1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ T Y P E                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2013, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Alloc;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Nlists;   use Nlists;
32with Errout;   use Errout;
33with Lib;      use Lib;
34with Namet;    use Namet;
35with Opt;      use Opt;
36with Output;   use Output;
37with Sem;      use Sem;
38with Sem_Aux;  use Sem_Aux;
39with Sem_Ch6;  use Sem_Ch6;
40with Sem_Ch8;  use Sem_Ch8;
41with Sem_Ch12; use Sem_Ch12;
42with Sem_Disp; use Sem_Disp;
43with Sem_Dist; use Sem_Dist;
44with Sem_Util; use Sem_Util;
45with Stand;    use Stand;
46with Sinfo;    use Sinfo;
47with Snames;   use Snames;
48with Table;
49with Treepr;   use Treepr;
50with Uintp;    use Uintp;
51
52package body Sem_Type is
53
54   ---------------------
55   -- Data Structures --
56   ---------------------
57
58   --  The following data structures establish a mapping between nodes and
59   --  their interpretations. An overloaded node has an entry in Interp_Map,
60   --  which in turn contains a pointer into the All_Interp array. The
61   --  interpretations of a given node are contiguous in All_Interp. Each set
62   --  of interpretations is terminated with the marker No_Interp. In order to
63   --  speed up the retrieval of the interpretations of an overloaded node, the
64   --  Interp_Map table is accessed by means of a simple hashing scheme, and
65   --  the entries in Interp_Map are chained. The heads of clash lists are
66   --  stored in array Headers.
67
68   --              Headers        Interp_Map          All_Interp
69
70   --                 _            +-----+             +--------+
71   --                |_|           |_____|         --->|interp1 |
72   --                |_|---------->|node |         |   |interp2 |
73   --                |_|           |index|---------|   |nointerp|
74   --                |_|           |next |             |        |
75   --                              |-----|             |        |
76   --                              +-----+             +--------+
77
78   --  This scheme does not currently reclaim interpretations. In principle,
79   --  after a unit is compiled, all overloadings have been resolved, and the
80   --  candidate interpretations should be deleted. This should be easier
81   --  now than with the previous scheme???
82
83   package All_Interp is new Table.Table (
84     Table_Component_Type => Interp,
85     Table_Index_Type     => Interp_Index,
86     Table_Low_Bound      => 0,
87     Table_Initial        => Alloc.All_Interp_Initial,
88     Table_Increment      => Alloc.All_Interp_Increment,
89     Table_Name           => "All_Interp");
90
91   type Interp_Ref is record
92      Node  : Node_Id;
93      Index : Interp_Index;
94      Next  : Int;
95   end record;
96
97   Header_Size : constant Int := 2 ** 12;
98   No_Entry    : constant Int := -1;
99   Headers     : array (0 .. Header_Size) of Int := (others => No_Entry);
100
101   package Interp_Map is new Table.Table (
102     Table_Component_Type => Interp_Ref,
103     Table_Index_Type     => Int,
104     Table_Low_Bound      => 0,
105     Table_Initial        => Alloc.Interp_Map_Initial,
106     Table_Increment      => Alloc.Interp_Map_Increment,
107     Table_Name           => "Interp_Map");
108
109   function Hash (N : Node_Id) return Int;
110   --  A trivial hashing function for nodes, used to insert an overloaded
111   --  node into the Interp_Map table.
112
113   -------------------------------------
114   -- Handling of Overload Resolution --
115   -------------------------------------
116
117   --  Overload resolution uses two passes over the syntax tree of a complete
118   --  context. In the first, bottom-up pass, the types of actuals in calls
119   --  are used to resolve possibly overloaded subprogram and operator names.
120   --  In the second top-down pass, the type of the context (for example the
121   --  condition in a while statement) is used to resolve a possibly ambiguous
122   --  call, and the unique subprogram name in turn imposes a specific context
123   --  on each of its actuals.
124
125   --  Most expressions are in fact unambiguous, and the bottom-up pass is
126   --  sufficient  to resolve most everything. To simplify the common case,
127   --  names and expressions carry a flag Is_Overloaded to indicate whether
128   --  they have more than one interpretation. If the flag is off, then each
129   --  name has already a unique meaning and type, and the bottom-up pass is
130   --  sufficient (and much simpler).
131
132   --------------------------
133   -- Operator Overloading --
134   --------------------------
135
136   --  The visibility of operators is handled differently from that of other
137   --  entities. We do not introduce explicit versions of primitive operators
138   --  for each type definition. As a result, there is only one entity
139   --  corresponding to predefined addition on all numeric types, etc. The
140   --  back-end resolves predefined operators according to their type. The
141   --  visibility of primitive operations then reduces to the visibility of the
142   --  resulting type: (a + b) is a legal interpretation of some primitive
143   --  operator + if the type of the result (which must also be the type of a
144   --  and b) is directly visible (either immediately visible or use-visible).
145
146   --  User-defined operators are treated like other functions, but the
147   --  visibility of these user-defined operations must be special-cased
148   --  to determine whether they hide or are hidden by predefined operators.
149   --  The form P."+" (x, y) requires additional handling.
150
151   --  Concatenation is treated more conventionally: for every one-dimensional
152   --  array type we introduce a explicit concatenation operator. This is
153   --  necessary to handle the case of (element & element => array) which
154   --  cannot be handled conveniently if there is no explicit instance of
155   --  resulting type of the operation.
156
157   -----------------------
158   -- Local Subprograms --
159   -----------------------
160
161   procedure All_Overloads;
162   pragma Warnings (Off, All_Overloads);
163   --  Debugging procedure: list full contents of Overloads table
164
165   function Binary_Op_Interp_Has_Abstract_Op
166     (N : Node_Id;
167      E : Entity_Id) return Entity_Id;
168   --  Given the node and entity of a binary operator, determine whether the
169   --  actuals of E contain an abstract interpretation with regards to the
170   --  types of their corresponding formals. Return the abstract operation or
171   --  Empty.
172
173   function Function_Interp_Has_Abstract_Op
174     (N : Node_Id;
175      E : Entity_Id) return Entity_Id;
176   --  Given the node and entity of a function call, determine whether the
177   --  actuals of E contain an abstract interpretation with regards to the
178   --  types of their corresponding formals. Return the abstract operation or
179   --  Empty.
180
181   function Has_Abstract_Op
182     (N   : Node_Id;
183      Typ : Entity_Id) return Entity_Id;
184   --  Subsidiary routine to Binary_Op_Interp_Has_Abstract_Op and Function_
185   --  Interp_Has_Abstract_Op. Determine whether an overloaded node has an
186   --  abstract interpretation which yields type Typ.
187
188   procedure New_Interps (N : Node_Id);
189   --  Initialize collection of interpretations for the given node, which is
190   --  either an overloaded entity, or an operation whose arguments have
191   --  multiple interpretations. Interpretations can be added to only one
192   --  node at a time.
193
194   function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id;
195   --  If Typ_1 and Typ_2 are compatible, return the one that is not universal
196   --  or is not a "class" type (any_character, etc).
197
198   --------------------
199   -- Add_One_Interp --
200   --------------------
201
202   procedure Add_One_Interp
203     (N         : Node_Id;
204      E         : Entity_Id;
205      T         : Entity_Id;
206      Opnd_Type : Entity_Id := Empty)
207   is
208      Vis_Type : Entity_Id;
209
210      procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id);
211      --  Add one interpretation to an overloaded node. Add a new entry if
212      --  not hidden by previous one, and remove previous one if hidden by
213      --  new one.
214
215      function Is_Universal_Operation (Op : Entity_Id) return Boolean;
216      --  True if the entity is a predefined operator and the operands have
217      --  a universal Interpretation.
218
219      ---------------
220      -- Add_Entry --
221      ---------------
222
223      procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id) is
224         Abstr_Op : Entity_Id := Empty;
225         I        : Interp_Index;
226         It       : Interp;
227
228      --  Start of processing for Add_Entry
229
230      begin
231         --  Find out whether the new entry references interpretations that
232         --  are abstract or disabled by abstract operators.
233
234         if Ada_Version >= Ada_2005 then
235            if Nkind (N) in N_Binary_Op then
236               Abstr_Op := Binary_Op_Interp_Has_Abstract_Op (N, Name);
237            elsif Nkind (N) = N_Function_Call then
238               Abstr_Op := Function_Interp_Has_Abstract_Op (N, Name);
239            end if;
240         end if;
241
242         Get_First_Interp (N, I, It);
243         while Present (It.Nam) loop
244
245            --  A user-defined subprogram hides another declared at an outer
246            --  level, or one that is use-visible. So return if previous
247            --  definition hides new one (which is either in an outer
248            --  scope, or use-visible). Note that for functions use-visible
249            --  is the same as potentially use-visible. If new one hides
250            --  previous one, replace entry in table of interpretations.
251            --  If this is a universal operation, retain the operator in case
252            --  preference rule applies.
253
254            if (((Ekind (Name) = E_Function or else Ekind (Name) = E_Procedure)
255                   and then Ekind (Name) = Ekind (It.Nam))
256                 or else (Ekind (Name) = E_Operator
257                           and then Ekind (It.Nam) = E_Function))
258              and then Is_Immediately_Visible (It.Nam)
259              and then Type_Conformant (Name, It.Nam)
260              and then Base_Type (It.Typ) = Base_Type (T)
261            then
262               if Is_Universal_Operation (Name) then
263                  exit;
264
265               --  If node is an operator symbol, we have no actuals with
266               --  which to check hiding, and this is done in full in the
267               --  caller (Analyze_Subprogram_Renaming) so we include the
268               --  predefined operator in any case.
269
270               elsif Nkind (N) = N_Operator_Symbol
271                 or else
272                   (Nkind (N) = N_Expanded_Name
273                     and then Nkind (Selector_Name (N)) = N_Operator_Symbol)
274               then
275                  exit;
276
277               elsif not In_Open_Scopes (Scope (Name))
278                 or else Scope_Depth (Scope (Name)) <=
279                         Scope_Depth (Scope (It.Nam))
280               then
281                  --  If ambiguity within instance, and entity is not an
282                  --  implicit operation, save for later disambiguation.
283
284                  if Scope (Name) = Scope (It.Nam)
285                    and then not Is_Inherited_Operation (Name)
286                    and then In_Instance
287                  then
288                     exit;
289                  else
290                     return;
291                  end if;
292
293               else
294                  All_Interp.Table (I).Nam := Name;
295                  return;
296               end if;
297
298            --  Avoid making duplicate entries in overloads
299
300            elsif Name = It.Nam
301              and then Base_Type (It.Typ) = Base_Type (T)
302            then
303               return;
304
305            --  Otherwise keep going
306
307            else
308               Get_Next_Interp (I, It);
309            end if;
310
311         end loop;
312
313         All_Interp.Table (All_Interp.Last) := (Name, Typ, Abstr_Op);
314         All_Interp.Append (No_Interp);
315      end Add_Entry;
316
317      ----------------------------
318      -- Is_Universal_Operation --
319      ----------------------------
320
321      function Is_Universal_Operation (Op : Entity_Id) return Boolean is
322         Arg : Node_Id;
323
324      begin
325         if Ekind (Op) /= E_Operator then
326            return False;
327
328         elsif Nkind (N) in N_Binary_Op then
329            return Present (Universal_Interpretation (Left_Opnd (N)))
330              and then Present (Universal_Interpretation (Right_Opnd (N)));
331
332         elsif Nkind (N) in N_Unary_Op then
333            return Present (Universal_Interpretation (Right_Opnd (N)));
334
335         elsif Nkind (N) = N_Function_Call then
336            Arg := First_Actual (N);
337            while Present (Arg) loop
338               if No (Universal_Interpretation (Arg)) then
339                  return False;
340               end if;
341
342               Next_Actual (Arg);
343            end loop;
344
345            return True;
346
347         else
348            return False;
349         end if;
350      end Is_Universal_Operation;
351
352   --  Start of processing for Add_One_Interp
353
354   begin
355      --  If the interpretation is a predefined operator, verify that the
356      --  result type is visible, or that the entity has already been
357      --  resolved (case of an instantiation node that refers to a predefined
358      --  operation, or an internally generated operator node, or an operator
359      --  given as an expanded name). If the operator is a comparison or
360      --  equality, it is the type of the operand that matters to determine
361      --  whether the operator is visible. In an instance, the check is not
362      --  performed, given that the operator was visible in the generic.
363
364      if Ekind (E) = E_Operator then
365         if Present (Opnd_Type) then
366            Vis_Type := Opnd_Type;
367         else
368            Vis_Type := Base_Type (T);
369         end if;
370
371         if In_Open_Scopes (Scope (Vis_Type))
372           or else Is_Potentially_Use_Visible (Vis_Type)
373           or else In_Use (Vis_Type)
374           or else (In_Use (Scope (Vis_Type))
375                     and then not Is_Hidden (Vis_Type))
376           or else Nkind (N) = N_Expanded_Name
377           or else (Nkind (N) in N_Op and then E = Entity (N))
378           or else In_Instance
379           or else Ekind (Vis_Type) = E_Anonymous_Access_Type
380         then
381            null;
382
383         --  If the node is given in functional notation and the prefix
384         --  is an expanded name, then the operator is visible if the
385         --  prefix is the scope of the result type as well. If the
386         --  operator is (implicitly) defined in an extension of system,
387         --  it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
388
389         elsif Nkind (N) = N_Function_Call
390           and then Nkind (Name (N)) = N_Expanded_Name
391           and then (Entity (Prefix (Name (N))) = Scope (Base_Type (T))
392                      or else Entity (Prefix (Name (N))) = Scope (Vis_Type)
393                      or else Scope (Vis_Type) = System_Aux_Id)
394         then
395            null;
396
397         --  Save type for subsequent error message, in case no other
398         --  interpretation is found.
399
400         else
401            Candidate_Type := Vis_Type;
402            return;
403         end if;
404
405      --  In an instance, an abstract non-dispatching operation cannot be a
406      --  candidate interpretation, because it could not have been one in the
407      --  generic (it may be a spurious overloading in the instance).
408
409      elsif In_Instance
410        and then Is_Overloadable (E)
411        and then Is_Abstract_Subprogram (E)
412        and then not Is_Dispatching_Operation (E)
413      then
414         return;
415
416      --  An inherited interface operation that is implemented by some derived
417      --  type does not participate in overload resolution, only the
418      --  implementation operation does.
419
420      elsif Is_Hidden (E)
421        and then Is_Subprogram (E)
422        and then Present (Interface_Alias (E))
423      then
424         --  Ada 2005 (AI-251): If this primitive operation corresponds with
425         --  an immediate ancestor interface there is no need to add it to the
426         --  list of interpretations. The corresponding aliased primitive is
427         --  also in this list of primitive operations and will be used instead
428         --  because otherwise we have a dummy ambiguity between the two
429         --  subprograms which are in fact the same.
430
431         if not Is_Ancestor
432                  (Find_Dispatching_Type (Interface_Alias (E)),
433                   Find_Dispatching_Type (E))
434         then
435            Add_One_Interp (N, Interface_Alias (E), T);
436         end if;
437
438         return;
439
440      --  Calling stubs for an RACW operation never participate in resolution,
441      --  they are executed only through dispatching calls.
