1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUN-TIME COMPONENTS                         --
4--                                                                          --
5--                S Y S T E M . R A N D O M _ N U M B E R S                 --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 2007-2012, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32------------------------------------------------------------------------------
33--                                                                          --
34-- The implementation here is derived from a C-program for MT19937, with    --
35-- initialization improved 2002/1/26. As required, the following notice is  --
36-- copied from the original program.                                        --
37--                                                                          --
38-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,        --
39-- All rights reserved.                                                     --
40--                                                                          --
41-- Redistribution and use in source and binary forms, with or without       --
42-- modification, are permitted provided that the following conditions       --
43-- are met:                                                                 --
44--                                                                          --
45--   1. Redistributions of source code must retain the above copyright      --
46--      notice, this list of conditions and the following disclaimer.       --
47--                                                                          --
48--   2. Redistributions in binary form must reproduce the above copyright   --
49--      notice, this list of conditions and the following disclaimer in the --
50--      documentation and/or other materials provided with the distribution.--
51--                                                                          --
52--   3. The names of its contributors may not be used to endorse or promote --
53--      products derived from this software without specific prior written  --
54--      permission.                                                         --
55--                                                                          --
56-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS      --
57-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT        --
58-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR    --
59-- A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT    --
60-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    --
61-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
62-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR   --
63-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF   --
64-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING     --
65-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS       --
66-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.             --
67--                                                                          --
68------------------------------------------------------------------------------
69
70------------------------------------------------------------------------------
71--                                                                          --
72-- This is an implementation of the Mersenne Twister, twisted generalized   --
73-- feedback shift register of rational normal form, with state-bit          --
74-- reflection and tempering. This version generates 32-bit integers with a  --
75-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For           --
76-- applications requiring more than 32 bits (up to 64), we concatenate two  --
77-- 32-bit numbers.                                                          --
78--                                                                          --
79-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for         --
80-- details.                                                                 --
81--                                                                          --
82-- In contrast to the original code, we do not generate random numbers in   --
83-- batches of N. Measurement seems to show this has very little if any      --
84-- effect on performance, and it may be marginally better for real-time     --
85-- applications with hard deadlines.                                        --
86--                                                                          --
87------------------------------------------------------------------------------
88
89with Ada.Unchecked_Conversion;
90
91with System.Random_Seed;
92
93with Interfaces; use Interfaces;
94
95use Ada;
96
97package body System.Random_Numbers is
98
99   Image_Numeral_Length : constant := Max_Image_Width / N;
100   subtype Image_String is String (1 .. Max_Image_Width);
101
102   ----------------------------
103   -- Algorithmic Parameters --
104   ----------------------------
105
106   Lower_Mask : constant := 2**31-1;
107   Upper_Mask : constant := 2**31;
108
109   Matrix_A   : constant array (State_Val range 0 .. 1) of State_Val
110     := (0, 16#9908b0df#);
111   --  The twist transformation is represented by a matrix of the form
112   --
113   --               [  0    I(31) ]
114   --               [    _a       ]
115   --
116   --  where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
117   --  _a is a particular bit row-vector, represented here by a 32-bit integer.
118   --  If integer x represents a row vector of bits (with x(0), the units bit,
119   --  last), then
120   --           x * A = [0 x(31..1)] xor Matrix_A(x(0)).
121
122   U      : constant := 11;
123   S      : constant := 7;
124   B_Mask : constant := 16#9d2c5680#;
125   T      : constant := 15;
126   C_Mask : constant := 16#efc60000#;
127   L      : constant := 18;
128   --  The tempering shifts and bit masks, in the order applied
129
130   Seed0 : constant := 5489;
131   --  Default seed, used to initialize the state vector when Reset not called
132
133   Seed1 : constant := 19650218;
134   --  Seed used to initialize the state vector when calling Reset with an
135   --  initialization vector.
136
137   Mult0 : constant := 1812433253;
138   --  Multiplier for a modified linear congruential generator used to
139   --  initialize the state vector when calling Reset with a single integer
140   --  seed.
