1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ I N T R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Einfo;    use Einfo;
29with Elists;   use Elists;
30with Expander; use Expander;
31with Exp_Atag; use Exp_Atag;
32with Exp_Ch4;  use Exp_Ch4;
33with Exp_Ch7;  use Exp_Ch7;
34with Exp_Ch11; use Exp_Ch11;
35with Exp_Code; use Exp_Code;
36with Exp_Fixd; use Exp_Fixd;
37with Exp_Util; use Exp_Util;
38with Freeze;   use Freeze;
39with Namet;    use Namet;
40with Nmake;    use Nmake;
41with Nlists;   use Nlists;
42with Opt;      use Opt;
43with Restrict; use Restrict;
44with Rident;   use Rident;
45with Rtsfind;  use Rtsfind;
46with Sem;      use Sem;
47with Sem_Aux;  use Sem_Aux;
48with Sem_Eval; use Sem_Eval;
49with Sem_Res;  use Sem_Res;
50with Sem_Type; use Sem_Type;
51with Sem_Util; use Sem_Util;
52with Sinfo;    use Sinfo;
53with Sinput;   use Sinput;
54with Snames;   use Snames;
55with Stand;    use Stand;
56with Stringt;  use Stringt;
57with Targparm; use Targparm;
58with Tbuild;   use Tbuild;
59with Uintp;    use Uintp;
60with Urealp;   use Urealp;
61
62package body Exp_Intr is
63
64   -----------------------
65   -- Local Subprograms --
66   -----------------------
67
68   procedure Expand_Binary_Operator_Call (N : Node_Id);
69   --  Expand a call to an intrinsic arithmetic operator when the operand
70   --  types or sizes are not identical.
71
72   procedure Expand_Is_Negative (N : Node_Id);
73   --  Expand a call to the intrinsic Is_Negative function
74
75   procedure Expand_Dispatching_Constructor_Call (N : Node_Id);
76   --  Expand a call to an instantiation of Generic_Dispatching_Constructor
77   --  into a dispatching call to the actual subprogram associated with the
78   --  Constructor formal subprogram, passing it the Parameters actual of
79   --  the call to the instantiation and dispatching based on call's Tag
80   --  parameter.
81
82   procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id);
83   --  Expand a call to Exception_Information/Message/Name. The first
84   --  parameter, N, is the node for the function call, and Ent is the
85   --  entity for the corresponding routine in the Ada.Exceptions package.
86
87   procedure Expand_Import_Call (N : Node_Id);
88   --  Expand a call to Import_Address/Longest_Integer/Value. The parameter
89   --  N is the node for the function call.
90
91   procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind);
92   --  Expand an intrinsic shift operation, N and E are from the call to
93   --  Expand_Intrinsic_Call (call node and subprogram spec entity) and
94   --  K is the kind for the shift node
95
96   procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id);
97   --  Expand a call to an instantiation of Unchecked_Conversion into a node
98   --  N_Unchecked_Type_Conversion.
99
100   procedure Expand_Unc_Deallocation (N : Node_Id);
101   --  Expand a call to an instantiation of Unchecked_Deallocation into a node
102   --  N_Free_Statement and appropriate context.
103
104   procedure Expand_To_Address (N : Node_Id);
105   procedure Expand_To_Pointer (N : Node_Id);
106   --  Expand a call to corresponding function, declared in an instance of
107   --  System.Address_To_Access_Conversions.
108
109   procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id);
110   --  Rewrite the node by the appropriate string or positive constant.
111   --  Nam can be one of the following:
112   --    Name_File             - expand string that is the name of source file
113   --    Name_Line             - expand integer line number
114   --    Name_Source_Location  - expand string of form file:line
115   --    Name_Enclosing_Entity - expand string  with name of enclosing entity
116
117   ---------------------------------
118   -- Expand_Binary_Operator_Call --
119   ---------------------------------
120
121   procedure Expand_Binary_Operator_Call (N : Node_Id) is
122      T1  : constant Entity_Id := Underlying_Type (Etype (Left_Opnd  (N)));
123      T2  : constant Entity_Id := Underlying_Type (Etype (Right_Opnd (N)));
124      TR  : constant Entity_Id := Etype (N);
125      T3  : Entity_Id;
126      Res : Node_Id;
127
128      Siz : constant Uint := UI_Max (RM_Size (T1), RM_Size (T2));
129      --  Maximum of operand sizes
130
131   begin
132      --  Nothing to do if the operands have the same modular type
133
134      if Base_Type (T1) = Base_Type (T2)
135        and then Is_Modular_Integer_Type (T1)
136      then
137         return;
138      end if;
139
140      --  Use Unsigned_32 for sizes of 32 or below, else Unsigned_64
141
142      if Siz > 32 then
143         T3 := RTE (RE_Unsigned_64);
144      else
145         T3 := RTE (RE_Unsigned_32);
146      end if;
147
148      --  Copy operator node, and reset type and entity fields, for
149      --  subsequent reanalysis.
150
151      Res := New_Copy (N);
152      Set_Etype (Res, T3);
153
154      case Nkind (N) is
155         when N_Op_And =>
156            Set_Entity (Res, Standard_Op_And);
157         when N_Op_Or =>
158            Set_Entity (Res, Standard_Op_Or);
159         when N_Op_Xor =>
160            Set_Entity (Res, Standard_Op_Xor);
161         when others =>
162            raise Program_Error;
163      end case;
164
165      --  Convert operands to large enough intermediate type
166
167      Set_Left_Opnd (Res,
168        Unchecked_Convert_To (T3, Relocate_Node (Left_Opnd (N))));
169      Set_Right_Opnd (Res,
170        Unchecked_Convert_To (T3, Relocate_Node (Right_Opnd (N))));
171
172      --  Analyze and resolve result formed by conversion to target type
173
174      Rewrite (N, Unchecked_Convert_To (TR, Res));
175      Analyze_And_Resolve (N, TR);
176   end Expand_Binary_Operator_Call;
177
178   -----------------------------------------
179   -- Expand_Dispatching_Constructor_Call --
180   -----------------------------------------
181
182   --  Transform a call to an instantiation of Generic_Dispatching_Constructor
183   --  of the form:
184
185   --     GDC_Instance (The_Tag, Parameters'Access)
186
187   --  to a class-wide conversion of a dispatching call to the actual
188   --  associated with the formal subprogram Construct, designating The_Tag
189   --  as the controlling tag of the call:
190
191   --     T'Class (Construct'Actual (Params)) -- Controlling tag is The_Tag
192
193   --  which will eventually be expanded to the following:
194
195   --     T'Class (The_Tag.all (Construct'Actual'Index).all (Params))
196
197   --  A class-wide membership test is also generated, preceding the call, to
198   --  ensure that the controlling tag denotes a type in T'Class.