442
443      elsif Is_RACW_Stub_Type_Operation (E) then
444         return;
445      end if;
446
447      --  If this is the first interpretation of N, N has type Any_Type.
448      --  In that case place the new type on the node. If one interpretation
449      --  already exists, indicate that the node is overloaded, and store
450      --  both the previous and the new interpretation in All_Interp. If
451      --  this is a later interpretation, just add it to the set.
452
453      if Etype (N) = Any_Type then
454         if Is_Type (E) then
455            Set_Etype (N, T);
456
457         else
458            --  Record both the operator or subprogram name, and its type
459
460            if Nkind (N) in N_Op or else Is_Entity_Name (N) then
461               Set_Entity (N, E);
462            end if;
463
464            Set_Etype (N, T);
465         end if;
466
467      --  Either there is no current interpretation in the table for any
468      --  node or the interpretation that is present is for a different
469      --  node. In both cases add a new interpretation to the table.
470
471      elsif Interp_Map.Last < 0
472        or else
473          (Interp_Map.Table (Interp_Map.Last).Node /= N
474            and then not Is_Overloaded (N))
475      then
476         New_Interps (N);
477
478         if (Nkind (N) in N_Op or else Is_Entity_Name (N))
479           and then Present (Entity (N))
480         then
481            Add_Entry (Entity (N), Etype (N));
482
483         elsif Nkind (N) in N_Subprogram_Call
484           and then Is_Entity_Name (Name (N))
485         then
486            Add_Entry (Entity (Name (N)), Etype (N));
487
488         --  If this is an indirect call there will be no name associated
489         --  with the previous entry. To make diagnostics clearer, save
490         --  Subprogram_Type of first interpretation, so that the error will
491         --  point to the anonymous access to subprogram, not to the result
492         --  type of the call itself.
493
494         elsif (Nkind (N)) = N_Function_Call
495           and then Nkind (Name (N)) = N_Explicit_Dereference
496           and then Is_Overloaded (Name (N))
497         then
498            declare
499               It : Interp;
500
501               Itn : Interp_Index;
502               pragma Warnings (Off, Itn);
503
504            begin
505               Get_First_Interp (Name (N), Itn, It);
506               Add_Entry (It.Nam, Etype (N));
507            end;
508
509         else
510            --  Overloaded prefix in indexed or selected component, or call
511            --  whose name is an expression or another call.
512
513            Add_Entry (Etype (N), Etype (N));
514         end if;
515
516         Add_Entry (E, T);
517
518      else
519         Add_Entry (E, T);
520      end if;
521   end Add_One_Interp;
522
523   -------------------
524   -- All_Overloads --
525   -------------------
526
527   procedure All_Overloads is
528   begin
529      for J in All_Interp.First .. All_Interp.Last loop
530
531         if Present (All_Interp.Table (J).Nam) then
532            Write_Entity_Info (All_Interp.Table (J). Nam, " ");
533         else
534            Write_Str ("No Interp");
535            Write_Eol;
536         end if;
537
538         Write_Str ("=================");
539         Write_Eol;
540      end loop;
541   end All_Overloads;
542
543   --------------------------------------
544   -- Binary_Op_Interp_Has_Abstract_Op --
545   --------------------------------------
546
547   function Binary_Op_Interp_Has_Abstract_Op
548     (N : Node_Id;
549      E : Entity_Id) return Entity_Id
550   is
551      Abstr_Op : Entity_Id;
552      E_Left   : constant Node_Id := First_Formal (E);
553      E_Right  : constant Node_Id := Next_Formal (E_Left);
554
555   begin
556      Abstr_Op := Has_Abstract_Op (Left_Opnd (N), Etype (E_Left));
557      if Present (Abstr_Op) then
558         return Abstr_Op;
559      end if;
560
561      return Has_Abstract_Op (Right_Opnd (N), Etype (E_Right));
562   end Binary_Op_Interp_Has_Abstract_Op;
563
564   ---------------------
565   -- Collect_Interps --
566   ---------------------
567
568   procedure Collect_Interps (N : Node_Id) is
569      Ent          : constant Entity_Id := Entity (N);
570      H            : Entity_Id;
571      First_Interp : Interp_Index;
572
573      function Within_Instance (E : Entity_Id) return Boolean;
574      --  Within an instance there can be spurious ambiguities between a local
575      --  entity and one declared outside of the instance. This can only happen
576      --  for subprograms, because otherwise the local entity hides the outer
577      --  one. For an overloadable entity, this predicate determines whether it
578      --  is a candidate within the instance, or must be ignored.
579
580      ---------------------
581      -- Within_Instance --
582      ---------------------
583
584      function Within_Instance (E : Entity_Id) return Boolean is
585         Inst : Entity_Id;
586         Scop : Entity_Id;
587
588      begin
589         if not In_Instance then
590            return False;
591         end if;
592
593         Inst := Current_Scope;
594         while Present (Inst) and then not Is_Generic_Instance (Inst) loop
595            Inst := Scope (Inst);
596         end loop;
597
598         Scop := Scope (E);
599         while Present (Scop) and then Scop /= Standard_Standard loop
600            if Scop = Inst then
601               return True;
602            end if;
603
604            Scop := Scope (Scop);
605         end loop;
606
607         return False;
608      end Within_Instance;
609
610   --  Start of processing for Collect_Interps
611
612   begin
613      New_Interps (N);
614
615      --  Unconditionally add the entity that was initially matched
616
617      First_Interp := All_Interp.Last;
618      Add_One_Interp (N, Ent, Etype (N));
619
620      --  For expanded name, pick up all additional entities from the
621      --  same scope, since these are obviously also visible. Note that
622      --  these are not necessarily contiguous on the homonym chain.
623
624      if Nkind (N) = N_Expanded_Name then
625         H := Homonym (Ent);
626         while Present (H) loop
627            if Scope (H) = Scope (Entity (N)) then
628               Add_One_Interp (N, H, Etype (H));
629            end if;
630
631            H := Homonym (H);
632         end loop;
633
634      --  Case of direct name
635
636      else
637         --  First, search the homonym chain for directly visible entities
638
639         H := Current_Entity (Ent);
640         while Present (H) loop
641            exit when (not Is_Overloadable (H))
642              and then Is_Immediately_Visible (H);
643
644            if Is_Immediately_Visible (H) and then H /= Ent then
645
646               --  Only add interpretation if not hidden by an inner
647               --  immediately visible one.
648
649               for J in First_Interp .. All_Interp.Last - 1 loop
650
651                  --  Current homograph is not hidden. Add to overloads
652
653                  if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
654                     exit;
655
656                  --  Homograph is hidden, unless it is a predefined operator
657
658                  elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
659
660                     --  A homograph in the same scope can occur within an
661                     --  instantiation, the resulting ambiguity has to be
662                     --  resolved later. The homographs may both be local
663                     --  functions or actuals, or may be declared at different
664                     --  levels within the instance. The renaming of an actual
665                     --  within the instance must not be included.
666
667                     if Within_Instance (H)
668                       and then H /= Renamed_Entity (Ent)
669                       and then not Is_Inherited_Operation (H)
670                     then
671                        All_Interp.Table (All_Interp.Last) :=
672                          (H, Etype (H), Empty);
673                        All_Interp.Append (No_Interp);
674                        goto Next_Homograph;
675
676                     elsif Scope (H) /= Standard_Standard then
677                        goto Next_Homograph;
678                     end if;
679                  end if;
680               end loop;
681
682               --  On exit, we know that current homograph is not hidden
683
684               Add_One_Interp (N, H, Etype (H));
685
686               if Debug_Flag_E then
687                  Write_Str ("Add overloaded interpretation ");
688                  Write_Int (Int (H));
689                  Write_Eol;
690               end if;
691            end if;
692
693            <<Next_Homograph>>
694               H := Homonym (H);
695         end loop;
696
697         --  Scan list of homographs for use-visible entities only
698
699         H := Current_Entity (Ent);
700
701         while Present (H) loop
702            if Is_Potentially_Use_Visible (H)
703              and then H /= Ent
704              and then Is_Overloadable (H)
705            then
706               for J in First_Interp .. All_Interp.Last - 1 loop
707
708                  if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
709                     exit;
710
711                  elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
712                     goto Next_Use_Homograph;
713                  end if;
714               end loop;
715
716               Add_One_Interp (N, H, Etype (H));
717            end if;
718
719            <<Next_Use_Homograph>>
720               H := Homonym (H);
721         end loop;
722      end if;
723
724      if All_Interp.Last = First_Interp + 1 then
725
726         --  The final interpretation is in fact not overloaded. Note that the
727         --  unique legal interpretation may or may not be the original one,
728         --  so we need to update N's entity and etype now, because once N
729         --  is marked as not overloaded it is also expected to carry the
730         --  proper interpretation.
731
732         Set_Is_Overloaded (N, False);
733         Set_Entity (N, All_Interp.Table (First_Interp).Nam);
734         Set_Etype  (N, All_Interp.Table (First_Interp).Typ);
735      end if;
736   end Collect_Interps;
737
738   ------------
739   -- Covers --
740   ------------
741
742   function Covers (T1, T2 : Entity_Id) return Boolean is
743      BT1 : Entity_Id;
744      BT2 : Entity_Id;
745
746      function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean;
747      --  In an instance the proper view may not always be correct for
748      --  private types, but private and full view are compatible. This
749      --  removes spurious errors from nested instantiations that involve,
750      --  among other things, types derived from private types.
751
752      function Real_Actual (T : Entity_Id) return Entity_Id;
753      --  If an actual in an inner instance is the formal of an enclosing
754      --  generic, the actual in the enclosing instance is the one that can
755      --  create an accidental ambiguity, and the check on compatibily of
756      --  generic actual types must use this enclosing actual.
757
758      ----------------------
759      -- Full_View_Covers --
760      ----------------------
761
762      function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean is
763      begin
764         return
765           Is_Private_Type (Typ1)
766             and then
767              ((Present (Full_View (Typ1))
768                  and then Covers (Full_View (Typ1), Typ2))
769                or else Base_Type (Typ1) = Typ2
770                or else Base_Type (Typ2) = Typ1);
771      end Full_View_Covers;
772
773      -----------------
774      -- Real_Actual --
775      -----------------
776
777      function Real_Actual (T : Entity_Id) return Entity_Id is
778         Par : constant Node_Id := Parent (T);
779         RA  : Entity_Id;
780
781      begin
782         --  Retrieve parent subtype from subtype declaration for actual
783
784         if Nkind (Par) = N_Subtype_Declaration
785           and then not Comes_From_Source (Par)
786           and then Is_Entity_Name (Subtype_Indication (Par))
787         then
788            RA := Entity (Subtype_Indication (Par));
789
790            if Is_Generic_Actual_Type (RA) then
791               return RA;
792            end if;
793         end if;
794
795         --  Otherwise actual is not the actual of an enclosing instance
796
797         return T;
798      end Real_Actual;
799
800   --  Start of processing for Covers
801
802   begin
803      --  If either operand missing, then this is an error, but ignore it (and
804      --  pretend we have a cover) if errors already detected, since this may
805      --  simply mean we have malformed trees or a semantic error upstream.
806
807      if No (T1) or else No (T2) then
808         if Total_Errors_Detected /= 0 then
809            return True;
810         else
811            raise Program_Error;
812         end if;
813      end if;
814
815      --  Trivial case: same types are always compatible
816
817      if T1 = T2 then
818         return True;
819      end if;
820
821      --  First check for Standard_Void_Type, which is special. Subsequent
822      --  processing in this routine assumes T1 and T2 are bona fide types;
823      --  Standard_Void_Type is a special entity that has some, but not all,
824      --  properties of types.
825
826      if (T1 = Standard_Void_Type) /= (T2 = Standard_Void_Type) then
827         return False;
828      end if;
829
830      BT1 := Base_Type (T1);
831      BT2 := Base_Type (T2);
832
833      --  Handle underlying view of records with unknown discriminants
834      --  using the original entity that motivated the construction of
835      --  this underlying record view (see Build_Derived_Private_Type).
836
837      if Is_Underlying_Record_View (BT1) then
838         BT1 := Underlying_Record_View (BT1);
839      end if;
840
841      if Is_Underlying_Record_View (BT2) then
842         BT2 := Underlying_Record_View (BT2);
843      end if;
844
845      --  Simplest case: types that have the same base type and are not generic
846      --  actuals are compatible. Generic actuals belong to their class but are
847      --  not compatible with other types of their class, and in particular
848      --  with other generic actuals. They are however compatible with their
849      --  own subtypes, and itypes with the same base are compatible as well.
850      --  Similarly, constrained subtypes obtained from expressions of an
851      --  unconstrained nominal type are compatible with the base type (may
852      --  lead to spurious ambiguities in obscure cases ???)
853
854      --  Generic actuals require special treatment to avoid spurious ambi-
855      --  guities in an instance, when two formal types are instantiated with
856      --  the same actual, so that different subprograms end up with the same
857      --  signature in the instance. If a generic actual is the actual of an
858      --  enclosing instance, it is that actual that we must compare: generic
859      --  actuals are only incompatible if they appear in the same instance.
860
861      if BT1 = BT2
862        or else BT1 = T2
863        or else BT2 = T1
864      then
865         if not Is_Generic_Actual_Type (T1)
866              or else
867            not Is_Generic_Actual_Type (T2)
868         then
869            return True;
870
871         --  Both T1 and T2 are generic actual types
872
873         else
874            declare
875               RT1 : constant Entity_Id := Real_Actual (T1);
876               RT2 : constant Entity_Id := Real_Actual (T2);
877            begin
878               return RT1 = RT2
879                  or else Is_Itype (T1)
880                  or else Is_Itype (T2)
881                  or else Is_Constr_Subt_For_U_Nominal (T1)
882                  or else Is_Constr_Subt_For_U_Nominal (T2)
883                  or else Scope (RT1) /= Scope (RT2);
884            end;
885         end if;
886
887      --  Literals are compatible with types in a given "class"
888
889      elsif     (T2 = Universal_Integer and then Is_Integer_Type (T1))
890        or else (T2 = Universal_Real    and then Is_Real_Type (T1))
891        or else (T2 = Universal_Fixed   and then Is_Fixed_Point_Type (T1))
892        or else (T2 = Any_Fixed         and then Is_Fixed_Point_Type (T1))
893        or else (T2 = Any_String        and then Is_String_Type (T1))
894        or else (T2 = Any_Character     and then Is_Character_Type (T1))
895        or else (T2 = Any_Access        and then Is_Access_Type (T1))
896      then
897         return True;
898
899      --  The context may be class wide, and a class-wide type is compatible
900      --  with any member of the class.
901
902      elsif Is_Class_Wide_Type (T1)
903        and then Is_Ancestor (Root_Type (T1), T2)
904      then
905         return True;
906
907      elsif Is_Class_Wide_Type (T1)
908        and then Is_Class_Wide_Type (T2)
909        and then Base_Type (Etype (T1)) = Base_Type (Etype (T2))
910      then
911         return True;
912
913      --  Ada 2005 (AI-345): A class-wide abstract interface type covers a
914      --  task_type or protected_type that implements the interface.
