1------------------------------------------------------------------------------
2--                                                                          --
3--                  GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS                --
4--                                                                          --
5--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
6--                                                                          --
7--                                  B o d y                                 --
8--                                                                          --
9--         Copyright (C) 1992-2011, Free Software Foundation, Inc.          --
10--                                                                          --
11-- GNARL is free software; you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNARL was developed by the GNARL team at Florida State University.       --
28-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This is the VxWorks version of this package
33
34--  This package contains all the GNULL primitives that interface directly with
35--  the underlying OS.
36
37pragma Polling (Off);
38--  Turn off polling, we do not want ATC polling to take place during tasking
39--  operations. It causes infinite loops and other problems.
40
41with Ada.Unchecked_Conversion;
42
43with Interfaces.C;
44
45with System.Multiprocessors;
46with System.Tasking.Debug;
47with System.Interrupt_Management;
48with System.Float_Control;
49with System.OS_Constants;
50
51with System.Soft_Links;
52--  We use System.Soft_Links instead of System.Tasking.Initialization
53--  because the later is a higher level package that we shouldn't depend
54--  on. For example when using the restricted run time, it is replaced by
55--  System.Tasking.Restricted.Stages.
56
57with System.Task_Info;
58with System.VxWorks.Ext;
59
60package body System.Task_Primitives.Operations is
61
62   package OSC renames System.OS_Constants;
63   package SSL renames System.Soft_Links;
64
65   use System.Tasking.Debug;
66   use System.Tasking;
67   use System.OS_Interface;
68   use System.Parameters;
69   use type System.VxWorks.Ext.t_id;
70   use type Interfaces.C.int;
71   use type System.OS_Interface.unsigned;
72
73   subtype int is System.OS_Interface.int;
74   subtype unsigned is System.OS_Interface.unsigned;
75
76   Relative : constant := 0;
77
78   ----------------
79   -- Local Data --
80   ----------------
81
82   --  The followings are logically constants, but need to be initialized at
83   --  run time.
84
85   Environment_Task_Id : Task_Id;
86   --  A variable to hold Task_Id for the environment task
87
88   --  The followings are internal configuration constants needed
89
90   Dispatching_Policy : Character;
91   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
92
93   Foreign_Task_Elaborated : aliased Boolean := True;
94   --  Used to identified fake tasks (i.e., non-Ada Threads)
95
96   Locking_Policy : Character;
97   pragma Import (C, Locking_Policy, "__gl_locking_policy");
98
99   Mutex_Protocol : Priority_Type;
100
101   Single_RTS_Lock : aliased RTS_Lock;
102   --  This is a lock to allow only one thread of control in the RTS at a
103   --  time; it is used to execute in mutual exclusion from all other tasks.
104   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
105
106   Time_Slice_Val : Integer;
107   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
108
109   Null_Thread_Id : constant Thread_Id := 0;
110   --  Constant to indicate that the thread identifier has not yet been
111   --  initialized.
112
113   --------------------
114   -- Local Packages --
115   --------------------
116
117   package Specific is
118
119      procedure Initialize;
120      pragma Inline (Initialize);
121      --  Initialize task specific data
122
123      function Is_Valid_Task return Boolean;
124      pragma Inline (Is_Valid_Task);
125      --  Does executing thread have a TCB?
126
127      procedure Set (Self_Id : Task_Id);
128      pragma Inline (Set);
129      --  Set the self id for the current task, unless Self_Id is null, in
130      --  which case the task specific data is deleted.
131
132      function Self return Task_Id;
133      pragma Inline (Self);
134      --  Return a pointer to the Ada Task Control Block of the calling task
135
136   end Specific;
137
138   package body Specific is separate;
139   --  The body of this package is target specific
140
141   ----------------------------------
142   -- ATCB allocation/deallocation --
143   ----------------------------------
144
145   package body ATCB_Allocation is separate;
146   --  The body of this package is shared across several targets
147
148   ---------------------------------
149   -- Support for foreign threads --
150   ---------------------------------
151
152   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
153   --  Allocate and Initialize a new ATCB for the current Thread
154
155   function Register_Foreign_Thread
156     (Thread : Thread_Id) return Task_Id is separate;
157
158   -----------------------
159   -- Local Subprograms --
160   -----------------------
161
162   procedure Abort_Handler (signo : Signal);
163   --  Handler for the abort (SIGABRT) signal to handle asynchronous abort
164
165   procedure Install_Signal_Handlers;
166   --  Install the default signal handlers for the current task
167
168   function Is_Task_Context return Boolean;
169   --  This function returns True if the current execution is in the context
170   --  of a task, and False if it is an interrupt context.
171
172   type Set_Stack_Limit_Proc_Acc is access procedure;
173   pragma Convention (C, Set_Stack_Limit_Proc_Acc);
174
175   Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
176   pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
177   --  Procedure to be called when a task is created to set stack
178   --  limit. Used only for VxWorks 5 and VxWorks MILS guest OS.
