1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT LIBRARY COMPONENTS                          --
4--                                                                          --
5--                          G N A T . R E G P A T                           --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--               Copyright (C) 1986 by University of Toronto.               --
10--                      Copyright (C) 1999-2013, AdaCore                    --
11--                                                                          --
12-- GNAT is free software;  you can  redistribute it  and/or modify it under --
13-- terms of the  GNU General Public License as published  by the Free Soft- --
14-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
15-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
16-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
17-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
18--                                                                          --
19-- As a special exception under Section 7 of GPL version 3, you are granted --
20-- additional permissions described in the GCC Runtime Library Exception,   --
21-- version 3.1, as published by the Free Software Foundation.               --
22--                                                                          --
23-- You should have received a copy of the GNU General Public License and    --
24-- a copy of the GCC Runtime Library Exception along with this program;     --
25-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
26-- <http://www.gnu.org/licenses/>.                                          --
27--                                                                          --
28-- GNAT was originally developed  by the GNAT team at  New York University. --
29-- Extensive contributions were provided by Ada Core Technologies Inc.      --
30--                                                                          --
31------------------------------------------------------------------------------
32
33--  This is an altered Ada 95 version of the original V8 style regular
34--  expression library written in C by Henry Spencer. Apart from the
35--  translation to Ada, the interface has been considerably changed to
36--  use the Ada String type instead of C-style nul-terminated strings.
37
38--  Beware that some of this code is subtly aware of the way operator
39--  precedence is structured in regular expressions. Serious changes in
40--  regular-expression syntax might require a total rethink.
41
42with System.IO;               use System.IO;
43with Ada.Characters.Handling; use Ada.Characters.Handling;
44with Ada.Unchecked_Conversion;
45
46package body System.Regpat is
47
48   Debug : constant Boolean := False;
49   --  Set to True to activate debug traces. This is normally set to constant
50   --  False to simply delete all the trace code. It is to be edited to True
51   --  for internal debugging of the package.
52
53   ----------------------------
54   -- Implementation details --
55   ----------------------------
56
57   --  This is essentially a linear encoding of a nondeterministic
58   --  finite-state machine, also known as syntax charts or
59   --  "railroad normal form" in parsing technology.
60
61   --  Each node is an opcode plus a "next" pointer, possibly plus an
62   --  operand. "Next" pointers of all nodes except BRANCH implement
63   --  concatenation; a "next" pointer with a BRANCH on both ends of it
64   --  is connecting two alternatives.
65
66   --  The operand of some types of node is a literal string; for others,
67   --  it is a node leading into a sub-FSM. In particular, the operand of
68   --  a BRANCH node is the first node of the branch.
69   --  (NB this is *not* a tree structure:  the tail of the branch connects
70   --  to the thing following the set of BRANCHes).
71
72   --  You can see the exact byte-compiled version by using the Dump
73   --  subprogram. However, here are a few examples:
74
75   --  (a|b):  1 : BRANCH  (next at  9)
76   --          4 :    EXACT  (next at  17)   operand=a
77   --          9 : BRANCH  (next at  17)
78   --         12 :    EXACT  (next at  17)   operand=b
79   --         17 : EOP  (next at 0)
80   --
81   --  (ab)*:  1 : CURLYX  (next at  25)  { 0, 32767}
82   --          8 :    OPEN 1  (next at  12)
83   --         12 :       EXACT  (next at  18)   operand=ab
84   --         18 :    CLOSE 1  (next at  22)
85   --         22 :    WHILEM  (next at 0)
86   --         25 : NOTHING  (next at  28)
87   --         28 : EOP  (next at 0)
88
89   --  The opcodes are:
90
91   type Opcode is
92
93      --  Name          Operand?  Meaning
94
95     (EOP,        -- no        End of program
96      MINMOD,     -- no        Next operator is not greedy
97
98      --  Classes of characters
99
100      ANY,        -- no        Match any one character except newline
101      SANY,       -- no        Match any character, including new line
102      ANYOF,      -- class     Match any character in this class
103      EXACT,      -- str       Match this string exactly
104      EXACTF,     -- str       Match this string (case-folding is one)
105      NOTHING,    -- no        Match empty string
106      SPACE,      -- no        Match any whitespace character
107      NSPACE,     -- no        Match any non-whitespace character
108      DIGIT,      -- no        Match any numeric character
109      NDIGIT,     -- no        Match any non-numeric character
110      ALNUM,      -- no        Match any alphanumeric character
111      NALNUM,     -- no        Match any non-alphanumeric character
112
113      --  Branches
114
115      BRANCH,     -- node      Match this alternative, or the next
116
117      --  Simple loops (when the following node is one character in length)
118
119      STAR,       -- node      Match this simple thing 0 or more times
120      PLUS,       -- node      Match this simple thing 1 or more times
121      CURLY,      -- 2num node Match this simple thing between n and m times.
122
123      --  Complex loops
124
125      CURLYX,     -- 2num node Match this complex thing {n,m} times
126      --                       The nums are coded on two characters each
127
128      WHILEM,     -- no        Do curly processing and see if rest matches
129
130      --  Matches after or before a word
131
132      BOL,        -- no        Match "" at beginning of line
133      MBOL,       -- no        Same, assuming multiline (match after \n)
134      SBOL,       -- no        Same, assuming single line (don't match at \n)
135      EOL,        -- no        Match "" at end of line
136      MEOL,       -- no        Same, assuming multiline (match before \n)
137      SEOL,       -- no        Same, assuming single line (don't match at \n)
138
139      BOUND,      -- no        Match "" at any word boundary
140      NBOUND,     -- no        Match "" at any word non-boundary
141
142      --  Parenthesis groups handling
143
144      REFF,       -- num       Match some already matched string, folded
145      OPEN,       -- num       Mark this point in input as start of #n
146      CLOSE);     -- num       Analogous to OPEN
147
148   for Opcode'Size use 8;
149
150   --  Opcode notes:
151
152   --  BRANCH
153   --    The set of branches constituting a single choice are hooked
154   --    together with their "next" pointers, since precedence prevents
155   --    anything being concatenated to any individual branch. The
156   --    "next" pointer of the last BRANCH in a choice points to the
157   --    thing following the whole choice. This is also where the
158   --    final "next" pointer of each individual branch points; each
159   --    branch starts with the operand node of a BRANCH node.
160
161   --  STAR,PLUS
162   --    '?', and complex '*' and '+', are implemented with CURLYX.
163   --    branches. Simple cases (one character per match) are implemented with
164   --    STAR and PLUS for speed and to minimize recursive plunges.
165
166   --  OPEN,CLOSE
167   --    ...are numbered at compile time.
168
169   --  EXACT, EXACTF
170   --    There are in fact two arguments, the first one is the length (minus
171   --    one of the string argument), coded on one character, the second
172   --    argument is the string itself, coded on length + 1 characters.
173
174   --  A node is one char of opcode followed by two chars of "next" pointer.
175   --  "Next" pointers are stored as two 8-bit pieces, high order first. The
176   --  value is a positive offset from the opcode of the node containing it.
177   --  An operand, if any, simply follows the node. (Note that much of the
178   --  code generation knows about this implicit relationship.)
179
180   --  Using two bytes for the "next" pointer is vast overkill for most
181   --  things, but allows patterns to get big without disasters.
182
183   Next_Pointer_Bytes : constant := 3;
184   --  Points after the "next pointer" data. An instruction is therefore:
185   --     1 byte: instruction opcode
186   --     2 bytes: pointer to next instruction
187   --     * bytes: optional data for the instruction
188
189   -----------------------
190   -- Character classes --
191   -----------------------
192   --  This is the implementation for character classes ([...]) in the
193   --  syntax for regular expressions. Each character (0..256) has an
194   --  entry into the table. This makes for a very fast matching
195   --  algorithm.
196
197   type Class_Byte is mod 256;
198   type Character_Class is array (Class_Byte range 0 .. 31) of Class_Byte;
199
200   type Bit_Conversion_Array is array (Class_Byte range 0 .. 7) of Class_Byte;
201   Bit_Conversion : constant Bit_Conversion_Array :=
202                      (1, 2, 4, 8, 16, 32, 64, 128);
203
204   type Std_Class is (ANYOF_NONE,
205                      ANYOF_ALNUM,   --  Alphanumeric class [a-zA-Z0-9]
206                      ANYOF_NALNUM,
207                      ANYOF_SPACE,   --  Space class [ \t\n\r\f]
208                      ANYOF_NSPACE,
209                      ANYOF_DIGIT,   --  Digit class [0-9]
210                      ANYOF_NDIGIT,
211                      ANYOF_ALNUMC,  --  Alphanumeric class [a-zA-Z0-9]
212                      ANYOF_NALNUMC,
213                      ANYOF_ALPHA,   --  Alpha class [a-zA-Z]
214                      ANYOF_NALPHA,
215                      ANYOF_ASCII,   --  Ascii class (7 bits) 0..127
216                      ANYOF_NASCII,
217                      ANYOF_CNTRL,   --  Control class
218                      ANYOF_NCNTRL,
219                      ANYOF_GRAPH,   --  Graphic class
220                      ANYOF_NGRAPH,
221                      ANYOF_LOWER,   --  Lower case class [a-z]
222                      ANYOF_NLOWER,
223                      ANYOF_PRINT,   --  printable class
224                      ANYOF_NPRINT,
225                      ANYOF_PUNCT,   --
226                      ANYOF_NPUNCT,
227                      ANYOF_UPPER,   --  Upper case class [A-Z]
228                      ANYOF_NUPPER,
229                      ANYOF_XDIGIT,  --  Hexadecimal digit
230                      ANYOF_NXDIGIT
231                      );
232
233   procedure Set_In_Class
234     (Bitmap : in out Character_Class;
235      C      : Character);
236   --  Set the entry to True for C in the class Bitmap
237
238   function Get_From_Class
239     (Bitmap : Character_Class;
240      C      : Character) return Boolean;
241   --  Return True if the entry is set for C in the class Bitmap
242
243   procedure Reset_Class (Bitmap : out Character_Class);
244   --  Clear all the entries in the class Bitmap
245
246   pragma Inline (Set_In_Class);
247   pragma Inline (Get_From_Class);
248   pragma Inline (Reset_Class);
249
250   -----------------------
251   -- Local Subprograms --
252   -----------------------
253
254   function "=" (Left : Character; Right : Opcode) return Boolean;
255
256   function Is_Alnum (C : Character) return Boolean;
257   --  Return True if C is an alphanum character or an underscore ('_')
258
259   function Is_White_Space (C : Character) return Boolean;
260   --  Return True if C is a whitespace character
261
262   function Is_Printable (C : Character) return Boolean;
263   --  Return True if C is a printable character
264
265   function Operand (P : Pointer) return Pointer;
266   --  Return a pointer to the first operand of the node at P
267
268   function String_Length
269     (Program : Program_Data;
270      P       : Pointer) return Program_Size;
271   --  Return the length of the string argument of the node at P
272
273   function String_Operand (P : Pointer) return Pointer;
274   --  Return a pointer to the string argument of the node at P
275
276   procedure Bitmap_Operand
277     (Program : Program_Data;
278      P       : Pointer;
279      Op      : out Character_Class);
280   --  Return a pointer to the string argument of the node at P
281
282   function Get_Next
283     (Program : Program_Data;
284      IP      : Pointer) return Pointer;
285   --  Dig the next instruction pointer out of a node
286
287   procedure Optimize (Self : in out Pattern_Matcher);
288   --  Optimize a Pattern_Matcher by noting certain special cases
289
290   function Read_Natural
291     (Program : Program_Data;
292      IP      : Pointer) return Natural;
293   --  Return the 2-byte natural coded at position IP
294
295   --  All of the subprograms above are tiny and should be inlined
296
297   pragma Inline ("=");
298   pragma Inline (Is_Alnum);
299   pragma Inline (Is_White_Space);
300   pragma Inline (Get_Next);
301   pragma Inline (Operand);
302   pragma Inline (Read_Natural);
303   pragma Inline (String_Length);
304   pragma Inline (String_Operand);
305
306   type Expression_Flags is record
307      Has_Width,            -- Known never to match null string
308      Simple,               -- Simple enough to be STAR/PLUS operand
309      SP_Start  : Boolean;  -- Starts with * or +
310   end record;
311
312   Worst_Expression : constant Expression_Flags := (others => False);
313   --  Worst case
314
315   procedure Dump_Until
316     (Program  : Program_Data;
317      Index    : in out Pointer;
318      Till     : Pointer;
319      Indent   : Natural;
320      Do_Print : Boolean := True);
321   --  Dump the program until the node Till (not included) is met. Every line
322   --  is indented with Index spaces at the beginning Dumps till the end if
323   --  Till is 0.
324
325   procedure Dump_Operation
326      (Program      : Program_Data;
327       Index        : Pointer;
328       Indent       : Natural);
329   --  Same as above, but only dumps a single operation, and compute its
330   --  indentation from the program.
331
332   ---------
333   -- "=" --
334   ---------
335
336   function "=" (Left : Character; Right : Opcode) return Boolean is
337   begin
338      return Character'Pos (Left) = Opcode'Pos (Right);
339   end "=";
340
341   --------------------
342   -- Bitmap_Operand --
343   --------------------
344
345   procedure Bitmap_Operand
346     (Program : Program_Data;
347      P       : Pointer;
348      Op      : out Character_Class)
349   is
350      function Convert is new Ada.Unchecked_Conversion
351        (Program_Data, Character_Class);
352
353   begin
354      Op (0 .. 31) := Convert (Program (P + Next_Pointer_Bytes .. P + 34));
355   end Bitmap_Operand;
356
357   -------------
358   -- Compile --
359   -------------
360
361   procedure Compile
362     (Matcher         : out Pattern_Matcher;
363      Expression      : String;
364      Final_Code_Size : out Program_Size;
365      Flags           : Regexp_Flags := No_Flags)
366   is
367      --  We can't allocate space until we know how big the compiled form
368      --  will be, but we can't compile it (and thus know how big it is)
369      --  until we've got a place to put the code. So we cheat: we compile
370      --  it twice, once with code generation turned off and size counting
371      --  turned on, and once "for real".
372
373      --  This also means that we don't allocate space until we are sure
374      --  that the thing really will compile successfully, and we never
375      --  have to move the code and thus invalidate pointers into it.
376
377      --  Beware that the optimization-preparation code in here knows
378      --  about some of the structure of the compiled regexp.
379
380      PM        : Pattern_Matcher renames Matcher;
381      Program   : Program_Data renames PM.Program;
382
383      Emit_Ptr  : Pointer := Program_First;
384
385      Parse_Pos : Natural := Expression'First; -- Input-scan pointer
386      Parse_End : constant Natural := Expression'Last;
387
388      ----------------------------
389      -- Subprograms for Create --
390      ----------------------------
391
392      procedure Emit (B : Character);
393      --  Output the Character B to the Program. If code-generation is
394      --  disabled, simply increments the program counter.
395
396      function  Emit_Node (Op : Opcode) return Pointer;
397      --  If code-generation is enabled, Emit_Node outputs the
398      --  opcode Op and reserves space for a pointer to the next node.
399      --  Return value is the location of new opcode, i.e. old Emit_Ptr.