915
916      elsif Ada_Version >= Ada_2005
917        and then Is_Class_Wide_Type (T1)
918        and then Is_Interface (Etype (T1))
919        and then Is_Concurrent_Type (T2)
920        and then Interface_Present_In_Ancestor
921                   (Typ => BT2, Iface => Etype (T1))
922      then
923         return True;
924
925      --  Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
926      --  object T2 implementing T1.
927
928      elsif Ada_Version >= Ada_2005
929        and then Is_Class_Wide_Type (T1)
930        and then Is_Interface (Etype (T1))
931        and then Is_Tagged_Type (T2)
932      then
933         if Interface_Present_In_Ancestor (Typ   => T2,
934                                           Iface => Etype (T1))
935         then
936            return True;
937         end if;
938
939         declare
940            E    : Entity_Id;
941            Elmt : Elmt_Id;
942
943         begin
944            if Is_Concurrent_Type (BT2) then
945               E := Corresponding_Record_Type (BT2);
946            else
947               E := BT2;
948            end if;
949
950            --  Ada 2005 (AI-251): A class-wide abstract interface type T1
951            --  covers an object T2 that implements a direct derivation of T1.
952            --  Note: test for presence of E is defense against previous error.
953
954            if No (E) then
955               Check_Error_Detected;
956
957            elsif Present (Interfaces (E)) then
958               Elmt := First_Elmt (Interfaces (E));
959               while Present (Elmt) loop
960                  if Is_Ancestor (Etype (T1), Node (Elmt)) then
961                     return True;
962                  end if;
963
964                  Next_Elmt (Elmt);
965               end loop;
966            end if;
967
968            --  We should also check the case in which T1 is an ancestor of
969            --  some implemented interface???
970
971            return False;
972         end;
973
974      --  In a dispatching call, the formal is of some specific type, and the
975      --  actual is of the corresponding class-wide type, including a subtype
976      --  of the class-wide type.
977
978      elsif Is_Class_Wide_Type (T2)
979        and then
980          (Class_Wide_Type (T1) = Class_Wide_Type (T2)
981            or else Base_Type (Root_Type (T2)) = BT1)
982      then
983         return True;
984
985      --  Some contexts require a class of types rather than a specific type.
986      --  For example, conditions require any boolean type, fixed point
987      --  attributes require some real type, etc. The built-in types Any_XXX
988      --  represent these classes.
989
990      elsif (T1 = Any_Integer and then Is_Integer_Type (T2))
991        or else (T1 = Any_Boolean and then Is_Boolean_Type (T2))
992        or else (T1 = Any_Real and then Is_Real_Type (T2))
993        or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
994        or else (T1 = Any_Discrete and then Is_Discrete_Type (T2))
995      then
996         return True;
997
998      --  An aggregate is compatible with an array or record type
999
1000      elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
1001         return True;
1002
1003      --  If the expected type is an anonymous access, the designated type must
1004      --  cover that of the expression. Use the base type for this check: even
1005      --  though access subtypes are rare in sources, they are generated for
1006      --  actuals in instantiations.
1007
1008      elsif Ekind (BT1) = E_Anonymous_Access_Type
1009        and then Is_Access_Type (T2)
1010        and then Covers (Designated_Type (T1), Designated_Type (T2))
1011      then
1012         return True;
1013
1014      --  Ada 2012 (AI05-0149): Allow an anonymous access type in the context
1015      --  of a named general access type. An implicit conversion will be
1016      --  applied. For the resolution, one designated type must cover the
1017      --  other.
1018
1019      elsif Ada_Version >= Ada_2012
1020        and then Ekind (BT1) = E_General_Access_Type
1021        and then Ekind (BT2) = E_Anonymous_Access_Type
1022        and then (Covers (Designated_Type (T1), Designated_Type (T2))
1023                   or else Covers (Designated_Type (T2), Designated_Type (T1)))
1024      then
1025         return True;
1026
1027      --  An Access_To_Subprogram is compatible with itself, or with an
1028      --  anonymous type created for an attribute reference Access.
1029
1030      elsif (Ekind (BT1) = E_Access_Subprogram_Type
1031               or else
1032             Ekind (BT1) = E_Access_Protected_Subprogram_Type)
1033        and then Is_Access_Type (T2)
1034        and then (not Comes_From_Source (T1)
1035                   or else not Comes_From_Source (T2))
1036        and then (Is_Overloadable (Designated_Type (T2))
1037                   or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1038        and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1039        and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1040      then
1041         return True;
1042
1043      --  Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
1044      --  with itself, or with an anonymous type created for an attribute
1045      --  reference Access.
1046
1047      elsif (Ekind (BT1) = E_Anonymous_Access_Subprogram_Type
1048               or else
1049             Ekind (BT1)
1050                      = E_Anonymous_Access_Protected_Subprogram_Type)
1051        and then Is_Access_Type (T2)
1052        and then (not Comes_From_Source (T1)
1053                   or else not Comes_From_Source (T2))
1054        and then (Is_Overloadable (Designated_Type (T2))
1055                   or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1056        and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1057        and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1058      then
1059         return True;
1060
1061      --  The context can be a remote access type, and the expression the
1062      --  corresponding source type declared in a categorized package, or
1063      --  vice versa.
1064
1065      elsif Is_Record_Type (T1)
1066        and then (Is_Remote_Call_Interface (T1) or else Is_Remote_Types (T1))
1067        and then Present (Corresponding_Remote_Type (T1))
1068      then
1069         return Covers (Corresponding_Remote_Type (T1), T2);
1070
1071      --  and conversely.
1072
1073      elsif Is_Record_Type (T2)
1074        and then (Is_Remote_Call_Interface (T2) or else Is_Remote_Types (T2))
1075        and then Present (Corresponding_Remote_Type (T2))
1076      then
1077         return Covers (Corresponding_Remote_Type (T2), T1);
1078
1079      --  Synchronized types are represented at run time by their corresponding
1080      --  record type. During expansion one is replaced with the other, but
1081      --  they are compatible views of the same type.
1082
1083      elsif Is_Record_Type (T1)
1084        and then Is_Concurrent_Type (T2)
1085        and then Present (Corresponding_Record_Type (T2))
1086      then
1087         return Covers (T1, Corresponding_Record_Type (T2));
1088
1089      elsif Is_Concurrent_Type (T1)
1090        and then Present (Corresponding_Record_Type (T1))
1091        and then Is_Record_Type (T2)
1092      then
1093         return Covers (Corresponding_Record_Type (T1), T2);
1094
1095      --  During analysis, an attribute reference 'Access has a special type
1096      --  kind: Access_Attribute_Type, to be replaced eventually with the type
1097      --  imposed by context.
1098
1099      elsif Ekind (T2) = E_Access_Attribute_Type
1100        and then Ekind_In (BT1, E_General_Access_Type, E_Access_Type)
1101        and then Covers (Designated_Type (T1), Designated_Type (T2))
1102      then
1103         --  If the target type is a RACW type while the source is an access
1104         --  attribute type, we are building a RACW that may be exported.
1105
1106         if Is_Remote_Access_To_Class_Wide_Type (BT1) then
1107            Set_Has_RACW (Current_Sem_Unit);
1108         end if;
1109
1110         return True;
1111
1112      --  Ditto for allocators, which eventually resolve to the context type
1113
1114      elsif Ekind (T2) = E_Allocator_Type and then Is_Access_Type (T1) then
1115         return Covers (Designated_Type (T1), Designated_Type (T2))
1116           or else
1117             (From_Limited_With (Designated_Type (T1))
1118               and then Covers (Designated_Type (T2), Designated_Type (T1)));
1119
1120      --  A boolean operation on integer literals is compatible with modular
1121      --  context.
1122
1123      elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
1124         return True;
1125
1126      --  The actual type may be the result of a previous error
1127
1128      elsif BT2 = Any_Type then
1129         return True;
1130
1131      --  A Raise_Expressions is legal in any expression context
1132
1133      elsif BT2 = Raise_Type then
1134         return True;
1135
1136      --  A packed array type covers its corresponding non-packed type. This is
1137      --  not legitimate Ada, but allows the omission of a number of otherwise
1138      --  useless unchecked conversions, and since this can only arise in
1139      --  (known correct) expanded code, no harm is done.
1140
1141      elsif Is_Array_Type (T2)
1142        and then Is_Packed (T2)
1143        and then T1 = Packed_Array_Type (T2)
1144      then
1145         return True;
1146
1147      --  Similarly an array type covers its corresponding packed array type
1148
1149      elsif Is_Array_Type (T1)
1150        and then Is_Packed (T1)
1151        and then T2 = Packed_Array_Type (T1)
1152      then
1153         return True;
1154
1155      --  In instances, or with types exported from instantiations, check
1156      --  whether a partial and a full view match. Verify that types are
1157      --  legal, to prevent cascaded errors.
1158
1159      elsif In_Instance
1160        and then (Full_View_Covers (T1, T2) or else Full_View_Covers (T2, T1))
1161      then
1162         return True;
1163
1164      elsif Is_Type (T2)
1165        and then Is_Generic_Actual_Type (T2)
1166        and then Full_View_Covers (T1, T2)
1167      then
1168         return True;
1169
1170      elsif Is_Type (T1)
1171        and then Is_Generic_Actual_Type (T1)
1172        and then Full_View_Covers (T2, T1)
1173      then
1174         return True;
1175
1176      --  In the expansion of inlined bodies, types are compatible if they
1177      --  are structurally equivalent.
1178
1179      elsif In_Inlined_Body
1180        and then (Underlying_Type (T1) = Underlying_Type (T2)
1181                   or else
1182                     (Is_Access_Type (T1)
1183                       and then Is_Access_Type (T2)
1184                       and then Designated_Type (T1) = Designated_Type (T2))
1185                   or else
1186                     (T1 = Any_Access
1187                       and then Is_Access_Type (Underlying_Type (T2)))
1188                   or else
1189                     (T2 = Any_Composite
1190                       and then Is_Composite_Type (Underlying_Type (T1))))
1191      then
1192         return True;
1193
1194      --  Ada 2005 (AI-50217): Additional branches to make the shadow entity
1195      --  obtained through a limited_with compatible with its real entity.
1196
1197      elsif From_Limited_With (T1) then
1198
1199         --  If the expected type is the non-limited view of a type, the
1200         --  expression may have the limited view. If that one in turn is
1201         --  incomplete, get full view if available.
1202
1203         if Is_Incomplete_Type (T1) then
1204            return Covers (Get_Full_View (Non_Limited_View (T1)), T2);
1205
1206         elsif Ekind (T1) = E_Class_Wide_Type then
1207            return
1208              Covers (Class_Wide_Type (Non_Limited_View (Etype (T1))), T2);
1209         else
1210            return False;
1211         end if;
1212
1213      elsif From_Limited_With (T2) then
1214
1215         --  If units in the context have Limited_With clauses on each other,
1216         --  either type might have a limited view. Checks performed elsewhere
1217         --  verify that the context type is the nonlimited view.
1218
1219         if Is_Incomplete_Type (T2) then
1220            return Covers (T1, Get_Full_View (Non_Limited_View (T2)));
1221
1222         elsif Ekind (T2) = E_Class_Wide_Type then
1223            return
1224              Present (Non_Limited_View (Etype (T2)))
1225                and then
1226                  Covers (T1, Class_Wide_Type (Non_Limited_View (Etype (T2))));
1227         else
1228            return False;
1229         end if;
1230
1231      --  Ada 2005 (AI-412): Coverage for regular incomplete subtypes
1232
1233      elsif Ekind (T1) = E_Incomplete_Subtype then
1234         return Covers (Full_View (Etype (T1)), T2);
1235
1236      elsif Ekind (T2) = E_Incomplete_Subtype then
1237         return Covers (T1, Full_View (Etype (T2)));
1238
1239      --  Ada 2005 (AI-423): Coverage of formal anonymous access types
1240      --  and actual anonymous access types in the context of generic
1241      --  instantiations. We have the following situation:
1242
1243      --     generic
1244      --        type Formal is private;
1245      --        Formal_Obj : access Formal;  --  T1
1246      --     package G is ...
1247
1248      --     package P is
1249      --        type Actual is ...
1250      --        Actual_Obj : access Actual;  --  T2
1251      --        package Instance is new G (Formal     => Actual,
1252      --                                   Formal_Obj => Actual_Obj);
1253
1254      elsif Ada_Version >= Ada_2005
1255        and then Ekind (T1) = E_Anonymous_Access_Type
1256        and then Ekind (T2) = E_Anonymous_Access_Type
1257        and then Is_Generic_Type (Directly_Designated_Type (T1))
1258        and then Get_Instance_Of (Directly_Designated_Type (T1)) =
1259                   Directly_Designated_Type (T2)
1260      then
1261         return True;
1262
1263      --  Otherwise, types are not compatible
1264
1265      else
1266         return False;
1267      end if;
1268   end Covers;
1269
1270   ------------------
1271   -- Disambiguate --
1272   ------------------
1273
1274   function Disambiguate
1275     (N      : Node_Id;
1276      I1, I2 : Interp_Index;
1277      Typ    : Entity_Id) return Interp
1278   is
1279      I           : Interp_Index;
1280      It          : Interp;
1281      It1, It2    : Interp;
1282      Nam1, Nam2  : Entity_Id;
1283      Predef_Subp : Entity_Id;
1284      User_Subp   : Entity_Id;
1285
1286      function Inherited_From_Actual (S : Entity_Id) return Boolean;
1287      --  Determine whether one of the candidates is an operation inherited by
1288      --  a type that is derived from an actual in an instantiation.
1289
1290      function In_Same_Declaration_List
1291        (Typ     : Entity_Id;
1292         Op_Decl : Entity_Id) return Boolean;
1293      --  AI05-0020: a spurious ambiguity may arise when equality on anonymous
1294      --  access types is declared on the partial view of a designated type, so
1295      --  that the type declaration and equality are not in the same list of
1296      --  declarations. This AI gives a preference rule for the user-defined
1297      --  operation. Same rule applies for arithmetic operations on private
1298      --  types completed with fixed-point types: the predefined operation is
1299      --  hidden;  this is already handled properly in GNAT.
1300
1301      function Is_Actual_Subprogram (S : Entity_Id) return Boolean;
1302      --  Determine whether a subprogram is an actual in an enclosing instance.
1303      --  An overloading between such a subprogram and one declared outside the
1304      --  instance is resolved in favor of the first, because it resolved in
1305      --  the generic. Within the instance the actual is represented by a
1306      --  constructed subprogram renaming.
1307
1308      function Matches (Actual, Formal : Node_Id) return Boolean;
1309      --  Look for exact type match in an instance, to remove spurious
1310      --  ambiguities when two formal types have the same actual.
1311
1312      function Operand_Type return Entity_Id;
1313      --  Determine type of operand for an equality operation, to apply
1314      --  Ada 2005 rules to equality on anonymous access types.
1315
1316      function Standard_Operator return Boolean;
1317      --  Check whether subprogram is predefined operator declared in Standard.
1318      --  It may given by an operator name, or by an expanded name whose prefix
1319      --  is Standard.