179
180   function To_Address is
181     new Ada.Unchecked_Conversion (Task_Id, System.Address);
182
183   -------------------
184   -- Abort_Handler --
185   -------------------
186
187   procedure Abort_Handler (signo : Signal) is
188      pragma Unreferenced (signo);
189
190      Self_ID        : constant Task_Id := Self;
191      Old_Set        : aliased sigset_t;
192      Unblocked_Mask : aliased sigset_t;
193      Result         : int;
194      pragma Warnings (Off, Result);
195
196      use System.Interrupt_Management;
197
198   begin
199      --  It is not safe to raise an exception when using ZCX and the GCC
200      --  exception handling mechanism.
201
202      if ZCX_By_Default then
203         return;
204      end if;
205
206      if Self_ID.Deferral_Level = 0
207        and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
208        and then not Self_ID.Aborting
209      then
210         Self_ID.Aborting := True;
211
212         --  Make sure signals used for RTS internal purposes are unmasked
213
214         Result := sigemptyset (Unblocked_Mask'Access);
215         pragma Assert (Result = 0);
216         Result :=
217           sigaddset
218           (Unblocked_Mask'Access,
219            Signal (Abort_Task_Interrupt));
220         pragma Assert (Result = 0);
221         Result := sigaddset (Unblocked_Mask'Access, SIGBUS);
222         pragma Assert (Result = 0);
223         Result := sigaddset (Unblocked_Mask'Access, SIGFPE);
224         pragma Assert (Result = 0);
225         Result := sigaddset (Unblocked_Mask'Access, SIGILL);
226         pragma Assert (Result = 0);
227         Result := sigaddset (Unblocked_Mask'Access, SIGSEGV);
228         pragma Assert (Result = 0);
229
230         Result :=
231           pthread_sigmask
232             (SIG_UNBLOCK,
233              Unblocked_Mask'Access,
234              Old_Set'Access);
235         pragma Assert (Result = 0);
236
237         raise Standard'Abort_Signal;
238      end if;
239   end Abort_Handler;
240
241   -----------------
242   -- Stack_Guard --
243   -----------------
244
245   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
246      pragma Unreferenced (T);
247      pragma Unreferenced (On);
248
249   begin
250      --  Nothing needed (why not???)
251
252      null;
253   end Stack_Guard;
254
255   -------------------
256   -- Get_Thread_Id --
257   -------------------
258
259   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
260   begin
261      return T.Common.LL.Thread;
262   end Get_Thread_Id;
263
264   ----------
265   -- Self --
266   ----------
267
268   function Self return Task_Id renames Specific.Self;
269
270   -----------------------------
271   -- Install_Signal_Handlers --
272   -----------------------------
273
274   procedure Install_Signal_Handlers is
275      act     : aliased struct_sigaction;
276      old_act : aliased struct_sigaction;
277      Tmp_Set : aliased sigset_t;
278      Result  : int;
279
280   begin
281      act.sa_flags := 0;
282      act.sa_handler := Abort_Handler'Address;
283
284      Result := sigemptyset (Tmp_Set'Access);
285      pragma Assert (Result = 0);
286      act.sa_mask := Tmp_Set;
287
288      Result :=
289        sigaction
290          (Signal (Interrupt_Management.Abort_Task_Interrupt),
291           act'Unchecked_Access,
292           old_act'Unchecked_Access);
293      pragma Assert (Result = 0);
294
295      Interrupt_Management.Initialize_Interrupts;
296   end Install_Signal_Handlers;
297
298   ---------------------
299   -- Initialize_Lock --
300   ---------------------
301
302   procedure Initialize_Lock
303     (Prio : System.Any_Priority;
304      L    : not null access Lock)
305   is
306   begin
307      L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
308      L.Prio_Ceiling := int (Prio);
309      L.Protocol := Mutex_Protocol;
310      pragma Assert (L.Mutex /= 0);
311   end Initialize_Lock;
312
313   procedure Initialize_Lock
314     (L     : not null access RTS_Lock;
315      Level : Lock_Level)
316   is
317      pragma Unreferenced (Level);
318   begin
319      L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
320      L.Prio_Ceiling := int (System.Any_Priority'Last);
321      L.Protocol := Mutex_Protocol;
322      pragma Assert (L.Mutex /= 0);
323   end Initialize_Lock;
324
325   -------------------
326   -- Finalize_Lock --
327   -------------------
328
329   procedure Finalize_Lock (L : not null access Lock) is
330      Result : int;
331   begin
332      Result := semDelete (L.Mutex);
333      pragma Assert (Result = 0);
334   end Finalize_Lock;
335
336   procedure Finalize_Lock (L : not null access RTS_Lock) is
337      Result : int;
338   begin
339      Result := semDelete (L.Mutex);
340      pragma Assert (Result = 0);
341   end Finalize_Lock;
342
343   ----------------
344   -- Write_Lock --
345   ----------------
346
347   procedure Write_Lock
348     (L                 : not null access Lock;
349      Ceiling_Violation : out Boolean)
350   is
351      Result : int;
352
353   begin
354      if L.Protocol = Prio_Protect
355        and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
356      then
357         Ceiling_Violation := True;
358         return;
359      else
360         Ceiling_Violation := False;
361      end if;
362
363      Result := semTake (L.Mutex, WAIT_FOREVER);
364      pragma Assert (Result = 0);
365   end Write_Lock;
366
367   procedure Write_Lock
368     (L           : not null access RTS_Lock;
369      Global_Lock : Boolean := False)
370   is
371      Result : int;
372   begin