400
401      procedure Emit_Natural (IP : Pointer; N : Natural);
402      --  Split N on two characters at position IP
403
404      procedure Emit_Class (Bitmap : Character_Class);
405      --  Emits a character class
406
407      procedure Case_Emit (C : Character);
408      --  Emit C, after converting is to lower-case if the regular
409      --  expression is case insensitive.
410
411      procedure Parse
412        (Parenthesized : Boolean;
413         Flags         : out Expression_Flags;
414         IP            : out Pointer);
415      --  Parse regular expression, i.e. main body or parenthesized thing
416      --  Caller must absorb opening parenthesis.
417
418      procedure Parse_Branch
419        (Flags         : out Expression_Flags;
420         First         : Boolean;
421         IP            : out Pointer);
422      --  Implements the concatenation operator and handles '|'
423      --  First should be true if this is the first item of the alternative.
424
425      procedure Parse_Piece
426        (Expr_Flags : out Expression_Flags;
427         IP         : out Pointer);
428      --  Parse something followed by possible [*+?]
429
430      procedure Parse_Atom
431        (Expr_Flags : out Expression_Flags;
432         IP         : out Pointer);
433      --  Parse_Atom is the lowest level parse procedure.
434      --
435      --  Optimization: Gobbles an entire sequence of ordinary characters so
436      --  that it can turn them into a single node, which is smaller to store
437      --  and faster to run. Backslashed characters are exceptions, each
438      --  becoming a separate node; the code is simpler that way and it's
439      --  not worth fixing.
440
441      procedure Insert_Operator
442        (Op       : Opcode;
443         Operand  : Pointer;
444         Greedy   : Boolean := True);
445      --  Insert_Operator inserts an operator in front of an already-emitted
446      --  operand and relocates the operand. This applies to PLUS and STAR.
447      --  If Minmod is True, then the operator is non-greedy.
448
449      function Insert_Operator_Before
450        (Op      : Opcode;
451         Operand : Pointer;
452         Greedy  : Boolean;
453         Opsize  : Pointer) return Pointer;
454      --  Insert an operator before Operand (and move the latter forward in the
455      --  program). Opsize is the size needed to represent the operator. This
456      --  returns the position at which the operator was inserted, and moves
457      --  Emit_Ptr after the new position of the operand.
458
459      procedure Insert_Curly_Operator
460        (Op      : Opcode;
461         Min     : Natural;
462         Max     : Natural;
463         Operand : Pointer;
464         Greedy  : Boolean := True);
465      --  Insert an operator for CURLY ({Min}, {Min,} or {Min,Max}).
466      --  If Minmod is True, then the operator is non-greedy.
467
468      procedure Link_Tail (P, Val : Pointer);
469      --  Link_Tail sets the next-pointer at the end of a node chain
470
471      procedure Link_Operand_Tail (P, Val : Pointer);
472      --  Link_Tail on operand of first argument; noop if operand-less
473
474      procedure Fail (M : String);
475      pragma No_Return (Fail);
476      --  Fail with a diagnostic message, if possible
477
478      function Is_Curly_Operator (IP : Natural) return Boolean;
479      --  Return True if IP is looking at a '{' that is the beginning
480      --  of a curly operator, i.e. it matches {\d+,?\d*}
481
482      function Is_Mult (IP : Natural) return Boolean;
483      --  Return True if C is a regexp multiplier: '+', '*' or '?'
484
485      procedure Get_Curly_Arguments
486        (IP     : Natural;
487         Min    : out Natural;
488         Max    : out Natural;
489         Greedy : out Boolean);
490      --  Parse the argument list for a curly operator.
491      --  It is assumed that IP is indeed pointing at a valid operator.
492      --  So what is IP and how come IP is not referenced in the body ???
493
494      procedure Parse_Character_Class (IP : out Pointer);
495      --  Parse a character class.
496      --  The calling subprogram should consume the opening '[' before.
497
498      procedure Parse_Literal
499        (Expr_Flags : out Expression_Flags;
500         IP         : out Pointer);
501      --  Parse_Literal encodes a string of characters to be matched exactly
502
503      function Parse_Posix_Character_Class return Std_Class;
504      --  Parse a posix character class, like [:alpha:] or [:^alpha:].
505      --  The caller is supposed to absorb the opening [.
506
507      pragma Inline (Is_Mult);
508      pragma Inline (Emit_Natural);
509      pragma Inline (Parse_Character_Class); --  since used only once
510
511      ---------------
512      -- Case_Emit --
513      ---------------
514
515      procedure Case_Emit (C : Character) is
516      begin
517         if (Flags and Case_Insensitive) /= 0 then
518            Emit (To_Lower (C));
519
520         else
521            --  Dump current character
522
523            Emit (C);
524         end if;
525      end Case_Emit;
526
527      ----------
528      -- Emit --
529      ----------
530
531      procedure Emit (B : Character) is
532      begin
533         if Emit_Ptr <= PM.Size then
534            Program (Emit_Ptr) := B;
535         end if;
536
537         Emit_Ptr := Emit_Ptr + 1;
538      end Emit;
539
540      ----------------
541      -- Emit_Class --
542      ----------------
543
544      procedure Emit_Class (Bitmap : Character_Class) is
545         subtype Program31 is Program_Data (0 .. 31);
546
547         function Convert is new Ada.Unchecked_Conversion
548           (Character_Class, Program31);
549
550      begin
551         --  What is the mysterious constant 31 here??? Can't it be expressed
552         --  symbolically (size of integer - 1 or some such???). In any case
553         --  it should be declared as a constant (and referenced presumably
554         --  as this constant + 1 below.
555
556         if Emit_Ptr + 31 <= PM.Size then
557            Program (Emit_Ptr .. Emit_Ptr + 31) := Convert (Bitmap);
558         end if;
559
560         Emit_Ptr := Emit_Ptr + 32;
561      end Emit_Class;
562
563      ------------------
564      -- Emit_Natural --
565      ------------------
566
567      procedure Emit_Natural (IP : Pointer; N : Natural) is
568      begin
569         if IP + 1 <= PM.Size then
570            Program (IP + 1) := Character'Val (N / 256);
571            Program (IP) := Character'Val (N mod 256);
572         end if;
573      end Emit_Natural;
574
575      ---------------
576      -- Emit_Node --
577      ---------------
578
579      function Emit_Node (Op : Opcode) return Pointer is
580         Result : constant Pointer := Emit_Ptr;
581
582      begin
583         if Emit_Ptr + 2 <= PM.Size then
584            Program (Emit_Ptr) := Character'Val (Opcode'Pos (Op));
585            Program (Emit_Ptr + 1) := ASCII.NUL;
586            Program (Emit_Ptr + 2) := ASCII.NUL;
587         end if;
588
589         Emit_Ptr := Emit_Ptr + Next_Pointer_Bytes;
590         return Result;
591      end Emit_Node;
592
593      ----------
594      -- Fail --
595      ----------
596
597      procedure Fail (M : String) is
598      begin
599         raise Expression_Error with M;
600      end Fail;
601
602      -------------------------
603      -- Get_Curly_Arguments --
604      -------------------------
605
606      procedure Get_Curly_Arguments
607        (IP     : Natural;
608         Min    : out Natural;
609         Max    : out Natural;
610         Greedy : out Boolean)
611      is
612         pragma Unreferenced (IP);
613
614         Save_Pos : Natural := Parse_Pos + 1;
615
616      begin
617         Min := 0;
618         Max := Max_Curly_Repeat;
619
620         while Expression (Parse_Pos) /= '}'
621           and then Expression (Parse_Pos) /= ','
622         loop
623            Parse_Pos := Parse_Pos + 1;
624         end loop;
625
626         Min := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
627
628         if Expression (Parse_Pos) = ',' then
629            Save_Pos := Parse_Pos + 1;
630            while Expression (Parse_Pos) /= '}' loop
631               Parse_Pos := Parse_Pos + 1;
632            end loop;
633
634            if Save_Pos /= Parse_Pos then
635               Max := Natural'Value (Expression (Save_Pos .. Parse_Pos - 1));
636            end if;
637
638         else
639            Max := Min;
640         end if;
641
642         if Parse_Pos < Expression'Last
643           and then Expression (Parse_Pos + 1) = '?'
644         then
645            Greedy := False;
646            Parse_Pos := Parse_Pos + 1;
647
648         else
649            Greedy := True;
650         end if;
651      end Get_Curly_Arguments;
652
653      ---------------------------
654      -- Insert_Curly_Operator --
655      ---------------------------
656
657      procedure Insert_Curly_Operator
658        (Op      : Opcode;
659         Min     : Natural;
660         Max     : Natural;
661         Operand : Pointer;
662         Greedy  : Boolean := True)
663      is
664         Old    : Pointer;
665      begin
666         Old := Insert_Operator_Before (Op, Operand, Greedy, Opsize => 7);
667         Emit_Natural (Old + Next_Pointer_Bytes, Min);
668         Emit_Natural (Old + Next_Pointer_Bytes + 2, Max);
669      end Insert_Curly_Operator;
670
671      ----------------------------
672      -- Insert_Operator_Before --
673      ----------------------------
674
675      function Insert_Operator_Before
676        (Op      : Opcode;
677         Operand : Pointer;
678         Greedy  : Boolean;
679         Opsize  : Pointer) return Pointer
680      is
681         Dest : constant Pointer := Emit_Ptr;
682         Old  : Pointer;
683         Size : Pointer := Opsize;
684
685      begin
686         --  If not greedy, we have to emit another opcode first
687
688         if not Greedy then
689            Size := Size + Next_Pointer_Bytes;
690         end if;
691
692         --  Move the operand in the byte-compilation, so that we can insert
693         --  the operator before it.
694
695         if Emit_Ptr + Size <= PM.Size then
696            Program (Operand + Size .. Emit_Ptr + Size) :=
697              Program (Operand .. Emit_Ptr);
698         end if;
699
700         --  Insert the operator at the position previously occupied by the
701         --  operand.
702
703         Emit_Ptr := Operand;
704
705         if not Greedy then
706            Old := Emit_Node (MINMOD);
707            Link_Tail (Old, Old + Next_Pointer_Bytes);
708         end if;
709
710         Old := Emit_Node (Op);
711         Emit_Ptr := Dest + Size;
712         return Old;
713      end Insert_Operator_Before;
714
715      ---------------------
716      -- Insert_Operator --
717      ---------------------
718
719      procedure Insert_Operator
720        (Op      : Opcode;
721         Operand : Pointer;
722         Greedy  : Boolean := True)
723      is
724         Discard : Pointer;
725         pragma Warnings (Off, Discard);
726      begin
727         Discard := Insert_Operator_Before
728            (Op, Operand, Greedy, Opsize => Next_Pointer_Bytes);
729      end Insert_Operator;
730
731      -----------------------
732      -- Is_Curly_Operator --
733      -----------------------
734
735      function Is_Curly_Operator (IP : Natural) return Boolean is
736         Scan : Natural := IP;
737
738      begin
739         if Expression (Scan) /= '{'
740           or else Scan + 2 > Expression'Last
741           or else not Is_Digit (Expression (Scan + 1))
742         then
743            return False;
744         end if;
745
746         Scan := Scan + 1;
747
748         --  The first digit
749
750         loop
751            Scan := Scan + 1;
752
753            if Scan > Expression'Last then
754               return False;
755            end if;
756
757            exit when not Is_Digit (Expression (Scan));
758         end loop;
759
760         if Expression (Scan) = ',' then
761            loop
762               Scan := Scan + 1;
763
764               if Scan > Expression'Last then
765                  return False;
766               end if;
767
768               exit when not Is_Digit (Expression (Scan));
769            end loop;
770         end if;
771
772         return Expression (Scan) = '}';
773      end Is_Curly_Operator;
774
775      -------------
776      -- Is_Mult --
777      -------------
778
779      function Is_Mult (IP : Natural) return Boolean is
780         C : constant Character := Expression (IP);
781
782      begin
783         return     C = '*'
784           or else  C = '+'
785           or else  C = '?'
786           or else (C = '{' and then Is_Curly_Operator (IP));
787      end Is_Mult;
788
789      -----------------------
790      -- Link_Operand_Tail --
791      -----------------------
792
793      procedure Link_Operand_Tail (P, Val : Pointer) is
794      begin
795         if P <= PM.Size and then Program (P) = BRANCH then
796            Link_Tail (Operand (P), Val);
797         end if;
798      end Link_Operand_Tail;
799
800      ---------------
801      -- Link_Tail --
802      ---------------
803
804      procedure Link_Tail (P, Val : Pointer) is
805         Scan   : Pointer;
806         Temp   : Pointer;
807         Offset : Pointer;
808
809      begin
810         --  Find last node (the size of the pattern matcher might be too
811         --  small, so don't try to read past its end).
812
813         Scan := P;
814         while Scan + Next_Pointer_Bytes <= PM.Size loop
815            Temp := Get_Next (Program, Scan);
816            exit when Temp = Scan;
817            Scan := Temp;
818         end loop;
819
820         Offset := Val - Scan;
821
822         Emit_Natural (Scan + 1, Natural (Offset));
823      end Link_Tail;
824
825      -----------
826      -- Parse --
827      -----------
828
829      --  Combining parenthesis handling with the base level of regular
830      --  expression is a trifle forced, but the need to tie the tails of the
831      --  the branches to what follows makes it hard to avoid.