1320
1321      function Remove_Conversions return Interp;
1322      --  Last chance for pathological cases involving comparisons on literals,
1323      --  and user overloadings of the same operator. Such pathologies have
1324      --  been removed from the ACVC, but still appear in two DEC tests, with
1325      --  the following notable quote from Ben Brosgol:
1326      --
1327      --  [Note: I disclaim all credit/responsibility/blame for coming up with
1328      --  this example; Robert Dewar brought it to our attention, since it is
1329      --  apparently found in the ACVC 1.5. I did not attempt to find the
1330      --  reason in the Reference Manual that makes the example legal, since I
1331      --  was too nauseated by it to want to pursue it further.]
1332      --
1333      --  Accordingly, this is not a fully recursive solution, but it handles
1334      --  DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
1335      --  pathology in the other direction with calls whose multiple overloaded
1336      --  actuals make them truly unresolvable.
1337
1338      --  The new rules concerning abstract operations create additional need
1339      --  for special handling of expressions with universal operands, see
1340      --  comments to Has_Abstract_Interpretation below.
1341
1342      ---------------------------
1343      -- Inherited_From_Actual --
1344      ---------------------------
1345
1346      function Inherited_From_Actual (S : Entity_Id) return Boolean is
1347         Par : constant Node_Id := Parent (S);
1348      begin
1349         if Nkind (Par) /= N_Full_Type_Declaration
1350           or else Nkind (Type_Definition (Par)) /= N_Derived_Type_Definition
1351         then
1352            return False;
1353         else
1354            return Is_Entity_Name (Subtype_Indication (Type_Definition (Par)))
1355              and then
1356                Is_Generic_Actual_Type (
1357                  Entity (Subtype_Indication (Type_Definition (Par))));
1358         end if;
1359      end Inherited_From_Actual;
1360
1361      ------------------------------
1362      -- In_Same_Declaration_List --
1363      ------------------------------
1364
1365      function In_Same_Declaration_List
1366        (Typ     : Entity_Id;
1367         Op_Decl : Entity_Id) return Boolean
1368      is
1369         Scop : constant Entity_Id := Scope (Typ);
1370
1371      begin
1372         return In_Same_List (Parent (Typ), Op_Decl)
1373           or else
1374             (Ekind_In (Scop, E_Package, E_Generic_Package)
1375               and then List_Containing (Op_Decl) =
1376                              Visible_Declarations (Parent (Scop))
1377               and then List_Containing (Parent (Typ)) =
1378                              Private_Declarations (Parent (Scop)));
1379      end In_Same_Declaration_List;
1380
1381      --------------------------
1382      -- Is_Actual_Subprogram --
1383      --------------------------
1384
1385      function Is_Actual_Subprogram (S : Entity_Id) return Boolean is
1386      begin
1387         return In_Open_Scopes (Scope (S))
1388           and then
1389             Nkind (Unit_Declaration_Node (S)) =
1390               N_Subprogram_Renaming_Declaration
1391
1392           --  Why the Comes_From_Source test here???
1393
1394           and then not Comes_From_Source (Unit_Declaration_Node (S))
1395
1396           and then
1397             (Is_Generic_Instance (Scope (S))
1398               or else Is_Wrapper_Package (Scope (S)));
1399      end Is_Actual_Subprogram;
1400
1401      -------------
1402      -- Matches --
1403      -------------
1404
1405      function Matches (Actual, Formal : Node_Id) return Boolean is
1406         T1 : constant Entity_Id := Etype (Actual);
1407         T2 : constant Entity_Id := Etype (Formal);
1408      begin
1409         return T1 = T2
1410           or else
1411             (Is_Numeric_Type (T2)
1412               and then (T1 = Universal_Real or else T1 = Universal_Integer));
1413      end Matches;
1414
1415      ------------------
1416      -- Operand_Type --
1417      ------------------
1418
1419      function Operand_Type return Entity_Id is
1420         Opnd : Node_Id;
1421
1422      begin
1423         if Nkind (N) = N_Function_Call then
1424            Opnd := First_Actual (N);
1425         else
1426            Opnd := Left_Opnd (N);
1427         end if;
1428
1429         return Etype (Opnd);
1430      end Operand_Type;
1431
1432      ------------------------
1433      -- Remove_Conversions --
1434      ------------------------
1435
1436      function Remove_Conversions return Interp is
1437         I    : Interp_Index;
1438         It   : Interp;
1439         It1  : Interp;
1440         F1   : Entity_Id;
1441         Act1 : Node_Id;
1442         Act2 : Node_Id;
1443
1444         function Has_Abstract_Interpretation (N : Node_Id) return Boolean;
1445         --  If an operation has universal operands the universal operation
1446         --  is present among its interpretations. If there is an abstract
1447         --  interpretation for the operator, with a numeric result, this
1448         --  interpretation was already removed in sem_ch4, but the universal
1449         --  one is still visible. We must rescan the list of operators and
1450         --  remove the universal interpretation to resolve the ambiguity.
1451
1452         ---------------------------------
1453         -- Has_Abstract_Interpretation --
1454         ---------------------------------
1455
1456         function Has_Abstract_Interpretation (N : Node_Id) return Boolean is
1457            E : Entity_Id;
1458
1459         begin
1460            if Nkind (N) not in N_Op
1461              or else Ada_Version < Ada_2005
1462              or else not Is_Overloaded (N)
1463              or else No (Universal_Interpretation (N))
1464            then
1465               return False;
1466
1467            else
1468               E := Get_Name_Entity_Id (Chars (N));
1469               while Present (E) loop
1470                  if Is_Overloadable (E)
1471                    and then Is_Abstract_Subprogram (E)
1472                    and then Is_Numeric_Type (Etype (E))
1473                  then
1474                     return True;
1475                  else
1476                     E := Homonym (E);
1477                  end if;
1478               end loop;
1479
1480               --  Finally, if an operand of the binary operator is itself
1481               --  an operator, recurse to see whether its own abstract
1482               --  interpretation is responsible for the spurious ambiguity.
1483
1484               if Nkind (N) in N_Binary_Op then
1485                  return Has_Abstract_Interpretation (Left_Opnd (N))
1486                    or else Has_Abstract_Interpretation (Right_Opnd (N));
1487
1488               elsif Nkind (N) in N_Unary_Op then
1489                  return Has_Abstract_Interpretation (Right_Opnd (N));
1490
1491               else
1492                  return False;
1493               end if;
1494            end if;
1495         end Has_Abstract_Interpretation;
1496
1497      --  Start of processing for Remove_Conversions
1498
1499      begin
1500         It1 := No_Interp;
1501
1502         Get_First_Interp (N, I, It);
1503         while Present (It.Typ) loop
1504            if not Is_Overloadable (It.Nam) then
1505               return No_Interp;
1506            end if;
1507
1508            F1 := First_Formal (It.Nam);
1509
1510            if No (F1) then
1511               return It1;
1512
1513            else
1514               if Nkind (N) in N_Subprogram_Call then
1515                  Act1 := First_Actual (N);
1516
1517                  if Present (Act1) then
1518                     Act2 := Next_Actual (Act1);
1519                  else
1520                     Act2 := Empty;
1521                  end if;
1522
1523               elsif Nkind (N) in N_Unary_Op then
1524                  Act1 := Right_Opnd (N);
1525                  Act2 := Empty;
1526
1527               elsif Nkind (N) in N_Binary_Op then
1528                  Act1 := Left_Opnd (N);
1529                  Act2 := Right_Opnd (N);
1530
1531                  --  Use type of second formal, so as to include
1532                  --  exponentiation, where the exponent may be
1533                  --  ambiguous and the result non-universal.
1534
1535                  Next_Formal (F1);
1536
1537               else
1538                  return It1;
1539               end if;
1540
1541               if Nkind (Act1) in N_Op
1542                 and then Is_Overloaded (Act1)
1543                 and then (Nkind (Right_Opnd (Act1)) = N_Integer_Literal
1544                            or else Nkind (Right_Opnd (Act1)) = N_Real_Literal)
1545                 and then Has_Compatible_Type (Act1, Standard_Boolean)
1546                 and then Etype (F1) = Standard_Boolean
1547               then
1548                  --  If the two candidates are the original ones, the
1549                  --  ambiguity is real. Otherwise keep the original, further
1550                  --  calls to Disambiguate will take care of others in the
1551                  --  list of candidates.
1552
1553                  if It1 /= No_Interp then
1554                     if It = Disambiguate.It1
1555                       or else It = Disambiguate.It2
1556                     then
1557                        if It1 = Disambiguate.It1
1558                          or else It1 = Disambiguate.It2
1559                        then
1560                           return No_Interp;
1561                        else
1562                           It1 := It;
1563                        end if;
1564                     end if;
1565
1566                  elsif Present (Act2)
1567                    and then Nkind (Act2) in N_Op
1568                    and then Is_Overloaded (Act2)
1569                    and then Nkind_In (Right_Opnd (Act2), N_Integer_Literal,
1570                                                          N_Real_Literal)
1571                    and then Has_Compatible_Type (Act2, Standard_Boolean)
1572                  then
1573                     --  The preference rule on the first actual is not
1574                     --  sufficient to disambiguate.
1575
1576                     goto Next_Interp;
1577
1578                  else
1579                     It1 := It;
1580                  end if;
1581
1582               elsif Is_Numeric_Type (Etype (F1))
1583                 and then Has_Abstract_Interpretation (Act1)
1584               then
1585                  --  Current interpretation is not the right one because it
1586                  --  expects a numeric operand. Examine all the other ones.
1587
1588                  declare
1589                     I  : Interp_Index;
1590                     It : Interp;
1591
1592                  begin
1593                     Get_First_Interp (N, I, It);
1594                     while Present (It.Typ) loop
1595                        if
1596                          not Is_Numeric_Type (Etype (First_Formal (It.Nam)))
1597                        then
1598                           if No (Act2)
1599                             or else not Has_Abstract_Interpretation (Act2)
1600                             or else not
1601                               Is_Numeric_Type
1602                                 (Etype (Next_Formal (First_Formal (It.Nam))))
1603                           then
1604                              return It;
1605                           end if;
1606                        end if;
1607
1608                        Get_Next_Interp (I, It);
1609                     end loop;
1610
1611                     return No_Interp;
1612                  end;
1613               end if;
1614            end if;
1615
1616            <<Next_Interp>>
1617               Get_Next_Interp (I, It);
1618         end loop;
1619
1620         --  After some error, a formal may have Any_Type and yield a spurious
1621         --  match. To avoid cascaded errors if possible, check for such a
1622         --  formal in either candidate.
1623
1624         if Serious_Errors_Detected > 0 then
1625            declare
1626               Formal : Entity_Id;
1627
1628            begin
1629               Formal := First_Formal (Nam1);
1630               while Present (Formal) loop
1631                  if Etype (Formal) = Any_Type then
1632                     return Disambiguate.It2;
1633                  end if;
1634
1635                  Next_Formal (Formal);
1636               end loop;
1637
1638               Formal := First_Formal (Nam2);
1639               while Present (Formal) loop
1640                  if Etype (Formal) = Any_Type then
1641                     return Disambiguate.It1;
1642                  end if;
1643
1644                  Next_Formal (Formal);
1645               end loop;
1646            end;
1647         end if;
1648
1649         return It1;
1650      end Remove_Conversions;
1651
1652      -----------------------
1653      -- Standard_Operator --
1654      -----------------------
1655
1656      function Standard_Operator return Boolean is
1657         Nam : Node_Id;
1658
1659      begin
1660         if Nkind (N) in N_Op then
1661            return True;
1662
1663         elsif Nkind (N) = N_Function_Call then
1664            Nam := Name (N);
1665
1666            if Nkind (Nam) /= N_Expanded_Name then
1667               return True;
1668            else
1669               return Entity (Prefix (Nam)) = Standard_Standard;
1670            end if;
1671         else
1672            return False;
1673         end if;
1674      end Standard_Operator;
1675
1676   --  Start of processing for Disambiguate
1677
1678   begin
1679      --  Recover the two legal interpretations
1680
1681      Get_First_Interp (N, I, It);
1682      while I /= I1 loop
1683         Get_Next_Interp (I, It);
1684      end loop;
1685
1686      It1  := It;
1687      Nam1 := It.Nam;
1688      while I /= I2 loop
1689         Get_Next_Interp (I, It);
1690      end loop;
1691
1692      It2  := It;
1693      Nam2 := It.Nam;
1694
1695      --  Check whether one of the entities is an Ada 2005/2012 and we are
1696      --  operating in an earlier mode, in which case we discard the Ada
1697      --  2005/2012 entity, so that we get proper Ada 95 overload resolution.
1698
1699      if Ada_Version < Ada_2005 then
1700         if Is_Ada_2005_Only (Nam1) or else Is_Ada_2012_Only (Nam1) then
1701            return It2;
1702         elsif Is_Ada_2005_Only (Nam2) or else Is_Ada_2012_Only (Nam1) then
1703            return It1;
1704         end if;
1705      end if;
1706
1707      --  Check whether one of the entities is an Ada 2012 entity and we are
1708      --  operating in Ada 2005 mode, in which case we discard the Ada 2012
1709      --  entity, so that we get proper Ada 2005 overload resolution.
1710
1711      if Ada_Version = Ada_2005 then
1712         if Is_Ada_2012_Only (Nam1) then
1713            return It2;
1714         elsif Is_Ada_2012_Only (Nam2) then
1715            return It1;
1716         end if;
1717      end if;
1718
1719      --  Check for overloaded CIL convention stuff because the CIL libraries
1720      --  do sick things like Console.Write_Line where it matches two different
1721      --  overloads, so just pick the first ???
1722
1723      if Convention (Nam1) = Convention_CIL
1724        and then Convention (Nam2) = Convention_CIL
1725        and then Ekind (Nam1) = Ekind (Nam2)
1726        and then (Ekind (Nam1) = E_Procedure
1727                   or else Ekind (Nam1) = E_Function)
1728      then
1729         return It2;
1730      end if;
1731
1732      --  If the context is universal, the predefined operator is preferred.
1733      --  This includes bounds in numeric type declarations, and expressions
1734      --  in type conversions. If no interpretation yields a universal type,
1735      --  then we must check whether the user-defined entity hides the prede-
1736      --  fined one.
1737
1738      if Chars (Nam1) in Any_Operator_Name
1739        and then Standard_Operator
1740      then
1741         if        Typ = Universal_Integer
1742           or else Typ = Universal_Real
1743           or else Typ = Any_Integer
1744           or else Typ = Any_Discrete
1745           or else Typ = Any_Real
1746           or else Typ = Any_Type
1747         then
1748            --  Find an interpretation that yields the universal type, or else
1749            --  a predefined operator that yields a predefined numeric type.