373      if not Single_Lock or else Global_Lock then
374         Result := semTake (L.Mutex, WAIT_FOREVER);
375         pragma Assert (Result = 0);
376      end if;
377   end Write_Lock;
378
379   procedure Write_Lock (T : Task_Id) is
380      Result : int;
381   begin
382      if not Single_Lock then
383         Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
384         pragma Assert (Result = 0);
385      end if;
386   end Write_Lock;
387
388   ---------------
389   -- Read_Lock --
390   ---------------
391
392   procedure Read_Lock
393     (L                 : not null access Lock;
394      Ceiling_Violation : out Boolean)
395   is
396   begin
397      Write_Lock (L, Ceiling_Violation);
398   end Read_Lock;
399
400   ------------
401   -- Unlock --
402   ------------
403
404   procedure Unlock (L : not null access Lock) is
405      Result : int;
406   begin
407      Result := semGive (L.Mutex);
408      pragma Assert (Result = 0);
409   end Unlock;
410
411   procedure Unlock
412     (L           : not null access RTS_Lock;
413      Global_Lock : Boolean := False)
414   is
415      Result : int;
416   begin
417      if not Single_Lock or else Global_Lock then
418         Result := semGive (L.Mutex);
419         pragma Assert (Result = 0);
420      end if;
421   end Unlock;
422
423   procedure Unlock (T : Task_Id) is
424      Result : int;
425   begin
426      if not Single_Lock then
427         Result := semGive (T.Common.LL.L.Mutex);
428         pragma Assert (Result = 0);
429      end if;
430   end Unlock;
431
432   -----------------
433   -- Set_Ceiling --
434   -----------------
435
436   --  Dynamic priority ceilings are not supported by the underlying system
437
438   procedure Set_Ceiling
439     (L    : not null access Lock;
440      Prio : System.Any_Priority)
441   is
442      pragma Unreferenced (L, Prio);
443   begin
444      null;
445   end Set_Ceiling;
446
447   -----------
448   -- Sleep --
449   -----------
450
451   procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
452      pragma Unreferenced (Reason);
453
454      Result : int;
455
456   begin
457      pragma Assert (Self_ID = Self);
458
459      --  Release the mutex before sleeping
460
461      Result :=
462        semGive (if Single_Lock
463                 then Single_RTS_Lock.Mutex
464                 else Self_ID.Common.LL.L.Mutex);
465      pragma Assert (Result = 0);
466
467      --  Perform a blocking operation to take the CV semaphore. Note that a
468      --  blocking operation in VxWorks will reenable task scheduling. When we
469      --  are no longer blocked and control is returned, task scheduling will
470      --  again be disabled.
471
472      Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
473      pragma Assert (Result = 0);
474
475      --  Take the mutex back
476
477      Result :=
478        semTake ((if Single_Lock
479                  then Single_RTS_Lock.Mutex
480                  else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
481      pragma Assert (Result = 0);
482   end Sleep;
483
484   -----------------
485   -- Timed_Sleep --
486   -----------------
487
488   --  This is for use within the run-time system, so abort is assumed to be
489   --  already deferred, and the caller should be holding its own ATCB lock.
490
491   procedure Timed_Sleep
492     (Self_ID  : Task_Id;
493      Time     : Duration;
494      Mode     : ST.Delay_Modes;
495      Reason   : System.Tasking.Task_States;
496      Timedout : out Boolean;
497      Yielded  : out Boolean)
498   is
499      pragma Unreferenced (Reason);
500
501      Orig     : constant Duration := Monotonic_Clock;
502      Absolute : Duration;
503      Ticks    : int;
504      Result   : int;
505      Wakeup   : Boolean := False;
506
507   begin
508      Timedout := False;
509      Yielded  := True;
510
511      if Mode = Relative then
512         Absolute := Orig + Time;
513
514         --  Systematically add one since the first tick will delay *at most*
515         --  1 / Rate_Duration seconds, so we need to add one to be on the
516         --  safe side.
517
518         Ticks := To_Clock_Ticks (Time);
519
520         if Ticks > 0 and then Ticks < int'Last then
521            Ticks := Ticks + 1;
522         end if;
523
524      else
525         Absolute := Time;
526         Ticks    := To_Clock_Ticks (Time - Monotonic_Clock);
527      end if;
528
529      if Ticks > 0 then
530         loop
531            --  Release the mutex before sleeping
532
533            Result :=
534              semGive (if Single_Lock
535                       then Single_RTS_Lock.Mutex
536                       else Self_ID.Common.LL.L.Mutex);
537            pragma Assert (Result = 0);
538
539            --  Perform a blocking operation to take the CV semaphore. Note
540            --  that a blocking operation in VxWorks will reenable task
541            --  scheduling. When we are no longer blocked and control is
542            --  returned, task scheduling will again be disabled.
543
544            Result := semTake (Self_ID.Common.LL.CV, Ticks);
545
546            if Result = 0 then
547
548               --  Somebody may have called Wakeup for us
549
550               Wakeup := True;
551
552            else
553               if errno /= S_objLib_OBJ_TIMEOUT then
554                  Wakeup := True;
555
556               else
557                  --  If Ticks = int'last, it was most probably truncated so
558                  --  let's make another round after recomputing Ticks from
559                  --  the absolute time.