199
200   procedure Expand_Dispatching_Constructor_Call (N : Node_Id) is
201      Loc        : constant Source_Ptr := Sloc (N);
202      Tag_Arg    : constant Node_Id    := First_Actual (N);
203      Param_Arg  : constant Node_Id    := Next_Actual (Tag_Arg);
204      Subp_Decl  : constant Node_Id    := Parent (Parent (Entity (Name (N))));
205      Inst_Pkg   : constant Node_Id    := Parent (Subp_Decl);
206      Act_Rename : Node_Id;
207      Act_Constr : Entity_Id;
208      Iface_Tag  : Node_Id := Empty;
209      Cnstr_Call : Node_Id;
210      Result_Typ : Entity_Id;
211
212   begin
213      --  Remove side effects from tag argument early, before rewriting
214      --  the dispatching constructor call, as Remove_Side_Effects relies
215      --  on Tag_Arg's Parent link properly attached to the tree (once the
216      --  call is rewritten, the Parent is inconsistent as it points to the
217      --  rewritten node, which is not the syntactic parent of the Tag_Arg
218      --  anymore).
219
220      Remove_Side_Effects (Tag_Arg);
221
222      --  The subprogram is the third actual in the instantiation, and is
223      --  retrieved from the corresponding renaming declaration. However,
224      --  freeze nodes may appear before, so we retrieve the declaration
225      --  with an explicit loop.
226
227      Act_Rename := First (Visible_Declarations (Inst_Pkg));
228      while Nkind (Act_Rename) /= N_Subprogram_Renaming_Declaration loop
229         Next (Act_Rename);
230      end loop;
231
232      Act_Constr := Entity (Name (Act_Rename));
233      Result_Typ := Class_Wide_Type (Etype (Act_Constr));
234
235      if Is_Interface (Etype (Act_Constr)) then
236
237         --  If the result type is not known to be a parent of Tag_Arg then we
238         --  need to locate the tag of the secondary dispatch table.
239
240         if not Is_Ancestor (Etype (Result_Typ), Etype (Tag_Arg),
241                             Use_Full_View => True)
242           and then Tagged_Type_Expansion
243         then
244            --  Obtain the reference to the Ada.Tags service before generating
245            --  the Object_Declaration node to ensure that if this service is
246            --  not available in the runtime then we generate a clear error.
247
248            declare
249               Fname : constant Node_Id :=
250                         New_Occurrence_Of (RTE (RE_Secondary_Tag), Loc);
251
252            begin
253               pragma Assert (not Is_Interface (Etype (Tag_Arg)));
254
255               Iface_Tag :=
256                 Make_Object_Declaration (Loc,
257                   Defining_Identifier => Make_Temporary (Loc, 'V'),
258                   Object_Definition   =>
259                     New_Occurrence_Of (RTE (RE_Tag), Loc),
260                   Expression          =>
261                     Make_Function_Call (Loc,
262                       Name                   => Fname,
263                       Parameter_Associations => New_List (
264                         Relocate_Node (Tag_Arg),
265                         New_Occurrence_Of
266                           (Node (First_Elmt (Access_Disp_Table
267                                               (Etype (Etype (Act_Constr))))),
268                            Loc))));
269               Insert_Action (N, Iface_Tag);
270            end;
271         end if;
272      end if;
273
274      --  Create the call to the actual Constructor function
275
276      Cnstr_Call :=
277        Make_Function_Call (Loc,
278          Name                   => New_Occurrence_Of (Act_Constr, Loc),
279          Parameter_Associations => New_List (Relocate_Node (Param_Arg)));
280
281      --  Establish its controlling tag from the tag passed to the instance
282      --  The tag may be given by a function call, in which case a temporary
283      --  should be generated now, to prevent out-of-order insertions during
284      --  the expansion of that call when stack-checking is enabled.
285
286      if Present (Iface_Tag) then
287         Set_Controlling_Argument (Cnstr_Call,
288           New_Occurrence_Of (Defining_Identifier (Iface_Tag), Loc));
289      else
290         Set_Controlling_Argument (Cnstr_Call,
291           Relocate_Node (Tag_Arg));
292      end if;
293
294      --  Rewrite and analyze the call to the instance as a class-wide
295      --  conversion of the call to the actual constructor.
296
297      Rewrite (N, Convert_To (Result_Typ, Cnstr_Call));
298      Analyze_And_Resolve (N, Etype (Act_Constr));
299
300      --  Do not generate a run-time check on the built object if tag
301      --  checks are suppressed for the result type or VM_Target /= No_VM
302
303      if Tag_Checks_Suppressed (Etype (Result_Typ))
304        or else not Tagged_Type_Expansion
305      then
306         null;
307
308      --  Generate a class-wide membership test to ensure that the call's tag
309      --  argument denotes a type within the class. We must keep separate the
310      --  case in which the Result_Type of the constructor function is a tagged
311      --  type from the case in which it is an abstract interface because the
312      --  run-time subprogram required to check these cases differ (and have
313      --  one difference in their parameters profile).
314
315      --  Call CW_Membership if the Result_Type is a tagged type to look for
316      --  the tag in the table of ancestor tags.
