1 /* Alias analysis for GNU C
2    Copyright (C) 1997-2014 Free Software Foundation, Inc.
3    Contributed by John Carr (jfc@mit.edu).
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "varasm.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "df.h"
44 #include "tree-ssa-alias.h"
45 #include "pointer-set.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimple-ssa.h"
51 
52 /* The aliasing API provided here solves related but different problems:
53 
54    Say there exists (in c)
55 
56    struct X {
57      struct Y y1;
58      struct Z z2;
59    } x1, *px1,  *px2;
60 
61    struct Y y2, *py;
62    struct Z z2, *pz;
63 
64 
65    py = &x1.y1;
66    px2 = &x1;
67 
68    Consider the four questions:
69 
70    Can a store to x1 interfere with px2->y1?
71    Can a store to x1 interfere with px2->z2?
72    Can a store to x1 change the value pointed to by with py?
73    Can a store to x1 change the value pointed to by with pz?
74 
75    The answer to these questions can be yes, yes, yes, and maybe.
76 
77    The first two questions can be answered with a simple examination
78    of the type system.  If structure X contains a field of type Y then
79    a store through a pointer to an X can overwrite any field that is
80    contained (recursively) in an X (unless we know that px1 != px2).
81 
82    The last two questions can be solved in the same way as the first
83    two questions but this is too conservative.  The observation is
84    that in some cases we can know which (if any) fields are addressed
85    and if those addresses are used in bad ways.  This analysis may be
86    language specific.  In C, arbitrary operations may be applied to
87    pointers.  However, there is some indication that this may be too
88    conservative for some C++ types.
89 
90    The pass ipa-type-escape does this analysis for the types whose
91    instances do not escape across the compilation boundary.
92 
93    Historically in GCC, these two problems were combined and a single
94    data structure that was used to represent the solution to these
95    problems.  We now have two similar but different data structures,
96    The data structure to solve the last two questions is similar to
97    the first, but does not contain the fields whose address are never
98    taken.  For types that do escape the compilation unit, the data
99    structures will have identical information.
100 */
101 
102 /* The alias sets assigned to MEMs assist the back-end in determining
103    which MEMs can alias which other MEMs.  In general, two MEMs in
104    different alias sets cannot alias each other, with one important
105    exception.  Consider something like:
106 
107      struct S { int i; double d; };
108 
109    a store to an `S' can alias something of either type `int' or type
110    `double'.  (However, a store to an `int' cannot alias a `double'
111    and vice versa.)  We indicate this via a tree structure that looks
112    like:
113 	   struct S
114 	    /   \
115 	   /     \
116 	 |/_     _\|
117 	 int    double
118 
119    (The arrows are directed and point downwards.)
120     In this situation we say the alias set for `struct S' is the
121    `superset' and that those for `int' and `double' are `subsets'.
122 
123    To see whether two alias sets can point to the same memory, we must
124    see if either alias set is a subset of the other. We need not trace
125    past immediate descendants, however, since we propagate all
126    grandchildren up one level.
127 
128    Alias set zero is implicitly a superset of all other alias sets.
129    However, this is no actual entry for alias set zero.  It is an
130    error to attempt to explicitly construct a subset of zero.  */
131 
132 struct GTY(()) alias_set_entry_d {
133   /* The alias set number, as stored in MEM_ALIAS_SET.  */
134   alias_set_type alias_set;
135 
136   /* Nonzero if would have a child of zero: this effectively makes this
137      alias set the same as alias set zero.  */
138   int has_zero_child;
139 
140   /* The children of the alias set.  These are not just the immediate
141      children, but, in fact, all descendants.  So, if we have:
142 
143        struct T { struct S s; float f; }
144 
145      continuing our example above, the children here will be all of
146      `int', `double', `float', and `struct S'.  */
147   splay_tree GTY((param1_is (int), param2_is (int))) children;
148 };
149 typedef struct alias_set_entry_d *alias_set_entry;
150 
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, rtx, rtx, enum machine_mode,
155 			     enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
161 static tree decl_for_component_ref (tree);
162 static int write_dependence_p (const_rtx,
163 			       const_rtx, enum machine_mode, rtx,
164 			       bool, bool, bool);
165 
166 static void memory_modified_1 (rtx, const_rtx, void *);
167 
168 /* Set up all info needed to perform alias analysis on memory references.  */
169 
170 /* Returns the size in bytes of the mode of X.  */
171 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
172 
173 /* Cap the number of passes we make over the insns propagating alias
174    information through set chains.