832
833      procedure Parse
834         (Parenthesized  : Boolean;
835          Flags          : out Expression_Flags;
836          IP             : out Pointer)
837      is
838         E           : String renames Expression;
839         Br, Br2     : Pointer;
840         Ender       : Pointer;
841         Par_No      : Natural;
842         New_Flags   : Expression_Flags;
843         Have_Branch : Boolean := False;
844
845      begin
846         Flags := (Has_Width => True, others => False);  -- Tentatively
847
848         --  Make an OPEN node, if parenthesized
849
850         if Parenthesized then
851            if Matcher.Paren_Count > Max_Paren_Count then
852               Fail ("too many ()");
853            end if;
854
855            Par_No := Matcher.Paren_Count + 1;
856            Matcher.Paren_Count := Matcher.Paren_Count + 1;
857            IP := Emit_Node (OPEN);
858            Emit (Character'Val (Par_No));
859
860         else
861            IP := 0;
862            Par_No := 0;
863         end if;
864
865         --  Pick up the branches, linking them together
866
867         Parse_Branch (New_Flags, True, Br);
868
869         if Br = 0 then
870            IP := 0;
871            return;
872         end if;
873
874         if Parse_Pos <= Parse_End
875           and then E (Parse_Pos) = '|'
876         then
877            Insert_Operator (BRANCH, Br);
878            Have_Branch := True;
879         end if;
880
881         if IP /= 0 then
882            Link_Tail (IP, Br);   -- OPEN -> first
883         else
884            IP := Br;
885         end if;
886
887         if not New_Flags.Has_Width then
888            Flags.Has_Width := False;
889         end if;
890
891         Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
892
893         while Parse_Pos <= Parse_End
894           and then (E (Parse_Pos) = '|')
895         loop
896            Parse_Pos := Parse_Pos + 1;
897            Parse_Branch (New_Flags, False, Br);
898
899            if Br = 0 then
900               IP := 0;
901               return;
902            end if;
903
904            Link_Tail (IP, Br);   -- BRANCH -> BRANCH
905
906            if not New_Flags.Has_Width then
907               Flags.Has_Width := False;
908            end if;
909
910            Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
911         end loop;
912
913         --  Make a closing node, and hook it on the end
914
915         if Parenthesized then
916            Ender := Emit_Node (CLOSE);
917            Emit (Character'Val (Par_No));
918         else
919            Ender := Emit_Node (EOP);
920         end if;
921
922         Link_Tail (IP, Ender);
923
924         if Have_Branch and then Emit_Ptr <= PM.Size + 1 then
925
926            --  Hook the tails of the branches to the closing node
927
928            Br := IP;
929            loop
930               Link_Operand_Tail (Br, Ender);
931               Br2 := Get_Next (Program, Br);
932               exit when Br2 = Br;
933               Br := Br2;
934            end loop;
935         end if;
936
937         --  Check for proper termination
938
939         if Parenthesized then
940            if Parse_Pos > Parse_End or else E (Parse_Pos) /= ')' then
941               Fail ("unmatched ()");
942            end if;
943
944            Parse_Pos := Parse_Pos + 1;
945
946         elsif Parse_Pos <= Parse_End then
947            if E (Parse_Pos) = ')'  then
948               Fail ("unmatched ()");
949            else
950               Fail ("junk on end");         -- "Can't happen"
951            end if;
952         end if;
953      end Parse;
954
955      ----------------
956      -- Parse_Atom --
957      ----------------
958
959      procedure Parse_Atom
960        (Expr_Flags : out Expression_Flags;
961         IP         : out Pointer)
962      is
963         C : Character;
964
965      begin
966         --  Tentatively set worst expression case
967
968         Expr_Flags := Worst_Expression;
969
970         C := Expression (Parse_Pos);
971         Parse_Pos := Parse_Pos + 1;
972
973         case (C) is
974            when '^' =>
975               IP :=
976                 Emit_Node
977                   (if (Flags and Multiple_Lines) /= 0 then MBOL
978                    elsif (Flags and Single_Line) /= 0 then SBOL
979                    else BOL);
980
981            when '$' =>
982               IP :=
983                 Emit_Node
984                   (if (Flags and Multiple_Lines) /= 0 then MEOL
985                    elsif (Flags and Single_Line) /= 0 then SEOL
986                    else EOL);
987
988            when '.' =>
989               IP :=
990                 Emit_Node
991                   (if (Flags and Single_Line) /= 0 then SANY else ANY);
992
993               Expr_Flags.Has_Width := True;
994               Expr_Flags.Simple := True;
995
996            when '[' =>
997               Parse_Character_Class (IP);
998               Expr_Flags.Has_Width := True;
999               Expr_Flags.Simple := True;
1000
1001            when '(' =>
1002               declare
1003                  New_Flags : Expression_Flags;
1004
1005               begin
1006                  Parse (True, New_Flags, IP);
1007
1008                  if IP = 0 then
1009                     return;
1010                  end if;
1011
1012                  Expr_Flags.Has_Width :=
1013                    Expr_Flags.Has_Width or else New_Flags.Has_Width;
1014                  Expr_Flags.SP_Start :=
1015                    Expr_Flags.SP_Start or else New_Flags.SP_Start;
1016               end;
1017
1018            when '|' | ASCII.LF | ')' =>
1019               Fail ("internal urp");  --  Supposed to be caught earlier
1020
1021            when '?' | '+' | '*' =>
1022               Fail (C & " follows nothing");
1023
1024            when '{' =>
1025               if Is_Curly_Operator (Parse_Pos - 1) then
1026                  Fail (C & " follows nothing");
1027               else
1028                  Parse_Literal (Expr_Flags, IP);
1029               end if;
1030
1031            when '\' =>
1032               if Parse_Pos > Parse_End then
1033                  Fail ("trailing \");
1034               end if;
1035
1036               Parse_Pos := Parse_Pos + 1;
1037
1038               case Expression (Parse_Pos - 1) is
1039                  when 'b'        =>
1040                     IP := Emit_Node (BOUND);
1041
1042                  when 'B'        =>
1043                     IP := Emit_Node (NBOUND);
1044
1045                  when 's'        =>
1046                     IP := Emit_Node (SPACE);
1047                     Expr_Flags.Simple := True;
1048                     Expr_Flags.Has_Width := True;
1049
1050                  when 'S'        =>
1051                     IP := Emit_Node (NSPACE);
1052                     Expr_Flags.Simple := True;
1053                     Expr_Flags.Has_Width := True;
1054
1055                  when 'd'        =>
1056                     IP := Emit_Node (DIGIT);
1057                     Expr_Flags.Simple := True;
1058                     Expr_Flags.Has_Width := True;
1059
1060                  when 'D'        =>
1061                     IP := Emit_Node (NDIGIT);
1062                     Expr_Flags.Simple := True;
1063                     Expr_Flags.Has_Width := True;
1064
1065                  when 'w'        =>
1066                     IP := Emit_Node (ALNUM);
1067                     Expr_Flags.Simple := True;
1068                     Expr_Flags.Has_Width := True;
1069
1070                  when 'W'        =>
1071                     IP := Emit_Node (NALNUM);
1072                     Expr_Flags.Simple := True;
1073                     Expr_Flags.Has_Width := True;
1074
1075                  when 'A'        =>
1076                     IP := Emit_Node (SBOL);
1077
1078                  when 'G'        =>
1079                     IP := Emit_Node (SEOL);
1080
1081                  when '0' .. '9' =>
1082                     IP := Emit_Node (REFF);
1083
1084                     declare
1085                        Save : constant Natural := Parse_Pos - 1;
1086
1087                     begin
1088                        while Parse_Pos <= Expression'Last
1089                          and then Is_Digit (Expression (Parse_Pos))
1090                        loop
1091                           Parse_Pos := Parse_Pos + 1;
1092                        end loop;
1093
1094                        Emit (Character'Val (Natural'Value
1095                               (Expression (Save .. Parse_Pos - 1))));
1096                     end;
1097
1098                  when others =>
1099                     Parse_Pos := Parse_Pos - 1;
1100                     Parse_Literal (Expr_Flags, IP);
1101               end case;
1102
1103            when others =>
1104               Parse_Literal (Expr_Flags, IP);
1105         end case;
1106      end Parse_Atom;
1107
1108      ------------------
1109      -- Parse_Branch --
1110      ------------------
1111
1112      procedure Parse_Branch
1113        (Flags : out Expression_Flags;
1114         First : Boolean;
1115         IP    : out Pointer)
1116      is
1117         E         : String renames Expression;
1118         Chain     : Pointer;
1119         Last      : Pointer;
1120         New_Flags : Expression_Flags;
1121
1122         Discard : Pointer;
1123         pragma Warnings (Off, Discard);
1124
1125      begin
1126         Flags := Worst_Expression;    -- Tentatively
1127         IP := (if First then Emit_Ptr else Emit_Node (BRANCH));
1128
1129         Chain := 0;
1130         while Parse_Pos <= Parse_End
1131           and then E (Parse_Pos) /= ')'
1132           and then E (Parse_Pos) /= ASCII.LF
1133           and then E (Parse_Pos) /= '|'
1134         loop
1135            Parse_Piece (New_Flags, Last);
1136
1137            if Last = 0 then
1138               IP := 0;
1139               return;
1140            end if;
1141
1142            Flags.Has_Width := Flags.Has_Width or else New_Flags.Has_Width;
1143
1144            if Chain = 0 then            -- First piece
1145               Flags.SP_Start := Flags.SP_Start or else New_Flags.SP_Start;
1146            else
1147               Link_Tail (Chain, Last);
1148            end if;
1149
1150            Chain := Last;
1151         end loop;
1152
1153         --  Case where loop ran zero CURLY
1154
1155         if Chain = 0 then
1156            Discard := Emit_Node (NOTHING);
1157         end if;
1158      end Parse_Branch;
1159
1160      ---------------------------
1161      -- Parse_Character_Class --
1162      ---------------------------
1163
1164      procedure Parse_Character_Class (IP : out Pointer) is
1165         Bitmap      : Character_Class;
1166         Invert      : Boolean := False;
1167         In_Range    : Boolean := False;
1168         Named_Class : Std_Class := ANYOF_NONE;
1169         Value       : Character;
1170         Last_Value  : Character := ASCII.NUL;
1171
1172      begin
1173         Reset_Class (Bitmap);
1174
1175         --  Do we have an invert character class ?
1176
1177         if Parse_Pos <= Parse_End
1178           and then Expression (Parse_Pos) = '^'
1179         then
1180            Invert := True;
1181            Parse_Pos := Parse_Pos + 1;
1182         end if;
1183
1184         --  First character can be ] or - without closing the class
1185
1186         if Parse_Pos <= Parse_End
1187           and then (Expression (Parse_Pos) = ']'
1188                      or else Expression (Parse_Pos) = '-')
1189         then
1190            Set_In_Class (Bitmap, Expression (Parse_Pos));
1191            Parse_Pos := Parse_Pos + 1;
1192         end if;
1193
1194         --  While we don't have the end of the class
1195
1196         while Parse_Pos <= Parse_End
1197           and then Expression (Parse_Pos) /= ']'
1198         loop
1199            Named_Class := ANYOF_NONE;
1200            Value := Expression (Parse_Pos);
1201            Parse_Pos := Parse_Pos + 1;
1202
1203            --  Do we have a Posix character class
1204            if Value = '[' then
1205               Named_Class := Parse_Posix_Character_Class;
1206
1207            elsif Value = '\' then
1208               if Parse_Pos = Parse_End then
1209                  Fail ("Trailing \");
1210               end if;
1211               Value := Expression (Parse_Pos);
1212               Parse_Pos := Parse_Pos + 1;
1213
1214               case Value is
1215                  when 'w' => Named_Class := ANYOF_ALNUM;
1216                  when 'W' => Named_Class := ANYOF_NALNUM;
1217                  when 's' => Named_Class := ANYOF_SPACE;
1218                  when 'S' => Named_Class := ANYOF_NSPACE;
1219                  when 'd' => Named_Class := ANYOF_DIGIT;
1220                  when 'D' => Named_Class := ANYOF_NDIGIT;
1221                  when 'n' => Value := ASCII.LF;
1222                  when 'r' => Value := ASCII.CR;
1223                  when 't' => Value := ASCII.HT;
1224                  when 'f' => Value := ASCII.FF;
1225                  when 'e' => Value := ASCII.ESC;
1226                  when 'a' => Value := ASCII.BEL;
1227
1228                  --  when 'x'  => ??? hexadecimal value
1229                  --  when 'c'  => ??? control character
1230                  --  when '0'..'9' => ??? octal character
1231
1232                  when others => null;
1233               end case;
1234            end if;
1235
1236            --  Do we have a character class?