141
142   Mult1 : constant := 1664525;
143   Mult2 : constant := 1566083941;
144   --  Multipliers for two modified linear congruential generators used to
145   --  initialize the state vector when calling Reset with an initialization
146   --  vector.
147
148   -----------------------
149   -- Local Subprograms --
150   -----------------------
151
152   procedure Init (Gen : Generator; Initiator : Unsigned_32);
153   --  Perform a default initialization of the state of Gen. The resulting
154   --  state is identical for identical values of Initiator.
155
156   procedure Insert_Image
157     (S     : in out Image_String;
158      Index : Integer;
159      V     : State_Val);
160   --  Insert image of V into S, in the Index'th 11-character substring
161
162   function Extract_Value (S : String; Index : Integer) return State_Val;
163   --  Treat S as a sequence of 11-character decimal numerals and return
164   --  the result of converting numeral #Index (numbering from 0)
165
166   function To_Unsigned is
167     new Unchecked_Conversion (Integer_32, Unsigned_32);
168   function To_Unsigned is
169     new Unchecked_Conversion (Integer_64, Unsigned_64);
170
171   ------------
172   -- Random --
173   ------------
174
175   function Random (Gen : Generator) return Unsigned_32 is
176      G : Generator renames Gen.Writable.Self.all;
177      Y : State_Val;
178      I : Integer;      --  should avoid use of identifier I ???
179
180   begin
181      I := G.I;
182
183      if I < N - M then
184         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
185         Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
186         I := I + 1;
187
188      elsif I < N - 1 then
189         Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
190         Y := G.S (I + (M - N))
191                xor Shift_Right (Y, 1)
192                xor Matrix_A (Y and 1);
193         I := I + 1;
194
195      elsif I = N - 1 then
196         Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
197         Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
198         I := 0;
199
200      else
201         Init (G, Seed0);
202         return Random (Gen);
203      end if;
204
205      G.S (G.I) := Y;
206      G.I := I;
207
208      Y := Y xor Shift_Right (Y, U);
209      Y := Y xor (Shift_Left (Y, S)  and B_Mask);
210      Y := Y xor (Shift_Left (Y, T) and C_Mask);
211      Y := Y xor Shift_Right (Y, L);
212
213      return Y;
214   end Random;
215
216   generic
217      type Unsigned is mod <>;
218      type Real is digits <>;
219      with function Random (G : Generator) return Unsigned is <>;
220   function Random_Float_Template (Gen : Generator) return Real;
221   pragma Inline (Random_Float_Template);
222   --  Template for a random-number generator implementation that delivers
223   --  values of type Real in the range [0 .. 1], using values from Gen,
224   --  assuming that Unsigned is large enough to hold the bits of a mantissa
225   --  for type Real.
226
227   ---------------------------
228   -- Random_Float_Template --
229   ---------------------------
230
231   function Random_Float_Template (Gen : Generator) return Real is
232
233      pragma Compile_Time_Error
234        (Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
235         "insufficiently large modular type used to hold mantissa");
236
237   begin
238      --  This code generates random floating-point numbers from unsigned
239      --  integers. Assuming that Real'Machine_Radix = 2, it can deliver all
240      --  machine values of type Real (as implied by Real'Machine_Mantissa and
241      --  Real'Machine_Emin), which is not true of the standard method (to
242      --  which we fall back for non-binary radix): computing Real(<random
243      --  integer>) / (<max random integer>+1). To do so, we first extract an
244      --  (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
245      --  decide on a normalized exponent by repeated coin flips, decrementing
246      --  from 0 as long as we flip heads (1 bits). This process yields the
247      --  proper geometric distribution for the exponent: in a uniformly
248      --  distributed set of floating-point numbers, 1/2 of them will be in
249      --  (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
250      --  further adjustment at binade boundaries (see comments below) to give
251      --  the effect of selecting a uniformly distributed real deviate in
252      --  [0..1] and then rounding to the nearest representable floating-point
253      --  number.  The algorithm attempts to be stingy with random integers. In
254      --  the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
255      --  integers, but this case occurs with probability around
256      --  2**Machine_Emin, and the expected number of calls to integer-valued
257      --  Random is 1.  For another discussion of the issues addressed by this
258      --  process, see Allen Downey's unpublished paper at
259      --  http://allendowney.com/research/rand/downey07randfloat.pdf.