175    ??? 10 is a completely arbitrary choice.  This should be based on the
176    maximum loop depth in the CFG, but we do not have this information
177    available (even if current_loops _is_ available).  */
178 #define MAX_ALIAS_LOOP_PASSES 10
179 
180 /* reg_base_value[N] gives an address to which register N is related.
181    If all sets after the first add or subtract to the current value
182    or otherwise modify it so it does not point to a different top level
183    object, reg_base_value[N] is equal to the address part of the source
184    of the first set.
185 
186    A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
187    expressions represent three types of base:
188 
189      1. incoming arguments.  There is just one ADDRESS to represent all
190 	arguments, since we do not know at this level whether accesses
191 	based on different arguments can alias.  The ADDRESS has id 0.
192 
193      2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
194 	(if distinct from frame_pointer_rtx) and arg_pointer_rtx.
195 	Each of these rtxes has a separate ADDRESS associated with it,
196 	each with a negative id.
197 
198 	GCC is (and is required to be) precise in which register it
199 	chooses to access a particular region of stack.  We can therefore
200 	assume that accesses based on one of these rtxes do not alias
201 	accesses based on another of these rtxes.
202 
203      3. bases that are derived from malloc()ed memory (REG_NOALIAS).
204 	Each such piece of memory has a separate ADDRESS associated
205 	with it, each with an id greater than 0.
206 
207    Accesses based on one ADDRESS do not alias accesses based on other
208    ADDRESSes.  Accesses based on ADDRESSes in groups (2) and (3) do not
209    alias globals either; the ADDRESSes have Pmode to indicate this.
210    The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
211    indicate this.  */
212 
213 static GTY(()) vec<rtx, va_gc> *reg_base_value;
214 static rtx *new_reg_base_value;
215 
216 /* The single VOIDmode ADDRESS that represents all argument bases.
217    It has id 0.  */
218 static GTY(()) rtx arg_base_value;
219 
220 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS.  */
221 static int unique_id;
222 
223 /* We preserve the copy of old array around to avoid amount of garbage
224    produced.  About 8% of garbage produced were attributed to this
225    array.  */
226 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
227 
228 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
229    registers.  */
230 #define UNIQUE_BASE_VALUE_SP	-1
231 #define UNIQUE_BASE_VALUE_ARGP	-2
232 #define UNIQUE_BASE_VALUE_FP	-3
233 #define UNIQUE_BASE_VALUE_HFP	-4
234 
235 #define static_reg_base_value \
236   (this_target_rtl->x_static_reg_base_value)
237 
238 #define REG_BASE_VALUE(X)					\
239   (REGNO (X) < vec_safe_length (reg_base_value)			\
240    ? (*reg_base_value)[REGNO (X)] : 0)
241 
242 /* Vector indexed by N giving the initial (unchanging) value known for
243    pseudo-register N.  This vector is initialized in init_alias_analysis,
244    and does not change until end_alias_analysis is called.  */
245 static GTY(()) vec<rtx, va_gc> *reg_known_value;
246 
247 /* Vector recording for each reg_known_value whether it is due to a
248    REG_EQUIV note.  Future passes (viz., reload) may replace the
249    pseudo with the equivalent expression and so we account for the
250    dependences that would be introduced if that happens.
251 
252    The REG_EQUIV notes created in assign_parms may mention the arg
253    pointer, and there are explicit insns in the RTL that modify the
254    arg pointer.  Thus we must ensure that such insns don't get
255    scheduled across each other because that would invalidate the
256    REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
257    wrong, but solving the problem in the scheduler will likely give
258    better code, so we do it here.  */
259 static sbitmap reg_known_equiv_p;
260 
261 /* True when scanning insns from the start of the rtl to the
262    NOTE_INSN_FUNCTION_BEG note.  */
263 static bool copying_arguments;
264 
265 
266 /* The splay-tree used to store the various alias set entries.  */
267 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
268 
269 /* Build a decomposed reference object for querying the alias-oracle
270    from the MEM rtx and store it in *REF.