1237
1238            if Named_Class /= ANYOF_NONE then
1239
1240               --  A range like 'a-\d' or 'a-[:digit:] is not a range
1241
1242               if In_Range then
1243                  Set_In_Class (Bitmap, Last_Value);
1244                  Set_In_Class (Bitmap, '-');
1245                  In_Range := False;
1246               end if;
1247
1248               --  Expand the range
1249
1250               case Named_Class is
1251                  when ANYOF_NONE => null;
1252
1253                  when ANYOF_ALNUM | ANYOF_ALNUMC =>
1254                     for Value in Class_Byte'Range loop
1255                        if Is_Alnum (Character'Val (Value)) then
1256                           Set_In_Class (Bitmap, Character'Val (Value));
1257                        end if;
1258                     end loop;
1259
1260                  when ANYOF_NALNUM | ANYOF_NALNUMC =>
1261                     for Value in Class_Byte'Range loop
1262                        if not Is_Alnum (Character'Val (Value)) then
1263                           Set_In_Class (Bitmap, Character'Val (Value));
1264                        end if;
1265                     end loop;
1266
1267                  when ANYOF_SPACE =>
1268                     for Value in Class_Byte'Range loop
1269                        if Is_White_Space (Character'Val (Value)) then
1270                           Set_In_Class (Bitmap, Character'Val (Value));
1271                        end if;
1272                     end loop;
1273
1274                  when ANYOF_NSPACE =>
1275                     for Value in Class_Byte'Range loop
1276                        if not Is_White_Space (Character'Val (Value)) then
1277                           Set_In_Class (Bitmap, Character'Val (Value));
1278                        end if;
1279                     end loop;
1280
1281                  when ANYOF_DIGIT =>
1282                     for Value in Class_Byte'Range loop
1283                        if Is_Digit (Character'Val (Value)) then
1284                           Set_In_Class (Bitmap, Character'Val (Value));
1285                        end if;
1286                     end loop;
1287
1288                  when ANYOF_NDIGIT =>
1289                     for Value in Class_Byte'Range loop
1290                        if not Is_Digit (Character'Val (Value)) then
1291                           Set_In_Class (Bitmap, Character'Val (Value));
1292                        end if;
1293                     end loop;
1294
1295                  when ANYOF_ALPHA =>
1296                     for Value in Class_Byte'Range loop
1297                        if Is_Letter (Character'Val (Value)) then
1298                           Set_In_Class (Bitmap, Character'Val (Value));
1299                        end if;
1300                     end loop;
1301
1302                  when ANYOF_NALPHA =>
1303                     for Value in Class_Byte'Range loop
1304                        if not Is_Letter (Character'Val (Value)) then
1305                           Set_In_Class (Bitmap, Character'Val (Value));
1306                        end if;
1307                     end loop;
1308
1309                  when ANYOF_ASCII =>
1310                     for Value in 0 .. 127 loop
1311                        Set_In_Class (Bitmap, Character'Val (Value));
1312                     end loop;
1313
1314                  when ANYOF_NASCII =>
1315                     for Value in 128 .. 255 loop
1316                        Set_In_Class (Bitmap, Character'Val (Value));
1317                     end loop;
1318
1319                  when ANYOF_CNTRL =>
1320                     for Value in Class_Byte'Range loop
1321                        if Is_Control (Character'Val (Value)) then
1322                           Set_In_Class (Bitmap, Character'Val (Value));
1323                        end if;
1324                     end loop;
1325
1326                  when ANYOF_NCNTRL =>
1327                     for Value in Class_Byte'Range loop
1328                        if not Is_Control (Character'Val (Value)) then
1329                           Set_In_Class (Bitmap, Character'Val (Value));
1330                        end if;
1331                     end loop;
1332
1333                  when ANYOF_GRAPH =>
1334                     for Value in Class_Byte'Range loop
1335                        if Is_Graphic (Character'Val (Value)) then
1336                           Set_In_Class (Bitmap, Character'Val (Value));
1337                        end if;
1338                     end loop;
1339
1340                  when ANYOF_NGRAPH =>
1341                     for Value in Class_Byte'Range loop
1342                        if not Is_Graphic (Character'Val (Value)) then
1343                           Set_In_Class (Bitmap, Character'Val (Value));
1344                        end if;
1345                     end loop;
1346
1347                  when ANYOF_LOWER =>
1348                     for Value in Class_Byte'Range loop
1349                        if Is_Lower (Character'Val (Value)) then
1350                           Set_In_Class (Bitmap, Character'Val (Value));
1351                        end if;
1352                     end loop;
1353
1354                  when ANYOF_NLOWER =>
1355                     for Value in Class_Byte'Range loop
1356                        if not Is_Lower (Character'Val (Value)) then
1357                           Set_In_Class (Bitmap, Character'Val (Value));
1358                        end if;
1359                     end loop;
1360
1361                  when ANYOF_PRINT =>
1362                     for Value in Class_Byte'Range loop
1363                        if Is_Printable (Character'Val (Value)) then
1364                           Set_In_Class (Bitmap, Character'Val (Value));
1365                        end if;
1366                     end loop;
1367
1368                  when ANYOF_NPRINT =>
1369                     for Value in Class_Byte'Range loop
1370                        if not Is_Printable (Character'Val (Value)) then
1371                           Set_In_Class (Bitmap, Character'Val (Value));
1372                        end if;
1373                     end loop;
1374
1375                  when ANYOF_PUNCT =>
1376                     for Value in Class_Byte'Range loop
1377                        if Is_Printable (Character'Val (Value))
1378                          and then not Is_White_Space (Character'Val (Value))
1379                          and then not Is_Alnum (Character'Val (Value))
1380                        then
1381                           Set_In_Class (Bitmap, Character'Val (Value));
1382                        end if;
1383                     end loop;
1384
1385                  when ANYOF_NPUNCT =>
1386                     for Value in Class_Byte'Range loop
1387                        if not Is_Printable (Character'Val (Value))
1388                          or else Is_White_Space (Character'Val (Value))
1389                          or else Is_Alnum (Character'Val (Value))
1390                        then
1391                           Set_In_Class (Bitmap, Character'Val (Value));
1392                        end if;
1393                     end loop;
1394
1395                  when ANYOF_UPPER =>
1396                     for Value in Class_Byte'Range loop
1397                        if Is_Upper (Character'Val (Value)) then
1398                           Set_In_Class (Bitmap, Character'Val (Value));
1399                        end if;
1400                     end loop;
1401
1402                  when ANYOF_NUPPER =>
1403                     for Value in Class_Byte'Range loop
1404                        if not Is_Upper (Character'Val (Value)) then
1405                           Set_In_Class (Bitmap, Character'Val (Value));
1406                        end if;
1407                     end loop;
1408
1409                  when ANYOF_XDIGIT =>
1410                     for Value in Class_Byte'Range loop
1411                        if Is_Hexadecimal_Digit (Character'Val (Value)) then
1412                           Set_In_Class (Bitmap, Character'Val (Value));
1413                        end if;
1414                     end loop;
1415
1416                  when ANYOF_NXDIGIT =>
1417                     for Value in Class_Byte'Range loop
1418                        if not Is_Hexadecimal_Digit
1419                          (Character'Val (Value))
1420                        then
1421                           Set_In_Class (Bitmap, Character'Val (Value));
1422                        end if;
1423                     end loop;
1424
1425               end case;
1426
1427            --  Not a character range
1428
1429            elsif not In_Range then
1430               Last_Value := Value;
1431
1432               if Parse_Pos > Expression'Last then
1433                  Fail ("Empty character class []");
1434               end if;
1435
1436               if Expression (Parse_Pos) = '-'
1437                 and then Parse_Pos < Parse_End
1438                 and then Expression (Parse_Pos + 1) /= ']'
1439               then
1440                  Parse_Pos := Parse_Pos + 1;
1441
1442                  --  Do we have a range like '\d-a' and '[:space:]-a'
1443                  --  which is not a real range
1444
1445                  if Named_Class /= ANYOF_NONE then
1446                     Set_In_Class (Bitmap, '-');
1447                  else
1448                     In_Range := True;
1449                  end if;
1450
1451               else
1452                  Set_In_Class (Bitmap, Value);
1453
1454               end if;
1455
1456            --  Else in a character range
1457
1458            else
1459               if Last_Value > Value then
1460                  Fail ("Invalid Range [" & Last_Value'Img
1461                        & "-" & Value'Img & "]");
1462               end if;
1463
1464               while Last_Value <= Value loop
1465                  Set_In_Class (Bitmap, Last_Value);
1466                  Last_Value := Character'Succ (Last_Value);
1467               end loop;
1468
1469               In_Range := False;
1470
1471            end if;
1472
1473         end loop;
1474
1475         --  Optimize case-insensitive ranges (put the upper case or lower
1476         --  case character into the bitmap)
1477
1478         if (Flags and Case_Insensitive) /= 0 then
1479            for C in Character'Range loop
1480               if Get_From_Class (Bitmap, C) then
1481                  Set_In_Class (Bitmap, To_Lower (C));
1482                  Set_In_Class (Bitmap, To_Upper (C));
1483               end if;
1484            end loop;
1485         end if;
1486
1487         --  Optimize inverted classes
1488
1489         if Invert then
1490            for J in Bitmap'Range loop
1491               Bitmap (J) := not Bitmap (J);
1492            end loop;
1493         end if;
1494
1495         Parse_Pos := Parse_Pos + 1;
1496
1497         --  Emit the class
1498
1499         IP := Emit_Node (ANYOF);
1500         Emit_Class (Bitmap);
1501      end Parse_Character_Class;
1502
1503      -------------------
1504      -- Parse_Literal --
1505      -------------------
1506
1507      --  This is a bit tricky due to quoted chars and due to
1508      --  the multiplier characters '*', '+', and '?' that
1509      --  take the SINGLE char previous as their operand.
1510
1511      --  On entry, the character at Parse_Pos - 1 is going to go
1512      --  into the string, no matter what it is. It could be
1513      --  following a \ if Parse_Atom was entered from the '\' case.
1514
1515      --  Basic idea is to pick up a good char in C and examine
1516      --  the next char. If Is_Mult (C) then twiddle, if it's a \
1517      --  then frozzle and if it's another magic char then push C and
1518      --  terminate the string. If none of the above, push C on the
1519      --  string and go around again.
1520
1521      --  Start_Pos is used to remember where "the current character"
1522      --  starts in the string, if due to an Is_Mult we need to back
1523      --  up and put the current char in a separate 1-character string.
1524      --  When Start_Pos is 0, C is the only char in the string;
1525      --  this is used in Is_Mult handling, and in setting the SIMPLE
1526      --  flag at the end.
1527
1528      procedure Parse_Literal
1529        (Expr_Flags : out Expression_Flags;
1530         IP         : out Pointer)
1531      is
1532         Start_Pos  : Natural := 0;
1533         C          : Character;
1534         Length_Ptr : Pointer;
1535
1536         Has_Special_Operator : Boolean := False;
1537
1538      begin
1539         Parse_Pos := Parse_Pos - 1;      --  Look at current character
1540
1541         IP :=
1542           Emit_Node
1543             (if (Flags and Case_Insensitive) /= 0 then EXACTF else EXACT);
1544
1545         Length_Ptr := Emit_Ptr;
1546         Emit_Ptr := String_Operand (IP);
1547
1548         Parse_Loop :
1549         loop
1550            C := Expression (Parse_Pos); --  Get current character
1551
1552            case C is
1553               when '.' | '[' | '(' | ')' | '|' | ASCII.LF | '$' | '^' =>
1554
1555                  if Start_Pos = 0 then
1556                     Start_Pos := Parse_Pos;
1557                     Emit (C);         --  First character is always emitted
1558                  else
1559                     exit Parse_Loop;  --  Else we are done
1560                  end if;
1561
1562               when '?' | '+' | '*' | '{' =>
1563
1564                  if Start_Pos = 0 then
1565                     Start_Pos := Parse_Pos;
1566                     Emit (C);         --  First character is always emitted
1567
1568                  --  Are we looking at an operator, or is this
1569                  --  simply a normal character ?
1570
1571                  elsif not Is_Mult (Parse_Pos) then
1572                     Start_Pos := Parse_Pos;
1573                     Case_Emit (C);
1574
1575                  else
1576                     --  We've got something like "abc?d".  Mark this as a
1577                     --  special case. What we want to emit is a first
1578                     --  constant string for "ab", then one for "c" that will
1579                     --  ultimately be transformed with a CURLY operator, A
1580                     --  special case has to be handled for "a?", since there
1581                     --  is no initial string to emit.
1582
1583                     Has_Special_Operator := True;
1584                     exit Parse_Loop;
1585                  end if;
1586
1587               when '\' =>
1588                  Start_Pos := Parse_Pos;
1589
1590                  if Parse_Pos = Parse_End then
1591                     Fail ("Trailing \");
1592
1593                  else
1594                     case Expression (Parse_Pos + 1) is
1595                        when 'b' | 'B' | 's' | 'S' | 'd' | 'D'
1596                          | 'w' | 'W' | '0' .. '9' | 'G' | 'A'
1597                          => exit Parse_Loop;
1598                        when 'n'         => Emit (ASCII.LF);
1599                        when 't'         => Emit (ASCII.HT);
1600                        when 'r'         => Emit (ASCII.CR);
1601                        when 'f'         => Emit (ASCII.FF);
1602                        when 'e'         => Emit (ASCII.ESC);
1603                        when 'a'         => Emit (ASCII.BEL);
1604                        when others      => Emit (Expression (Parse_Pos + 1));
1605                     end case;
1606
1607                     Parse_Pos := Parse_Pos + 1;
1608                  end if;
1609
1610               when others =>
1611                  Start_Pos := Parse_Pos;
1612                  Case_Emit (C);
1613            end case;
1614
1615            exit Parse_Loop when Emit_Ptr - Length_Ptr = 254;
1616
1617            Parse_Pos := Parse_Pos + 1;
1618
1619            exit Parse_Loop when Parse_Pos > Parse_End;
1620         end loop Parse_Loop;
1621
1622         --  Is the string followed by a '*+?{' operator ? If yes, and if there
1623         --  is an initial string to emit, do it now.
1624
1625         if Has_Special_Operator
1626           and then Emit_Ptr >= Length_Ptr + Next_Pointer_Bytes
1627         then
1628            Emit_Ptr := Emit_Ptr - 1;
1629            Parse_Pos := Start_Pos;
1630         end if;
1631
1632         if Length_Ptr <= PM.Size then
1633            Program (Length_Ptr) := Character'Val (Emit_Ptr - Length_Ptr - 2);
1634         end if;
1635
1636         Expr_Flags.Has_Width := True;
1637
1638         --  Slight optimization when there is a single character
1639
1640         if Emit_Ptr = Length_Ptr + 2 then
1641            Expr_Flags.Simple := True;
1642         end if;
1643      end Parse_Literal;
1644
1645      -----------------
1646      -- Parse_Piece --
1647      -----------------
1648
1649      --  Note that the branching code sequences used for '?' and the
1650      --  general cases of '*' and + are somewhat optimized: they use
1651      --  the same NOTHING node as both the endmarker for their branch
1652      --  list and the body of the last branch. It might seem that
1653      --  this node could be dispensed with entirely, but the endmarker
1654      --  role is not redundant.
1655
1656      procedure Parse_Piece
1657        (Expr_Flags : out Expression_Flags;
1658         IP         : out Pointer)
1659      is
1660         Op        : Character;
1661         New_Flags : Expression_Flags;
1662         Greedy    : Boolean := True;
1663
1664      begin
1665         Parse_Atom (New_Flags, IP);
1666
1667         if IP = 0 then
1668            return;
1669         end if;
1670
1671         if Parse_Pos > Parse_End
1672           or else not Is_Mult (Parse_Pos)
1673         then
1674            Expr_Flags := New_Flags;
1675            return;
1676         end if;
1677
1678         Op := Expression (Parse_Pos);
1679
1680         Expr_Flags :=
1681           (if Op /= '+'
1682            then (SP_Start  => True, others => False)
1683            else (Has_Width => True, others => False));
1684
1685         --  Detect non greedy operators in the easy cases
1686
1687         if Op /= '{'
1688           and then Parse_Pos + 1 <= Parse_End
1689           and then Expression (Parse_Pos + 1) = '?'
1690         then
1691            Greedy := False;
1692            Parse_Pos := Parse_Pos + 1;
1693         end if;
1694
1695         --  Generate the byte code
1696
1697         case Op is
1698            when '*' =>
1699
1700               if New_Flags.Simple then
1701                  Insert_Operator (STAR, IP, Greedy);
1702               else
1703                  Link_Tail (IP, Emit_Node (WHILEM));
1704                  Insert_Curly_Operator
1705                    (CURLYX, 0, Max_Curly_Repeat, IP, Greedy);
1706                  Link_Tail (IP, Emit_Node (NOTHING));
1707               end if;
1708
1709            when '+' =>
1710
1711               if New_Flags.Simple then
1712                  Insert_Operator (PLUS, IP, Greedy);
1713               else
1714                  Link_Tail (IP, Emit_Node (WHILEM));
1715                  Insert_Curly_Operator
1716                    (CURLYX, 1, Max_Curly_Repeat, IP, Greedy);
1717                  Link_Tail (IP, Emit_Node (NOTHING));
1718               end if;
1719
1720            when '?' =>
1721               if New_Flags.Simple then
1722                  Insert_Curly_Operator (CURLY, 0, 1, IP, Greedy);
1723               else
1724                  Link_Tail (IP, Emit_Node (WHILEM));
1725                  Insert_Curly_Operator (CURLYX, 0, 1, IP, Greedy);
1726                  Link_Tail (IP, Emit_Node (NOTHING));
1727               end if;
1728
1729            when '{' =>
1730               declare
1731                  Min, Max : Natural;
1732
1733               begin
1734                  Get_Curly_Arguments (Parse_Pos, Min, Max, Greedy);
1735
1736                  if New_Flags.Simple then
1737                     Insert_Curly_Operator (CURLY, Min, Max, IP, Greedy);
1738                  else
1739                     Link_Tail (IP, Emit_Node (WHILEM));
1740                     Insert_Curly_Operator (CURLYX, Min, Max, IP, Greedy);
1741                     Link_Tail (IP, Emit_Node (NOTHING));
1742                  end if;
1743               end;
1744
1745            when others =>
1746               null;
1747         end case;
1748
1749         Parse_Pos := Parse_Pos + 1;
1750
1751         if Parse_Pos <= Parse_End
1752           and then Is_Mult (Parse_Pos)
1753         then
1754            Fail ("nested *+{");
1755         end if;
1756      end Parse_Piece;
1757
1758      ---------------------------------
1759      -- Parse_Posix_Character_Class --
1760      ---------------------------------
1761
1762      function Parse_Posix_Character_Class return Std_Class is
1763         Invert : Boolean := False;
1764         Class  : Std_Class := ANYOF_NONE;
1765         E      : String renames Expression;
1766
1767         --  Class names. Note that code assumes that the length of all
1768         --  classes starting with the same letter have the same length.