317
318      elsif not Is_Interface (Result_Typ) then
319         declare
320            Obj_Tag_Node : Node_Id := New_Copy_Tree (Tag_Arg);
321            CW_Test_Node : Node_Id;
322
323         begin
324            Build_CW_Membership (Loc,
325              Obj_Tag_Node => Obj_Tag_Node,
326              Typ_Tag_Node =>
327                New_Occurrence_Of (
328                   Node (First_Elmt (Access_Disp_Table (
329                                       Root_Type (Result_Typ)))), Loc),
330              Related_Nod => N,
331              New_Node    => CW_Test_Node);
332
333            Insert_Action (N,
334              Make_Implicit_If_Statement (N,
335                Condition =>
336                  Make_Op_Not (Loc, CW_Test_Node),
337                Then_Statements =>
338                  New_List (Make_Raise_Statement (Loc,
339                              New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
340         end;
341
342      --  Call IW_Membership test if the Result_Type is an abstract interface
343      --  to look for the tag in the table of interface tags.
344
345      else
346         Insert_Action (N,
347           Make_Implicit_If_Statement (N,
348             Condition =>
349               Make_Op_Not (Loc,
350                 Make_Function_Call (Loc,
351                    Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
352                    Parameter_Associations => New_List (
353                      Make_Attribute_Reference (Loc,
354                        Prefix         => New_Copy_Tree (Tag_Arg),
355                        Attribute_Name => Name_Address),
356
357                      New_Occurrence_Of (
358                        Node (First_Elmt (Access_Disp_Table (
359                                            Root_Type (Result_Typ)))), Loc)))),
360             Then_Statements =>
361               New_List (
362                 Make_Raise_Statement (Loc,
363                   Name => New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
364      end if;
365   end Expand_Dispatching_Constructor_Call;
366
367   ---------------------------
368   -- Expand_Exception_Call --
369   ---------------------------
370
371   --  If the function call is not within an exception handler, then the call
372   --  is replaced by a null string. Otherwise the appropriate routine in
373   --  Ada.Exceptions is called passing the choice parameter specification
374   --  from the enclosing handler. If the enclosing handler lacks a choice
375   --  parameter, then one is supplied.
376
377   procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id) is
378      Loc : constant Source_Ptr := Sloc (N);
379      P   : Node_Id;
380      E   : Entity_Id;
381
382   begin
383      --  Climb up parents to see if we are in exception handler
384
385      P := Parent (N);
386      loop
387         --  Case of not in exception handler, replace by null string
388
389         if No (P) then
390            Rewrite (N,
391              Make_String_Literal (Loc,
392                Strval => ""));
393            exit;
394
395         --  Case of in exception handler
396
397         elsif Nkind (P) = N_Exception_Handler then
398
399            --  Handler cannot be used for a local raise, and furthermore, this
400            --  is a violation of the No_Exception_Propagation restriction.
401
402            Set_Local_Raise_Not_OK (P);
403            Check_Restriction (No_Exception_Propagation, N);
404
405            --  If no choice parameter present, then put one there. Note that
406            --  we do not need to put it on the entity chain, since no one will
407            --  be referencing it by normal visibility methods.
408
409            if No (Choice_Parameter (P)) then
410               E := Make_Temporary (Loc, 'E');
411               Set_Choice_Parameter (P, E);
412               Set_Ekind (E, E_Variable);
413               Set_Etype (E, RTE (RE_Exception_Occurrence));
414               Set_Scope (E, Current_Scope);
415            end if;
416
417            Rewrite (N,
418              Make_Function_Call (Loc,
419                Name => New_Occurrence_Of (RTE (Ent), Loc),
420                Parameter_Associations => New_List (
421                  New_Occurrence_Of (Choice_Parameter (P), Loc))));
422            exit;
423
424         --  Keep climbing
425
426         else
427            P := Parent (P);
428         end if;
429      end loop;
430
431      Analyze_And_Resolve (N, Standard_String);
432   end Expand_Exception_Call;
433
434   ------------------------
435   -- Expand_Import_Call --
436   ------------------------
437
438   --  The function call must have a static string as its argument. We create
439   --  a dummy variable which uses this string as the external name in an
440   --  Import pragma. The result is then obtained as the address of this
441   --  dummy variable, converted to the appropriate target type.
442
443   procedure Expand_Import_Call (N : Node_Id) is
444      Loc : constant Source_Ptr := Sloc (N);
445      Ent : constant Entity_Id  := Entity (Name (N));
446      Str : constant Node_Id    := First_Actual (N);
447      Dum : constant Entity_Id  := Make_Temporary (Loc, 'D');
448
449   begin
450      Insert_Actions (N, New_List (
451        Make_Object_Declaration (Loc,
452          Defining_Identifier => Dum,
453          Object_Definition   =>
454            New_Occurrence_Of (Standard_Character, Loc)),
455
456        Make_Pragma (Loc,
457          Chars                        => Name_Import,
458          Pragma_Argument_Associations => New_List (
459            Make_Pragma_Argument_Association (Loc,
460              Expression => Make_Identifier (Loc, Name_Ada)),
461
462            Make_Pragma_Argument_Association (Loc,
463              Expression => Make_Identifier (Loc, Chars (Dum))),
464
465            Make_Pragma_Argument_Association (Loc,
466              Chars => Name_Link_Name,
467              Expression => Relocate_Node (Str))))));
468
469      Rewrite (N,
470        Unchecked_Convert_To (Etype (Ent),
471          Make_Attribute_Reference (Loc,
472            Prefix         => Make_Identifier (Loc, Chars (Dum)),
473            Attribute_Name => Name_Address)));
474
475      Analyze_And_Resolve (N, Etype (Ent));
476   end Expand_Import_Call;
477
478   ---------------------------
479   -- Expand_Intrinsic_Call --
480   ---------------------------
481
482   procedure Expand_Intrinsic_Call (N : Node_Id; E : Entity_Id) is
483      Nam : Name_Id;
484
485   begin
486      --  If an external name is specified for the intrinsic, it is handled
487      --  by the back-end: leave the call node unchanged for now.
