1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              R E P I N F O                               --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1999-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This package contains the routines to handle back annotation of the
33--  tree to fill in representation information, and also the routine used
34--  by -gnatR to print this information. This unit is used both in the
35--  compiler and in ASIS (it is used in ASIS as part of the implementation
36--  of the data decomposition annex).
37
38with Types; use Types;
39with Uintp; use Uintp;
40
41package Repinfo is
42
43   --------------------------------
44   -- Representation Information --
45   --------------------------------
46
47   --  The representation information of interest here is size and
48   --  component information for arrays and records. For primitive
49   --  types, the front end computes the Esize and RM_Size fields of
50   --  the corresponding entities as constant non-negative integers,
51   --  and the Uint values are stored directly in these fields.
52
53   --  For composite types, there are three cases:
54
55   --    1. In some cases the front end knows the values statically,
56   --       for example in the case where representation clauses or
57   --       pragmas specify the values.
58
59   --    2. If Backend_Layout is True, then the backend is responsible
60   --       for layout of all types and objects not laid out by the
61   --       front end. This includes all dynamic values, and also
62   --       static values (e.g. record sizes) when not set by the
63   --       front end.
64
65   --    3. If Backend_Layout is False, then the front end lays out
66   --       all data, according to target dependent size and alignment
67   --       information, creating dynamic inlinable functions where
68   --       needed in the case of sizes not known till runtime.
69
70   -----------------------------
71   -- Back-Annotation by Gigi --
72   -----------------------------
73
74   --  The following interface is used by gigi if Backend_Layout is True
75
76   --  As part of the processing in gigi, the types are laid out and
77   --  appropriate values computed for the sizes and component positions
78   --  and sizes of records and arrays.
79
80   --  The back-annotation circuit in gigi is responsible for updating the
81   --  relevant fields in the tree to reflect these computations, as follows:
82
83   --    For E_Array_Type entities, the Component_Size field
84
85   --    For all record and array types and subtypes, the Esize field,
86   --    which contains the Size (more accurately the Object_SIze) value
87   --    for the type or subtype.
88
89   --    For E_Component and E_Discriminant entities, the Esize (size
90   --    of component) and Component_Bit_Offset fields. Note that gigi
91   --    does not (yet ???) back annotate Normalized_Position/First_Bit.
92
93   --  There are three cases to consider:
94
95   --    1. The value is constant. In this case, the back annotation works
96   --       by simply storing the non-negative universal integer value in
97   --       the appropriate field corresponding to this constant size.
98
99   --    2. The value depends on variables other than discriminants of the
100   --       current record. In this case, the value is not known, even if
101   --       the complete data of the record is available, and gigi marks
102   --       this situation by storing the special value No_Uint.
103
104   --    3. The value depends on the discriminant values for the current
105   --       record. In this case, gigi back annotates the field with a
106   --       representation of the expression for computing the value in
107   --       terms of the discriminants. A negative Uint value is used to
108   --       represent the value of such an expression, as explained in
109   --       the following section.
110
111   --  GCC expressions are represented with a Uint value that is negative.
112   --  See the body of this package for details on the representation used.
113
114   --  One other case in which gigi back annotates GCC expressions is in
115   --  the Present_Expr field of an N_Variant node. This expression which
116   --  will always depend on discriminants, and hence always be represented
117   --  as a negative Uint value, provides an expression which, when evaluated
118   --  with a given set of discriminant values, indicates whether the variant
119   --  is present for that set of values (result is True, i.e. non-zero) or
120   --  not present (result is False, i.e. zero).
121
122   subtype Node_Ref is Uint;
123   --  Subtype used for negative Uint values used to represent nodes
124
125   subtype Node_Ref_Or_Val is Uint;
126   --  Subtype used for values that can either be a Node_Ref (negative)
127   --  or a value (non-negative)
128
129   type TCode is range 0 .. 28;
130   --  Type used on Ada side to represent DEFTREECODE values defined in
131   --  tree.def. Only a subset of these tree codes can actually appear.
132   --  The names are the names from tree.def in Ada casing.