1750
1751            declare
1752               Candidate : Interp := No_Interp;
1753
1754            begin
1755               Get_First_Interp (N, I, It);
1756               while Present (It.Typ) loop
1757                  if (Covers (Typ, It.Typ) or else Typ = Any_Type)
1758                    and then
1759                     (It.Typ = Universal_Integer
1760                       or else It.Typ = Universal_Real)
1761                  then
1762                     return It;
1763
1764                  elsif Covers (Typ, It.Typ)
1765                    and then Scope (It.Typ) = Standard_Standard
1766                    and then Scope (It.Nam) = Standard_Standard
1767                    and then Is_Numeric_Type (It.Typ)
1768                  then
1769                     Candidate := It;
1770                  end if;
1771
1772                  Get_Next_Interp (I, It);
1773               end loop;
1774
1775               if Candidate /= No_Interp then
1776                  return Candidate;
1777               end if;
1778            end;
1779
1780         elsif Chars (Nam1) /= Name_Op_Not
1781           and then (Typ = Standard_Boolean or else Typ = Any_Boolean)
1782         then
1783            --  Equality or comparison operation. Choose predefined operator if
1784            --  arguments are universal. The node may be an operator, name, or
1785            --  a function call, so unpack arguments accordingly.
1786
1787            declare
1788               Arg1, Arg2 : Node_Id;
1789
1790            begin
1791               if Nkind (N) in N_Op then
1792                  Arg1 := Left_Opnd  (N);
1793                  Arg2 := Right_Opnd (N);
1794
1795               elsif Is_Entity_Name (N) then
1796                  Arg1 := First_Entity (Entity (N));
1797                  Arg2 := Next_Entity (Arg1);
1798
1799               else
1800                  Arg1 := First_Actual (N);
1801                  Arg2 := Next_Actual (Arg1);
1802               end if;
1803
1804               if Present (Arg2)
1805                 and then Present (Universal_Interpretation (Arg1))
1806                 and then Universal_Interpretation (Arg2) =
1807                          Universal_Interpretation (Arg1)
1808               then
1809                  Get_First_Interp (N, I, It);
1810                  while Scope (It.Nam) /= Standard_Standard loop
1811                     Get_Next_Interp (I, It);
1812                  end loop;
1813
1814                  return It;
1815               end if;
1816            end;
1817         end if;
1818      end if;
1819
1820      --  If no universal interpretation, check whether user-defined operator
1821      --  hides predefined one, as well as other special cases. If the node
1822      --  is a range, then one or both bounds are ambiguous. Each will have
1823      --  to be disambiguated w.r.t. the context type. The type of the range
1824      --  itself is imposed by the context, so we can return either legal
1825      --  interpretation.
1826
1827      if Ekind (Nam1) = E_Operator then
1828         Predef_Subp := Nam1;
1829         User_Subp   := Nam2;
1830
1831      elsif Ekind (Nam2) = E_Operator then
1832         Predef_Subp := Nam2;
1833         User_Subp   := Nam1;
1834
1835      elsif Nkind (N) = N_Range then
1836         return It1;
1837
1838      --  Implement AI05-105: A renaming declaration with an access
1839      --  definition must resolve to an anonymous access type. This
1840      --  is a resolution rule and can be used to disambiguate.
1841
1842      elsif Nkind (Parent (N)) = N_Object_Renaming_Declaration
1843        and then Present (Access_Definition (Parent (N)))
1844      then
1845         if Ekind_In (It1.Typ, E_Anonymous_Access_Type,
1846                               E_Anonymous_Access_Subprogram_Type)
1847         then
1848            if Ekind (It2.Typ) = Ekind (It1.Typ) then
1849
1850               --  True ambiguity
1851
1852               return No_Interp;
1853
1854            else
1855               return It1;
1856            end if;
1857
1858         elsif Ekind_In (It2.Typ, E_Anonymous_Access_Type,
1859                                  E_Anonymous_Access_Subprogram_Type)
1860         then
1861            return It2;
1862
1863         --  No legal interpretation
1864
1865         else
1866            return No_Interp;
1867         end if;
1868
1869      --  If two user defined-subprograms are visible, it is a true ambiguity,
1870      --  unless one of them is an entry and the context is a conditional or
1871      --  timed entry call, or unless we are within an instance and this is
1872      --  results from two formals types with the same actual.
1873
1874      else
1875         if Nkind (N) = N_Procedure_Call_Statement
1876           and then Nkind (Parent (N)) = N_Entry_Call_Alternative
1877           and then N = Entry_Call_Statement (Parent (N))
1878         then
1879            if Ekind (Nam2) = E_Entry then
1880               return It2;
1881            elsif Ekind (Nam1) = E_Entry then
1882               return It1;
1883            else
1884               return No_Interp;
1885            end if;
1886
1887         --  If the ambiguity occurs within an instance, it is due to several
1888         --  formal types with the same actual. Look for an exact match between
1889         --  the types of the formals of the overloadable entities, and the
1890         --  actuals in the call, to recover the unambiguous match in the
1891         --  original generic.
1892
1893         --  The ambiguity can also be due to an overloading between a formal
1894         --  subprogram and a subprogram declared outside the generic. If the
1895         --  node is overloaded, it did not resolve to the global entity in
1896         --  the generic, and we choose the formal subprogram.
1897
1898         --  Finally, the ambiguity can be between an explicit subprogram and
1899         --  one inherited (with different defaults) from an actual. In this
1900         --  case the resolution was to the explicit declaration in the
1901         --  generic, and remains so in the instance.
1902
1903         --  The same sort of disambiguation needed for calls is also required
1904         --  for the name given in a subprogram renaming, and that case is
1905         --  handled here as well. We test Comes_From_Source to exclude this
1906         --  treatment for implicit renamings created for formal subprograms.
1907
1908         elsif In_Instance and then not In_Generic_Actual (N) then
1909            if Nkind (N) in N_Subprogram_Call
1910              or else
1911                (Nkind (N) in N_Has_Entity
1912                  and then
1913                    Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
1914                  and then Comes_From_Source (Parent (N)))
1915            then
1916               declare
1917                  Actual  : Node_Id;
1918                  Formal  : Entity_Id;
1919                  Renam   : Entity_Id        := Empty;
1920                  Is_Act1 : constant Boolean := Is_Actual_Subprogram (Nam1);
1921                  Is_Act2 : constant Boolean := Is_Actual_Subprogram (Nam2);
1922
1923               begin
1924                  if Is_Act1 and then not Is_Act2 then
1925                     return It1;
1926
1927                  elsif Is_Act2 and then not Is_Act1 then
1928                     return It2;
1929
1930                  elsif Inherited_From_Actual (Nam1)
1931                    and then Comes_From_Source (Nam2)
1932                  then
1933                     return It2;
1934
1935                  elsif Inherited_From_Actual (Nam2)
1936                    and then Comes_From_Source (Nam1)
1937                  then
1938                     return It1;
1939                  end if;
1940
1941                  --  In the case of a renamed subprogram, pick up the entity
1942                  --  of the renaming declaration so we can traverse its
1943                  --  formal parameters.
1944
1945                  if Nkind (N) in N_Has_Entity then
1946                     Renam := Defining_Unit_Name (Specification (Parent (N)));
1947                  end if;
1948
1949                  if Present (Renam) then
1950                     Actual := First_Formal (Renam);
1951                  else
1952                     Actual := First_Actual (N);
1953                  end if;
1954
1955                  Formal := First_Formal (Nam1);
1956                  while Present (Actual) loop
1957                     if Etype (Actual) /= Etype (Formal) then
1958                        return It2;
1959                     end if;
1960
1961                     if Present (Renam) then
1962                        Next_Formal (Actual);
1963                     else
1964                        Next_Actual (Actual);
1965                     end if;
1966
1967                     Next_Formal (Formal);
1968                  end loop;
1969
1970                  return It1;
1971               end;
1972
1973            elsif Nkind (N) in N_Binary_Op then
1974               if Matches (Left_Opnd (N), First_Formal (Nam1))
1975                 and then
1976                   Matches (Right_Opnd (N), Next_Formal (First_Formal (Nam1)))
1977               then
1978                  return It1;
1979               else
1980                  return It2;
1981               end if;
1982
1983            elsif Nkind (N) in  N_Unary_Op then
1984               if Etype (Right_Opnd (N)) = Etype (First_Formal (Nam1)) then
1985                  return It1;
1986               else
1987                  return It2;
1988               end if;
1989
1990            else
1991               return Remove_Conversions;
1992            end if;
1993         else
1994            return Remove_Conversions;
1995         end if;
1996      end if;
1997
1998      --  An implicit concatenation operator on a string type cannot be
1999      --  disambiguated from the predefined concatenation. This can only
2000      --  happen with concatenation of string literals.
2001
2002      if Chars (User_Subp) = Name_Op_Concat
2003        and then Ekind (User_Subp) = E_Operator
2004        and then Is_String_Type (Etype (First_Formal (User_Subp)))
2005      then
2006         return No_Interp;
2007
2008      --  If the user-defined operator is in an open scope, or in the scope
2009      --  of the resulting type, or given by an expanded name that names its
2010      --  scope, it hides the predefined operator for the type. Exponentiation
2011      --  has to be special-cased because the implicit operator does not have
2012      --  a symmetric signature, and may not be hidden by the explicit one.
2013
2014      elsif (Nkind (N) = N_Function_Call
2015              and then Nkind (Name (N)) = N_Expanded_Name
2016              and then (Chars (Predef_Subp) /= Name_Op_Expon
2017                         or else Hides_Op (User_Subp, Predef_Subp))
2018              and then Scope (User_Subp) = Entity (Prefix (Name (N))))
2019        or else Hides_Op (User_Subp, Predef_Subp)
2020      then
2021         if It1.Nam = User_Subp then
2022            return It1;
2023         else
2024            return It2;
2025         end if;
2026
2027      --  Otherwise, the predefined operator has precedence, or if the user-
2028      --  defined operation is directly visible we have a true ambiguity.
2029
2030      --  If this is a fixed-point multiplication and division in Ada 83 mode,
2031      --  exclude the universal_fixed operator, which often causes ambiguities
2032      --  in legacy code.
2033
2034      --  Ditto in Ada 2012, where an ambiguity may arise for an operation
2035      --  on a partial view that is completed with a fixed point type. See
2036      --  AI05-0020 and AI05-0209. The ambiguity is resolved in favor of the
2037      --  user-defined type and subprogram, so that a client of the package
2038      --  has the same resolution as the body of the package.
2039
2040      else
2041         if (In_Open_Scopes (Scope (User_Subp))
2042              or else Is_Potentially_Use_Visible (User_Subp))
2043           and then not In_Instance
2044         then
2045            if Is_Fixed_Point_Type (Typ)
2046              and then Nam_In (Chars (Nam1), Name_Op_Multiply, Name_Op_Divide)
2047              and then
2048                (Ada_Version = Ada_83
2049                  or else (Ada_Version >= Ada_2012
2050                            and then In_Same_Declaration_List
2051                                       (First_Subtype (Typ),
2052                                          Unit_Declaration_Node (User_Subp))))
2053            then
2054               if It2.Nam = Predef_Subp then
2055                  return It1;
2056               else
2057                  return It2;
2058               end if;
2059
2060            --  Ada 2005, AI-420: preference rule for "=" on Universal_Access
2061            --  states that the operator defined in Standard is not available
2062            --  if there is a user-defined equality with the proper signature,
2063            --  declared in the same declarative list as the type. The node
2064            --  may be an operator or a function call.
2065
2066            elsif Nam_In (Chars (Nam1), Name_Op_Eq, Name_Op_Ne)
2067              and then Ada_Version >= Ada_2005
2068              and then Etype (User_Subp) = Standard_Boolean
2069              and then Ekind (Operand_Type) = E_Anonymous_Access_Type
2070              and then
2071                In_Same_Declaration_List
2072                  (Designated_Type (Operand_Type),
2073                     Unit_Declaration_Node (User_Subp))
2074            then
2075               if It2.Nam = Predef_Subp then
2076                  return It1;
2077               else
2078                  return It2;
2079               end if;
2080
2081            --  An immediately visible operator hides a use-visible user-
2082            --  defined operation. This disambiguation cannot take place
2083            --  earlier because the visibility of the predefined operator
2084            --  can only be established when operand types are known.
2085
2086            elsif Ekind (User_Subp) = E_Function
2087              and then Ekind (Predef_Subp) = E_Operator
2088              and then Nkind (N) in N_Op
2089              and then not Is_Overloaded (Right_Opnd (N))
2090              and then
2091                Is_Immediately_Visible (Base_Type (Etype (Right_Opnd (N))))
2092              and then Is_Potentially_Use_Visible (User_Subp)
2093            then
2094               if It2.Nam = Predef_Subp then
2095                  return It1;
2096               else
2097                  return It2;
2098               end if;
2099
2100            else
2101               return No_Interp;
2102            end if;
2103
2104         elsif It1.Nam = Predef_Subp then
2105            return It1;
2106
2107         else
2108            return It2;
2109         end if;
2110      end if;
2111   end Disambiguate;
2112
2113   ---------------------
2114   -- End_Interp_List --
2115   ---------------------
2116
2117   procedure End_Interp_List is
2118   begin
2119      All_Interp.Table (All_Interp.Last) := No_Interp;
2120      All_Interp.Increment_Last;
2121   end End_Interp_List;
2122
2123   -------------------------
2124   -- Entity_Matches_Spec --
2125   -------------------------
2126
2127   function Entity_Matches_Spec (Old_S, New_S : Entity_Id) return Boolean is
2128   begin
2129      --  Simple case: same entity kinds, type conformance is required. A
2130      --  parameterless function can also rename a literal.
2131
2132      if Ekind (Old_S) = Ekind (New_S)
2133        or else (Ekind (New_S) = E_Function
2134                  and then Ekind (Old_S) = E_Enumeration_Literal)
2135      then
2136         return Type_Conformant (New_S, Old_S);
2137
2138      elsif Ekind (New_S) = E_Function and then Ekind (Old_S) = E_Operator then
2139         return Operator_Matches_Spec (Old_S, New_S);
2140
2141      elsif Ekind (New_S) = E_Procedure and then Is_Entry (Old_S) then
2142         return Type_Conformant (New_S, Old_S);
2143
2144      else
2145         return False;
2146      end if;
2147   end Entity_Matches_Spec;
2148
2149   ----------------------
2150   -- Find_Unique_Type --
2151   ----------------------
2152
2153   function Find_Unique_Type (L : Node_Id; R : Node_Id) return Entity_Id is
2154      T  : constant Entity_Id := Etype (L);
2155      I  : Interp_Index;
2156      It : Interp;
2157      TR : Entity_Id := Any_Type;
2158
2159   begin
2160      if Is_Overloaded (R) then
2161         Get_First_Interp (R, I, It);
2162         while Present (It.Typ) loop
2163            if Covers (T, It.Typ) or else Covers (It.Typ, T) then
2164
2165               --  If several interpretations are possible and L is universal,
2166               --  apply preference rule.
2167
2168               if TR /= Any_Type then
2169                  if (T = Universal_Integer or else T = Universal_Real)
2170                    and then It.Typ = T
2171                  then
2172                     TR := It.Typ;
2173                  end if;
2174
2175               else
2176                  TR := It.Typ;
2177               end if;
2178            end if;
2179
2180            Get_Next_Interp (I, It);
2181         end loop;
2182
2183         Set_Etype (R, TR);
2184
2185      --  In the non-overloaded case, the Etype of R is already set correctly
2186
2187      else
2188         null;
2189      end if;
2190
2191      --  If one of the operands is Universal_Fixed, the type of the other
2192      --  operand provides the context.