560
561                  if Ticks /= int'Last then
562                     Timedout := True;
563
564                  else
565                     Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
566
567                     if Ticks < 0 then
568                        Timedout := True;
569                     end if;
570                  end if;
571               end if;
572            end if;
573
574            --  Take the mutex back
575
576            Result :=
577              semTake ((if Single_Lock
578                        then Single_RTS_Lock.Mutex
579                        else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
580            pragma Assert (Result = 0);
581
582            exit when Timedout or Wakeup;
583         end loop;
584
585      else
586         Timedout := True;
587
588         --  Should never hold a lock while yielding
589
590         if Single_Lock then
591            Result := semGive (Single_RTS_Lock.Mutex);
592            taskDelay (0);
593            Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
594
595         else
596            Result := semGive (Self_ID.Common.LL.L.Mutex);
597            taskDelay (0);
598            Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
599         end if;
600      end if;
601   end Timed_Sleep;
602
603   -----------------
604   -- Timed_Delay --
605   -----------------
606
607   --  This is for use in implementing delay statements, so we assume the
608   --  caller is holding no locks.
609
610   procedure Timed_Delay
611     (Self_ID : Task_Id;
612      Time    : Duration;
613      Mode    : ST.Delay_Modes)
614   is
615      Orig     : constant Duration := Monotonic_Clock;
616      Absolute : Duration;
617      Ticks    : int;
618      Timedout : Boolean;
619      Aborted  : Boolean := False;
620
621      Result : int;
622      pragma Warnings (Off, Result);
623
624   begin
625      if Mode = Relative then
626         Absolute := Orig + Time;
627         Ticks    := To_Clock_Ticks (Time);
628
629         if Ticks > 0 and then Ticks < int'Last then
630
631            --  First tick will delay anytime between 0 and 1 / sysClkRateGet
632            --  seconds, so we need to add one to be on the safe side.
633
634            Ticks := Ticks + 1;
635         end if;
636
637      else
638         Absolute := Time;
639         Ticks    := To_Clock_Ticks (Time - Orig);
640      end if;
641
642      if Ticks > 0 then
643
644         --  Modifying State, locking the TCB
645
646         Result :=
647           semTake ((if Single_Lock
648                     then Single_RTS_Lock.Mutex
649                     else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
650
651         pragma Assert (Result = 0);
652
653         Self_ID.Common.State := Delay_Sleep;
654         Timedout := False;
655
656         loop
657            Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
658
659            --  Release the TCB before sleeping
660
661            Result :=
662              semGive (if Single_Lock
663                       then Single_RTS_Lock.Mutex
664                       else Self_ID.Common.LL.L.Mutex);
665            pragma Assert (Result = 0);
666
667            exit when Aborted;
668
669            Result := semTake (Self_ID.Common.LL.CV, Ticks);
670
671            if Result /= 0 then
672
673               --  If Ticks = int'last, it was most probably truncated
674               --  so let's make another round after recomputing Ticks
675               --  from the absolute time.
676
677               if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
678                  Timedout := True;
679               else
680                  Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
681
682                  if Ticks < 0 then
683                     Timedout := True;
684                  end if;
685               end if;
686            end if;
687
688            --  Take back the lock after having slept, to protect further
689            --  access to Self_ID.
690
691            Result :=
692              semTake
693                ((if Single_Lock
694                  then Single_RTS_Lock.Mutex
695                  else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
696
697            pragma Assert (Result = 0);
698
699            exit when Timedout;
700         end loop;
701
702         Self_ID.Common.State := Runnable;
703
704         Result :=
705           semGive
706             (if Single_Lock
707              then Single_RTS_Lock.Mutex
708              else Self_ID.Common.LL.L.Mutex);
709
710      else
711         taskDelay (0);
712      end if;
713   end Timed_Delay;
714
715   ---------------------
716   -- Monotonic_Clock --
717   ---------------------
718
719   function Monotonic_Clock return Duration is
720      TS     : aliased timespec;
721      Result : int;
722   begin
723      Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
724      pragma Assert (Result = 0);
725      return To_Duration (TS);
726   end Monotonic_Clock;
727
728   -------------------
729   -- RT_Resolution --
730   -------------------
731
732   function RT_Resolution return Duration is
733   begin
734      return 1.0 / Duration (sysClkRateGet);
735   end RT_Resolution;
736
737   ------------
738   -- Wakeup --
739   ------------
740
741   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
742      pragma Unreferenced (Reason);
743      Result : int;
744   begin
745      Result := semGive (T.Common.LL.CV);
746      pragma Assert (Result = 0);
747   end Wakeup;
748
749   -----------
750   -- Yield --
751   -----------
752
753   procedure Yield (Do_Yield : Boolean := True) is
754      pragma Unreferenced (Do_Yield);
755      Result : int;
756      pragma Unreferenced (Result);
757   begin
758      Result := taskDelay (0);
759   end Yield;
760
761   ------------------
762   -- Set_Priority --
763   ------------------
764
765   procedure Set_Priority
766     (T                   : Task_Id;
767      Prio                : System.Any_Priority;
768      Loss_Of_Inheritance : Boolean := False)
769   is
770      pragma Unreferenced (Loss_Of_Inheritance);
771
772      Result     : int;
773
774   begin
775      Result :=
776        taskPrioritySet
777          (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
778      pragma Assert (Result = 0);
779
780      --  Note: in VxWorks 6.6 (or earlier), the task is placed at the end of
781      --  the priority queue instead of the head. This is not the behavior
782      --  required by Annex D (RM D.2.3(5/2)), but we consider it an acceptable
783      --  variation (RM 1.1.3(6)), given this is the built-in behavior of the
784      --  operating system. VxWorks versions starting from 6.7 implement the
785      --  required Annex D semantics.
