case assuming all values are valid (so that the
13004         --  first iteration took care of the valid case).
13005
13006         exit when not Constant_Condition_Warnings;
13007         exit when Warning_Generated;
13008         exit when Assume_No_Invalid_Values;
13009      end loop;
13010   end Rewrite_Comparison;
13011
13012   ----------------------------
13013   -- Safe_In_Place_Array_Op --
13014   ----------------------------
13015
13016   function Safe_In_Place_Array_Op
13017     (Lhs : Node_Id;
13018      Op1 : Node_Id;
13019      Op2 : Node_Id) return Boolean
13020   is
13021      Target : Entity_Id;
13022
13023      function Is_Safe_Operand (Op : Node_Id) return Boolean;
13024      --  Operand is safe if it cannot overlap part of the target of the
13025      --  operation. If the operand and the target are identical, the operand
13026      --  is safe. The operand can be empty in the case of negation.
13027
13028      function Is_Unaliased (N : Node_Id) return Boolean;
13029      --  Check that N is a stand-alone entity
13030
13031      ------------------
13032      -- Is_Unaliased --
13033      ------------------
13034
13035      function Is_Unaliased (N : Node_Id) return Boolean is
13036      begin
13037         return
13038           Is_Entity_Name (N)
13039             and then No (Address_Clause (Entity (N)))
13040             and then No (Renamed_Object (Entity (N)));
13041      end Is_Unaliased;
13042
13043      ---------------------
13044      -- Is_Safe_Operand --
13045      ---------------------
13046
13047      function Is_Safe_Operand (Op : Node_Id) return Boolean is
13048      begin
13049         if No (Op) then
13050            return True;
13051
13052         elsif Is_Entity_Name (Op) then
13053            return Is_Unaliased (Op);
13054
13055         elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
13056            return Is_Unaliased (Prefix (Op));
13057
13058         elsif Nkind (Op) = N_Slice then
13059            return
13060              Is_Unaliased (Prefix (Op))
13061                and then Entity (Prefix (Op)) /= Target;
13062
13063         elsif Nkind (Op) = N_Op_Not then
13064            return Is_Safe_Operand (Right_Opnd (Op));
13065
13066         else
13067            return False;
13068         end if;
13069      end Is_Safe_Operand;
13070
13071   --  Start of processing for Safe_In_Place_Array_Op
13072
13073   begin
13074      --  Skip this processing if the component size is different from system
13075      --  storage unit (since at least for NOT this would cause problems).
13076
13077      if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
13078         return False;
13079
13080      --  Cannot do in place stuff on VM_Target since cannot pass addresses
13081
13082      elsif VM_Target /= No_VM then
13083         return False;
13084
13085      --  Cannot do in place stuff if non-standard Boolean representation
13086
13087      elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
13088         return False;
13089
13090      elsif not Is_Unaliased (Lhs) then
13091         return False;
13092
13093      else
13094         Target := Entity (Lhs);
13095         return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
13096      end if;
13097   end Safe_In_Place_Array_Op;
13098
13099   -----------------------
13100   -- Tagged_Membership --
13101   -----------------------
13102
13103   --  There are two different cases to consider depending on whether the right
13104   --  operand is a class-wide type or not. If not we just compare the actual
13105   --  tag of the left expr to the target type tag:
13106   --
13107   --     Left_Expr.Tag = Right_Type'Tag;
13108   --
13109   --  If it is a class-wide type we use the RT function CW_Membership which is
13110   --  usually implemented by looking in the ancestor tables contained in the
13111   --  dispatch table pointed by Left_Expr.Tag for Typ'Tag
13112
13113   --  Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13114   --  function IW_Membership which is usually implemented by looking in the
13115   --  table of abstract interface types plus the ancestor table contained in
13116   --  the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13117
13118   procedure Tagged_Membership
13119     (N         : Node_Id;
13120      SCIL_Node : out Node_Id;
13121      Result    : out Node_Id)
13122   is
13123      Left  : constant Node_Id    := Left_Opnd  (N);
13124      Right : constant Node_Id    := Right_Opnd (N);
13125      Loc   : constant Source_Ptr := Sloc (N);
13126
13127      Full_R_Typ : Entity_Id;
13128      Left_Type  : Entity_Id;
13129      New_Node   : Node_Id;
13130      Right_Type : Entity_Id;
13131      Obj_Tag    : Node_Id;
13132
13133   begin
13134      SCIL_Node := Empty;
13135
13136      --  Handle entities from the limited view
13137
13138      Left_Type  := Available_View (Etype (Left));
13139      Right_Type := Available_View (Etype (Right));
13140
13141      --  In the case where the type is an access type, the test is applied
13142      --  using the designated types (needed in Ada 2012 for implicit anonymous
13143      --  access conversions, for AI05-0149).