271    Returns false if MEM is not suitable for the alias-oracle.  */
272 
273 static bool
ao_ref_from_mem(ao_ref * ref,const_rtx mem)274 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
275 {
276   tree expr = MEM_EXPR (mem);
277   tree base;
278 
279   if (!expr)
280     return false;
281 
282   ao_ref_init (ref, expr);
283 
284   /* Get the base of the reference and see if we have to reject or
285      adjust it.  */
286   base = ao_ref_base (ref);
287   if (base == NULL_TREE)
288     return false;
289 
290   /* The tree oracle doesn't like bases that are neither decls
291      nor indirect references of SSA names.  */
292   if (!(DECL_P (base)
293 	|| (TREE_CODE (base) == MEM_REF
294 	    && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
295 	|| (TREE_CODE (base) == TARGET_MEM_REF
296 	    && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
297     return false;
298 
299   /* If this is a reference based on a partitioned decl replace the
300      base with a MEM_REF of the pointer representative we
301      created during stack slot partitioning.  */
302   if (TREE_CODE (base) == VAR_DECL
303       && ! is_global_var (base)
304       && cfun->gimple_df->decls_to_pointers != NULL)
305     {
306       void *namep;
307       namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
308       if (namep)
309 	ref->base = build_simple_mem_ref (*(tree *)namep);
310     }
311 
312   ref->ref_alias_set = MEM_ALIAS_SET (mem);
313 
314   /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
315      is conservative, so trust it.  */
316   if (!MEM_OFFSET_KNOWN_P (mem)
317       || !MEM_SIZE_KNOWN_P (mem))
318     return true;
319 
320   /* If the base decl is a parameter we can have negative MEM_OFFSET in
321      case of promoted subregs on bigendian targets.  Trust the MEM_EXPR
322      here.  */
323   if (MEM_OFFSET (mem) < 0
324       && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
325     return true;
326 
327   /* Otherwise continue and refine size and offset we got from analyzing
328      MEM_EXPR by using MEM_SIZE and MEM_OFFSET.  */
329 
330   ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331   ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
332 
333   /* The MEM may extend into adjacent fields, so adjust max_size if
334      necessary.  */
335   if (ref->max_size != -1
336       && ref->size > ref->max_size)
337     ref->max_size = ref->size;
338 
339   /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
340      the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
341   if (MEM_EXPR (mem) != get_spill_slot_decl (false)
342       && (ref->offset < 0
343 	  || (DECL_P (ref->base)
344 	      && (!tree_fits_uhwi_p (DECL_SIZE (ref->base))
345 		  || (tree_to_uhwi (DECL_SIZE (ref->base))
346 		      < (unsigned HOST_WIDE_INT) (ref->offset + ref->size))))))
347     return false;
348 
349   return true;
350 }
351 
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353    alias.  If TBAA_P is set also apply TBAA.  Returns true if the
354    two rtxen may alias, false otherwise.  */
355 
356 static bool
rtx_refs_may_alias_p(const_rtx x,const_rtx mem,bool tbaa_p)357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
358 {
359   ao_ref ref1, ref2;
360 
361   if (!ao_ref_from_mem (&ref1, x)
362       || !ao_ref_from_mem (&ref2, mem))
363     return true;
364 
365   return refs_may_alias_p_1 (&ref1, &ref2,
366 			     tbaa_p
367 			     && MEM_ALIAS_SET (x) != 0
368 			     && MEM_ALIAS_SET (mem) != 0);
369 }
370 
371 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
372    such an entry, or NULL otherwise.  */