786
787      --  In older versions we attempted to better approximate the Annex D
788      --  required behavior, but this simulation was not entirely accurate,
789      --  and it seems better to live with the standard VxWorks semantics.
790
791      T.Common.Current_Priority := Prio;
792   end Set_Priority;
793
794   ------------------
795   -- Get_Priority --
796   ------------------
797
798   function Get_Priority (T : Task_Id) return System.Any_Priority is
799   begin
800      return T.Common.Current_Priority;
801   end Get_Priority;
802
803   ----------------
804   -- Enter_Task --
805   ----------------
806
807   procedure Enter_Task (Self_ID : Task_Id) is
808   begin
809      --  Store the user-level task id in the Thread field (to be used
810      --  internally by the run-time system) and the kernel-level task id in
811      --  the LWP field (to be used by the debugger).
812
813      Self_ID.Common.LL.Thread := taskIdSelf;
814      Self_ID.Common.LL.LWP := getpid;
815
816      Specific.Set (Self_ID);
817
818      --  Properly initializes the FPU for PPC/MIPS systems
819
820      System.Float_Control.Reset;
821
822      --  Install the signal handlers
823
824      --  This is called for each task since there is no signal inheritance
825      --  between VxWorks tasks.
826
827      Install_Signal_Handlers;
828
829      --  If stack checking is enabled, set the stack limit for this task
830
831      if Set_Stack_Limit_Hook /= null then
832         Set_Stack_Limit_Hook.all;
833      end if;
834   end Enter_Task;
835
836   -------------------
837   -- Is_Valid_Task --
838   -------------------
839
840   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
841
842   -----------------------------
843   -- Register_Foreign_Thread --
844   -----------------------------
845
846   function Register_Foreign_Thread return Task_Id is
847   begin
848      if Is_Valid_Task then
849         return Self;
850      else
851         return Register_Foreign_Thread (taskIdSelf);
852      end if;
853   end Register_Foreign_Thread;
854
855   --------------------
856   -- Initialize_TCB --
857   --------------------
858
859   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
860   begin
861      Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
862      Self_ID.Common.LL.Thread := Null_Thread_Id;
863
864      if Self_ID.Common.LL.CV = 0 then
865         Succeeded := False;
866
867      else
868         Succeeded := True;
869
870         if not Single_Lock then
871            Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
872         end if;
873      end if;
874   end Initialize_TCB;
875
876   -----------------
877   -- Create_Task --
878   -----------------
879
880   procedure Create_Task
881     (T          : Task_Id;
882      Wrapper    : System.Address;
883      Stack_Size : System.Parameters.Size_Type;
884      Priority   : System.Any_Priority;
885      Succeeded  : out Boolean)
886   is
887      Adjusted_Stack_Size : size_t;
888
889      use type System.Multiprocessors.CPU_Range;
890
891   begin
892      --  Check whether both Dispatching_Domain and CPU are specified for the
893      --  task, and the CPU value is not contained within the range of
894      --  processors for the domain.
895
896      if T.Common.Domain /= null
897        and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
898        and then
899          (T.Common.Base_CPU not in T.Common.Domain'Range
900            or else not T.Common.Domain (T.Common.Base_CPU))
901      then
902         Succeeded := False;
903         return;
904      end if;
905
906      --  Ask for four extra bytes of stack space so that the ATCB pointer can
907      --  be stored below the stack limit, plus extra space for the frame of
908      --  Task_Wrapper. This is so the user gets the amount of stack requested
909      --  exclusive of the needs.
910
911      --  We also have to allocate n more bytes for the task name storage and
912      --  enough space for the Wind Task Control Block which is around 0x778
913      --  bytes. VxWorks also seems to carve out additional space, so use 2048
914      --  as a nice round number. We might want to increment to the nearest
915      --  page size in case we ever support VxVMI.
916
917      --  ??? - we should come back and visit this so we can set the task name
918      --        to something appropriate.
919
920      Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
921
922      --  Since the initial signal mask of a thread is inherited from the
923      --  creator, and the Environment task has all its signals masked, we do
924      --  not need to manipulate caller's signal mask at this point. All tasks
925      --  in RTS will have All_Tasks_Mask initially.
926
927      --  We now compute the VxWorks task name and options, then spawn ...