260
261      if Real'Machine_Radix /= 2 then
262         return Real'Machine
263           (Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
264
265      else
266         declare
267            type Bit_Count is range 0 .. 4;
268
269            subtype T is Real'Base;
270
271            Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
272              of Bit_Count :=
273                  (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
274                   2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
275                   2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
276                   2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
277
278            Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
279              := (0 => 2.0**(0 - T'Machine_Mantissa),
280                  1 => 2.0**(-1 - T'Machine_Mantissa),
281                  2 => 2.0**(-2 - T'Machine_Mantissa),
282                  3 => 2.0**(-3 - T'Machine_Mantissa));
283
284            Extra_Bits : constant Natural :=
285                         (Unsigned'Size - T'Machine_Mantissa + 1);
286            --  Random bits left over after selecting mantissa
287
288            Mantissa : Unsigned;
289
290            X      : Real;            --  Scaled mantissa
291            R      : Unsigned_32;     --  Supply of random bits
292            R_Bits : Natural;         --  Number of bits left in R
293            K      : Bit_Count;       --  Next decrement to exponent
294
295         begin
296            Mantissa := Random (Gen) / 2**Extra_Bits;
297            R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
298            R_Bits := Extra_Bits;
299            X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
300
301            if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
302
303               --  We got lucky and got a zero in our few extra bits
304
305               K := Trailing_Ones (R);
306
307            else
308               Find_Zero : loop
309
310                  --  R has R_Bits unprocessed random bits, a multiple of 4.
311                  --  X needs to be halved for each trailing one bit. The
312                  --  process stops as soon as a 0 bit is found. If R_Bits
313                  --  becomes zero, reload R.
314
315                  --  Process 4 bits at a time for speed: the two iterations
316                  --  on average with three tests each was still too slow,
317                  --  probably because the branches are not predictable.
318                  --  This loop now will only execute once 94% of the cases,
319                  --  doing more bits at a time will not help.
320
321                  while R_Bits >= 4 loop
322                     K := Trailing_Ones (R mod 16);
323
324                     exit Find_Zero when K < 4; -- Exits 94% of the time
325
326                     R_Bits := R_Bits - 4;
327                     X := X / 16.0;
328                     R := R / 16;
329                  end loop;
330
331                  --  Do not allow us to loop endlessly even in the (very
332                  --  unlikely) case that Random (Gen) keeps yielding all ones.
333
334                  exit Find_Zero when X = 0.0;
335                  R := Random (Gen);
336                  R_Bits := 32;
337               end loop Find_Zero;
338            end if;
339
340            --  K has the count of trailing ones not reflected yet in X. The
341            --  following multiplication takes care of that, as well as the
342            --  correction to move the radix point to the left of the mantissa.
343            --  Doing it at the end avoids repeated rounding errors in the
344            --  exceedingly unlikely case of ever having a subnormal result.
345
346            X := X * Pow_Tab (K);
347
348            --  The smallest value in each binade is rounded to by 0.75 of
349            --  the span of real numbers as its next larger neighbor, and
350            --  1.0 is rounded to by half of the span of real numbers as its
351            --  next smaller neighbor. To account for this, when we encounter
352            --  the smallest number in a binade, we substitute the smallest
353            --  value in the next larger binade with probability 1/2.