373 
374 static inline alias_set_entry
get_alias_set_entry(alias_set_type alias_set)375 get_alias_set_entry (alias_set_type alias_set)
376 {
377   return (*alias_sets)[alias_set];
378 }
379 
380 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
381    the two MEMs cannot alias each other.  */
382 
383 static inline int
mems_in_disjoint_alias_sets_p(const_rtx mem1,const_rtx mem2)384 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
385 {
386 /* Perform a basic sanity check.  Namely, that there are no alias sets
387    if we're not using strict aliasing.  This helps to catch bugs
388    whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
389    where a MEM is allocated in some way other than by the use of
390    gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared.  If we begin to
391    use alias sets to indicate that spilled registers cannot alias each
392    other, we might need to remove this check.  */
393   gcc_assert (flag_strict_aliasing
394 	      || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
395 
396   return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
397 }
398 
399 /* Insert the NODE into the splay tree given by DATA.  Used by
400    record_alias_subset via splay_tree_foreach.  */
401 
402 static int
insert_subset_children(splay_tree_node node,void * data)403 insert_subset_children (splay_tree_node node, void *data)
404 {
405   splay_tree_insert ((splay_tree) data, node->key, node->value);
406 
407   return 0;
408 }
409 
410 /* Return true if the first alias set is a subset of the second.  */
411 
412 bool
alias_set_subset_of(alias_set_type set1,alias_set_type set2)413 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
414 {
415   alias_set_entry ase;
416 
417   /* Everything is a subset of the "aliases everything" set.  */
418   if (set2 == 0)
419     return true;
420 
421   /* Otherwise, check if set1 is a subset of set2.  */
422   ase = get_alias_set_entry (set2);
423   if (ase != 0
424       && (ase->has_zero_child
425 	  || splay_tree_lookup (ase->children,
426 			        (splay_tree_key) set1)))
427     return true;
428   return false;
429 }
430 
431 /* Return 1 if the two specified alias sets may conflict.  */
432 
433 int
alias_sets_conflict_p(alias_set_type set1,alias_set_type set2)434 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
435 {
436   alias_set_entry ase;
437 
438   /* The easy case.  */
439   if (alias_sets_must_conflict_p (set1, set2))
440     return 1;
441 
442   /* See if the first alias set is a subset of the second.  */
443   ase = get_alias_set_entry (set1);
444   if (ase != 0
445       && (ase->has_zero_child
446 	  || splay_tree_lookup (ase->children,
447 				(splay_tree_key) set2)))
448     return 1;
449 
450   /* Now do the same, but with the alias sets reversed.  */
451   ase = get_alias_set_entry (set2);
452   if (ase != 0
453       && (ase->has_zero_child
454 	  || splay_tree_lookup (ase->children,
455 				(splay_tree_key) set1)))
456     return 1;
457 
458   /* The two alias sets are distinct and neither one is the
459      child of the other.  Therefore, they cannot conflict.  */
460   return 0;
461 }
462 
463 /* Return 1 if the two specified alias sets will always conflict.  */
464 
465 int
alias_sets_must_conflict_p(alias_set_type set1,alias_set_type set2)466 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
467 {
468   if (set1 == 0 || set2 == 0 || set1 == set2)
469     return 1;
470 
471   return 0;
472 }
473 
474 /* Return 1 if any MEM object of type T1 will always conflict (using the
475    dependency routines in this file) with any MEM object of type T2.