2193
2194      if Etype (R) = Universal_Fixed then
2195         return T;
2196
2197      elsif T = Universal_Fixed then
2198         return Etype (R);
2199
2200      --  Ada 2005 (AI-230): Support the following operators:
2201
2202      --    function "="  (L, R : universal_access) return Boolean;
2203      --    function "/=" (L, R : universal_access) return Boolean;
2204
2205      --  Pool specific access types (E_Access_Type) are not covered by these
2206      --  operators because of the legality rule of 4.5.2(9.2): "The operands
2207      --  of the equality operators for universal_access shall be convertible
2208      --  to one another (see 4.6)". For example, considering the type decla-
2209      --  ration "type P is access Integer" and an anonymous access to Integer,
2210      --  P is convertible to "access Integer" by 4.6 (24.11-24.15), but there
2211      --  is no rule in 4.6 that allows "access Integer" to be converted to P.
2212
2213      elsif Ada_Version >= Ada_2005
2214        and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
2215                                      E_Anonymous_Access_Subprogram_Type)
2216        and then Is_Access_Type (Etype (R))
2217        and then Ekind (Etype (R)) /= E_Access_Type
2218      then
2219         return Etype (L);
2220
2221      elsif Ada_Version >= Ada_2005
2222        and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
2223                                      E_Anonymous_Access_Subprogram_Type)
2224        and then Is_Access_Type (Etype (L))
2225        and then Ekind (Etype (L)) /= E_Access_Type
2226      then
2227         return Etype (R);
2228
2229      --  If one operand is a raise_expression, use type of other operand
2230
2231      elsif Nkind (L) = N_Raise_Expression then
2232         return Etype (R);
2233
2234      else
2235         return Specific_Type (T, Etype (R));
2236      end if;
2237   end Find_Unique_Type;
2238
2239   -------------------------------------
2240   -- Function_Interp_Has_Abstract_Op --
2241   -------------------------------------
2242
2243   function Function_Interp_Has_Abstract_Op
2244     (N : Node_Id;
2245      E : Entity_Id) return Entity_Id
2246   is
2247      Abstr_Op  : Entity_Id;
2248      Act       : Node_Id;
2249      Act_Parm  : Node_Id;
2250      Form_Parm : Node_Id;
2251
2252   begin
2253      --  Why is check on E needed below ???
2254      --  In any case this para needs comments ???
2255
2256      if Is_Overloaded (N) and then Is_Overloadable (E) then
2257         Act_Parm  := First_Actual (N);
2258         Form_Parm := First_Formal (E);
2259         while Present (Act_Parm) and then Present (Form_Parm) loop
2260            Act := Act_Parm;
2261
2262            if Nkind (Act) = N_Parameter_Association then
2263               Act := Explicit_Actual_Parameter (Act);
2264            end if;
2265
2266            Abstr_Op := Has_Abstract_Op (Act, Etype (Form_Parm));
2267
2268            if Present (Abstr_Op) then
2269               return Abstr_Op;
2270            end if;
2271
2272            Next_Actual (Act_Parm);
2273            Next_Formal (Form_Parm);
2274         end loop;
2275      end if;
2276
2277      return Empty;
2278   end Function_Interp_Has_Abstract_Op;
2279
2280   ----------------------
2281   -- Get_First_Interp --
2282   ----------------------
2283
2284   procedure Get_First_Interp
2285     (N  : Node_Id;
2286      I  : out Interp_Index;
2287      It : out Interp)
2288   is
2289      Int_Ind : Interp_Index;
2290      Map_Ptr : Int;
2291      O_N     : Node_Id;
2292
2293   begin
2294      --  If a selected component is overloaded because the selector has
2295      --  multiple interpretations, the node is a call to a protected
2296      --  operation or an indirect call. Retrieve the interpretation from
2297      --  the selector name. The selected component may be overloaded as well
2298      --  if the prefix is overloaded. That case is unchanged.
2299
2300      if Nkind (N) = N_Selected_Component
2301        and then Is_Overloaded (Selector_Name (N))
2302      then
2303         O_N := Selector_Name (N);
2304      else
2305         O_N := N;
2306      end if;
2307
2308      Map_Ptr := Headers (Hash (O_N));
2309      while Map_Ptr /= No_Entry loop
2310         if Interp_Map.Table (Map_Ptr).Node = O_N then
2311            Int_Ind := Interp_Map.Table (Map_Ptr).Index;
2312            It := All_Interp.Table (Int_Ind);
2313            I := Int_Ind;
2314            return;
2315         else
2316            Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2317         end if;
2318      end loop;
2319
2320      --  Procedure should never be called if the node has no interpretations
2321
2322      raise Program_Error;
2323   end Get_First_Interp;
2324
2325   ---------------------
2326   -- Get_Next_Interp --
2327   ---------------------
2328
2329   procedure Get_Next_Interp (I : in out Interp_Index; It : out Interp) is
2330   begin
2331      I  := I + 1;
2332      It := All_Interp.Table (I);
2333   end Get_Next_Interp;
2334
2335   -------------------------
2336   -- Has_Compatible_Type --
2337   -------------------------
2338
2339   function Has_Compatible_Type
2340     (N   : Node_Id;
2341      Typ : Entity_Id) return Boolean
2342   is
2343      I  : Interp_Index;
2344      It : Interp;
2345
2346   begin
2347      if N = Error then
2348         return False;
2349      end if;
2350
2351      if Nkind (N) = N_Subtype_Indication
2352        or else not Is_Overloaded (N)
2353      then
2354         return
2355           Covers (Typ, Etype (N))
2356
2357            --  Ada 2005 (AI-345): The context may be a synchronized interface.
2358            --  If the type is already frozen use the corresponding_record
2359            --  to check whether it is a proper descendant.
2360
2361           or else
2362             (Is_Record_Type (Typ)
2363               and then Is_Concurrent_Type (Etype (N))
2364               and then Present (Corresponding_Record_Type (Etype (N)))
2365               and then Covers (Typ, Corresponding_Record_Type (Etype (N))))
2366
2367           or else
2368             (Is_Concurrent_Type (Typ)
2369               and then Is_Record_Type (Etype (N))
2370               and then Present (Corresponding_Record_Type (Typ))
2371               and then Covers (Corresponding_Record_Type (Typ), Etype (N)))
2372
2373           or else
2374             (not Is_Tagged_Type (Typ)
2375               and then Ekind (Typ) /= E_Anonymous_Access_Type
2376               and then Covers (Etype (N), Typ));
2377
2378      --  Overloaded case
2379
2380      else
2381         Get_First_Interp (N, I, It);
2382         while Present (It.Typ) loop
2383            if (Covers (Typ, It.Typ)
2384                  and then
2385                    (Scope (It.Nam) /= Standard_Standard
2386                       or else not Is_Invisible_Operator (N, Base_Type (Typ))))
2387
2388               --  Ada 2005 (AI-345)
2389
2390              or else
2391                (Is_Concurrent_Type (It.Typ)
2392                  and then Present (Corresponding_Record_Type
2393                                                             (Etype (It.Typ)))
2394                  and then Covers (Typ, Corresponding_Record_Type
2395                                                             (Etype (It.Typ))))
2396
2397              or else (not Is_Tagged_Type (Typ)
2398                         and then Ekind (Typ) /= E_Anonymous_Access_Type
2399                         and then Covers (It.Typ, Typ))
2400            then
2401               return True;
2402            end if;
2403
2404            Get_Next_Interp (I, It);
2405         end loop;
2406
2407         return False;
2408      end if;
2409   end Has_Compatible_Type;
2410
2411   ---------------------
2412   -- Has_Abstract_Op --
2413   ---------------------
2414
2415   function Has_Abstract_Op
2416     (N   : Node_Id;
2417      Typ : Entity_Id) return Entity_Id
2418   is
2419      I  : Interp_Index;
2420      It : Interp;
2421
2422   begin
2423      if Is_Overloaded (N) then
2424         Get_First_Interp (N, I, It);
2425         while Present (It.Nam) loop
2426            if Present (It.Abstract_Op)
2427              and then Etype (It.Abstract_Op) = Typ
2428            then
2429               return It.Abstract_Op;
2430            end if;
2431
2432            Get_Next_Interp (I, It);
2433         end loop;
2434      end if;
2435
2436      return Empty;
2437   end Has_Abstract_Op;
2438
2439   ----------
2440   -- Hash --
2441   ----------
2442
2443   function Hash (N : Node_Id) return Int is
2444   begin
2445      --  Nodes have a size that is power of two, so to select significant
2446      --  bits only we remove the low-order bits.
2447
2448      return ((Int (N) / 2 ** 5) mod Header_Size);
2449   end Hash;
2450
2451   --------------
2452   -- Hides_Op --
2453   --------------
2454
2455   function Hides_Op (F : Entity_Id; Op : Entity_Id) return Boolean is
2456      Btyp : constant Entity_Id := Base_Type (Etype (First_Formal (F)));
2457   begin
2458      return Operator_Matches_Spec (Op, F)
2459        and then (In_Open_Scopes (Scope (F))
2460                   or else Scope (F) = Scope (Btyp)
2461                   or else (not In_Open_Scopes (Scope (Btyp))
2462                             and then not In_Use (Btyp)
2463                             and then not In_Use (Scope (Btyp))));
2464   end Hides_Op;
2465
2466   ------------------------
2467   -- Init_Interp_Tables --
2468   ------------------------
2469
2470   procedure Init_Interp_Tables is
2471   begin
2472      All_Interp.Init;
2473      Interp_Map.Init;
2474      Headers := (others => No_Entry);
2475   end Init_Interp_Tables;
2476
2477   -----------------------------------
2478   -- Interface_Present_In_Ancestor --
2479   -----------------------------------
2480
2481   function Interface_Present_In_Ancestor
2482     (Typ   : Entity_Id;
2483      Iface : Entity_Id) return Boolean
2484   is
2485      Target_Typ : Entity_Id;
2486      Iface_Typ  : Entity_Id;
2487
2488      function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean;
2489      --  Returns True if Typ or some ancestor of Typ implements Iface
2490
2491      -------------------------------
2492      -- Iface_Present_In_Ancestor --
2493      -------------------------------
2494
2495      function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean is
2496         E    : Entity_Id;
2497         AI   : Entity_Id;
2498         Elmt : Elmt_Id;
2499
2500      begin
2501         if Typ = Iface_Typ then
2502            return True;
2503         end if;
2504
2505         --  Handle private types
2506
2507         if Present (Full_View (Typ))
2508           and then not Is_Concurrent_Type (Full_View (Typ))
2509         then
2510            E := Full_View (Typ);
2511         else
2512            E := Typ;
2513         end if;
2514
2515         loop
2516            if Present (Interfaces (E))
2517              and then Present (Interfaces (E))
2518              and then not Is_Empty_Elmt_List (Interfaces (E))
2519            then
2520               Elmt := First_Elmt (Interfaces (E));
2521               while Present (Elmt) loop
2522                  AI := Node (Elmt);
2523
2524                  if AI = Iface_Typ or else Is_Ancestor (Iface_Typ, AI) then
2525                     return True;
2526                  end if;
2527
2528                  Next_Elmt (Elmt);
2529               end loop;
2530            end if;
2531
2532            exit when Etype (E) = E
2533
2534               --  Handle private types
2535
2536               or else (Present (Full_View (Etype (E)))
2537                         and then Full_View (Etype (E)) = E);
2538
2539            --  Check if the current type is a direct derivation of the
2540            --  interface
2541
2542            if Etype (E) = Iface_Typ then
2543               return True;
2544            end if;
2545
2546            --  Climb to the immediate ancestor handling private types
2547
2548            if Present (Full_View (Etype (E))) then
2549               E := Full_View (Etype (E));
2550            else
2551               E := Etype (E);
2552            end if;
2553         end loop;
2554
2555         return False;
2556      end Iface_Present_In_Ancestor;
2557
2558   --  Start of processing for Interface_Present_In_Ancestor
2559
2560   begin
2561      --  Iface might be a class-wide subtype, so we have to apply Base_Type
2562
2563      if Is_Class_Wide_Type (Iface) then
2564         Iface_Typ := Etype (Base_Type (Iface));
2565      else
2566         Iface_Typ := Iface;
2567      end if;
2568
2569      --  Handle subtypes
2570
2571      Iface_Typ := Base_Type (Iface_Typ);
2572
2573      if Is_Access_Type (Typ) then
2574         Target_Typ := Etype (Directly_Designated_Type (Typ));
2575      else
2576         Target_Typ := Typ;
2577      end if;
2578
2579      if Is_Concurrent_Record_Type (Target_Typ) then
2580         Target_Typ := Corresponding_Concurrent_Type (Target_Typ);
2581      end if;
2582
2583      Target_Typ := Base_Type (Target_Typ);
2584
2585      --  In case of concurrent types we can't use the Corresponding Record_Typ
2586      --  to look for the interface because it is built by the expander (and
2587      --  hence it is not always available). For this reason we traverse the
2588      --  list of interfaces (available in the parent of the concurrent type)
2589
2590      if Is_Concurrent_Type (Target_Typ) then
2591         if Present (Interface_List (Parent (Target_Typ))) then
2592            declare
2593               AI : Node_Id;
2594
2595            begin
2596               AI := First (Interface_List (Parent (Target_Typ)));
2597
2598               --  The progenitor itself may be a subtype of an interface type.