354
355            if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
356               X := 2.0 * X;
357            end if;
358
359            return X;
360         end;
361      end if;
362   end Random_Float_Template;
363
364   ------------
365   -- Random --
366   ------------
367
368   function Random (Gen : Generator) return Float is
369      function F is new Random_Float_Template (Unsigned_32, Float);
370   begin
371      return F (Gen);
372   end Random;
373
374   function Random (Gen : Generator) return Long_Float is
375      function F is new Random_Float_Template (Unsigned_64, Long_Float);
376   begin
377      return F (Gen);
378   end Random;
379
380   function Random (Gen : Generator) return Unsigned_64 is
381   begin
382      return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
383        or Unsigned_64 (Unsigned_32'(Random (Gen)));
384   end Random;
385
386   ---------------------
387   -- Random_Discrete --
388   ---------------------
389
390   function Random_Discrete
391     (Gen : Generator;
392      Min : Result_Subtype := Default_Min;
393      Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
394   is
395   begin
396      if Max = Min then
397         return Max;
398
399      elsif Max < Min then
400         raise Constraint_Error;
401
402      elsif Result_Subtype'Base'Size > 32 then
403         declare
404            --  In the 64-bit case, we have to be careful, since not all 64-bit
405            --  unsigned values are representable in GNAT's root_integer type.
406            --  Ignore different-size warnings here since GNAT's handling
407            --  is correct.
408
409            pragma Warnings ("Z");
410            function Conv_To_Unsigned is
411               new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
412            function Conv_To_Result is
413               new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
414            pragma Warnings ("z");
415
416            N : constant Unsigned_64 :=
417                  Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
418
419            X, Slop : Unsigned_64;
420
421         begin
422            if N = 0 then
423               return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
424
425            else
426               Slop := Unsigned_64'Last rem N + 1;
427
428               loop
429                  X := Random (Gen);
430                  exit when Slop = N or else X <= Unsigned_64'Last - Slop;
431               end loop;
432
433               return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
434            end if;
435         end;
436
437      elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
438                                                         2 ** 32 - 1
439      then
440         return Result_Subtype'Val
441           (Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
442      else
443         declare
444            N    : constant Unsigned_32 :=
445                     Unsigned_32 (Result_Subtype'Pos (Max) -
446                                    Result_Subtype'Pos (Min) + 1);
447            Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
448            X    : Unsigned_32;
449
450         begin
451            loop
452               X := Random (Gen);
453               exit when Slop = N or else X <= Unsigned_32'Last - Slop;
454            end loop;
455
456            return
457              Result_Subtype'Val
458                (Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
459         end;
460      end if;
461   end Random_Discrete;
462
463   ------------------
464   -- Random_Float --
465   ------------------
466
467   function Random_Float (Gen : Generator) return Result_Subtype is
468   begin
469      if Result_Subtype'Base'Digits > Float'Digits then
470         return Result_Subtype'Machine (Result_Subtype
471                                         (Long_Float'(Random (Gen))));
472      else
473         return Result_Subtype'Machine (Result_Subtype
474                                         (Float'(Random (Gen))));
475      end if;
476   end Random_Float;
477
478   -----------
479   -- Reset --
480   -----------
481
482   procedure Reset (Gen : Generator) is
483   begin
484      Init (Gen, Unsigned_32'Mod (Random_Seed.Get_Seed));
485   end Reset;
486
487   procedure Reset (Gen : Generator; Initiator : Integer_32) is
488   begin
489      Init (Gen, To_Unsigned (Initiator));
490   end Reset;
491
492   procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
493   begin
494      Init (Gen, Initiator);
495   end Reset;
496
497   procedure Reset (Gen : Generator; Initiator : Integer) is
498   begin
499      --  This is probably an unnecessary precaution against future change, but
500      --  since the test is a static expression, no extra code is involved.