13144
13145      if Is_Access_Type (Right_Type) then
13146         Left_Type  := Designated_Type (Left_Type);
13147         Right_Type := Designated_Type (Right_Type);
13148      end if;
13149
13150      if Is_Class_Wide_Type (Left_Type) then
13151         Left_Type := Root_Type (Left_Type);
13152      end if;
13153
13154      if Is_Class_Wide_Type (Right_Type) then
13155         Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
13156      else
13157         Full_R_Typ := Underlying_Type (Right_Type);
13158      end if;
13159
13160      Obj_Tag :=
13161        Make_Selected_Component (Loc,
13162          Prefix        => Relocate_Node (Left),
13163          Selector_Name =>
13164            New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
13165
13166      if Is_Class_Wide_Type (Right_Type) then
13167
13168         --  No need to issue a run-time check if we statically know that the
13169         --  result of this membership test is always true. For example,
13170         --  considering the following declarations:
13171
13172         --    type Iface is interface;
13173         --    type T     is tagged null record;
13174         --    type DT    is new T and Iface with null record;
13175
13176         --    Obj1 : T;
13177         --    Obj2 : DT;
13178
13179         --  These membership tests are always true:
13180
13181         --    Obj1 in T'Class
13182         --    Obj2 in T'Class;
13183         --    Obj2 in Iface'Class;
13184
13185         --  We do not need to handle cases where the membership is illegal.
13186         --  For example:
13187
13188         --    Obj1 in DT'Class;     --  Compile time error
13189         --    Obj1 in Iface'Class;  --  Compile time error
13190
13191         if not Is_Class_Wide_Type (Left_Type)
13192           and then (Is_Ancestor (Etype (Right_Type), Left_Type,
13193                                  Use_Full_View => True)
13194                      or else (Is_Interface (Etype (Right_Type))
13195                                and then Interface_Present_In_Ancestor
13196                                           (Typ   => Left_Type,
13197                                            Iface => Etype (Right_Type))))
13198         then
13199            Result := New_Occurrence_Of (Standard_True, Loc);
13200            return;
13201         end if;
13202
13203         --  Ada 2005 (AI-251): Class-wide applied to interfaces
13204
13205         if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
13206
13207            --   Support to: "Iface_CW_Typ in Typ'Class"
13208
13209           or else Is_Interface (Left_Type)
13210         then
13211            --  Issue error if IW_Membership operation not available in a
13212            --  configurable run time setting.
13213
13214            if not RTE_Available (RE_IW_Membership) then
13215               Error_Msg_CRT
13216                 ("dynamic membership test on interface types", N);
13217               Result := Empty;
13218               return;
13219            end if;
13220
13221            Result :=
13222              Make_Function_Call (Loc,
13223                 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
13224                 Parameter_Associations => New_List (
13225                   Make_Attribute_Reference (Loc,
13226                     Prefix => Obj_Tag,
13227                     Attribute_Name => Name_Address),
13228                   New_Occurrence_Of (
13229                     Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
13230                     Loc)));
13231
13232         --  Ada 95: Normal case
13233
13234         else
13235            Build_CW_Membership (Loc,
13236              Obj_Tag_Node => Obj_Tag,
13237              Typ_Tag_Node =>
13238                 New_Occurrence_Of (
13239                   Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),  Loc),
13240              Related_Nod => N,
13241              New_Node    => New_Node);
13242
13243            --  Generate the SCIL node for this class-wide membership test.
13244            --  Done here because the previous call to Build_CW_Membership
13245            --  relocates Obj_Tag.
13246
13247            if Generate_SCIL then
13248               SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
13249               Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
13250               Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
13251            end if;
13252
13253            Result := New_Node;
13254         end if;
13255
13256      --  Right_Type is not a class-wide type
13257
13258      else
13259         --  No need to check the tag of the object if Right_Typ is abstract
13260
13261         if Is_Abstract_Type (Right_Type) then
13262            Result := New_Occurrence_Of (Standard_False, Loc);
13263
13264         else
13265            Result :=
13266              Make_Op_Eq (Loc,
13267                Left_Opnd  => Obj_Tag,
13268                Right_Opnd =>
13269                  New_Occurrence_Of
13270                    (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
13271         end if;
13272      end if;
13273   end Tagged_Membership;
13274
13275   ------------------------------
13276   -- Unary_Op_Validity_Checks --
13277   ------------------------------
13278
13279   procedure Unary_Op_Validity_Checks (N : Node_Id) is
13280   begin
13281      if Validity_Checks_On and Validity_Check_Operands then
13282         Ensure_Valid (Right_Opnd (N));
13283      end if;
13284   end Unary_Op_Validity_Checks;
13285
13286end Exp_Ch4;
13287