2599
2600               while Present (AI) loop
2601                  if Etype (AI) = Iface_Typ
2602                    or else Base_Type (Etype (AI)) = Iface_Typ
2603                  then
2604                     return True;
2605
2606                  elsif Present (Interfaces (Etype (AI)))
2607                    and then Iface_Present_In_Ancestor (Etype (AI))
2608                  then
2609                     return True;
2610                  end if;
2611
2612                  Next (AI);
2613               end loop;
2614            end;
2615         end if;
2616
2617         return False;
2618      end if;
2619
2620      if Is_Class_Wide_Type (Target_Typ) then
2621         Target_Typ := Etype (Target_Typ);
2622      end if;
2623
2624      if Ekind (Target_Typ) = E_Incomplete_Type then
2625         pragma Assert (Present (Non_Limited_View (Target_Typ)));
2626         Target_Typ := Non_Limited_View (Target_Typ);
2627
2628         --  Protect the frontend against previously detected errors
2629
2630         if Ekind (Target_Typ) = E_Incomplete_Type then
2631            return False;
2632         end if;
2633      end if;
2634
2635      return Iface_Present_In_Ancestor (Target_Typ);
2636   end Interface_Present_In_Ancestor;
2637
2638   ---------------------
2639   -- Intersect_Types --
2640   ---------------------
2641
2642   function Intersect_Types (L, R : Node_Id) return Entity_Id is
2643      Index : Interp_Index;
2644      It    : Interp;
2645      Typ   : Entity_Id;
2646
2647      function Check_Right_Argument (T : Entity_Id) return Entity_Id;
2648      --  Find interpretation of right arg that has type compatible with T
2649
2650      --------------------------
2651      -- Check_Right_Argument --
2652      --------------------------
2653
2654      function Check_Right_Argument (T : Entity_Id) return Entity_Id is
2655         Index : Interp_Index;
2656         It    : Interp;
2657         T2    : Entity_Id;
2658
2659      begin
2660         if not Is_Overloaded (R) then
2661            return Specific_Type (T, Etype (R));
2662
2663         else
2664            Get_First_Interp (R, Index, It);
2665            loop
2666               T2 := Specific_Type (T, It.Typ);
2667
2668               if T2 /= Any_Type then
2669                  return T2;
2670               end if;
2671
2672               Get_Next_Interp (Index, It);
2673               exit when No (It.Typ);
2674            end loop;
2675
2676            return Any_Type;
2677         end if;
2678      end Check_Right_Argument;
2679
2680   --  Start of processing for Intersect_Types
2681
2682   begin
2683      if Etype (L) = Any_Type or else Etype (R) = Any_Type then
2684         return Any_Type;
2685      end if;
2686
2687      if not Is_Overloaded (L) then
2688         Typ := Check_Right_Argument (Etype (L));
2689
2690      else
2691         Typ := Any_Type;
2692         Get_First_Interp (L, Index, It);
2693         while Present (It.Typ) loop
2694            Typ := Check_Right_Argument (It.Typ);
2695            exit when Typ /= Any_Type;
2696            Get_Next_Interp (Index, It);
2697         end loop;
2698
2699      end if;
2700
2701      --  If Typ is Any_Type, it means no compatible pair of types was found
2702
2703      if Typ = Any_Type then
2704         if Nkind (Parent (L)) in N_Op then
2705            Error_Msg_N ("incompatible types for operator", Parent (L));
2706
2707         elsif Nkind (Parent (L)) = N_Range then
2708            Error_Msg_N ("incompatible types given in constraint", Parent (L));
2709
2710         --  Ada 2005 (AI-251): Complete the error notification
2711
2712         elsif Is_Class_Wide_Type (Etype (R))
2713           and then Is_Interface (Etype (Class_Wide_Type (Etype (R))))
2714         then
2715            Error_Msg_NE ("(Ada 2005) does not implement interface }",
2716                          L, Etype (Class_Wide_Type (Etype (R))));
2717         else
2718            Error_Msg_N ("incompatible types", Parent (L));
2719         end if;
2720      end if;
2721
2722      return Typ;
2723   end Intersect_Types;
2724
2725   -----------------------
2726   -- In_Generic_Actual --
2727   -----------------------
2728
2729   function In_Generic_Actual (Exp : Node_Id) return Boolean is
2730      Par : constant Node_Id := Parent (Exp);
2731
2732   begin
2733      if No (Par) then
2734         return False;
2735
2736      elsif Nkind (Par) in N_Declaration then
2737         if Nkind (Par) = N_Object_Declaration then
2738            return Present (Corresponding_Generic_Association (Par));
2739         else
2740            return False;
2741         end if;
2742
2743      elsif Nkind (Par) = N_Object_Renaming_Declaration then
2744         return Present (Corresponding_Generic_Association (Par));
2745
2746      elsif Nkind (Par) in N_Statement_Other_Than_Procedure_Call then
2747         return False;
2748
2749      else
2750         return In_Generic_Actual (Parent (Par));
2751      end if;
2752   end In_Generic_Actual;
2753
2754   -----------------
2755   -- Is_Ancestor --
2756   -----------------
2757
2758   function Is_Ancestor
2759     (T1            : Entity_Id;
2760      T2            : Entity_Id;
2761      Use_Full_View : Boolean := False) return Boolean
2762   is
2763      BT1 : Entity_Id;
2764      BT2 : Entity_Id;
2765      Par : Entity_Id;
2766
2767   begin
2768      BT1 := Base_Type (T1);
2769      BT2 := Base_Type (T2);
2770
2771      --  Handle underlying view of records with unknown discriminants using
2772      --  the original entity that motivated the construction of this
2773      --  underlying record view (see Build_Derived_Private_Type).
2774
2775      if Is_Underlying_Record_View (BT1) then
2776         BT1 := Underlying_Record_View (BT1);
2777      end if;
2778
2779      if Is_Underlying_Record_View (BT2) then
2780         BT2 := Underlying_Record_View (BT2);
2781      end if;
2782
2783      if BT1 = BT2 then
2784         return True;
2785
2786      --  The predicate must look past privacy
2787
2788      elsif Is_Private_Type (T1)
2789        and then Present (Full_View (T1))
2790        and then BT2 = Base_Type (Full_View (T1))
2791      then
2792         return True;
2793
2794      elsif Is_Private_Type (T2)
2795        and then Present (Full_View (T2))
2796        and then BT1 = Base_Type (Full_View (T2))
2797      then
2798         return True;
2799
2800      else
2801         --  Obtain the parent of the base type of T2 (use the full view if
2802         --  allowed).
2803
2804         if Use_Full_View
2805           and then Is_Private_Type (BT2)
2806           and then Present (Full_View (BT2))
2807         then
2808            --  No climbing needed if its full view is the root type
2809
2810            if Full_View (BT2) = Root_Type (Full_View (BT2)) then
2811               return False;
2812            end if;
2813
2814            Par := Etype (Full_View (BT2));
2815
2816         else
2817            Par := Etype (BT2);
2818         end if;
2819
2820         loop
2821            --  If there was a error on the type declaration, do not recurse
2822
2823            if Error_Posted (Par) then
2824               return False;
2825
2826            elsif BT1 = Base_Type (Par)
2827              or else (Is_Private_Type (T1)
2828                        and then Present (Full_View (T1))
2829                        and then Base_Type (Par) = Base_Type (Full_View (T1)))
2830            then
2831               return True;
2832
2833            elsif Is_Private_Type (Par)
2834              and then Present (Full_View (Par))
2835              and then Full_View (Par) = BT1
2836            then
2837               return True;
2838
2839            --  Root type found
2840
2841            elsif Par = Root_Type (Par) then
2842               return False;
2843
2844            --  Continue climbing
2845
2846            else
2847               --  Use the full-view of private types (if allowed)
2848
2849               if Use_Full_View
2850                 and then Is_Private_Type (Par)
2851                 and then Present (Full_View (Par))
2852               then
2853                  Par := Etype (Full_View (Par));
2854               else
2855                  Par := Etype (Par);
2856               end if;
2857            end if;
2858         end loop;
2859      end if;
2860   end Is_Ancestor;
2861
2862   ---------------------------
2863   -- Is_Invisible_Operator --
2864   ---------------------------
2865
2866   function Is_Invisible_Operator
2867     (N : Node_Id;
2868      T : Entity_Id) return Boolean
2869   is
2870      Orig_Node : constant Node_Id := Original_Node (N);
2871
2872   begin
2873      if Nkind (N) not in N_Op then
2874         return False;
2875
2876      elsif not Comes_From_Source (N) then
2877         return False;
2878
2879      elsif No (Universal_Interpretation (Right_Opnd (N))) then
2880         return False;
2881
2882      elsif Nkind (N) in N_Binary_Op
2883        and then No (Universal_Interpretation (Left_Opnd (N)))
2884      then
2885         return False;
2886
2887      else
2888         return Is_Numeric_Type (T)
2889           and then not In_Open_Scopes (Scope (T))
2890           and then not Is_Potentially_Use_Visible (T)
2891           and then not In_Use (T)
2892           and then not In_Use (Scope (T))
2893           and then
2894            (Nkind (Orig_Node) /= N_Function_Call
2895              or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
2896              or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
2897           and then not In_Instance;
2898      end if;
2899   end Is_Invisible_Operator;
2900
2901   --------------------
2902   --  Is_Progenitor --
2903   --------------------
2904
2905   function Is_Progenitor
2906     (Iface : Entity_Id;
2907      Typ   : Entity_Id) return Boolean
2908   is
2909   begin
2910      return Implements_Interface (Typ, Iface, Exclude_Parents => True);
2911   end Is_Progenitor;
2912
2913   -------------------
2914   -- Is_Subtype_Of --
2915   -------------------
2916
2917   function Is_Subtype_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
2918      S : Entity_Id;
2919
2920   begin
2921      S := Ancestor_Subtype (T1);
2922      while Present (S) loop
2923         if S = T2 then
2924            return True;
2925         else
2926            S := Ancestor_Subtype (S);
2927         end if;
2928      end loop;
2929
2930      return False;
2931   end Is_Subtype_Of;
2932
2933   ------------------
2934   -- List_Interps --
2935   ------------------
2936
2937   procedure List_Interps (Nam : Node_Id; Err : Node_Id) is
2938      Index : Interp_Index;
2939      It    : Interp;
2940
2941   begin
2942      Get_First_Interp (Nam, Index, It);
2943      while Present (It.Nam) loop
2944         if Scope (It.Nam) = Standard_Standard
2945           and then Scope (It.Typ) /= Standard_Standard
2946         then
2947            Error_Msg_Sloc := Sloc (Parent (It.Typ));
2948            Error_Msg_NE ("\\& (inherited) declared#!", Err, It.Nam);
2949
2950         else
2951            Error_Msg_Sloc := Sloc (It.Nam);
2952            Error_Msg_NE ("\\& declared#!", Err, It.Nam);
2953         end if;
2954
2955         Get_Next_Interp (Index, It);
2956      end loop;
2957   end List_Interps;
2958
2959   -----------------
2960   -- New_Interps --
2961   -----------------
2962
2963   procedure New_Interps (N : Node_Id)  is
2964      Map_Ptr : Int;
2965
2966   begin
2967      All_Interp.Append (No_Interp);
2968
2969      Map_Ptr := Headers (Hash (N));
2970
2971      if Map_Ptr = No_Entry then
2972
2973         --  Place new node at end of table
2974
2975         Interp_Map.Increment_Last;
2976         Headers (Hash (N)) := Interp_Map.Last;
2977
2978      else
2979         --   Place node at end of chain, or locate its previous entry
2980
2981         loop
2982            if Interp_Map.Table (Map_Ptr).Node = N then
2983
2984               --  Node is already in the table, and is being rewritten.
2985               --  Start a new interp section, retain hash link.
2986
2987               Interp_Map.Table (Map_Ptr).Node  := N;
2988               Interp_Map.Table (Map_Ptr).Index := All_Interp.Last;
2989               Set_Is_Overloaded (N, True);
2990               return;
2991
2992            else
2993               exit when Interp_Map.Table (Map_Ptr).Next = No_Entry;
2994               Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2995            end if;
2996         end loop;
2997
2998         --  Chain the new node
2999
3000         Interp_Map.Increment_Last;
3001         Interp_Map.Table (Map_Ptr).Next := Interp_Map.Last;
3002      end if;
3003
3004      Interp_Map.Table (Interp_Map.Last) := (N, All_Interp.Last, No_Entry);
3005      Set_Is_Overloaded (N, True);
3006   end New_Interps;
3007
3008   ---------------------------
3009   -- Operator_Matches_Spec --
3010   ---------------------------
3011
3012   function Operator_Matches_Spec (Op, New_S : Entity_Id) return Boolean is
3013      Op_Name : constant Name_Id   := Chars (Op);
3014      T       : constant Entity_Id := Etype (New_S);
3015      New_F   : Entity_Id;
3016      Old_F   : Entity_Id;
3017      Num     : Int;
3018      T1      : Entity_Id;
3019      T2      : Entity_Id;
3020
3021   begin
3022      --  To verify that a predefined operator matches a given signature,
3023      --  do a case analysis of the operator classes. Function can have one
3024      --  or two formals and must have the proper result type.
3025
3026      New_F := First_Formal (New_S);
3027      Old_F := First_Formal (Op);
3028      Num := 0;
3029      while Present (New_F) and then Present (Old_F) loop
3030         Num := Num + 1;
3031         Next_Formal (New_F);
3032         Next_Formal (Old_F);
3033      end loop;
3034
3035      --  Definite mismatch if different number of parameters
3036
3037      if Present (Old_F) or else Present (New_F) then
3038         return False;
3039
3040      --  Unary operators
3041
3042      elsif Num = 1 then
3043         T1 := Etype (First_Formal (New_S));
3044
3045         if Nam_In (Op_Name, Name_Op_Subtract, Name_Op_Add, Name_Op_Abs) then
3046            return Base_Type (T1) = Base_Type (T)
3047              and then Is_Numeric_Type (T);
3048
3049         elsif Op_Name = Name_Op_Not then
3050            return Base_Type (T1) = Base_Type (T)
3051              and then Valid_Boolean_Arg (Base_Type (T));
3052
3053         else
3054            return False;
3055         end if;
3056
3057      --  Binary operators
3058
3059      else
3060         T1 := Etype (First_Formal (New_S));
3061         T2 := Etype (Next_Formal (First_Formal (New_S)));
3062
3063         if Nam_In (Op_Name, Name_Op_And, Name_Op_Or, Name_Op_Xor) then
3064            return Base_Type (T1) = Base_Type (T2)
3065              and then Base_Type (T1) = Base_Type (T)
3066              and then Valid_Boolean_Arg (Base_Type (T));
3067
3068         elsif Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne) then
3069            return Base_Type (T1) = Base_Type (T2)
3070              and then not Is_Limited_Type (T1)
3071              and then Is_Boolean_Type (T);
3072
3073         elsif Nam_In (Op_Name, Name_Op_Lt, Name_Op_Le,
3074                                Name_Op_Gt, Name_Op_Ge)
3075         then
3076            return Base_Type (T1) = Base_Type (T2)
3077              and then Valid_Comparison_Arg (T1)
3078              and then Is_Boolean_Type (T);
3079
3080         elsif Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
3081            return Base_Type (T1) = Base_Type (T2)
3082              and then Base_Type (T1) = Base_Type (T)
3083              and then Is_Numeric_Type (T);
3084
3085         --  For division and multiplication, a user-defined function does not
3086         --  match the predefined universal_fixed operation, except in Ada 83.
3087
3088         elsif Op_Name = Name_Op_Divide then
3089            return (Base_Type (T1) = Base_Type (T2)
3090              and then Base_Type (T1) = Base_Type (T)
3091              and then Is_Numeric_Type (T)
3092              and then (not Is_Fixed_Point_Type (T)
3093                         or else Ada_Version = Ada_83))
3094
3095            --  Mixed_Mode operations on fixed-point types
3096
3097              or else (Base_Type (T1) = Base_Type (T)
3098                        and then Base_Type (T2) = Base_Type (Standard_Integer)
3099                        and then Is_Fixed_Point_Type (T))
3100
3101            --  A user defined operator can also match (and hide) a mixed
3102            --  operation on universal literals.