928
929      declare
930         Name         : aliased String (1 .. T.Common.Task_Image_Len + 1);
931         Name_Address : System.Address;
932         --  Task name we are going to hand down to VxWorks
933
934         function Get_Task_Options return int;
935         pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
936         --  Function that returns the options to be set for the task that we
937         --  are creating. We fetch the options assigned to the current task,
938         --  so offering some user level control over the options for a task
939         --  hierarchy, and force VX_FP_TASK because it is almost always
940         --  required.
941
942      begin
943         --  If there is no Ada task name handy, let VxWorks choose one.
944         --  Otherwise, tell VxWorks what the Ada task name is.
945
946         if T.Common.Task_Image_Len = 0 then
947            Name_Address := System.Null_Address;
948         else
949            Name (1 .. Name'Last - 1) :=
950              T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
951            Name (Name'Last) := ASCII.NUL;
952            Name_Address := Name'Address;
953         end if;
954
955         --  Now spawn the VxWorks task for real
956
957         T.Common.LL.Thread :=
958           taskSpawn
959             (Name_Address,
960              To_VxWorks_Priority (int (Priority)),
961              Get_Task_Options,
962              Adjusted_Stack_Size,
963              Wrapper,
964              To_Address (T));
965      end;
966
967      --  Set processor affinity
968
969      Set_Task_Affinity (T);
970
971      if T.Common.LL.Thread <= Null_Thread_Id then
972         Succeeded := False;
973      else
974         Succeeded := True;
975         Task_Creation_Hook (T.Common.LL.Thread);
976         Set_Priority (T, Priority);
977      end if;
978   end Create_Task;
979
980   ------------------
981   -- Finalize_TCB --
982   ------------------
983
984   procedure Finalize_TCB (T : Task_Id) is
985      Result : int;
986
987   begin
988      if not Single_Lock then
989         Result := semDelete (T.Common.LL.L.Mutex);
990         pragma Assert (Result = 0);
991      end if;
992
993      T.Common.LL.Thread := Null_Thread_Id;
994
995      Result := semDelete (T.Common.LL.CV);
996      pragma Assert (Result = 0);
997
998      if T.Known_Tasks_Index /= -1 then
999         Known_Tasks (T.Known_Tasks_Index) := null;
1000      end if;
1001
1002      ATCB_Allocation.Free_ATCB (T);
1003   end Finalize_TCB;
1004
1005   ---------------
1006   -- Exit_Task --
1007   ---------------
1008
1009   procedure Exit_Task is
1010   begin
1011      Specific.Set (null);
1012   end Exit_Task;
1013
1014   ----------------
1015   -- Abort_Task --
1016   ----------------
1017
1018   procedure Abort_Task (T : Task_Id) is
1019      Result : int;
1020   begin
1021      Result :=
1022        kill
1023          (T.Common.LL.Thread,
1024           Signal (Interrupt_Management.Abort_Task_Interrupt));
1025      pragma Assert (Result = 0);
1026   end Abort_Task;
1027
1028   ----------------
1029   -- Initialize --
1030   ----------------
1031
1032   procedure Initialize (S : in out Suspension_Object) is
1033   begin
1034      --  Initialize internal state (always to False (RM D.10(6)))
1035
1036      S.State := False;
1037      S.Waiting := False;
1038
1039      --  Initialize internal mutex
1040
1041      --  Use simpler binary semaphore instead of VxWorks
1042      --  mutual exclusion semaphore, because we don't need
1043      --  the fancier semantics and their overhead.
1044
1045      S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
1046
1047      --  Initialize internal condition variable
1048
1049      S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
1050   end Initialize;
1051
1052   --------------
1053   -- Finalize --
1054   --------------
1055
1056   procedure Finalize (S : in out Suspension_Object) is
1057      pragma Unmodified (S);
1058      --  S may be modified on other targets, but not on VxWorks
1059
1060      Result : STATUS;
1061
1062   begin
1063      --  Destroy internal mutex
1064
1065      Result := semDelete (S.L);
1066      pragma Assert (Result = OK);
1067
1068      --  Destroy internal condition variable
1069
1070      Result := semDelete (S.CV);
1071      pragma Assert (Result = OK);
1072   end Finalize;
1073
1074   -------------------
1075   -- Current_State --
1076   -------------------
1077
1078   function Current_State (S : Suspension_Object) return Boolean is
1079   begin
1080      --  We do not want to use lock on this read operation. State is marked
1081      --  as Atomic so that we ensure that the value retrieved is correct.
1082
1083      return S.State;
1084   end Current_State;
1085
1086   ---------------
1087   -- Set_False --
1088   ---------------
1089
1090   procedure Set_False (S : in out Suspension_Object) is
1091      Result : STATUS;
1092
1093   begin
1094      SSL.Abort_Defer.all;
1095
1096      Result := semTake (S.L, WAIT_FOREVER);
1097      pragma Assert (Result = OK);
1098
1099      S.State := False;
1100
1101      Result := semGive (S.L);
1102      pragma Assert (Result = OK);
1103
1104      SSL.Abort_Undefer.all;
1105   end Set_False;
1106
1107   --------------
1108   -- Set_True --
1109   --------------
1110
1111   procedure Set_True (S : in out Suspension_Object) is
1112      Result : STATUS;
1113
1114   begin
1115      --  Set_True can be called from an interrupt context, in which case
1116      --  Abort_Defer is undefined.