476    This is used when allocating temporary storage.  If T1 and/or T2 are
477    NULL_TREE, it means we know nothing about the storage.  */
478 
479 int
objects_must_conflict_p(tree t1,tree t2)480 objects_must_conflict_p (tree t1, tree t2)
481 {
482   alias_set_type set1, set2;
483 
484   /* If neither has a type specified, we don't know if they'll conflict
485      because we may be using them to store objects of various types, for
486      example the argument and local variables areas of inlined functions.  */
487   if (t1 == 0 && t2 == 0)
488     return 0;
489 
490   /* If they are the same type, they must conflict.  */
491   if (t1 == t2
492       /* Likewise if both are volatile.  */
493       || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
494     return 1;
495 
496   set1 = t1 ? get_alias_set (t1) : 0;
497   set2 = t2 ? get_alias_set (t2) : 0;
498 
499   /* We can't use alias_sets_conflict_p because we must make sure
500      that every subtype of t1 will conflict with every subtype of
501      t2 for which a pair of subobjects of these respective subtypes
502      overlaps on the stack.  */
503   return alias_sets_must_conflict_p (set1, set2);
504 }
505 
506 /* Return the outermost parent of component present in the chain of
507    component references handled by get_inner_reference in T with the
508    following property:
509      - the component is non-addressable, or
510      - the parent has alias set zero,
511    or NULL_TREE if no such parent exists.  In the former cases, the alias
512    set of this parent is the alias set that must be used for T itself.  */
513 
514 tree
component_uses_parent_alias_set_from(const_tree t)515 component_uses_parent_alias_set_from (const_tree t)
516 {
517   const_tree found = NULL_TREE;
518 
519   while (handled_component_p (t))
520     {
521       switch (TREE_CODE (t))
522 	{
523 	case COMPONENT_REF:
524 	  if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
525 	    found = t;
526 	  break;
527 
528 	case ARRAY_REF:
529 	case ARRAY_RANGE_REF:
530 	  if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
531 	    found = t;
532 	  break;
533 
534 	case REALPART_EXPR:
535 	case IMAGPART_EXPR:
536 	  break;
537 
538 	case BIT_FIELD_REF:
539 	case VIEW_CONVERT_EXPR:
540 	  /* Bitfields and casts are never addressable.  */
541 	  found = t;
542 	  break;
543 
544 	default:
545 	  gcc_unreachable ();
546 	}
547 
548       if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
549 	found = t;
550 
551       t = TREE_OPERAND (t, 0);
552     }
553 
554   if (found)
555     return TREE_OPERAND (found, 0);
556 
557   return NULL_TREE;
558 }
559 
560 
561 /* Return whether the pointer-type T effective for aliasing may
562    access everything and thus the reference has to be assigned
563    alias-set zero.  */
564 
565 static bool
ref_all_alias_ptr_type_p(const_tree t)566 ref_all_alias_ptr_type_p (const_tree t)
567 {
568   return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
569 	  || TYPE_REF_CAN_ALIAS_ALL (t));
570 }
571 
572 /* Return the alias set for the memory pointed to by T, which may be
573    either a type or an expression.  Return -1 if there is nothing
574    special about dereferencing T.  */
575 
576 static alias_set_type
get_deref_alias_set_1(tree t)577 get_deref_alias_set_1 (tree t)
578 {
579   /* All we care about is the type.  */
580   if (! TYPE_P (t))
581     t = TREE_TYPE (t);
582 
583   /* If we have an INDIRECT_REF via a void pointer, we don't
584      know anything about what that might alias.  Likewise if the
585      pointer is marked that way.  */
586   if (ref_all_alias_ptr_type_p (t))
587     return 0;
588 
589   return -1;
590 }
591 
592 /* Return the alias set for the memory pointed to by T, which may be
593    either a type or an expression.  */
594 
595 alias_set_type
get_deref_alias_set(tree t)596 get_deref_alias_set (tree t)
597 {
598   /* If we're not doing any alias analysis, just assume everything
599      aliases everything else.  */
600   if (!flag_strict_aliasing)
601     return 0;
602 
603   alias_set_type set = get_deref_alias_set_1 (t);
604 
605   /* Fall back to the alias-set of the pointed-to type.  */
606   if (set == -1)
607     {
608       if (! TYPE_P (t))
609 	t = TREE_TYPE (t);
610       set = get_alias_set (TREE_TYPE (t));
611     }
612 
613   return set;
614 }
615 
616 /* Return the pointer-type relevant for TBAA purposes from the
617    memory reference tree *T or NULL_TREE in which case *T is
618    adjusted to point to the outermost component reference that
619    can be used for assigning an alias set.  */
620 
621 static tree
reference_alias_ptr_type_1(tree * t)622 reference_alias_ptr_type_1 (tree *t)