488
489      if Present (Interface_Name (E)) then
490         return;
491      end if;
492
493      --  If the intrinsic subprogram is generic, gets its original name
494
495      if Present (Parent (E))
496        and then Present (Generic_Parent (Parent (E)))
497      then
498         Nam := Chars (Generic_Parent (Parent (E)));
499      else
500         Nam := Chars (E);
501      end if;
502
503      if Nam = Name_Asm then
504         Expand_Asm_Call (N);
505
506      elsif Nam = Name_Divide then
507         Expand_Decimal_Divide_Call (N);
508
509      elsif Nam = Name_Exception_Information then
510         Expand_Exception_Call (N, RE_Exception_Information);
511
512      elsif Nam = Name_Exception_Message then
513         Expand_Exception_Call (N, RE_Exception_Message);
514
515      elsif Nam = Name_Exception_Name then
516         Expand_Exception_Call (N, RE_Exception_Name_Simple);
517
518      elsif Nam = Name_Generic_Dispatching_Constructor then
519         Expand_Dispatching_Constructor_Call (N);
520
521      elsif Nam_In (Nam, Name_Import_Address,
522                         Name_Import_Largest_Value,
523                         Name_Import_Value)
524      then
525         Expand_Import_Call (N);
526
527      elsif Nam = Name_Is_Negative then
528         Expand_Is_Negative (N);
529
530      elsif Nam = Name_Rotate_Left then
531         Expand_Shift (N, E, N_Op_Rotate_Left);
532
533      elsif Nam = Name_Rotate_Right then
534         Expand_Shift (N, E, N_Op_Rotate_Right);
535
536      elsif Nam = Name_Shift_Left then
537         Expand_Shift (N, E, N_Op_Shift_Left);
538
539      elsif Nam = Name_Shift_Right then
540         Expand_Shift (N, E, N_Op_Shift_Right);
541
542      elsif Nam = Name_Shift_Right_Arithmetic then
543         Expand_Shift (N, E, N_Op_Shift_Right_Arithmetic);
544
545      elsif Nam = Name_Unchecked_Conversion then
546         Expand_Unc_Conversion (N, E);
547
548      elsif Nam = Name_Unchecked_Deallocation then
549         Expand_Unc_Deallocation (N);
550
551      elsif Nam = Name_To_Address then
552         Expand_To_Address (N);
553
554      elsif Nam = Name_To_Pointer then
555         Expand_To_Pointer (N);
556
557      elsif Nam_In (Nam, Name_File,
558                         Name_Line,
559                         Name_Source_Location,
560                         Name_Enclosing_Entity)
561      then
562         Expand_Source_Info (N, Nam);
563
564         --  If we have a renaming, expand the call to the original operation,
565         --  which must itself be intrinsic, since renaming requires matching
566         --  conventions and this has already been checked.
567
568      elsif Present (Alias (E)) then
569         Expand_Intrinsic_Call (N, Alias (E));
570
571      elsif Nkind (N) in N_Binary_Op then
572         Expand_Binary_Operator_Call (N);
573
574         --  The only other case is where an external name was specified, since
575         --  this is the only way that an otherwise unrecognized name could
576         --  escape the checking in Sem_Prag. Nothing needs to be done in such
577         --  a case, since we pass such a call to the back end unchanged.
578
579      else
580         null;
581      end if;
582   end Expand_Intrinsic_Call;
583
584   ------------------------
585   -- Expand_Is_Negative --
586   ------------------------
587
588   procedure Expand_Is_Negative (N : Node_Id) is
589      Loc   : constant Source_Ptr := Sloc (N);
590      Opnd  : constant Node_Id    := Relocate_Node (First_Actual (N));
591
592   begin
593
594      --  We replace the function call by the following expression
595
596      --    if Opnd < 0.0 then
597      --       True
598      --    else
599      --       if Opnd > 0.0 then
600      --          False;
601      --       else
602      --          Float_Unsigned!(Float (Opnd)) /= 0
603      --       end if;
604      --    end if;
605
606      Rewrite (N,
607        Make_If_Expression (Loc,
608          Expressions => New_List (
609            Make_Op_Lt (Loc,
610              Left_Opnd  => Duplicate_Subexpr (Opnd),
611              Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
612
613            New_Occurrence_Of (Standard_True, Loc),
614
615            Make_If_Expression (Loc,
616             Expressions => New_List (
617               Make_Op_Gt (Loc,
618                 Left_Opnd  => Duplicate_Subexpr_No_Checks (Opnd),
619                 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
620
621               New_Occurrence_Of (Standard_False, Loc),
622
623                Make_Op_Ne (Loc,
624                  Left_Opnd =>
625                    Unchecked_Convert_To
626                      (RTE (RE_Float_Unsigned),
627                       Convert_To
628                         (Standard_Float,
629                          Duplicate_Subexpr_No_Checks (Opnd))),
630                  Right_Opnd =>
631                    Make_Integer_Literal (Loc, 0)))))));
632
633      Analyze_And_Resolve (N, Standard_Boolean);
634   end Expand_Is_Negative;
635
636   ------------------
637   -- Expand_Shift --
638   ------------------
639
640   --  This procedure is used to convert a call to a shift function to the
641   --  corresponding operator node. This conversion is not done by the usual
642   --  circuit for converting calls to operator functions (e.g. "+"(1,2)) to
643   --  operator nodes, because shifts are not predefined operators.
644
645   --  As a result, whenever a shift is used in the source program, it will
646   --  remain as a call until converted by this routine to the operator node
647   --  form which the back end is expecting to see.
648
649   --  Note: it is possible for the expander to generate shift operator nodes
650   --  directly, which will be analyzed in the normal manner by calling Analyze
651   --  and Resolve. Such shift operator nodes will not be seen by Expand_Shift.