133
134   --  name                             code   description           operands
135
136   Cond_Expr        : constant TCode :=  1; -- conditional              3
137   Plus_Expr        : constant TCode :=  2; -- addition                 2
138   Minus_Expr       : constant TCode :=  3; -- subtraction              2
139   Mult_Expr        : constant TCode :=  4; -- multiplication           2
140   Trunc_Div_Expr   : constant TCode :=  5; -- truncating division      2
141   Ceil_Div_Expr    : constant TCode :=  6; -- division rounding up     2
142   Floor_Div_Expr   : constant TCode :=  7; -- division rounding down   2
143   Trunc_Mod_Expr   : constant TCode :=  8; -- mod for trunc_div        2
144   Ceil_Mod_Expr    : constant TCode :=  9; -- mod for ceil_div         2
145   Floor_Mod_Expr   : constant TCode := 10; -- mod for floor_div        2
146   Exact_Div_Expr   : constant TCode := 11; -- exact div                2
147   Negate_Expr      : constant TCode := 12; -- negation                 1
148   Min_Expr         : constant TCode := 13; -- minimum                  2
149   Max_Expr         : constant TCode := 14; -- maximum                  2
150   Abs_Expr         : constant TCode := 15; -- absolute value           1
151   Truth_Andif_Expr : constant TCode := 16; -- Boolean and then         2
152   Truth_Orif_Expr  : constant TCode := 17; -- Boolean or else          2
153   Truth_And_Expr   : constant TCode := 18; -- Boolean and              2
154   Truth_Or_Expr    : constant TCode := 19; -- Boolean or               2
155   Truth_Xor_Expr   : constant TCode := 20; -- Boolean xor              2
156   Truth_Not_Expr   : constant TCode := 21; -- Boolean not              1
157   Lt_Expr          : constant TCode := 22; -- comparison <             2
158   Le_Expr          : constant TCode := 23; -- comparison <=            2
159   Gt_Expr          : constant TCode := 24; -- comparison >             2
160   Ge_Expr          : constant TCode := 25; -- comparison >=            2
161   Eq_Expr          : constant TCode := 26; -- comparison =             2
162   Ne_Expr          : constant TCode := 27; -- comparison /=            2
163   Bit_And_Expr     : constant TCode := 28; -- Binary and               2
164
165   --  The following entry is used to represent a discriminant value in
166   --  the tree. It has a special tree code that does not correspond
167   --  directly to a gcc node. The single operand is the number of the
168   --  discriminant in the record (1 = first discriminant).
169
170   Discrim_Val : constant TCode := 0;  -- discriminant value       1
171
172   ------------------------
173   -- The gigi Interface --
174   ------------------------
175
176   --  The following declarations are for use by gigi for back annotation
177
178   function Create_Node
179     (Expr : TCode;
180      Op1  : Node_Ref_Or_Val;
181      Op2  : Node_Ref_Or_Val := No_Uint;
182      Op3  : Node_Ref_Or_Val := No_Uint) return Node_Ref;
183   --  Creates a node using the tree code defined by Expr and from one to three
184   --  operands as required (unused operands set as shown to No_Uint) Note that
185   --  this call can be used to create a discriminant reference by using (Expr
186   --  => Discrim_Val, Op1 => discriminant_number).
187
188   function Create_Discrim_Ref (Discr : Entity_Id) return Node_Ref;
189   --  Creates a reference to the discriminant whose entity is Discr
190
191   --------------------------------------------------------
192   -- Front-End Interface for Dynamic Size/Offset Values --
193   --------------------------------------------------------
194
195   --  If Backend_Layout is False, then the front-end deals with all
196   --  dynamic size and offset fields. There are two cases:
197
198   --    1. The value can be computed at the time of type freezing, and
199   --       is stored in a run-time constant. In this case, the field
200   --       contains a reference to this entity. In the case of sizes
201   --       the value stored is the size in storage units, since dynamic
202   --       sizes are always a multiple of storage units.
203
204   --    2. The size/offset depends on the value of discriminants at
205   --       run-time. In this case, the front end builds a function to
206   --       compute the value. This function has a single parameter
207   --       which is the discriminated record object in question. Any
208   --       references to discriminant values are simply references to
209   --       the appropriate discriminant in this single argument, and
210   --       to compute the required size/offset value at run time, the
211   --       code generator simply constructs a call to the function
212   --       with the appropriate argument. The size/offset field in
213   --       this case contains a reference to the function entity.
214   --       Note that as for case 1, if such a function is used to
215   --       return a size, then the size in storage units is returned,
216   --       not the size in bits.
217
218   --  The interface here allows these created entities to be referenced
219   --  using negative Unit values, so that they can be stored in the
220   --  appropriate size and offset fields in the tree.