1769
1770         Alnum   : constant String := "alnum:]";
1771         Alpha   : constant String := "alpha:]";
1772         Ascii_C : constant String := "ascii:]";
1773         Cntrl   : constant String := "cntrl:]";
1774         Digit   : constant String := "digit:]";
1775         Graph   : constant String := "graph:]";
1776         Lower   : constant String := "lower:]";
1777         Print   : constant String := "print:]";
1778         Punct   : constant String := "punct:]";
1779         Space   : constant String := "space:]";
1780         Upper   : constant String := "upper:]";
1781         Word    : constant String := "word:]";
1782         Xdigit  : constant String := "xdigit:]";
1783
1784      begin
1785         --  Case of character class specified
1786
1787         if Parse_Pos <= Parse_End
1788           and then Expression (Parse_Pos) = ':'
1789         then
1790            Parse_Pos := Parse_Pos + 1;
1791
1792            --  Do we have something like:  [[:^alpha:]]
1793
1794            if Parse_Pos <= Parse_End
1795              and then Expression (Parse_Pos) = '^'
1796            then
1797               Invert := True;
1798               Parse_Pos := Parse_Pos + 1;
1799            end if;
1800
1801            --  Check for class names based on first letter
1802
1803            case Expression (Parse_Pos) is
1804               when 'a' =>
1805
1806                  --  All 'a' classes have the same length (Alnum'Length)
1807
1808                  if Parse_Pos + Alnum'Length - 1 <= Parse_End then
1809                     if
1810                       E (Parse_Pos .. Parse_Pos + Alnum'Length - 1) = Alnum
1811                     then
1812                        Class :=
1813                          (if Invert then ANYOF_NALNUMC else ANYOF_ALNUMC);
1814                        Parse_Pos := Parse_Pos + Alnum'Length;
1815
1816                     elsif
1817                       E (Parse_Pos .. Parse_Pos + Alpha'Length - 1) = Alpha
1818                     then
1819                        Class :=
1820                          (if Invert then ANYOF_NALPHA else ANYOF_ALPHA);
1821                        Parse_Pos := Parse_Pos + Alpha'Length;
1822
1823                     elsif E (Parse_Pos .. Parse_Pos + Ascii_C'Length - 1) =
1824                                                                      Ascii_C
1825                     then
1826                        Class :=
1827                          (if Invert then ANYOF_NASCII else ANYOF_ASCII);
1828                        Parse_Pos := Parse_Pos + Ascii_C'Length;
1829                     else
1830                        Fail ("Invalid character class: " & E);
1831                     end if;
1832
1833                  else
1834                     Fail ("Invalid character class: " & E);
1835                  end if;
1836
1837               when 'c' =>
1838                  if Parse_Pos + Cntrl'Length - 1 <= Parse_End
1839                    and then
1840                      E (Parse_Pos .. Parse_Pos + Cntrl'Length - 1) = Cntrl
1841                  then
1842                     Class := (if Invert then ANYOF_NCNTRL else ANYOF_CNTRL);
1843                     Parse_Pos := Parse_Pos + Cntrl'Length;
1844                  else
1845                     Fail ("Invalid character class: " & E);
1846                  end if;
1847
1848               when 'd' =>
1849                  if Parse_Pos + Digit'Length - 1 <= Parse_End
1850                    and then
1851                      E (Parse_Pos .. Parse_Pos + Digit'Length - 1) = Digit
1852                  then
1853                     Class := (if Invert then ANYOF_NDIGIT else ANYOF_DIGIT);
1854                     Parse_Pos := Parse_Pos + Digit'Length;
1855                  end if;
1856
1857               when 'g' =>
1858                  if Parse_Pos + Graph'Length - 1 <= Parse_End
1859                    and then
1860                      E (Parse_Pos .. Parse_Pos + Graph'Length - 1) = Graph
1861                  then
1862                     Class := (if Invert then ANYOF_NGRAPH else ANYOF_GRAPH);
1863                     Parse_Pos := Parse_Pos + Graph'Length;
1864                  else
1865                     Fail ("Invalid character class: " & E);
1866                  end if;
1867
1868               when 'l' =>
1869                  if Parse_Pos + Lower'Length - 1 <= Parse_End
1870                    and then
1871                      E (Parse_Pos .. Parse_Pos + Lower'Length - 1) = Lower
1872                  then
1873                     Class := (if Invert then ANYOF_NLOWER else ANYOF_LOWER);
1874                     Parse_Pos := Parse_Pos + Lower'Length;
1875                  else
1876                     Fail ("Invalid character class: " & E);
1877                  end if;
1878
1879               when 'p' =>
1880
1881                  --  All 'p' classes have the same length
1882
1883                  if Parse_Pos + Print'Length - 1 <= Parse_End then
1884                     if
1885                       E (Parse_Pos .. Parse_Pos + Print'Length - 1) = Print
1886                     then
1887                        Class :=
1888                          (if Invert then ANYOF_NPRINT else ANYOF_PRINT);
1889                        Parse_Pos := Parse_Pos + Print'Length;
1890
1891                     elsif
1892                       E (Parse_Pos .. Parse_Pos + Punct'Length - 1) = Punct
1893                     then
1894                        Class :=
1895                          (if Invert then ANYOF_NPUNCT else ANYOF_PUNCT);
1896                        Parse_Pos := Parse_Pos + Punct'Length;
1897
1898                     else
1899                        Fail ("Invalid character class: " & E);
1900                     end if;
1901
1902                  else
1903                     Fail ("Invalid character class: " & E);
1904                  end if;
1905
1906               when 's' =>
1907                  if Parse_Pos + Space'Length - 1 <= Parse_End
1908                    and then
1909                      E (Parse_Pos .. Parse_Pos + Space'Length - 1) = Space
1910                  then
1911                     Class := (if Invert then ANYOF_NSPACE else ANYOF_SPACE);
1912                     Parse_Pos := Parse_Pos + Space'Length;
1913                  else
1914                     Fail ("Invalid character class: " & E);
1915                  end if;
1916
1917               when 'u' =>
1918                  if Parse_Pos + Upper'Length - 1 <= Parse_End
1919                    and then
1920                      E (Parse_Pos .. Parse_Pos + Upper'Length - 1) = Upper
1921                  then
1922                     Class := (if Invert then ANYOF_NUPPER else ANYOF_UPPER);
1923                     Parse_Pos := Parse_Pos + Upper'Length;
1924                  else
1925                     Fail ("Invalid character class: " & E);
1926                  end if;
1927
1928               when 'w' =>
1929                  if Parse_Pos + Word'Length - 1 <= Parse_End
1930                    and then
1931                      E (Parse_Pos .. Parse_Pos + Word'Length - 1) = Word
1932                  then
1933                     Class := (if Invert then ANYOF_NALNUM else ANYOF_ALNUM);
1934                     Parse_Pos := Parse_Pos + Word'Length;
1935                  else
1936                     Fail ("Invalid character class: " & E);
1937                  end if;
1938
1939               when 'x' =>
1940                  if Parse_Pos + Xdigit'Length - 1 <= Parse_End
1941                    and then
1942                      E (Parse_Pos .. Parse_Pos + Xdigit'Length - 1) = Xdigit
1943                  then
1944                     Class := (if Invert then ANYOF_NXDIGIT else ANYOF_XDIGIT);
1945                     Parse_Pos := Parse_Pos + Xdigit'Length;
1946
1947                  else
1948                     Fail ("Invalid character class: " & E);
1949                  end if;
1950
1951               when others =>
1952                  Fail ("Invalid character class: " & E);
1953            end case;
1954
1955         --  Character class not specified
1956
1957         else
1958            return ANYOF_NONE;
1959         end if;
1960
1961         return Class;
1962      end Parse_Posix_Character_Class;
1963
1964      --  Local Declarations
1965
1966      Result : Pointer;
1967
1968      Expr_Flags : Expression_Flags;
1969      pragma Unreferenced (Expr_Flags);
1970
1971   --  Start of processing for Compile
1972
1973   begin
1974      Parse (False, Expr_Flags, Result);
1975
1976      if Result = 0 then
1977         Fail ("Couldn't compile expression");
1978      end if;
1979
1980      Final_Code_Size := Emit_Ptr - 1;
1981
1982      --  Do we want to actually compile the expression, or simply get the
1983      --  code size ???
1984
1985      if Emit_Ptr <= PM.Size then
1986         Optimize (PM);
1987      end if;
1988
1989      PM.Flags := Flags;
1990   end Compile;
1991
1992   function Compile
1993     (Expression : String;
1994      Flags      : Regexp_Flags := No_Flags) return Pattern_Matcher
1995   is
1996      --  Assume the compiled regexp will fit in 1000 chars. If it does not we
1997      --  will have to compile a second time once the correct size is known. If
1998      --  it fits, we save a significant amount of time by avoiding the second
1999      --  compilation.
2000
2001      Dummy : Pattern_Matcher (1000);
2002      Size  : Program_Size;
2003
2004   begin
2005      Compile (Dummy, Expression, Size, Flags);
2006
2007      if Size <= Dummy.Size then
2008         return Pattern_Matcher'
2009           (Size             => Size,
2010            First            => Dummy.First,
2011            Anchored         => Dummy.Anchored,
2012            Must_Have        => Dummy.Must_Have,
2013            Must_Have_Length => Dummy.Must_Have_Length,
2014            Paren_Count      => Dummy.Paren_Count,
2015            Flags            => Dummy.Flags,
2016            Program          =>
2017              Dummy.Program
2018                (Dummy.Program'First .. Dummy.Program'First + Size - 1));
2019      else
2020         --  We have to recompile now that we know the size
2021         --  ??? Can we use Ada 2005's return construct ?
2022
2023         declare
2024            Result : Pattern_Matcher (Size);
2025         begin
2026            Compile (Result, Expression, Size, Flags);
2027            return Result;
2028         end;
2029      end if;
2030   end Compile;
2031
2032   procedure Compile
2033     (Matcher    : out Pattern_Matcher;
2034      Expression : String;
2035      Flags      : Regexp_Flags := No_Flags)
2036   is
2037      Size : Program_Size;
2038
2039   begin
2040      Compile (Matcher, Expression, Size, Flags);
2041
2042      if Size > Matcher.Size then
2043         raise Expression_Error with "Pattern_Matcher is too small";
2044      end if;
2045   end Compile;
2046
2047   --------------------
2048   -- Dump_Operation --
2049   --------------------
2050
2051   procedure Dump_Operation
2052      (Program : Program_Data;
2053       Index   : Pointer;
2054       Indent  : Natural)
2055   is
2056      Current : Pointer := Index;
2057   begin
2058      Dump_Until (Program, Current, Current + 1, Indent);
2059   end Dump_Operation;
2060
2061   ----------------
2062   -- Dump_Until --
2063   ----------------
2064
2065   procedure Dump_Until
2066      (Program  : Program_Data;
2067       Index    : in out Pointer;
2068       Till     : Pointer;
2069       Indent   : Natural;
2070       Do_Print : Boolean := True)
2071   is
2072      function Image (S : String) return String;
2073      --  Remove leading space
2074
2075      -----------
2076      -- Image --
2077      -----------
2078
2079      function Image (S : String) return String is
2080      begin
2081         if S (S'First) = ' ' then
2082            return S (S'First + 1 .. S'Last);
2083         else
2084            return S;
2085         end if;
2086      end Image;
2087
2088      --  Local variables
2089
2090      Op           : Opcode;
2091      Next         : Pointer;
2092      Length       : Pointer;
2093      Local_Indent : Natural := Indent;
2094
2095   --  Start of processing for Dump_Until
2096
2097   begin
2098      while Index < Till loop
2099         Op   := Opcode'Val (Character'Pos ((Program (Index))));
2100         Next := Get_Next (Program, Index);
2101
2102         if Do_Print then
2103            declare
2104               Point   : constant String := Pointer'Image (Index);
2105            begin
2106               Put ((1 .. 4 - Point'Length => ' ')
2107                    & Point & ":"
2108                    & (1 .. Local_Indent * 2 => ' ') & Opcode'Image (Op));
2109            end;
2110
2111            --  Print the parenthesis number
2112
2113            if Op = OPEN or else Op = CLOSE or else Op = REFF then
2114               Put (Image (Natural'Image
2115                            (Character'Pos
2116                               (Program (Index + Next_Pointer_Bytes)))));
2117            end if;
2118
2119            if Next = Index then
2120               Put (" (-)");
2121            else
2122               Put (" (" & Image (Pointer'Image (Next)) & ")");
2123            end if;
2124         end if;
2125
2126         case Op is
2127            when ANYOF =>
2128               declare
2129                  Bitmap       : Character_Class;
2130                  Last         : Character := ASCII.NUL;
2131                  Current      : Natural := 0;
2132                  Current_Char : Character;
2133
2134               begin
2135                  Bitmap_Operand (Program, Index, Bitmap);
2136
2137                  if Do_Print then
2138                     Put ("[");
2139
2140                     while Current <= 255 loop
2141                        Current_Char := Character'Val (Current);
2142
2143                        --  First item in a range
2144
2145                        if Get_From_Class (Bitmap, Current_Char) then
2146                           Last := Current_Char;
2147
2148                           --  Search for the last item in the range
2149
2150                           loop
2151                              Current := Current + 1;
2152                              exit when Current > 255;
2153                              Current_Char := Character'Val (Current);
2154                              exit when
2155                                not Get_From_Class (Bitmap, Current_Char);
2156                           end loop;
2157
2158                           if not Is_Graphic (Last) then
2159                              Put (Last'Img);
2160                           else
2161                              Put (Last);
2162                           end if;
2163
2164                           if Character'Succ (Last) /= Current_Char then
2165                              Put ("\-" & Character'Pred (Current_Char));
2166                           end if;
2167
2168                        else
2169                           Current := Current + 1;
2170                        end if;
2171                     end loop;
2172
2173                     Put_Line ("]");
2174                  end if;
2175
2176                  Index := Index + Next_Pointer_Bytes + Bitmap'Length;
2177               end;
2178
2179            when EXACT | EXACTF =>
2180               Length := String_Length (Program, Index);
2181               if Do_Print then
2182                  Put (" (" & Image (Program_Size'Image (Length + 1))
2183                          & " chars) <"
2184                          & String (Program (String_Operand (Index)
2185                                              .. String_Operand (Index)
2186                                              + Length)));
2187                  Put_Line (">");
2188               end if;
2189
2190               Index := String_Operand (Index) + Length + 1;
2191
2192               --  Node operand
2193
2194            when BRANCH | STAR | PLUS =>
2195               if Do_Print then
2196                  New_Line;
2197               end if;
2198
2199               Index  := Index + Next_Pointer_Bytes;
2200               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2201                           Local_Indent + 1, Do_Print);
2202
2203            when CURLY | CURLYX =>
2204               if Do_Print then
2205                  Put_Line
2206                    (" {"
2207                    & Image (Natural'Image
2208                       (Read_Natural (Program, Index + Next_Pointer_Bytes)))
2209                    & ","
2210                    & Image (Natural'Image (Read_Natural (Program, Index + 5)))
2211                    & "}");
2212               end if;
2213
2214               Index  := Index + 7;
2215               Dump_Until (Program, Index, Pointer'Min (Next, Till),
2216                           Local_Indent + 1, Do_Print);
2217
2218            when OPEN =>
2219               if Do_Print then
2220                  New_Line;
2221               end if;
2222
2223               Index := Index + 4;
2224               Local_Indent := Local_Indent + 1;
2225
2226            when CLOSE | REFF =>
2227               if Do_Print then
2228                  New_Line;
2229               end if;
2230
2231               Index := Index + 4;
2232
2233               if Op = CLOSE then
2234                  Local_Indent := Local_Indent - 1;
2235               end if;
2236
2237            when others =>
2238               Index := Index + Next_Pointer_Bytes;
2239
2240               if Do_Print then
2241                  New_Line;
2242               end if;
2243
2244               exit when Op = EOP;
2245         end case;
2246      end loop;
2247   end Dump_Until;
2248
2249   ----------
2250   -- Dump --
2251   ----------
2252
2253   procedure Dump (Self : Pattern_Matcher) is
2254      Program : Program_Data renames Self.Program;
2255      Index   : Pointer := Program'First;
2256
2257   --  Start of processing for Dump
2258
2259   begin
2260      Put_Line ("Must start with (Self.First) = "
2261                & Character'Image (Self.First));
2262
2263      if (Self.Flags and Case_Insensitive) /= 0 then
2264         Put_Line ("  Case_Insensitive mode");
2265      end if;
2266
2267      if (Self.Flags and Single_Line) /= 0 then
2268         Put_Line ("  Single_Line mode");
2269      end if;
2270
2271      if (Self.Flags and Multiple_Lines) /= 0 then
2272         Put_Line ("  Multiple_Lines mode");
2273      end if;
2274
2275      Dump_Until (Program, Index, Self.Program'Last + 1, 0);
2276   end Dump;
2277
2278   --------------------
2279   -- Get_From_Class --
2280   --------------------
2281
2282   function Get_From_Class
2283     (Bitmap : Character_Class;
2284      C      : Character) return Boolean
2285   is
2286      Value : constant Class_Byte := Character'Pos (C);
2287   begin
2288      return
2289        (Bitmap (Value / 8) and Bit_Conversion (Value mod 8)) /= 0;
2290   end Get_From_Class;
2291
2292   --------------
2293   -- Get_Next --
2294   --------------
2295
2296   function Get_Next (Program : Program_Data; IP : Pointer) return Pointer is
2297   begin
2298      return IP + Pointer (Read_Natural (Program, IP + 1));
2299   end Get_Next;
2300
2301   --------------
2302   -- Is_Alnum --
2303   --------------
2304
2305   function Is_Alnum (C : Character) return Boolean is
2306   begin
2307      return Is_Alphanumeric (C) or else C = '_';
2308   end Is_Alnum;
2309
2310   ------------------
2311   -- Is_Printable --
2312   ------------------
2313
2314   function Is_Printable (C : Character) return Boolean is
2315   begin
2316      --  Printable if space or graphic character or other whitespace
2317      --  Other white space includes (HT/LF/VT/FF/CR = codes 9-13)
2318
2319      return C in Character'Val (32) .. Character'Val (126)
2320        or else C in ASCII.HT .. ASCII.CR;
2321   end Is_Printable;
2322
2323   --------------------
2324   -- Is_White_Space --
2325   --------------------
2326
2327   function Is_White_Space (C : Character) return Boolean is
2328   begin
2329      --  Note: HT = 9, LF = 10, VT = 11, FF = 12, CR = 13
2330
2331      return C = ' ' or else C in ASCII.HT .. ASCII.CR;
2332   end Is_White_Space;
2333
2334   -----------
2335   -- Match --
2336   -----------
2337
2338   procedure Match
2339     (Self       : Pattern_Matcher;
2340      Data       : String;
2341      Matches    : out Match_Array;
2342      Data_First : Integer := -1;
2343      Data_Last  : Positive := Positive'Last)
2344   is
2345      Program : Program_Data renames Self.Program; -- Shorter notation
2346
2347      First_In_Data : constant Integer := Integer'Max (Data_First, Data'First);
2348      Last_In_Data  : constant Integer := Integer'Min (Data_Last, Data'Last);
2349
2350      --  Global work variables
2351
2352      Input_Pos : Natural;           -- String-input pointer
2353      BOL_Pos   : Natural;           -- Beginning of input, for ^ check
2354      Matched   : Boolean := False;  -- Until proven True
2355
2356      Matches_Full : Match_Array (0 .. Natural'Max (Self.Paren_Count,
2357                                                    Matches'Last));
2358      --  Stores the value of all the parenthesis pairs.