623 {
624   tree inner;
625 
626   /* Get the base object of the reference.  */
627   inner = *t;
628   while (handled_component_p (inner))
629     {
630       /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
631 	 the type of any component references that wrap it to
632 	 determine the alias-set.  */
633       if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
634 	*t = TREE_OPERAND (inner, 0);
635       inner = TREE_OPERAND (inner, 0);
636     }
637 
638   /* Handle pointer dereferences here, they can override the
639      alias-set.  */
640   if (INDIRECT_REF_P (inner)
641       && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
642     return TREE_TYPE (TREE_OPERAND (inner, 0));
643   else if (TREE_CODE (inner) == TARGET_MEM_REF)
644     return TREE_TYPE (TMR_OFFSET (inner));
645   else if (TREE_CODE (inner) == MEM_REF
646 	   && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
647     return TREE_TYPE (TREE_OPERAND (inner, 1));
648 
649   /* If the innermost reference is a MEM_REF that has a
650      conversion embedded treat it like a VIEW_CONVERT_EXPR above,
651      using the memory access type for determining the alias-set.  */
652   if (TREE_CODE (inner) == MEM_REF
653       && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
654 	  != TYPE_MAIN_VARIANT
655 	       (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
656     return TREE_TYPE (TREE_OPERAND (inner, 1));
657 
658   /* Otherwise, pick up the outermost object that we could have
659      a pointer to.  */
660   tree tem = component_uses_parent_alias_set_from (*t);
661   if (tem)
662     *t = tem;
663 
664   return NULL_TREE;
665 }
666 
667 /* Return the pointer-type relevant for TBAA purposes from the
668    gimple memory reference tree T.  This is the type to be used for
669    the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
670    and guarantees that get_alias_set will return the same alias
671    set for T and the replacement.  */
672 
673 tree
reference_alias_ptr_type(tree t)674 reference_alias_ptr_type (tree t)
675 {
676   tree ptype = reference_alias_ptr_type_1 (&t);
677   /* If there is a given pointer type for aliasing purposes, return it.  */
678   if (ptype != NULL_TREE)
679     return ptype;
680 
681   /* Otherwise build one from the outermost component reference we
682      may use.  */
683   if (TREE_CODE (t) == MEM_REF
684       || TREE_CODE (t) == TARGET_MEM_REF)
685     return TREE_TYPE (TREE_OPERAND (t, 1));
686   else
687     return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
688 }
689 
690 /* Return whether the pointer-types T1 and T2 used to determine
691    two alias sets of two references will yield the same answer
692    from get_deref_alias_set.  */
693 
694 bool
alias_ptr_types_compatible_p(tree t1,tree t2)695 alias_ptr_types_compatible_p (tree t1, tree t2)
696 {
697   if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
698     return true;
699 
700   if (ref_all_alias_ptr_type_p (t1)
701       || ref_all_alias_ptr_type_p (t2))
702     return false;
703 
704   return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
705 	  == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
706 }
707 
708 /* Return the alias set for T, which may be either a type or an
709    expression.  Call language-specific routine for help, if needed.  */
710 
711 alias_set_type
get_alias_set(tree t)712 get_alias_set (tree t)
713 {
714   alias_set_type set;
715 
716   /* If we're not doing any alias analysis, just assume everything
717      aliases everything else.  Also return 0 if this or its type is
718      an error.  */
719   if (! flag_strict_aliasing || t == error_mark_node
720       || (! TYPE_P (t)
721 	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
722     return 0;
723 
724   /* We can be passed either an expression or a type.  This and the
725      language-specific routine may make mutually-recursive calls to each other
726      to figure out what to do.  At each juncture, we see if this is a tree
727      that the language may need to handle specially.  First handle things that
728      aren't types.  */
729   if (! TYPE_P (t))
730     {
731       /* Give the language a chance to do something with this tree
732 	 before we look at it.  */
733       STRIP_NOPS (t);
734       set = lang_hooks.get_alias_set (t);
735       if (set != -1)
736 	return set;
737 
738       /* Get the alias pointer-type to use or the outermost object
739          that we could have a pointer to.  */
740       tree ptype = reference_alias_ptr_type_1 (&t);
741       if (ptype != NULL)
742 	return get_deref_alias_set (ptype);
743 
744       /* If we've already determined the alias set for a decl, just return