652
653   procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind) is
654      Entyp : constant Entity_Id  := Etype (E);
655      Left  : constant Node_Id    := First_Actual (N);
656      Loc   : constant Source_Ptr := Sloc (N);
657      Right : constant Node_Id    := Next_Actual (Left);
658      Ltyp  : constant Node_Id    := Etype (Left);
659      Rtyp  : constant Node_Id    := Etype (Right);
660      Typ   : constant Entity_Id  := Etype (N);
661      Snode : Node_Id;
662
663   begin
664      Snode := New_Node (K, Loc);
665      Set_Right_Opnd (Snode, Relocate_Node (Right));
666      Set_Chars      (Snode, Chars (E));
667      Set_Etype      (Snode, Base_Type (Entyp));
668      Set_Entity     (Snode, E);
669
670      if Compile_Time_Known_Value (Type_High_Bound (Rtyp))
671        and then Expr_Value (Type_High_Bound (Rtyp)) < Esize (Ltyp)
672      then
673         Set_Shift_Count_OK (Snode, True);
674      end if;
675
676      if Typ = Entyp then
677
678         --  Note that we don't call Analyze and Resolve on this node, because
679         --  it already got analyzed and resolved when it was a function call.
680
681         Set_Left_Opnd (Snode, Relocate_Node (Left));
682         Rewrite (N, Snode);
683         Set_Analyzed (N);
684
685         --  However, we do call the expander, so that the expansion for
686         --  rotates and shift_right_arithmetic happens if Modify_Tree_For_C
687         --  is set.
688
689         if Expander_Active then
690            Expand (N);
691         end if;
692
693      else
694         --  If the context type is not the type of the operator, it is an
695         --  inherited operator for a derived type. Wrap the node in a
696         --  conversion so that it is type-consistent for possible further
697         --  expansion (e.g. within a lock-free protected type).
698
699         Set_Left_Opnd (Snode,
700           Unchecked_Convert_To (Base_Type (Entyp), Relocate_Node (Left)));
701         Rewrite (N, Unchecked_Convert_To (Typ, Snode));
702
703         --  Analyze and resolve result formed by conversion to target type
704
705         Analyze_And_Resolve (N, Typ);
706      end if;
707   end Expand_Shift;
708
709   ------------------------
710   -- Expand_Source_Info --
711   ------------------------
712
713   procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id) is
714      Loc : constant Source_Ptr := Sloc (N);
715      Ent : Entity_Id;
716
717      procedure Write_Entity_Name (E : Entity_Id);
718      --  Recursive procedure to construct string for qualified name of
719      --  enclosing program unit. The qualification stops at an enclosing
720      --  scope has no source name (block or loop). If entity is a subprogram
721      --  instance, skip enclosing wrapper package.
722
723      -----------------------
724      -- Write_Entity_Name --
725      -----------------------
726
727      procedure Write_Entity_Name (E : Entity_Id) is
728         SDef : Source_Ptr;
729         TDef : constant Source_Buffer_Ptr :=
730                  Source_Text (Get_Source_File_Index (Sloc (E)));
731
732      begin
733         --  Nothing to do if at outer level
734
735         if Scope (E) = Standard_Standard then
736            null;
737
738         --  If scope comes from source, write its name
739
740         elsif Comes_From_Source (Scope (E)) then
741            Write_Entity_Name (Scope (E));
742            Add_Char_To_Name_Buffer ('.');
743
744         --  If in wrapper package skip past it
745
746         elsif Is_Wrapper_Package (Scope (E)) then
747            Write_Entity_Name (Scope (Scope (E)));
748            Add_Char_To_Name_Buffer ('.');
749
750         --  Otherwise nothing to output (happens in unnamed block statements)
751
752         else
753            null;
754         end if;
755
756         --  Loop to output the name
757
758         --  This is not right wrt wide char encodings ??? ()
759
760         SDef := Sloc (E);
761         while TDef (SDef) in '0' .. '9'
762           or else TDef (SDef) >= 'A'
763           or else TDef (SDef) = ASCII.ESC
764         loop
765            Add_Char_To_Name_Buffer (TDef (SDef));
766            SDef := SDef + 1;
767         end loop;
768      end Write_Entity_Name;
769
770   --  Start of processing for Expand_Source_Info
771
772   begin
773      --  Integer cases
774
775      if Nam = Name_Line then
776         Rewrite (N,
777           Make_Integer_Literal (Loc,
778             Intval => UI_From_Int (Int (Get_Logical_Line_Number (Loc)))));
779         Analyze_And_Resolve (N, Standard_Positive);
780
781      --  String cases
782
783      else
784         Name_Len := 0;
785
786         case Nam is
787            when Name_File =>
788               Get_Decoded_Name_String
789                 (Reference_Name (Get_Source_File_Index (Loc)));
790
791            when Name_Source_Location =>
792               Build_Location_String (Loc);
793
794            when Name_Enclosing_Entity =>
795
796               --  Skip enclosing blocks to reach enclosing unit
797
798               Ent := Current_Scope;
799               while Present (Ent) loop
800                  exit when Ekind (Ent) /= E_Block
801                    and then Ekind (Ent) /= E_Loop;
802                  Ent := Scope (Ent);
803               end loop;
804
805               --  Ent now points to the relevant defining entity
806
807               Write_Entity_Name (Ent);
808
809            when others =>
810               raise Program_Error;
811         end case;
812
813         Rewrite (N,
814           Make_String_Literal (Loc,
815             Strval => String_From_Name_Buffer));
816         Analyze_And_Resolve (N, Standard_String);
817      end if;
818
819      Set_Is_Static_Expression (N);
820   end Expand_Source_Info;
821
822   ---------------------------
823   -- Expand_Unc_Conversion --
824   ---------------------------
825
826   procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id) is
827      Func : constant Entity_Id  := Entity (Name (N));
828      Conv : Node_Id;
829      Ftyp : Entity_Id;
830      Ttyp : Entity_Id;
831
832   begin
833      --  Rewrite as unchecked conversion node. Note that we must convert
834      --  the operand to the formal type of the input parameter of the
835      --  function, so that the resulting N_Unchecked_Type_Conversion
836      --  call indicates the correct types for Gigi.
837
838      --  Right now, we only do this if a scalar type is involved. It is
839      --  not clear if it is needed in other cases. If we do attempt to
840      --  do the conversion unconditionally, it crashes 3411-018. To be
841      --  investigated further ???