3103
3104              or else (Is_Integer_Type (T2)
3105                        and then Is_Floating_Point_Type (T1)
3106                        and then Base_Type (T1) = Base_Type (T));
3107
3108         elsif Op_Name = Name_Op_Multiply then
3109            return (Base_Type (T1) = Base_Type (T2)
3110              and then Base_Type (T1) = Base_Type (T)
3111              and then Is_Numeric_Type (T)
3112              and then (not Is_Fixed_Point_Type (T)
3113                         or else Ada_Version = Ada_83))
3114
3115            --  Mixed_Mode operations on fixed-point types
3116
3117              or else (Base_Type (T1) = Base_Type (T)
3118                        and then Base_Type (T2) = Base_Type (Standard_Integer)
3119                        and then Is_Fixed_Point_Type (T))
3120
3121              or else (Base_Type (T2) = Base_Type (T)
3122                        and then Base_Type (T1) = Base_Type (Standard_Integer)
3123                        and then Is_Fixed_Point_Type (T))
3124
3125              or else (Is_Integer_Type (T2)
3126                        and then Is_Floating_Point_Type (T1)
3127                        and then Base_Type (T1) = Base_Type (T))
3128
3129              or else (Is_Integer_Type (T1)
3130                        and then Is_Floating_Point_Type (T2)
3131                        and then Base_Type (T2) = Base_Type (T));
3132
3133         elsif Nam_In (Op_Name, Name_Op_Mod, Name_Op_Rem) then
3134            return Base_Type (T1) = Base_Type (T2)
3135              and then Base_Type (T1) = Base_Type (T)
3136              and then Is_Integer_Type (T);
3137
3138         elsif Op_Name = Name_Op_Expon then
3139            return Base_Type (T1) = Base_Type (T)
3140              and then Is_Numeric_Type (T)
3141              and then Base_Type (T2) = Base_Type (Standard_Integer);
3142
3143         elsif Op_Name = Name_Op_Concat then
3144            return Is_Array_Type (T)
3145              and then (Base_Type (T) = Base_Type (Etype (Op)))
3146              and then (Base_Type (T1) = Base_Type (T)
3147                          or else
3148                        Base_Type (T1) = Base_Type (Component_Type (T)))
3149              and then (Base_Type (T2) = Base_Type (T)
3150                          or else
3151                        Base_Type (T2) = Base_Type (Component_Type (T)));
3152
3153         else
3154            return False;
3155         end if;
3156      end if;
3157   end Operator_Matches_Spec;
3158
3159   -------------------
3160   -- Remove_Interp --
3161   -------------------
3162
3163   procedure Remove_Interp (I : in out Interp_Index) is
3164      II : Interp_Index;
3165
3166   begin
3167      --  Find end of interp list and copy downward to erase the discarded one
3168
3169      II := I + 1;
3170      while Present (All_Interp.Table (II).Typ) loop
3171         II := II + 1;
3172      end loop;
3173
3174      for J in I + 1 .. II loop
3175         All_Interp.Table (J - 1) := All_Interp.Table (J);
3176      end loop;
3177
3178      --  Back up interp index to insure that iterator will pick up next
3179      --  available interpretation.
3180
3181      I := I - 1;
3182   end Remove_Interp;
3183
3184   ------------------
3185   -- Save_Interps --
3186   ------------------
3187
3188   procedure Save_Interps (Old_N : Node_Id; New_N : Node_Id) is
3189      Map_Ptr : Int;
3190      O_N     : Node_Id := Old_N;
3191
3192   begin
3193      if Is_Overloaded (Old_N) then
3194         Set_Is_Overloaded (New_N);
3195
3196         if Nkind (Old_N) = N_Selected_Component
3197           and then Is_Overloaded (Selector_Name (Old_N))
3198         then
3199            O_N := Selector_Name (Old_N);
3200         end if;
3201
3202         Map_Ptr := Headers (Hash (O_N));
3203
3204         while Interp_Map.Table (Map_Ptr).Node /= O_N loop
3205            Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
3206            pragma Assert (Map_Ptr /= No_Entry);
3207         end loop;
3208
3209         New_Interps (New_N);
3210         Interp_Map.Table (Interp_Map.Last).Index :=
3211           Interp_Map.Table (Map_Ptr).Index;
3212      end if;
3213   end Save_Interps;
3214
3215   -------------------
3216   -- Specific_Type --
3217   -------------------
3218
3219   function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id is
3220      T1 : constant Entity_Id := Available_View (Typ_1);
3221      T2 : constant Entity_Id := Available_View (Typ_2);
3222      B1 : constant Entity_Id := Base_Type (T1);
3223      B2 : constant Entity_Id := Base_Type (T2);
3224
3225      function Is_Remote_Access (T : Entity_Id) return Boolean;
3226      --  Check whether T is the equivalent type of a remote access type.
3227      --  If distribution is enabled, T is a legal context for Null.
3228
3229      ----------------------
3230      -- Is_Remote_Access --
3231      ----------------------
3232
3233      function Is_Remote_Access (T : Entity_Id) return Boolean is
3234      begin
3235         return Is_Record_Type (T)
3236           and then (Is_Remote_Call_Interface (T)
3237                      or else Is_Remote_Types (T))
3238           and then Present (Corresponding_Remote_Type (T))
3239           and then Is_Access_Type (Corresponding_Remote_Type (T));
3240      end Is_Remote_Access;
3241
3242   --  Start of processing for Specific_Type
3243
3244   begin
3245      if T1 = Any_Type or else T2 = Any_Type then
3246         return Any_Type;
3247      end if;
3248
3249      if B1 = B2 then
3250         return B1;
3251
3252      elsif     (T1 = Universal_Integer and then Is_Integer_Type (T2))
3253        or else (T1 = Universal_Real    and then Is_Real_Type (T2))
3254        or else (T1 = Universal_Fixed   and then Is_Fixed_Point_Type (T2))
3255        or else (T1 = Any_Fixed         and then Is_Fixed_Point_Type (T2))
3256      then
3257         return B2;
3258
3259      elsif     (T2 = Universal_Integer and then Is_Integer_Type (T1))
3260        or else (T2 = Universal_Real    and then Is_Real_Type (T1))
3261        or else (T2 = Universal_Fixed   and then Is_Fixed_Point_Type (T1))
3262        or else (T2 = Any_Fixed         and then Is_Fixed_Point_Type (T1))
3263      then
3264         return B1;
3265
3266      elsif T2 = Any_String and then Is_String_Type (T1) then
3267         return B1;
3268
3269      elsif T1 = Any_String and then Is_String_Type (T2) then
3270         return B2;
3271
3272      elsif T2 = Any_Character and then Is_Character_Type (T1) then
3273         return B1;
3274
3275      elsif T1 = Any_Character and then Is_Character_Type (T2) then
3276         return B2;
3277
3278      elsif T1 = Any_Access
3279        and then (Is_Access_Type (T2) or else Is_Remote_Access (T2))
3280      then
3281         return T2;
3282
3283      elsif T2 = Any_Access
3284        and then (Is_Access_Type (T1) or else Is_Remote_Access (T1))
3285      then
3286         return T1;
3287
3288      --  In an instance, the specific type may have a private view. Use full
3289      --  view to check legality.
3290
3291      elsif T2 = Any_Access
3292        and then Is_Private_Type (T1)
3293        and then Present (Full_View (T1))
3294        and then Is_Access_Type (Full_View (T1))
3295        and then In_Instance
3296      then
3297         return T1;
3298
3299      elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
3300         return T1;
3301
3302      elsif T1 = Any_Composite and then Is_Aggregate_Type (T2) then
3303         return T2;
3304
3305      elsif T1 = Any_Modular and then Is_Modular_Integer_Type (T2) then
3306         return T2;
3307
3308      elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
3309         return T1;
3310
3311      --  ----------------------------------------------------------
3312      --  Special cases for equality operators (all other predefined
3313      --  operators can never apply to tagged types)
3314      --  ----------------------------------------------------------
3315
3316      --  Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
3317      --  interface
3318
3319      elsif Is_Class_Wide_Type (T1)
3320        and then Is_Class_Wide_Type (T2)
3321        and then Is_Interface (Etype (T2))
3322      then
3323         return T1;
3324
3325      --  Ada 2005 (AI-251): T1 is a concrete type that implements the
3326      --  class-wide interface T2
3327
3328      elsif Is_Class_Wide_Type (T2)
3329        and then Is_Interface (Etype (T2))
3330        and then Interface_Present_In_Ancestor (Typ   => T1,
3331                                                Iface => Etype (T2))
3332      then
3333         return T1;
3334
3335      elsif Is_Class_Wide_Type (T1)
3336        and then Is_Ancestor (Root_Type (T1), T2)
3337      then
3338         return T1;
3339
3340      elsif Is_Class_Wide_Type (T2)
3341        and then Is_Ancestor (Root_Type (T2), T1)
3342      then
3343         return T2;
3344
3345      elsif Ekind_In (B1, E_Access_Subprogram_Type,
3346                          E_Access_Protected_Subprogram_Type)
3347        and then Ekind (Designated_Type (B1)) /= E_Subprogram_Type
3348        and then Is_Access_Type (T2)
3349      then
3350         return T2;
3351
3352      elsif Ekind_In (B2, E_Access_Subprogram_Type,
3353                          E_Access_Protected_Subprogram_Type)
3354        and then Ekind (Designated_Type (B2)) /= E_Subprogram_Type
3355        and then Is_Access_Type (T1)
3356      then
3357         return T1;
3358
3359      elsif Ekind_In (T1, E_Allocator_Type,
3360                          E_Access_Attribute_Type,
3361                          E_Anonymous_Access_Type)
3362        and then Is_Access_Type (T2)
3363      then
3364         return T2;
3365
3366      elsif Ekind_In (T2, E_Allocator_Type,
3367                          E_Access_Attribute_Type,
3368                          E_Anonymous_Access_Type)
3369        and then Is_Access_Type (T1)
3370      then
3371         return T1;
3372
3373      --  If none of the above cases applies, types are not compatible
3374
3375      else
3376         return Any_Type;
3377      end if;
3378   end Specific_Type;
3379
3380   ---------------------
3381   -- Set_Abstract_Op --
3382   ---------------------
3383
3384   procedure Set_Abstract_Op (I : Interp_Index; V : Entity_Id) is
3385   begin
3386      All_Interp.Table (I).Abstract_Op := V;
3387   end Set_Abstract_Op;
3388
3389   -----------------------
3390   -- Valid_Boolean_Arg --
3391   -----------------------
3392
3393   --  In addition to booleans and arrays of booleans, we must include
3394   --  aggregates as valid boolean arguments, because in the first pass of
3395   --  resolution their components are not examined. If it turns out not to be
3396   --  an aggregate of booleans, this will be diagnosed in Resolve.
3397   --  Any_Composite must be checked for prior to the array type checks because
3398   --  Any_Composite does not have any associated indexes.
3399
3400   function Valid_Boolean_Arg (T : Entity_Id) return Boolean is
3401   begin
3402      if Is_Boolean_Type (T)
3403        or else Is_Modular_Integer_Type (T)
3404        or else T = Universal_Integer
3405        or else T = Any_Composite
3406      then
3407         return True;
3408
3409      elsif Is_Array_Type (T)
3410        and then T /= Any_String
3411        and then Number_Dimensions (T) = 1
3412        and then Is_Boolean_Type (Component_Type (T))
3413        and then
3414         ((not Is_Private_Composite (T) and then not Is_Limited_Composite (T))
3415           or else In_Instance
3416           or else Available_Full_View_Of_Component (T))
3417      then
3418         return True;
3419
3420      else
3421         return False;
3422      end if;
3423   end Valid_Boolean_Arg;
3424
3425   --------------------------
3426   -- Valid_Comparison_Arg --
3427   --------------------------
3428
3429   function Valid_Comparison_Arg (T : Entity_Id) return Boolean is
3430   begin
3431
3432      if T = Any_Composite then
3433         return False;
3434
3435      elsif Is_Discrete_Type (T)
3436        or else Is_Real_Type (T)
3437      then
3438         return True;
3439
3440      elsif Is_Array_Type (T)
3441          and then Number_Dimensions (T) = 1
3442          and then Is_Discrete_Type (Component_Type (T))
3443          and then (not Is_Private_Composite (T) or else In_Instance)
3444          and then (not Is_Limited_Composite (T) or else In_Instance)
3445      then
3446         return True;
3447
3448      elsif Is_Array_Type (T)
3449        and then Number_Dimensions (T) = 1
3450        and then Is_Discrete_Type (Component_Type (T))
3451        and then Available_Full_View_Of_Component (T)
3452      then
3453         return True;
3454
3455      elsif Is_String_Type (T) then
3456         return True;
3457      else
3458         return False;
3459      end if;
3460   end Valid_Comparison_Arg;
3461
3462   ------------------
3463   -- Write_Interp --
3464   ------------------
3465
3466   procedure Write_Interp (It : Interp) is
3467   begin
3468      Write_Str ("Nam: ");
3469      Print_Tree_Node (It.Nam);
3470      Write_Str ("Typ: ");
3471      Print_Tree_Node (It.Typ);
3472      Write_Str ("Abstract_Op: ");
3473      Print_Tree_Node (It.Abstract_Op);
3474   end Write_Interp;
3475
3476   ----------------------
3477   -- Write_Interp_Ref --
3478   ----------------------
3479
3480   procedure Write_Interp_Ref (Map_Ptr : Int) is
3481   begin
3482      Write_Str (" Node:  ");
3483      Write_Int (Int (Interp_Map.Table (Map_Ptr).Node));
3484      Write_Str (" Index: ");
3485      Write_Int (Int (Interp_Map.Table (Map_Ptr).Index));
3486      Write_Str (" Next:  ");
3487      Write_Int (Interp_Map.Table (Map_Ptr).Next);
3488      Write_Eol;
3489   end Write_Interp_Ref;
3490
3491   ---------------------
3492   -- Write_Overloads --
3493   ---------------------
3494
3495   procedure Write_Overloads (N : Node_Id) is
3496      I   : Interp_Index;
3497      It  : Interp;
3498      Nam : Entity_Id;
3499
3500   begin
3501      Write_Str ("Overloads: ");
3502      Print_Node_Briefly (N);
3503
3504      if Nkind (N) not in N_Has_Entity then
3505         return;
3506      end if;
3507
3508      if not Is_Overloaded (N) then
3509         Write_Str ("Non-overloaded entity ");
3510         Write_Eol;
3511         Write_Entity_Info (Entity (N), " ");
3512
3513      else
3514         Get_First_Interp (N, I, It);
3515         Write_Str ("Overloaded entity ");
3516         Write_Eol;
3517         Write_Str ("      Name           Type           Abstract Op");
3518         Write_Eol;
3519         Write_Str ("===============================================");
3520         Write_Eol;
3521         Nam := It.Nam;
3522
3523         while Present (Nam) loop
3524            Write_Int (Int (Nam));
3525            Write_Str ("   ");
3526            Write_Name (Chars (Nam));
3527            Write_Str ("   ");
3528            Write_Int (Int (It.Typ));
3529            Write_Str ("   ");
3530            Write_Name (Chars (It.Typ));
3531
3532            if Present (It.Abstract_Op) then
3533               Write_Str ("   ");
3534               Write_Int (Int (It.Abstract_Op));
3535               Write_Str ("   ");
3536               Write_Name (Chars (It.Abstract_Op));
3537            end if;
3538
3539            Write_Eol;
3540            Get_Next_Interp (I, It);
3541            Nam := It.Nam;
3542         end loop;
3543      end if;
3544   end Write_Overloads;
3545
3546end Sem_Type;
3547