2359      --  We do not use directly Matches, so that we can also use back
2360      --  references (REFF) even if Matches is too small.
2361
2362      type Natural_Array is array (Match_Count range <>) of Natural;
2363      Matches_Tmp : Natural_Array (Matches_Full'Range);
2364      --  Save the opening position of parenthesis
2365
2366      Last_Paren  : Natural := 0;
2367      --  Last parenthesis seen
2368
2369      Greedy : Boolean := True;
2370      --  True if the next operator should be greedy
2371
2372      type Current_Curly_Record;
2373      type Current_Curly_Access is access all Current_Curly_Record;
2374      type Current_Curly_Record is record
2375         Paren_Floor : Natural;  --  How far back to strip parenthesis data
2376         Cur         : Integer;  --  How many instances of scan we've matched
2377         Min         : Natural;  --  Minimal number of scans to match
2378         Max         : Natural;  --  Maximal number of scans to match
2379         Greedy      : Boolean;  --  Whether to work our way up or down
2380         Scan        : Pointer;  --  The thing to match
2381         Next        : Pointer;  --  What has to match after it
2382         Lastloc     : Natural;  --  Where we started matching this scan
2383         Old_Cc      : Current_Curly_Access; --  Before we started this one
2384      end record;
2385      --  Data used to handle the curly operator and the plus and star
2386      --  operators for complex expressions.
2387
2388      Current_Curly : Current_Curly_Access := null;
2389      --  The curly currently being processed
2390
2391      -----------------------
2392      -- Local Subprograms --
2393      -----------------------
2394
2395      function Index (Start : Positive; C : Character) return Natural;
2396      --  Find character C in Data starting at Start and return position
2397
2398      function Repeat
2399        (IP  : Pointer;
2400         Max : Natural := Natural'Last) return Natural;
2401      --  Repeatedly match something simple, report how many
2402      --  It only matches on things of length 1.
2403      --  Starting from Input_Pos, it matches at most Max CURLY.
2404
2405      function Try (Pos : Positive) return Boolean;
2406      --  Try to match at specific point
2407
2408      function Match (IP : Pointer) return Boolean;
2409      --  This is the main matching routine. Conceptually the strategy
2410      --  is simple:  check to see whether the current node matches,
2411      --  call self recursively to see whether the rest matches,
2412      --  and then act accordingly.
2413      --
2414      --  In practice Match makes some effort to avoid recursion, in
2415      --  particular by going through "ordinary" nodes (that don't
2416      --  need to know whether the rest of the match failed) by
2417      --  using a loop instead of recursion.
2418      --  Why is the above comment part of the spec rather than body ???
2419
2420      function Match_Whilem return Boolean;
2421      --  Return True if a WHILEM matches the Current_Curly
2422
2423      function Recurse_Match (IP : Pointer; From : Natural) return Boolean;
2424      pragma Inline (Recurse_Match);
2425      --  Calls Match recursively. It saves and restores the parenthesis
2426      --  status and location in the input stream correctly, so that
2427      --  backtracking is possible
2428
2429      function Match_Simple_Operator
2430        (Op     : Opcode;
2431         Scan   : Pointer;
2432         Next   : Pointer;
2433         Greedy : Boolean) return Boolean;
2434      --  Return True it the simple operator (possibly non-greedy) matches
2435
2436      Dump_Indent : Integer := -1;
2437      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True);
2438      procedure Dump_Error (Msg : String);
2439      --  Debug: print the current context
2440
2441      pragma Inline (Index);
2442      pragma Inline (Repeat);
2443
2444      --  These are two complex functions, but used only once
2445
2446      pragma Inline (Match_Whilem);
2447      pragma Inline (Match_Simple_Operator);
2448
2449      -----------
2450      -- Index --
2451      -----------
2452
2453      function Index (Start : Positive; C : Character) return Natural is
2454      begin
2455         for J in Start .. Last_In_Data loop
2456            if Data (J) = C then
2457               return J;
2458            end if;
2459         end loop;
2460
2461         return 0;
2462      end Index;
2463
2464      -------------------
2465      -- Recurse_Match --
2466      -------------------
2467
2468      function Recurse_Match (IP : Pointer; From : Natural) return Boolean is
2469         L     : constant Natural := Last_Paren;
2470         Tmp_F : constant Match_Array :=
2471                   Matches_Full (From + 1 .. Matches_Full'Last);
2472         Start : constant Natural_Array :=
2473                   Matches_Tmp (From + 1 .. Matches_Tmp'Last);
2474         Input : constant Natural := Input_Pos;
2475
2476         Dump_Indent_Save : constant Integer := Dump_Indent;
2477
2478      begin
2479         if Match (IP) then
2480            return True;
2481         end if;
2482
2483         Last_Paren := L;
2484         Matches_Full (Tmp_F'Range) := Tmp_F;
2485         Matches_Tmp (Start'Range) := Start;
2486         Input_Pos := Input;
2487         Dump_Indent := Dump_Indent_Save;
2488         return False;
2489      end Recurse_Match;
2490
2491      ------------------
2492      -- Dump_Current --
2493      ------------------
2494
2495      procedure Dump_Current (Scan : Pointer; Prefix : Boolean := True) is
2496         Length : constant := 10;
2497         Pos    : constant String := Integer'Image (Input_Pos);
2498
2499      begin
2500         if Prefix then
2501            Put ((1 .. 5 - Pos'Length => ' '));
2502            Put (Pos & " <"
2503                 & Data (Input_Pos
2504                     .. Integer'Min (Last_In_Data, Input_Pos + Length - 1)));
2505            Put ((1 .. Length - 1 - Last_In_Data + Input_Pos => ' '));
2506            Put ("> |");
2507
2508         else
2509            Put ("                    ");
2510         end if;
2511
2512         Dump_Operation (Program, Scan, Indent => Dump_Indent);
2513      end Dump_Current;
2514
2515      ----------------
2516      -- Dump_Error --
2517      ----------------
2518
2519      procedure Dump_Error (Msg : String) is
2520      begin
2521         Put ("                   |     ");
2522         Put ((1 .. Dump_Indent * 2 => ' '));
2523         Put_Line (Msg);
2524      end Dump_Error;
2525
2526      -----------
2527      -- Match --
2528      -----------
2529
2530      function Match (IP : Pointer) return Boolean is
2531         Scan   : Pointer := IP;
2532         Next   : Pointer;
2533         Op     : Opcode;
2534         Result : Boolean;
2535
2536      begin
2537         Dump_Indent := Dump_Indent + 1;
2538
2539         State_Machine :
2540         loop
2541            pragma Assert (Scan /= 0);
2542
2543            --  Determine current opcode and count its usage in debug mode
2544
2545            Op := Opcode'Val (Character'Pos (Program (Scan)));
2546
2547            --  Calculate offset of next instruction. Second character is most
2548            --  significant in Program_Data.
2549
2550            Next := Get_Next (Program, Scan);
2551
2552            if Debug then
2553               Dump_Current (Scan);
2554            end if;
2555
2556            case Op is
2557               when EOP =>
2558                  Dump_Indent := Dump_Indent - 1;
2559                  return True;  --  Success
2560
2561               when BRANCH =>
2562                  if Program (Next) /= BRANCH then
2563                     Next := Operand (Scan); -- No choice, avoid recursion
2564
2565                  else
2566                     loop
2567                        if Recurse_Match (Operand (Scan), 0) then
2568                           Dump_Indent := Dump_Indent - 1;
2569                           return True;
2570                        end if;
2571
2572                        Scan := Get_Next (Program, Scan);
2573                        exit when Scan = 0 or else Program (Scan) /= BRANCH;
2574                     end loop;
2575
2576                     exit State_Machine;
2577                  end if;
2578
2579               when NOTHING =>
2580                  null;
2581
2582               when BOL =>
2583                  exit State_Machine when Input_Pos /= BOL_Pos
2584                    and then ((Self.Flags and Multiple_Lines) = 0
2585                               or else Data (Input_Pos - 1) /= ASCII.LF);
2586
2587               when MBOL =>
2588                  exit State_Machine when Input_Pos /= BOL_Pos
2589                    and then Data (Input_Pos - 1) /= ASCII.LF;
2590
2591               when SBOL =>
2592                  exit State_Machine when Input_Pos /= BOL_Pos;
2593
2594               when EOL =>
2595                  exit State_Machine when Input_Pos <= Data'Last
2596                    and then ((Self.Flags and Multiple_Lines) = 0
2597                               or else Data (Input_Pos) /= ASCII.LF);
2598
2599               when MEOL =>
2600                  exit State_Machine when Input_Pos <= Data'Last
2601                    and then Data (Input_Pos) /= ASCII.LF;
2602
2603               when SEOL =>
2604                  exit State_Machine when Input_Pos <= Data'Last;
2605
2606               when BOUND | NBOUND =>
2607
2608                  --  Was last char in word ?