842
843      Conv := Relocate_Node (First_Actual (N));
844      Ftyp := Etype (First_Formal (Func));
845
846      if Is_Scalar_Type (Ftyp) then
847         Conv := Convert_To (Ftyp, Conv);
848         Set_Parent (Conv, N);
849         Analyze_And_Resolve (Conv);
850      end if;
851
852      --  The instantiation of Unchecked_Conversion creates a wrapper package,
853      --  and the target type is declared as a subtype of the actual. Recover
854      --  the actual, which is the subtype indic. in the subtype declaration
855      --  for the target type. This is semantically correct, and avoids
856      --  anomalies with access subtypes. For entities, leave type as is.
857
858      --  We do the analysis here, because we do not want the compiler
859      --  to try to optimize or otherwise reorganize the unchecked
860      --  conversion node.
861
862      Ttyp := Etype (E);
863
864      if Is_Entity_Name (Conv) then
865         null;
866
867      elsif Nkind (Parent (Ttyp)) = N_Subtype_Declaration then
868         Ttyp := Entity (Subtype_Indication (Parent (Etype (E))));
869
870      elsif Is_Itype (Ttyp) then
871         Ttyp :=
872           Entity (Subtype_Indication (Associated_Node_For_Itype (Ttyp)));
873      else
874         raise Program_Error;
875      end if;
876
877      Rewrite (N, Unchecked_Convert_To (Ttyp, Conv));
878      Set_Etype (N, Ttyp);
879      Set_Analyzed (N);
880
881      if Nkind (N) = N_Unchecked_Type_Conversion then
882         Expand_N_Unchecked_Type_Conversion (N);
883      end if;
884   end Expand_Unc_Conversion;
885
886   -----------------------------
887   -- Expand_Unc_Deallocation --
888   -----------------------------
889
890   --  Generate the following Code :
891
892   --    if Arg /= null then
893   --     <Finalize_Call> (.., T'Class(Arg.all), ..);  -- for controlled types
894   --       Free (Arg);
895   --       Arg := Null;
896   --    end if;
897
898   --  For a task, we also generate a call to Free_Task to ensure that the
899   --  task itself is freed if it is terminated, ditto for a simple protected
900   --  object, with a call to Finalize_Protection. For composite types that
901   --  have tasks or simple protected objects as components, we traverse the
902   --  structures to find and terminate those components.
903
904   procedure Expand_Unc_Deallocation (N : Node_Id) is
905      Arg       : constant Node_Id    := First_Actual (N);
906      Loc       : constant Source_Ptr := Sloc (N);
907      Typ       : constant Entity_Id  := Etype (Arg);
908      Desig_T   : constant Entity_Id  := Designated_Type (Typ);
909      Rtyp      : constant Entity_Id  := Underlying_Type (Root_Type (Typ));
910      Pool      : constant Entity_Id  := Associated_Storage_Pool (Rtyp);
911      Stmts     : constant List_Id    := New_List;
912      Needs_Fin : constant Boolean    := Needs_Finalization (Desig_T);
913
914      Finalizer_Data  : Finalization_Exception_Data;
915
916      Blk        : Node_Id := Empty;
917      Deref      : Node_Id;
918      Final_Code : List_Id;
919      Free_Arg   : Node_Id;
920      Free_Node  : Node_Id;
921      Gen_Code   : Node_Id;
922
923      Arg_Known_Non_Null : constant Boolean := Known_Non_Null (N);
924      --  This captures whether we know the argument to be non-null so that
925      --  we can avoid the test. The reason that we need to capture this is
926      --  that we analyze some generated statements before properly attaching
927      --  them to the tree, and that can disturb current value settings.
928
929   begin
930      --  Nothing to do if we know the argument is null
931
932      if Known_Null (N) then
933         return;
934      end if;
935
936      --  Processing for pointer to controlled type
937
938      if Needs_Fin then
939         Deref :=
940           Make_Explicit_Dereference (Loc,
941             Prefix => Duplicate_Subexpr_No_Checks (Arg));
942
943         --  If the type is tagged, then we must force dispatching on the
944         --  finalization call because the designated type may not be the
945         --  actual type of the object.
946
947         if Is_Tagged_Type (Desig_T)
948           and then not Is_Class_Wide_Type (Desig_T)
949         then
950            Deref := Unchecked_Convert_To (Class_Wide_Type (Desig_T), Deref);
951
952         elsif not Is_Tagged_Type (Desig_T) then
953
954            --  Set type of result, to force a conversion when needed (see
955            --  exp_ch7, Convert_View), given that Deep_Finalize may be
956            --  inherited from the parent type, and we need the type of the
957            --  expression to see whether the conversion is in fact needed.
958
959            Set_Etype (Deref, Desig_T);
960         end if;
961
962         --  The finalization call is expanded wrapped in a block to catch any
963         --  possible exception. If an exception does occur, then Program_Error
964         --  must be raised following the freeing of the object and its removal
965         --  from the finalization collection's list. We set a flag to record
966         --  that an exception was raised, and save its occurrence for use in
967         --  the later raise.
968         --
969         --  Generate:
970         --    Abort  : constant Boolean :=
971         --               Exception_Occurrence (Get_Current_Excep.all.all) =
972         --                 Standard'Abort_Signal'Identity;
973         --      <or>
974         --    Abort  : constant Boolean := False;  --  no abort
975
976         --    E      : Exception_Occurrence;
977         --    Raised : Boolean := False;
978         --
979         --    begin
980         --       [Deep_]Finalize (Obj);
981         --    exception
982         --       when others =>
983         --          Raised := True;
984         --          Save_Occurrence (E, Get_Current_Excep.all.all);
985         --    end;
986
987         Build_Object_Declarations (Finalizer_Data, Stmts, Loc);
988
989         Final_Code := New_List (
990           Make_Block_Statement (Loc,
991             Handled_Statement_Sequence =>
992               Make_Handled_Sequence_Of_Statements (Loc,
993                 Statements         => New_List (
994                   Make_Final_Call (Obj_Ref => Deref, Typ => Desig_T)),
995                 Exception_Handlers => New_List (
996                   Build_Exception_Handler (Finalizer_Data)))));
997
998         --  For .NET/JVM, detach the object from the containing finalization
999         --  collection before finalizing it.