221
222   --  In the case of components, if the location of the component is static,
223   --  then all four fields (Component_Bit_Offset, Normalized_Position, Esize,
224   --  and Normalized_First_Bit) are set to appropriate values. In the case of
225   --  a non-static component location, Component_Bit_Offset is not used and
226   --  is left set to Unknown. Normalized_Position and Normalized_First_Bit
227   --  are set appropriately.
228
229   subtype SO_Ref is Uint;
230   --  Type used to represent a Uint value that represents a static or
231   --  dynamic size/offset value (non-negative if static, negative if
232   --  the size value is dynamic).
233
234   subtype Dynamic_SO_Ref is Uint;
235   --  Type used to represent a negative Uint value used to store
236   --  a dynamic size/offset value.
237
238   function Is_Dynamic_SO_Ref (U : SO_Ref) return Boolean;
239   pragma Inline (Is_Dynamic_SO_Ref);
240   --  Given a SO_Ref (Uint) value, returns True iff the SO_Ref value
241   --  represents a dynamic Size/Offset value (i.e. it is negative).
242
243   function Is_Static_SO_Ref (U : SO_Ref) return Boolean;
244   pragma Inline (Is_Static_SO_Ref);
245   --  Given a SO_Ref (Uint) value, returns True iff the SO_Ref value
246   --  represents a static Size/Offset value (i.e. it is non-negative).
247
248   function Create_Dynamic_SO_Ref (E : Entity_Id) return Dynamic_SO_Ref;
249   --  Given the Entity_Id for a constant (case 1), the Node_Id for an
250   --  expression (case 2), or the Entity_Id for a function (case 3),
251   --  this function returns a (negative) Uint value that can be used
252   --  to retrieve the entity or expression for later use.
253
254   function Get_Dynamic_SO_Entity (U : Dynamic_SO_Ref) return Entity_Id;
255   --  Retrieve the Node_Id or Entity_Id stored by a previous call to
256   --  Create_Dynamic_SO_Ref. The approach is that the front end makes
257   --  the necessary Create_Dynamic_SO_Ref calls to associate the node
258   --  and entity id values and the back end makes Get_Dynamic_SO_Ref
259   --  calls to retrieve them.
260
261   --------------------
262   -- ASIS_Interface --
263   --------------------
264
265   type Discrim_List is array (Pos range <>) of Uint;
266   --  Type used to represent list of discriminant values
267
268   function Rep_Value
269     (Val : Node_Ref_Or_Val;
270      D   : Discrim_List) return Uint;
271   --  Given the contents of a First_Bit_Position or Esize field containing
272   --  a node reference (i.e. a negative Uint value) and D, the list of
273   --  discriminant values, returns the interpreted value of this field.
274   --  For convenience, Rep_Value will take a non-negative Uint value
275   --  as an argument value, and return it unmodified. A No_Uint value is
276   --  also returned unmodified.
277
278   procedure Tree_Read;
279   --  Initializes internal tables from current tree file using the relevant
280   --  Table.Tree_Read routines.
281
282   ------------------------
283   -- Compiler Interface --
284   ------------------------
285
286   procedure List_Rep_Info (Bytes_Big_Endian : Boolean);
287   --  Procedure to list representation information. Bytes_Big_Endian is the
288   --  value from Ttypes (Repinfo cannot have a dependency on Ttypes).
289
290   procedure Tree_Write;
291   --  Writes out internal tables to current tree file using the relevant
292   --  Table.Tree_Write routines.
293
294   --------------------------
295   -- Debugging Procedures --
296   --------------------------
297
298   procedure List_GCC_Expression (U : Node_Ref_Or_Val);
299   --  Prints out given expression in symbolic form. Constants are listed
300   --  in decimal numeric form, Discriminants are listed with a # followed
301   --  by the discriminant number, and operators are output in appropriate
302   --  symbolic form No_Uint displays as two question marks. The output is
303   --  on a single line but has no line return after it. This procedure is
304   --  useful only if operating in backend layout mode.
305
306   procedure lgx (U : Node_Ref_Or_Val);
307   --  In backend layout mode, this is like List_GCC_Expression, but
308   --  includes a line return at the end. If operating in front end
309   --  layout mode, then the name of the entity for the size (either
310   --  a function of a variable) is listed followed by a line return.
311
312end Repinfo;
313