2609
2610                  declare
2611                     N  : Boolean := False;
2612                     Ln : Boolean := False;
2613
2614                  begin
2615                     if Input_Pos /= First_In_Data then
2616                        N := Is_Alnum (Data (Input_Pos - 1));
2617                     end if;
2618
2619                     Ln :=
2620                       (if Input_Pos > Last_In_Data
2621                        then False
2622                        else Is_Alnum (Data (Input_Pos)));
2623
2624                     if Op = BOUND then
2625                        if N = Ln then
2626                           exit State_Machine;
2627                        end if;
2628                     else
2629                        if N /= Ln then
2630                           exit State_Machine;
2631                        end if;
2632                     end if;
2633                  end;
2634
2635               when SPACE =>
2636                  exit State_Machine when Input_Pos > Last_In_Data
2637                    or else not Is_White_Space (Data (Input_Pos));
2638                  Input_Pos := Input_Pos + 1;
2639
2640               when NSPACE =>
2641                  exit State_Machine when Input_Pos > Last_In_Data
2642                    or else Is_White_Space (Data (Input_Pos));
2643                  Input_Pos := Input_Pos + 1;
2644
2645               when DIGIT =>
2646                  exit State_Machine when Input_Pos > Last_In_Data
2647                    or else not Is_Digit (Data (Input_Pos));
2648                  Input_Pos := Input_Pos + 1;
2649
2650               when NDIGIT =>
2651                  exit State_Machine when Input_Pos > Last_In_Data
2652                    or else Is_Digit (Data (Input_Pos));
2653                  Input_Pos := Input_Pos + 1;
2654
2655               when ALNUM =>
2656                  exit State_Machine when Input_Pos > Last_In_Data
2657                    or else not Is_Alnum (Data (Input_Pos));
2658                  Input_Pos := Input_Pos + 1;
2659
2660               when NALNUM =>
2661                  exit State_Machine when Input_Pos > Last_In_Data
2662                    or else Is_Alnum (Data (Input_Pos));
2663                  Input_Pos := Input_Pos + 1;
2664
2665               when ANY =>
2666                  exit State_Machine when Input_Pos > Last_In_Data
2667                    or else Data (Input_Pos) = ASCII.LF;
2668                  Input_Pos := Input_Pos + 1;
2669
2670               when SANY =>
2671                  exit State_Machine when Input_Pos > Last_In_Data;
2672                  Input_Pos := Input_Pos + 1;
2673
2674               when EXACT =>
2675                  declare
2676                     Opnd    : Pointer  := String_Operand (Scan);
2677                     Current : Positive := Input_Pos;
2678                     Last    : constant Pointer :=
2679                                 Opnd + String_Length (Program, Scan);
2680
2681                  begin
2682                     while Opnd <= Last loop
2683                        exit State_Machine when Current > Last_In_Data
2684                          or else Program (Opnd) /= Data (Current);
2685                        Current := Current + 1;
2686                        Opnd := Opnd + 1;
2687                     end loop;
2688
2689                     Input_Pos := Current;
2690                  end;
2691
2692               when EXACTF =>
2693                  declare
2694                     Opnd    : Pointer  := String_Operand (Scan);
2695                     Current : Positive := Input_Pos;
2696
2697                     Last : constant Pointer :=
2698                              Opnd + String_Length (Program, Scan);
2699
2700                  begin
2701                     while Opnd <= Last loop
2702                        exit State_Machine when Current > Last_In_Data
2703                          or else Program (Opnd) /= To_Lower (Data (Current));
2704                        Current := Current + 1;
2705                        Opnd := Opnd + 1;
2706                     end loop;
2707
2708                     Input_Pos := Current;
2709                  end;
2710
2711               when ANYOF =>
2712                  declare
2713                     Bitmap : Character_Class;
2714                  begin
2715                     Bitmap_Operand (Program, Scan, Bitmap);
2716                     exit State_Machine when Input_Pos > Last_In_Data
2717                       or else not Get_From_Class (Bitmap, Data (Input_Pos));
2718                     Input_Pos := Input_Pos + 1;
2719                  end;
2720
2721               when OPEN =>
2722                  declare
2723                     No : constant Natural :=
2724                            Character'Pos (Program (Operand (Scan)));
2725                  begin
2726                     Matches_Tmp (No) := Input_Pos;
2727                  end;
2728
2729               when CLOSE =>
2730                  declare
2731                     No : constant Natural :=
2732                            Character'Pos (Program (Operand (Scan)));
2733
2734                  begin
2735                     Matches_Full (No) := (Matches_Tmp (No), Input_Pos - 1);
2736
2737                     if Last_Paren < No then
2738                        Last_Paren := No;
2739                     end if;
2740                  end;
2741
2742               when REFF =>
2743                  declare
2744                     No : constant Natural :=
2745                            Character'Pos (Program (Operand (Scan)));
2746
2747                     Data_Pos : Natural;
2748
2749                  begin
2750                     --  If we haven't seen that parenthesis yet
2751
2752                     if Last_Paren < No then
2753                        Dump_Indent := Dump_Indent - 1;
2754
2755                        if Debug then
2756                           Dump_Error ("REFF: No match, backtracking");
2757                        end if;
2758
2759                        return False;
2760                     end if;
2761
2762                     Data_Pos := Matches_Full (No).First;
2763
2764                     while Data_Pos <= Matches_Full (No).Last loop
2765                        if Input_Pos > Last_In_Data
2766                          or else Data (Input_Pos) /= Data (Data_Pos)
2767                        then
2768                           Dump_Indent := Dump_Indent - 1;
2769
2770                           if Debug then
2771                              Dump_Error ("REFF: No match, backtracking");
2772                           end if;
2773
2774                           return False;
2775                        end if;
2776
2777                        Input_Pos := Input_Pos + 1;
2778                        Data_Pos := Data_Pos + 1;
2779                     end loop;
2780                  end;
2781
2782               when MINMOD =>
2783                  Greedy := False;
2784
2785               when STAR | PLUS | CURLY =>
2786                  declare
2787                     Greed : constant Boolean := Greedy;
2788                  begin
2789                     Greedy := True;
2790                     Result := Match_Simple_Operator (Op, Scan, Next, Greed);
2791                     Dump_Indent := Dump_Indent - 1;
2792                     return Result;
2793                  end;
2794
2795               when CURLYX =>
2796
2797                  --  Looking at something like:
2798
2799                  --    1: CURLYX {n,m}  (->4)
2800                  --    2:   code for complex thing  (->3)
2801                  --    3:   WHILEM (->0)
2802                  --    4: NOTHING
2803
2804                  declare
2805                     Min : constant Natural :=
2806                             Read_Natural (Program, Scan + Next_Pointer_Bytes);
2807                     Max : constant Natural :=
2808                             Read_Natural
2809                                (Program, Scan + Next_Pointer_Bytes + 2);
2810                     Cc  : aliased Current_Curly_Record;
2811
2812                     Has_Match : Boolean;
2813
2814                  begin
2815                     Cc := (Paren_Floor => Last_Paren,
2816                            Cur         => -1,
2817                            Min         => Min,
2818                            Max         => Max,
2819                            Greedy      => Greedy,
2820                            Scan        => Scan + 7,
2821                            Next        => Next,
2822                            Lastloc     => 0,
2823                            Old_Cc      => Current_Curly);
2824                     Greedy := True;
2825                     Current_Curly := Cc'Unchecked_Access;
2826
2827                     Has_Match := Match (Next - Next_Pointer_Bytes);
2828
2829                     --  Start on the WHILEM
2830
2831                     Current_Curly := Cc.Old_Cc;
2832                     Dump_Indent := Dump_Indent - 1;
2833
2834                     if not Has_Match then
2835                        if Debug then
2836                           Dump_Error ("CURLYX failed...");
2837                        end if;
2838                     end if;
2839
2840                     return Has_Match;
2841                  end;
2842
2843               when WHILEM =>
2844                  Result := Match_Whilem;
2845                  Dump_Indent := Dump_Indent - 1;
2846
2847                  if Debug and then not Result then
2848                     Dump_Error ("WHILEM: no match, backtracking");
2849                  end if;
2850
2851                  return Result;
2852            end case;
2853
2854            Scan := Next;
2855         end loop State_Machine;
2856
2857         if Debug then
2858            Dump_Error ("failed...");
2859            Dump_Indent := Dump_Indent - 1;
2860         end if;
2861
2862         --  If we get here, there is no match. For successful matches when EOP
2863         --  is the terminating point.
2864
2865         return False;
2866      end Match;
2867
2868      ---------------------------
2869      -- Match_Simple_Operator --
2870      ---------------------------
2871
2872      function Match_Simple_Operator
2873        (Op     : Opcode;
2874         Scan   : Pointer;
2875         Next   : Pointer;
2876         Greedy : Boolean) return Boolean
2877      is
2878         Next_Char       : Character := ASCII.NUL;
2879         Next_Char_Known : Boolean := False;
2880         No              : Integer;  --  Can be negative
2881         Min             : Natural;
2882         Max             : Natural := Natural'Last;
2883         Operand_Code    : Pointer;
2884         Old             : Natural;
2885         Last_Pos        : Natural;
2886         Save            : constant Natural := Input_Pos;
2887
2888      begin
2889         --  Lookahead to avoid useless match attempts when we know what
2890         --  character comes next.
2891
2892         if Program (Next) = EXACT then
2893            Next_Char := Program (String_Operand (Next));
2894            Next_Char_Known := True;
2895         end if;
2896
2897         --  Find the minimal and maximal values for the operator
2898
2899         case Op is
2900            when STAR =>
2901               Min := 0;
2902               Operand_Code := Operand (Scan);
2903
2904            when PLUS =>
2905               Min := 1;
2906               Operand_Code := Operand (Scan);
2907
2908            when others =>
2909               Min := Read_Natural (Program, Scan + Next_Pointer_Bytes);
2910               Max := Read_Natural (Program, Scan + Next_Pointer_Bytes + 2);
2911               Operand_Code := Scan + 7;
2912         end case;
2913
2914         if Debug then
2915            Dump_Current (Operand_Code, Prefix => False);
2916         end if;
2917
2918         --  Non greedy operators
2919
2920         if not Greedy then
2921
2922            --  Test we can repeat at least Min times
2923
2924            if Min /= 0 then
2925               No := Repeat (Operand_Code, Min);
2926
2927               if No < Min then
2928                  if Debug then
2929                     Dump_Error ("failed... matched" & No'Img & " times");
2930                  end if;
2931
2932                  return False;
2933               end if;
2934            end if;
2935
2936            Old := Input_Pos;
2937
2938            --  Find the place where 'next' could work
2939
2940            if Next_Char_Known then
2941
2942               --  Last position to check
2943
2944               if Max = Natural'Last then
2945                  Last_Pos := Last_In_Data;
2946               else
2947                  Last_Pos := Input_Pos + Max;
2948
2949                  if Last_Pos > Last_In_Data then
2950                     Last_Pos := Last_In_Data;
2951                  end if;
2952               end if;
2953
2954               --  Look for the first possible opportunity
2955
2956               if Debug then
2957                  Dump_Error ("Next_Char must be " & Next_Char);
2958               end if;
2959
2960               loop
2961                  --  Find the next possible position
2962
2963                  while Input_Pos <= Last_Pos
2964                    and then Data (Input_Pos) /= Next_Char
2965                  loop
2966                     Input_Pos := Input_Pos + 1;
2967                  end loop;
2968
2969                  if Input_Pos > Last_Pos then
2970                     return False;
2971                  end if;
2972
2973                  --  Check that we still match if we stop at the position we
2974                  --  just found.
2975
2976                  declare
2977                     Num : constant Natural := Input_Pos - Old;
2978
2979                  begin
2980                     Input_Pos := Old;
2981
2982                     if Debug then
2983                        Dump_Error ("Would we still match at that position?");
2984                     end if;
2985
2986                     if Repeat (Operand_Code, Num) < Num then
2987                        return False;
2988                     end if;
2989                  end;
2990
2991                  --  Input_Pos now points to the new position
2992
2993                  if Match (Get_Next (Program, Scan)) then
2994                     return True;
2995                  end if;
2996
2997                  Old := Input_Pos;
2998                  Input_Pos := Input_Pos + 1;
2999               end loop;
3000
3001            --  We do not know what the next character is
3002
3003            else
3004               while Max >= Min loop
3005                  if Debug then
3006                     Dump_Error ("Non-greedy repeat, N=" & Min'Img);
3007                     Dump_Error ("Do we still match Next if we stop here?");
3008                  end if;
3009
3010                  --  If the next character matches
3011
3012                  if Recurse_Match (Next, 1) then
3013                     return True;
3014                  end if;
3015
3016                  Input_Pos := Save + Min;
3017
3018                  --  Could not or did not match -- move forward
3019
3020                  if Repeat (Operand_Code, 1) /= 0 then
3021                     Min := Min + 1;
3022                  else
3023                     if Debug then
3024                        Dump_Error ("Non-greedy repeat failed...");
3025                     end if;
3026
3027                     return False;
3028                  end if;
3029               end loop;
3030            end if;
3031
3032            return False;
3033
3034         --  Greedy operators
3035
3036         else
3037            No := Repeat (Operand_Code, Max);
3038
3039            if Debug and then No < Min then
3040               Dump_Error ("failed... matched" & No'Img & " times");
3041            end if;
3042
3043            --  ??? Perl has some special code here in case the next
3044            --  instruction is of type EOL, since $ and \Z can match before
3045            --  *and* after newline at the end.
3046
3047            --  ??? Perl has some special code here in case (paren) is True
3048
3049            --  Else, if we don't have any parenthesis
3050
3051            while No >= Min loop
3052               if not Next_Char_Known
3053                 or else (Input_Pos <= Last_In_Data
3054                           and then Data (Input_Pos) = Next_Char)
3055               then
3056                  if Match (Next) then
3057                     return True;
3058                  end if;
3059               end if;
3060
3061               --  Could not or did not work, we back up
3062
3063               No := No - 1;
3064               Input_Pos := Save + No;
3065            end loop;
3066
3067            return False;
3068         end if;
3069      end Match_Simple_Operator;
3070
3071      ------------------
3072      -- Match_Whilem --
3073      ------------------
3074
3075      --  This is really hard to understand, because after we match what we
3076      --  are trying to match, we must make sure the rest of the REx is going
3077      --  to match for sure, and to do that we have to go back UP the parse
3078      --  tree by recursing ever deeper.  And if it fails, we have to reset
3079      --  our parent's current state that we can try again after backing off.
3080
3081      function Match_Whilem return Boolean is
3082         Cc : constant Current_Curly_Access := Current_Curly;
3083
3084         N  : constant Natural              := Cc.Cur + 1;
3085         Ln : Natural                       := 0;
3086
3087         Lastloc : constant Natural := Cc.Lastloc;
3088         --  Detection of 0-len
3089
3090      begin
3091         --  If degenerate scan matches "", assume scan done
3092
3093         if Input_Pos = Cc.Lastloc
3094           and then N >= Cc.Min
3095         then
3096            --  Temporarily restore the old context, and check that we
3097            --  match was comes after CURLYX.
3098
3099            Current_Curly := Cc.Old_Cc;
3100
3101            if Current_Curly /= null then
3102               Ln := Current_Curly.Cur;
3103            end if;
3104
3105            if Match (Cc.Next) then
3106               return True;
3107            end if;
3108
3109            if Current_Curly /= null then
3110               Current_Curly.Cur := Ln;
3111            end if;
3112
3113            Current_Curly := Cc;
3114            return False;
3115         end if;
3116
3117         --  First, just match a string of min scans
3118
3119         if N < Cc.Min then
3120            Cc.Cur := N;
3121            Cc.Lastloc := Input_Pos;
3122
3123            if Debug then
3124               Dump_Error
3125                 ("Tests that we match at least" & Cc.Min'Img & " N=" & N'Img);
3126            end if;
3127
3128            if Match (Cc.Scan) then
3129               return True;
3130            end if;
3131
3132            Cc.Cur := N - 1;
3133            Cc.Lastloc := Lastloc;
3134
3135            if Debug then
3136               Dump_Error ("failed...");
3137            end if;
3138
3139            return False;
3140         end if;
3141
3142         --  Prefer next over scan for minimal matching
3143
3144         if not Cc.Greedy then
3145            Current_Curly := Cc.Old_Cc;
3146
3147            if Current_Curly /= null then
3148               Ln := Current_Curly.Cur;
3149            end if;
3150
3151            if Recurse_Match (Cc.Next, Cc.Paren_Floor) then
3152               return True;
3153            end if;
3154
3155            if Current_Curly /= null then
3156               Current_Curly.Cur := Ln;
3157            end if;
3158
3159            Current_Curly := Cc;
3160
3161            --  Maximum greed exceeded ?
3162
3163            if N >= Cc.Max then
3164               if Debug then
3165                  Dump_Error ("failed...");
3166               end if;
3167               return False;
3168            end if;
3169
3170            --  Try scanning more and see if it helps
3171            Cc.Cur := N;
3172            Cc.Lastloc := Input_Pos;
3173
3174            if Debug then
3175               Dump_Error ("Next failed, what about Current?");
3176            end if;
3177
3178            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3179               return True;
3180            end if;
3181
3182            Cc.Cur := N - 1;
3183            Cc.Lastloc := Lastloc;
3184            return False;
3185         end if;
3186
3187         --  Prefer scan over next for maximal matching
3188
3189         if N < Cc.Max then   --  more greed allowed ?