1000
1001         if VM_Target /= No_VM and then Is_Controlled (Desig_T) then
1002            Prepend_To (Final_Code,
1003              Make_Detach_Call (New_Copy_Tree (Arg)));
1004         end if;
1005
1006         --  If aborts are allowed, then the finalization code must be
1007         --  protected by an abort defer/undefer pair.
1008
1009         if Abort_Allowed then
1010            Prepend_To (Final_Code,
1011              Build_Runtime_Call (Loc, RE_Abort_Defer));
1012
1013            Blk :=
1014              Make_Block_Statement (Loc, Handled_Statement_Sequence =>
1015                Make_Handled_Sequence_Of_Statements (Loc,
1016                  Statements  => Final_Code,
1017                  At_End_Proc =>
1018                    New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc)));
1019
1020            Append (Blk, Stmts);
1021         else
1022            Append_List_To (Stmts, Final_Code);
1023         end if;
1024      end if;
1025
1026      --  For a task type, call Free_Task before freeing the ATCB
1027
1028      if Is_Task_Type (Desig_T) then
1029
1030         --  We used to detect the case of Abort followed by a Free here,
1031         --  because the Free wouldn't actually free if it happens before
1032         --  the aborted task actually terminates. The warning was removed,
1033         --  because Free now works properly (the task will be freed once
1034         --  it terminates).
1035
1036         Append_To
1037           (Stmts, Cleanup_Task (N, Duplicate_Subexpr_No_Checks (Arg)));
1038
1039      --  For composite types that contain tasks, recurse over the structure
1040      --  to build the selectors for the task subcomponents.
1041
1042      elsif Has_Task (Desig_T) then
1043         if Is_Record_Type (Desig_T) then
1044            Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_T));
1045
1046         elsif Is_Array_Type (Desig_T) then
1047            Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_T));
1048         end if;
1049      end if;
1050
1051      --  Same for simple protected types. Eventually call Finalize_Protection
1052      --  before freeing the PO for each protected component.
1053
1054      if Is_Simple_Protected_Type (Desig_T) then
1055         Append_To (Stmts,
1056           Cleanup_Protected_Object (N, Duplicate_Subexpr_No_Checks (Arg)));
1057
1058      elsif Has_Simple_Protected_Object (Desig_T) then
1059         if Is_Record_Type (Desig_T) then
1060            Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_T));
1061         elsif Is_Array_Type (Desig_T) then
1062            Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_T));
1063         end if;
1064      end if;
1065
1066      --  Normal processing for non-controlled types
1067
1068      Free_Arg := Duplicate_Subexpr_No_Checks (Arg);
1069      Free_Node := Make_Free_Statement (Loc, Empty);
1070      Append_To (Stmts, Free_Node);
1071      Set_Storage_Pool (Free_Node, Pool);
1072
1073      --  Attach to tree before analysis of generated subtypes below
1074
1075      Set_Parent (Stmts, Parent (N));
1076
1077      --  Deal with storage pool
1078
1079      if Present (Pool) then
1080
1081         --  Freeing the secondary stack is meaningless
1082
1083         if Is_RTE (Pool, RE_SS_Pool) then
1084            null;
1085
1086         --  If the pool object is of a simple storage pool type, then attempt
1087         --  to locate the type's Deallocate procedure, if any, and set the
1088         --  free operation's procedure to call. If the type doesn't have a
1089         --  Deallocate (which is allowed), then the actual will simply be set
1090         --  to null.
1091
1092         elsif Present (Get_Rep_Pragma
1093                          (Etype (Pool), Name_Simple_Storage_Pool_Type))
1094         then
1095            declare
1096               Pool_Type  : constant Entity_Id := Base_Type (Etype (Pool));
1097               Dealloc_Op : Entity_Id;
1098            begin
1099               Dealloc_Op := Get_Name_Entity_Id (Name_Deallocate);
1100               while Present (Dealloc_Op) loop
1101                  if Scope (Dealloc_Op) = Scope (Pool_Type)
1102                    and then Present (First_Formal (Dealloc_Op))
1103                    and then Etype (First_Formal (Dealloc_Op)) = Pool_Type
1104                  then
1105                     Set_Procedure_To_Call (Free_Node, Dealloc_Op);
1106                     exit;
1107                  else
1108                     Dealloc_Op := Homonym (Dealloc_Op);
1109                  end if;
1110               end loop;
1111            end;
1112
1113         --  Case of a class-wide pool type: make a dispatching call to
1114         --  Deallocate through the class-wide Deallocate_Any.
1115
1116         elsif Is_Class_Wide_Type (Etype (Pool)) then
1117            Set_Procedure_To_Call (Free_Node, RTE (RE_Deallocate_Any));
1118
1119         --  Case of a specific pool type: make a statically bound call
1120
1121         else
1122            Set_Procedure_To_Call (Free_Node,
1123              Find_Prim_Op (Etype (Pool), Name_Deallocate));
1124         end if;
1125      end if;
1126
1127      if Present (Procedure_To_Call (Free_Node)) then
1128
1129         --  For all cases of a Deallocate call, the back-end needs to be able
1130         --  to compute the size of the object being freed. This may require
1131         --  some adjustments for objects of dynamic size.
1132         --
1133         --  If the type is class wide, we generate an implicit type with the
1134         --  right dynamic size, so that the deallocate call gets the right
1135         --  size parameter computed by GIGI. Same for an access to
1136         --  unconstrained packed array.
1137
1138         if Is_Class_Wide_Type (Desig_T)
1139           or else
1140            (Is_Array_Type (Desig_T)
1141              and then not Is_Constrained (Desig_T)
1142              and then Is_Packed (Desig_T))
1143         then
1144            declare
1145               Deref    : constant Node_Id :=
1146                            Make_Explicit_Dereference (Loc,
1147                              Duplicate_Subexpr_No_Checks (Arg));
1148               D_Subtyp : Node_Id;
1149               D_Type   : Entity_Id;
1150
1151            begin
1152               --  Perform minor decoration as it is needed by the side effect
1153               --  removal mechanism.