1117
1118      if Is_Task_Context then
1119         SSL.Abort_Defer.all;
1120      end if;
1121
1122      Result := semTake (S.L, WAIT_FOREVER);
1123      pragma Assert (Result = OK);
1124
1125      --  If there is already a task waiting on this suspension object then
1126      --  we resume it, leaving the state of the suspension object to False,
1127      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1128      --  the state to True.
1129
1130      if S.Waiting then
1131         S.Waiting := False;
1132         S.State := False;
1133
1134         Result := semGive (S.CV);
1135         pragma Assert (Result = OK);
1136      else
1137         S.State := True;
1138      end if;
1139
1140      Result := semGive (S.L);
1141      pragma Assert (Result = OK);
1142
1143      --  Set_True can be called from an interrupt context, in which case
1144      --  Abort_Undefer is undefined.
1145
1146      if Is_Task_Context then
1147         SSL.Abort_Undefer.all;
1148      end if;
1149
1150   end Set_True;
1151
1152   ------------------------
1153   -- Suspend_Until_True --
1154   ------------------------
1155
1156   procedure Suspend_Until_True (S : in out Suspension_Object) is
1157      Result : STATUS;
1158
1159   begin
1160      SSL.Abort_Defer.all;
1161
1162      Result := semTake (S.L, WAIT_FOREVER);
1163
1164      if S.Waiting then
1165
1166         --  Program_Error must be raised upon calling Suspend_Until_True
1167         --  if another task is already waiting on that suspension object
1168         --  (ARM D.10 par. 10).
1169
1170         Result := semGive (S.L);
1171         pragma Assert (Result = OK);
1172
1173         SSL.Abort_Undefer.all;
1174
1175         raise Program_Error;
1176
1177      else
1178         --  Suspend the task if the state is False. Otherwise, the task
1179         --  continues its execution, and the state of the suspension object
1180         --  is set to False (ARM D.10 par. 9).
1181
1182         if S.State then
1183            S.State := False;
1184
1185            Result := semGive (S.L);
1186            pragma Assert (Result = 0);
1187
1188            SSL.Abort_Undefer.all;
1189
1190         else
1191            S.Waiting := True;
1192
1193            --  Release the mutex before sleeping
1194
1195            Result := semGive (S.L);
1196            pragma Assert (Result = OK);
1197
1198            SSL.Abort_Undefer.all;
1199
1200            Result := semTake (S.CV, WAIT_FOREVER);
1201            pragma Assert (Result = 0);
1202         end if;
1203      end if;
1204   end Suspend_Until_True;
1205
1206   ----------------
1207   -- Check_Exit --
1208   ----------------
1209
1210   --  Dummy version
1211
1212   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1213      pragma Unreferenced (Self_ID);
1214   begin
1215      return True;
1216   end Check_Exit;
1217
1218   --------------------
1219   -- Check_No_Locks --
1220   --------------------
1221
1222   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1223      pragma Unreferenced (Self_ID);
1224   begin
1225      return True;
1226   end Check_No_Locks;
1227
1228   ----------------------
1229   -- Environment_Task --
1230   ----------------------
1231
1232   function Environment_Task return Task_Id is
1233   begin
1234      return Environment_Task_Id;
1235   end Environment_Task;
1236
1237   --------------
1238   -- Lock_RTS --
1239   --------------
1240
1241   procedure Lock_RTS is
1242   begin
1243      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1244   end Lock_RTS;
1245
1246   ----------------
1247   -- Unlock_RTS --
1248   ----------------
1249
1250   procedure Unlock_RTS is
1251   begin
1252      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1253   end Unlock_RTS;
1254
1255   ------------------
1256   -- Suspend_Task --
1257   ------------------
1258
1259   function Suspend_Task
1260     (T           : ST.Task_Id;
1261      Thread_Self : Thread_Id) return Boolean
1262   is
1263   begin
1264      if T.Common.LL.Thread /= Null_Thread_Id
1265        and then T.Common.LL.Thread /= Thread_Self
1266      then
1267         return taskSuspend (T.Common.LL.Thread) = 0;
1268      else
1269         return True;
1270      end if;
1271   end Suspend_Task;
1272
1273   -----------------
1274   -- Resume_Task --
1275   -----------------
1276
1277   function Resume_Task
1278     (T           : ST.Task_Id;
1279      Thread_Self : Thread_Id) return Boolean
1280   is
1281   begin
1282      if T.Common.LL.Thread /= Null_Thread_Id
1283        and then T.Common.LL.Thread /= Thread_Self
1284      then
1285         return taskResume (T.Common.LL.Thread) = 0;
1286      else
1287         return True;
1288      end if;
1289   end Resume_Task;
1290
1291   --------------------
1292   -- Stop_All_Tasks --
1293   --------------------
1294
1295   procedure Stop_All_Tasks
1296   is
1297      Thread_Self : constant Thread_Id := taskIdSelf;
1298      C           : Task_Id;
1299
1300      Dummy : int;
1301      pragma Unreferenced (Dummy);
1302
1303   begin
1304      Dummy := Int_Lock;
1305
1306      C := All_Tasks_List;
1307      while C /= null loop
1308         if C.Common.LL.Thread /= Null_Thread_Id