501
502      if Integer'Size <= 32 then
503         Init (Gen, To_Unsigned (Integer_32 (Initiator)));
504
505      else
506         declare
507            Initiator1 : constant Unsigned_64 :=
508                           To_Unsigned (Integer_64 (Initiator));
509            Init0      : constant Unsigned_32 :=
510                           Unsigned_32 (Initiator1 mod 2 ** 32);
511            Init1      : constant Unsigned_32 :=
512                           Unsigned_32 (Shift_Right (Initiator1, 32));
513         begin
514            Reset (Gen, Initialization_Vector'(Init0, Init1));
515         end;
516      end if;
517   end Reset;
518
519   procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
520      G    : Generator renames Gen.Writable.Self.all;
521      I, J : Integer;
522
523   begin
524      Init (G, Seed1);
525      I := 1;
526      J := 0;
527
528      if Initiator'Length > 0 then
529         for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
530            G.S (I) :=
531              (G.S (I) xor ((G.S (I - 1)
532                               xor Shift_Right (G.S (I - 1), 30)) * Mult1))
533              + Initiator (J + Initiator'First) + Unsigned_32 (J);
534
535            I := I + 1;
536            J := J + 1;
537
538            if I >= N then
539               G.S (0) := G.S (N - 1);
540               I := 1;
541            end if;
542
543            if J >= Initiator'Length then
544               J := 0;
545            end if;
546         end loop;
547      end if;
548
549      for K in reverse 1 .. N - 1 loop
550         G.S (I) :=
551           (G.S (I) xor ((G.S (I - 1)
552                            xor Shift_Right (G.S (I - 1), 30)) * Mult2))
553           - Unsigned_32 (I);
554         I := I + 1;
555
556         if I >= N then
557            G.S (0) := G.S (N - 1);
558            I := 1;
559         end if;
560      end loop;
561
562      G.S (0) := Upper_Mask;
563   end Reset;
564
565   procedure Reset (Gen : Generator; From_State : Generator) is
566      G : Generator renames Gen.Writable.Self.all;
567   begin
568      G.S := From_State.S;
569      G.I := From_State.I;
570   end Reset;
571
572   procedure Reset (Gen : Generator; From_State : State) is
573      G : Generator renames Gen.Writable.Self.all;
574   begin
575      G.I := 0;
576      G.S := From_State;
577   end Reset;
578
579   procedure Reset (Gen : Generator; From_Image : String) is
580      G : Generator renames Gen.Writable.Self.all;
581   begin
582      G.I := 0;
583
584      for J in 0 .. N - 1 loop
585         G.S (J) := Extract_Value (From_Image, J);
586      end loop;
587   end Reset;
588
589   ----------
590   -- Save --
591   ----------
592
593   procedure Save (Gen : Generator; To_State : out State) is
594      Gen2 : Generator;
595
596   begin
597      if Gen.I = N then
598         Init (Gen2, 5489);
599         To_State := Gen2.S;
600
601      else
602         To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
603         To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
604      end if;
605   end Save;
606
607   -----------
608   -- Image --
609   -----------
610
611   function Image (Of_State : State) return String is
612      Result : Image_String;
613
614   begin
615      Result := (others => ' ');
616
617      for J in Of_State'Range loop
618         Insert_Image (Result, J, Of_State (J));
619      end loop;
620
621      return Result;
622   end Image;
623
624   function Image (Gen : Generator) return String is
625      Result : Image_String;
626
627   begin
628      Result := (others => ' ');
629      for J in 0 .. N - 1 loop
630         Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
631      end loop;
632
633      return Result;
634   end Image;
635
636   -----------
637   -- Value --
638   -----------
639
640   function Value (Coded_State : String) return State is
641      Gen : Generator;
642      S   : State;
643   begin
644      Reset (Gen, Coded_State);
645      Save (Gen, S);
646      return S;
647   end Value;
648
649   ----------
650   -- Init --
651   ----------
652
653   procedure Init (Gen : Generator; Initiator : Unsigned_32) is
654      G : Generator renames Gen.Writable.Self.all;
655   begin
656      G.S (0) := Initiator;
657
658      for I in 1 .. N - 1 loop
659         G.S (I) :=
660           (G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
661           + Unsigned_32 (I);
662      end loop;
663
664      G.I := 0;
665   end Init;
666
667   ------------------
668   -- Insert_Image --
669   ------------------
670
671   procedure Insert_Image
672     (S     : in out Image_String;
673      Index : Integer;
674      V     : State_Val)
675   is
676      Value : constant String := State_Val'Image (V);
677   begin
678      S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
679   end Insert_Image;
680
681   -------------------
682   -- Extract_Value --
683   -------------------
684
685   function Extract_Value (S : String; Index : Integer) return State_Val is
686      Start : constant Integer := S'First + Index * Image_Numeral_Length;
687   begin
688      return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
689   end Extract_Value;
690
691end System.Random_Numbers;
692