1154
1155               Set_Etype  (Deref, Desig_T);
1156               Set_Parent (Deref, Free_Node);
1157               D_Subtyp := Make_Subtype_From_Expr (Deref, Desig_T);
1158
1159               if Nkind (D_Subtyp) in N_Has_Entity then
1160                  D_Type := Entity (D_Subtyp);
1161
1162               else
1163                  D_Type := Make_Temporary (Loc, 'A');
1164                  Insert_Action (Deref,
1165                    Make_Subtype_Declaration (Loc,
1166                      Defining_Identifier => D_Type,
1167                      Subtype_Indication  => D_Subtyp));
1168               end if;
1169
1170               --  Force freezing at the point of the dereference. For the
1171               --  class wide case, this avoids having the subtype frozen
1172               --  before the equivalent type.
1173
1174               Freeze_Itype (D_Type, Deref);
1175
1176               Set_Actual_Designated_Subtype (Free_Node, D_Type);
1177            end;
1178
1179         end if;
1180      end if;
1181
1182      --  Ada 2005 (AI-251): In case of abstract interface type we must
1183      --  displace the pointer to reference the base of the object to
1184      --  deallocate its memory, unless we're targetting a VM, in which case
1185      --  no special processing is required.
1186
1187      --  Generate:
1188      --    free (Base_Address (Obj_Ptr))
1189
1190      if Is_Interface (Directly_Designated_Type (Typ))
1191        and then Tagged_Type_Expansion
1192      then
1193         Set_Expression (Free_Node,
1194           Unchecked_Convert_To (Typ,
1195             Make_Function_Call (Loc,
1196               Name => New_Occurrence_Of (RTE (RE_Base_Address), Loc),
1197               Parameter_Associations => New_List (
1198                 Unchecked_Convert_To (RTE (RE_Address), Free_Arg)))));
1199
1200      --  Generate:
1201      --    free (Obj_Ptr)
1202
1203      else
1204         Set_Expression (Free_Node, Free_Arg);
1205      end if;
1206
1207      --  Only remaining step is to set result to null, or generate a raise of
1208      --  Constraint_Error if the target object is "not null".
1209
1210      if Can_Never_Be_Null (Etype (Arg)) then
1211         Append_To (Stmts,
1212           Make_Raise_Constraint_Error (Loc,
1213             Reason => CE_Access_Check_Failed));
1214
1215      else
1216         declare
1217            Lhs : constant Node_Id := Duplicate_Subexpr_No_Checks (Arg);
1218         begin
1219            Set_Assignment_OK (Lhs);
1220            Append_To (Stmts,
1221              Make_Assignment_Statement (Loc,
1222                Name       => Lhs,
1223                Expression => Make_Null (Loc)));
1224         end;
1225      end if;
1226
1227      --  Generate a test of whether any earlier finalization raised an
1228      --  exception, and in that case raise Program_Error with the previous
1229      --  exception occurrence.
1230
1231      --  Generate:
1232      --    if Raised and then not Abort then
1233      --       raise Program_Error;                  --  for .NET and
1234      --                                             --  restricted RTS
1235      --         <or>
1236      --       Raise_From_Controlled_Operation (E);  --  all other cases
1237      --    end if;
1238
1239      if Needs_Fin then
1240         Append_To (Stmts, Build_Raise_Statement (Finalizer_Data));
1241      end if;
1242
1243      --  If we know the argument is non-null, then make a block statement
1244      --  that contains the required statements, no need for a test.
1245
1246      if Arg_Known_Non_Null then
1247         Gen_Code :=
1248           Make_Block_Statement (Loc,
1249             Handled_Statement_Sequence =>
1250               Make_Handled_Sequence_Of_Statements (Loc,
1251             Statements => Stmts));
1252
1253      --  If the argument may be null, wrap the statements inside an IF that
1254      --  does an explicit test to exclude the null case.
1255
1256      else
1257         Gen_Code :=
1258           Make_Implicit_If_Statement (N,
1259             Condition =>
1260               Make_Op_Ne (Loc,
1261                 Left_Opnd  => Duplicate_Subexpr (Arg),
1262                 Right_Opnd => Make_Null (Loc)),
1263             Then_Statements => Stmts);
1264      end if;
1265
1266      --  Rewrite the call
1267
1268      Rewrite (N, Gen_Code);
1269      Analyze (N);
1270
1271      --  If we generated a block with an At_End_Proc, expand the exception
1272      --  handler. We need to wait until after everything else is analyzed.
1273
1274      if Present (Blk) then
1275         Expand_At_End_Handler
1276           (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
1277      end if;
1278   end Expand_Unc_Deallocation;
1279
1280   -----------------------
1281   -- Expand_To_Address --
1282   -----------------------
1283
1284   procedure Expand_To_Address (N : Node_Id) is
1285      Loc : constant Source_Ptr := Sloc (N);
1286      Arg : constant Node_Id := First_Actual (N);
1287      Obj : Node_Id;
1288
1289   begin
1290      Remove_Side_Effects (Arg);
1291
1292      Obj := Make_Explicit_Dereference (Loc, Relocate_Node (Arg));
1293
1294      Rewrite (N,
1295        Make_If_Expression (Loc,
1296          Expressions => New_List (
1297            Make_Op_Eq (Loc,
1298              Left_Opnd => New_Copy_Tree (Arg),
1299              Right_Opnd => Make_Null (Loc)),
1300            New_Occurrence_Of (RTE (RE_Null_Address), Loc),
1301            Make_Attribute_Reference (Loc,
1302              Prefix         => Obj,
1303              Attribute_Name => Name_Address))));
1304
1305      Analyze_And_Resolve (N, RTE (RE_Address));
1306   end Expand_To_Address;
1307
1308   -----------------------
1309   -- Expand_To_Pointer --
1310   -----------------------
1311
1312   procedure Expand_To_Pointer (N : Node_Id) is
1313      Arg : constant Node_Id := First_Actual (N);
1314
1315   begin
1316      Rewrite (N, Unchecked_Convert_To (Etype (N), Arg));
1317      Analyze (N);
1318   end Expand_To_Pointer;
1319
1320end Exp_Intr;
1321