1309           and then C.Common.LL.Thread /= Thread_Self
1310         then
1311            Dummy := Task_Stop (C.Common.LL.Thread);
1312         end if;
1313
1314         C := C.Common.All_Tasks_Link;
1315      end loop;
1316
1317      Dummy := Int_Unlock;
1318   end Stop_All_Tasks;
1319
1320   ---------------
1321   -- Stop_Task --
1322   ---------------
1323
1324   function Stop_Task (T : ST.Task_Id) return Boolean is
1325   begin
1326      if T.Common.LL.Thread /= Null_Thread_Id then
1327         return Task_Stop (T.Common.LL.Thread) = 0;
1328      else
1329         return True;
1330      end if;
1331   end Stop_Task;
1332
1333   -------------------
1334   -- Continue_Task --
1335   -------------------
1336
1337   function Continue_Task (T : ST.Task_Id) return Boolean
1338   is
1339   begin
1340      if T.Common.LL.Thread /= Null_Thread_Id then
1341         return Task_Cont (T.Common.LL.Thread) = 0;
1342      else
1343         return True;
1344      end if;
1345   end Continue_Task;
1346
1347   ---------------------
1348   -- Is_Task_Context --
1349   ---------------------
1350
1351   function Is_Task_Context return Boolean is
1352   begin
1353      return System.OS_Interface.Interrupt_Context /= 1;
1354   end Is_Task_Context;
1355
1356   ----------------
1357   -- Initialize --
1358   ----------------
1359
1360   procedure Initialize (Environment_Task : Task_Id) is
1361      Result : int;
1362      pragma Unreferenced (Result);
1363
1364   begin
1365      Environment_Task_Id := Environment_Task;
1366
1367      Interrupt_Management.Initialize;
1368      Specific.Initialize;
1369
1370      if Locking_Policy = 'C' then
1371         Mutex_Protocol := Prio_Protect;
1372      elsif Locking_Policy = 'I' then
1373         Mutex_Protocol := Prio_Inherit;
1374      else
1375         Mutex_Protocol := Prio_None;
1376      end if;
1377
1378      if Time_Slice_Val > 0 then
1379         Result :=
1380           Set_Time_Slice
1381             (To_Clock_Ticks
1382                (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
1383
1384      elsif Dispatching_Policy = 'R' then
1385         Result := Set_Time_Slice (To_Clock_Ticks (0.01));
1386
1387      end if;
1388
1389      --  Initialize the lock used to synchronize chain of all ATCBs
1390
1391      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1392
1393      --  Make environment task known here because it doesn't go through
1394      --  Activate_Tasks, which does it for all other tasks.
1395
1396      Known_Tasks (Known_Tasks'First) := Environment_Task;
1397      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1398
1399      Enter_Task (Environment_Task);
1400
1401      --  Set processor affinity
1402
1403      Set_Task_Affinity (Environment_Task);
1404   end Initialize;
1405
1406   -----------------------
1407   -- Set_Task_Affinity --
1408   -----------------------
1409
1410   procedure Set_Task_Affinity (T : ST.Task_Id) is
1411      Result : int := 0;
1412      pragma Unreferenced (Result);
1413
1414      use System.Task_Info;
1415      use type System.Multiprocessors.CPU_Range;
1416
1417   begin
1418      --  Do nothing if the underlying thread has not yet been created. If the
1419      --  thread has not yet been created then the proper affinity will be set
1420      --  during its creation.
1421
1422      if T.Common.LL.Thread = Null_Thread_Id then
1423         null;
1424
1425      --  pragma CPU
1426
1427      elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1428
1429         --  Ada 2012 pragma CPU uses CPU numbers starting from 1, while on
1430         --  VxWorks the first CPU is identified by a 0, so we need to adjust.
1431
1432         Result :=
1433           taskCpuAffinitySet
1434             (T.Common.LL.Thread, int (T.Common.Base_CPU) - 1);
1435
1436      --  Task_Info
1437
1438      elsif T.Common.Task_Info /= Unspecified_Task_Info then
1439         Result := taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info);
1440
1441      --  Handle dispatching domains
1442
1443      elsif T.Common.Domain /= null
1444        and then (T.Common.Domain /= ST.System_Domain
1445                   or else T.Common.Domain.all /=
1446                             (Multiprocessors.CPU'First ..
1447                              Multiprocessors.Number_Of_CPUs => True))
1448      then
1449         declare
1450            CPU_Set : unsigned := 0;
1451
1452         begin
1453            --  Set the affinity to all the processors belonging to the
1454            --  dispatching domain.
1455
1456            for Proc in T.Common.Domain'Range loop
1457               if T.Common.Domain (Proc) then
1458
1459                  --  The thread affinity mask is a bit vector in which each
1460                  --  bit represents a logical processor.
1461
1462                  CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
1463               end if;
1464            end loop;
1465
1466            Result := taskMaskAffinitySet (T.Common.LL.Thread, CPU_Set);
1467         end;
1468      end if;
1469   end Set_Task_Affinity;
1470
1471end System.Task_Primitives.Operations;
1472