3190            Cc.Cur := N;
3191            Cc.Lastloc := Input_Pos;
3192
3193            if Debug then
3194               Dump_Error ("Recurse at current position");
3195            end if;
3196
3197            if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3198               return True;
3199            end if;
3200         end if;
3201
3202         --  Failed deeper matches of scan, so see if this one works
3203
3204         Current_Curly := Cc.Old_Cc;
3205
3206         if Current_Curly /= null then
3207            Ln := Current_Curly.Cur;
3208         end if;
3209
3210         if Debug then
3211            Dump_Error ("Failed matching for later positions");
3212         end if;
3213
3214         if Match (Cc.Next) then
3215            return True;
3216         end if;
3217
3218         if Current_Curly /= null then
3219            Current_Curly.Cur := Ln;
3220         end if;
3221
3222         Current_Curly := Cc;
3223         Cc.Cur := N - 1;
3224         Cc.Lastloc := Lastloc;
3225
3226         if Debug then
3227            Dump_Error ("failed...");
3228         end if;
3229
3230         return False;
3231      end Match_Whilem;
3232
3233      ------------
3234      -- Repeat --
3235      ------------
3236
3237      function Repeat
3238        (IP  : Pointer;
3239         Max : Natural := Natural'Last) return Natural
3240      is
3241         Scan  : Natural := Input_Pos;
3242         Last  : Natural;
3243         Op    : constant Opcode := Opcode'Val (Character'Pos (Program (IP)));
3244         Count : Natural;
3245         C     : Character;
3246         Is_First : Boolean := True;
3247         Bitmap   : Character_Class;
3248
3249      begin
3250         if Max = Natural'Last or else Scan + Max - 1 > Last_In_Data then
3251            Last := Last_In_Data;
3252         else
3253            Last := Scan + Max - 1;
3254         end if;
3255
3256         case Op is
3257            when ANY =>
3258               while Scan <= Last
3259                 and then Data (Scan) /= ASCII.LF
3260               loop
3261                  Scan := Scan + 1;
3262               end loop;
3263
3264            when SANY =>
3265               Scan := Last + 1;
3266
3267            when EXACT =>
3268
3269               --  The string has only one character if Repeat was called
3270
3271               C := Program (String_Operand (IP));
3272               while Scan <= Last
3273                 and then C = Data (Scan)
3274               loop
3275                  Scan := Scan + 1;
3276               end loop;
3277
3278            when EXACTF =>
3279
3280               --  The string has only one character if Repeat was called
3281
3282               C := Program (String_Operand (IP));
3283               while Scan <= Last
3284                 and then To_Lower (C) = Data (Scan)
3285               loop
3286                  Scan := Scan + 1;
3287               end loop;
3288
3289            when ANYOF =>
3290               if Is_First then
3291                  Bitmap_Operand (Program, IP, Bitmap);
3292                  Is_First := False;
3293               end if;
3294
3295               while Scan <= Last
3296                 and then Get_From_Class (Bitmap, Data (Scan))
3297               loop
3298                  Scan := Scan + 1;
3299               end loop;
3300
3301            when ALNUM =>
3302               while Scan <= Last
3303                 and then Is_Alnum (Data (Scan))
3304               loop
3305                  Scan := Scan + 1;
3306               end loop;
3307
3308            when NALNUM =>
3309               while Scan <= Last
3310                 and then not Is_Alnum (Data (Scan))
3311               loop
3312                  Scan := Scan + 1;
3313               end loop;
3314
3315            when SPACE =>
3316               while Scan <= Last
3317                 and then Is_White_Space (Data (Scan))
3318               loop
3319                  Scan := Scan + 1;
3320               end loop;
3321
3322            when NSPACE =>
3323               while Scan <= Last
3324                 and then not Is_White_Space (Data (Scan))
3325               loop
3326                  Scan := Scan + 1;
3327               end loop;
3328
3329            when DIGIT  =>
3330               while Scan <= Last
3331                 and then Is_Digit (Data (Scan))
3332               loop
3333                  Scan := Scan + 1;
3334               end loop;
3335
3336            when NDIGIT  =>
3337               while Scan <= Last
3338                 and then not Is_Digit (Data (Scan))
3339               loop
3340                  Scan := Scan + 1;
3341               end loop;
3342
3343            when others =>
3344               raise Program_Error;
3345         end case;
3346
3347         Count := Scan - Input_Pos;
3348         Input_Pos := Scan;
3349         return Count;
3350      end Repeat;
3351
3352      ---------
3353      -- Try --
3354      ---------
3355
3356      function Try (Pos : Positive) return Boolean is
3357      begin
3358         Input_Pos  := Pos;
3359         Last_Paren := 0;
3360         Matches_Full := (others => No_Match);
3361
3362         if Match (Program_First) then
3363            Matches_Full (0) := (Pos, Input_Pos - 1);
3364            return True;
3365         end if;
3366
3367         return False;
3368      end Try;
3369
3370   --  Start of processing for Match
3371
3372   begin
3373      --  Do we have the regexp Never_Match?
3374
3375      if Self.Size = 0 then
3376         Matches := (others => No_Match);
3377         return;
3378      end if;
3379
3380      --  If there is a "must appear" string, look for it
3381
3382      if Self.Must_Have_Length > 0 then
3383         declare
3384            First      : constant Character := Program (Self.Must_Have);
3385            Must_First : constant Pointer := Self.Must_Have;
3386            Must_Last  : constant Pointer :=
3387                           Must_First + Pointer (Self.Must_Have_Length - 1);
3388            Next_Try   : Natural := Index (First_In_Data, First);
3389
3390         begin
3391            while Next_Try /= 0
3392              and then Data (Next_Try .. Next_Try + Self.Must_Have_Length - 1)
3393                          = String (Program (Must_First .. Must_Last))
3394            loop
3395               Next_Try := Index (Next_Try + 1, First);
3396            end loop;
3397
3398            if Next_Try = 0 then
3399               Matches := (others => No_Match);
3400               return;                  -- Not present
3401            end if;
3402         end;
3403      end if;
3404
3405      --  Mark beginning of line for ^
3406
3407      BOL_Pos := Data'First;
3408
3409      --  Simplest case first: an anchored match need be tried only once
3410
3411      if Self.Anchored and then (Self.Flags and Multiple_Lines) = 0 then
3412         Matched := Try (First_In_Data);
3413
3414      elsif Self.Anchored then
3415         declare
3416            Next_Try : Natural := First_In_Data;
3417         begin
3418            --  Test the first position in the buffer
3419            Matched := Try (Next_Try);
3420
3421            --  Else only test after newlines
3422
3423            if not Matched then
3424               while Next_Try <= Last_In_Data loop
3425                  while Next_Try <= Last_In_Data
3426                    and then Data (Next_Try) /= ASCII.LF
3427                  loop
3428                     Next_Try := Next_Try + 1;
3429                  end loop;
3430
3431                  Next_Try := Next_Try + 1;
3432
3433                  if Next_Try <= Last_In_Data then
3434                     Matched := Try (Next_Try);
3435                     exit when Matched;
3436                  end if;
3437               end loop;
3438            end if;
3439         end;
3440
3441      elsif Self.First /= ASCII.NUL then
3442         --  We know what char it must start with
3443
3444         declare
3445            Next_Try : Natural := Index (First_In_Data, Self.First);
3446
3447         begin
3448            while Next_Try /= 0 loop
3449               Matched := Try (Next_Try);
3450               exit when Matched;
3451               Next_Try := Index (Next_Try + 1, Self.First);
3452            end loop;
3453         end;
3454
3455      else
3456         --  Messy cases: try all locations (including for the empty string)
3457
3458         Matched := Try (First_In_Data);
3459
3460         if not Matched then
3461            for S in First_In_Data + 1 .. Last_In_Data loop
3462               Matched := Try (S);
3463               exit when Matched;
3464            end loop;
3465         end if;
3466      end if;
3467
3468      --  Matched has its value
3469
3470      for J in Last_Paren + 1 .. Matches'Last loop
3471         Matches_Full (J) := No_Match;
3472      end loop;
3473
3474      Matches := Matches_Full (Matches'Range);
3475   end Match;
3476
3477   -----------
3478   -- Match --
3479   -----------
3480
3481   function Match
3482     (Self       : Pattern_Matcher;
3483      Data       : String;
3484      Data_First : Integer := -1;
3485      Data_Last  : Positive := Positive'Last) return Natural
3486   is
3487      Matches : Match_Array (0 .. 0);
3488
3489   begin
3490      Match (Self, Data, Matches, Data_First, Data_Last);
3491      if Matches (0) = No_Match then
3492         return Data'First - 1;
3493      else
3494         return Matches (0).First;
3495      end if;
3496   end Match;
3497
3498   function Match
3499     (Self       : Pattern_Matcher;
3500      Data       : String;
3501      Data_First : Integer  := -1;
3502      Data_Last  : Positive := Positive'Last) return Boolean
3503   is
3504      Matches : Match_Array (0 .. 0);
3505
3506   begin
3507      Match (Self, Data, Matches, Data_First, Data_Last);
3508      return Matches (0).First >= Data'First;
3509   end Match;
3510
3511   procedure Match
3512     (Expression : String;
3513      Data       : String;
3514      Matches    : out Match_Array;
3515      Size       : Program_Size := Auto_Size;
3516      Data_First : Integer      := -1;
3517      Data_Last  : Positive     := Positive'Last)
3518   is
3519      PM            : Pattern_Matcher (Size);
3520      Finalize_Size : Program_Size;
3521      pragma Unreferenced (Finalize_Size);
3522   begin
3523      if Size = 0 then
3524         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3525      else
3526         Compile (PM, Expression, Finalize_Size);
3527         Match (PM, Data, Matches, Data_First, Data_Last);
3528      end if;
3529   end Match;
3530
3531   -----------
3532   -- Match --
3533   -----------
3534
3535   function Match
3536     (Expression : String;
3537      Data       : String;
3538      Size       : Program_Size := Auto_Size;
3539      Data_First : Integer      := -1;
3540      Data_Last  : Positive     := Positive'Last) return Natural
3541   is
3542      PM         : Pattern_Matcher (Size);
3543      Final_Size : Program_Size;
3544      pragma Unreferenced (Final_Size);
3545   begin
3546      if Size = 0 then
3547         return Match (Compile (Expression), Data, Data_First, Data_Last);
3548      else
3549         Compile (PM, Expression, Final_Size);
3550         return Match (PM, Data, Data_First, Data_Last);
3551      end if;
3552   end Match;
3553
3554   -----------
3555   -- Match --
3556   -----------
3557
3558   function  Match
3559     (Expression : String;
3560      Data       : String;
3561      Size       : Program_Size := Auto_Size;
3562      Data_First : Integer      := -1;
3563      Data_Last  : Positive     := Positive'Last) return Boolean
3564   is
3565      Matches    : Match_Array (0 .. 0);
3566      PM         : Pattern_Matcher (Size);
3567      Final_Size : Program_Size;
3568      pragma Unreferenced (Final_Size);
3569   begin
3570      if Size = 0 then
3571         Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3572      else
3573         Compile (PM, Expression, Final_Size);
3574         Match (PM, Data, Matches, Data_First, Data_Last);
3575      end if;
3576
3577      return Matches (0).First >= Data'First;
3578   end Match;
3579
3580   -------------
3581   -- Operand --
3582   -------------
3583
3584   function Operand (P : Pointer) return Pointer is
3585   begin
3586      return P + Next_Pointer_Bytes;
3587   end Operand;
3588
3589   --------------
3590   -- Optimize --
3591   --------------
3592
3593   procedure Optimize (Self : in out Pattern_Matcher) is
3594      Scan    : Pointer;
3595      Program : Program_Data renames Self.Program;
3596
3597   begin
3598      --  Start with safe defaults (no optimization):
3599      --    *  No known first character of match
3600      --    *  Does not necessarily start at beginning of line
3601      --    *  No string known that has to appear in data
3602
3603      Self.First := ASCII.NUL;
3604      Self.Anchored := False;
3605      Self.Must_Have := Program'Last + 1;
3606      Self.Must_Have_Length := 0;
3607
3608      Scan := Program_First;  --  First instruction (can be anything)
3609
3610      if Program (Scan) = EXACT then
3611         Self.First := Program (String_Operand (Scan));
3612
3613      elsif Program (Scan) = BOL
3614        or else Program (Scan) = SBOL
3615        or else Program (Scan) = MBOL
3616      then
3617         Self.Anchored := True;
3618      end if;
3619   end Optimize;
3620
3621   -----------------
3622   -- Paren_Count --
3623   -----------------
3624
3625   function Paren_Count (Regexp : Pattern_Matcher) return Match_Count is
3626   begin
3627      return Regexp.Paren_Count;
3628   end Paren_Count;
3629
3630   -----------
3631   -- Quote --
3632   -----------
3633
3634   function Quote (Str : String) return String is
3635      S    : String (1 .. Str'Length * 2);
3636      Last : Natural := 0;
3637
3638   begin
3639      for J in Str'Range loop
3640         case Str (J) is
3641            when '^' | '$' | '|' | '*' | '+' | '?' | '{' |
3642                 '}' | '[' | ']' | '(' | ')' | '\' | '.' =>
3643
3644               S (Last + 1) := '\';
3645               S (Last + 2) := Str (J);
3646               Last := Last + 2;
3647
3648            when others =>
3649               S (Last + 1) := Str (J);
3650               Last := Last + 1;
3651         end case;
3652      end loop;
3653
3654      return S (1 .. Last);
3655   end Quote;
3656
3657   ------------------
3658   -- Read_Natural --
3659   ------------------
3660
3661   function Read_Natural
3662     (Program : Program_Data;
3663      IP      : Pointer) return Natural
3664   is
3665   begin
3666      return Character'Pos (Program (IP)) +
3667               256 * Character'Pos (Program (IP + 1));
3668   end Read_Natural;
3669
3670   -----------------
3671   -- Reset_Class --
3672   -----------------
3673
3674   procedure Reset_Class (Bitmap : out Character_Class) is
3675   begin
3676      Bitmap := (others => 0);
3677   end Reset_Class;
3678
3679   ------------------
3680   -- Set_In_Class --
3681   ------------------
3682
3683   procedure Set_In_Class
3684     (Bitmap : in out Character_Class;
3685      C      : Character)
3686   is
3687      Value : constant Class_Byte := Character'Pos (C);
3688   begin
3689      Bitmap (Value / 8) := Bitmap (Value / 8)
3690        or Bit_Conversion (Value mod 8);
3691   end Set_In_Class;
3692
3693   -------------------
3694   -- String_Length --
3695   -------------------
3696
3697   function String_Length
3698     (Program : Program_Data;
3699      P       : Pointer) return Program_Size
3700   is
3701   begin
3702      pragma Assert (Program (P) = EXACT or else Program (P) = EXACTF);
3703      return Character'Pos (Program (P + Next_Pointer_Bytes));
3704   end String_Length;
3705
3706   --------------------
3707   -- String_Operand --
3708   --------------------
3709
3710   function String_Operand (P : Pointer) return Pointer is
3711   begin
3712      return P + 4;
3713   end String_Operand;
3714
3715end System.Regpat;
3716