745 	 it.  This is necessary for C++ anonymous unions, whose component
746 	 variables don't look like union members (boo!).  */
747       if (TREE_CODE (t) == VAR_DECL
748 	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
749 	return MEM_ALIAS_SET (DECL_RTL (t));
750 
751       /* Now all we care about is the type.  */
752       t = TREE_TYPE (t);
753     }
754 
755   /* Variant qualifiers don't affect the alias set, so get the main
756      variant.  */
757   t = TYPE_MAIN_VARIANT (t);
758 
759   /* Always use the canonical type as well.  If this is a type that
760      requires structural comparisons to identify compatible types
761      use alias set zero.  */
762   if (TYPE_STRUCTURAL_EQUALITY_P (t))
763     {
764       /* Allow the language to specify another alias set for this
765 	 type.  */
766       set = lang_hooks.get_alias_set (t);
767       if (set != -1)
768 	return set;
769       return 0;
770     }
771 
772   t = TYPE_CANONICAL (t);
773 
774   /* The canonical type should not require structural equality checks.  */
775   gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
776 
777   /* If this is a type with a known alias set, return it.  */
778   if (TYPE_ALIAS_SET_KNOWN_P (t))
779     return TYPE_ALIAS_SET (t);
780 
781   /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
782   if (!COMPLETE_TYPE_P (t))
783     {
784       /* For arrays with unknown size the conservative answer is the
785 	 alias set of the element type.  */
786       if (TREE_CODE (t) == ARRAY_TYPE)
787 	return get_alias_set (TREE_TYPE (t));
788 
789       /* But return zero as a conservative answer for incomplete types.  */
790       return 0;
791     }
792 
793   /* See if the language has special handling for this type.  */
794   set = lang_hooks.get_alias_set (t);
795   if (set != -1)
796     return set;
797 
798   /* There are no objects of FUNCTION_TYPE, so there's no point in
799      using up an alias set for them.  (There are, of course, pointers
800      and references to functions, but that's different.)  */
801   else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
802     set = 0;
803 
804   /* Unless the language specifies otherwise, let vector types alias
805      their components.  This avoids some nasty type punning issues in
806      normal usage.  And indeed lets vectors be treated more like an
807      array slice.  */
808   else if (TREE_CODE (t) == VECTOR_TYPE)
809     set = get_alias_set (TREE_TYPE (t));
810 
811   /* Unless the language specifies otherwise, treat array types the
812      same as their components.  This avoids the asymmetry we get
813      through recording the components.  Consider accessing a
814      character(kind=1) through a reference to a character(kind=1)[1:1].
815      Or consider if we want to assign integer(kind=4)[0:D.1387] and
816      integer(kind=4)[4] the same alias set or not.
817      Just be pragmatic here and make sure the array and its element
818      type get the same alias set assigned.  */
819   else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
820     set = get_alias_set (TREE_TYPE (t));
821 
822   /* From the former common C and C++ langhook implementation:
823 
824      Unfortunately, there is no canonical form of a pointer type.
825      In particular, if we have `typedef int I', then `int *', and
826      `I *' are different types.  So, we have to pick a canonical
827      representative.  We do this below.
828 
829      Technically, this approach is actually more conservative that
830      it needs to be.  In particular, `const int *' and `int *'
831      should be in different alias sets, according to the C and C++
832      standard, since their types are not the same, and so,
833      technically, an `int **' and `const int **' cannot point at
834      the same thing.
835 
836      But, the standard is wrong.  In particular, this code is
837      legal C++:
838 
839      int *ip;
840      int **ipp = &ip;
841      const int* const* cipp = ipp;
842      And, it doesn't make sense for that to be legal unless you
843      can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
844      the pointed-to types.  This issue has been reported to the
845      C++ committee.
846 
847      In addition to the above canonicalization issue, with LTO
848      we should also canonicalize `T (*)[]' to `T *' avoiding
849      alias issues with pointer-to element types and pointer-to
850      array types.
851 
852      Likewise we need to deal with the situation of incomplete
853      pointed-to types and make `*(struct X **)&a' and
854      `*(struct X {} **)&a' alias.  Otherwise we will have to
855      guarantee that all pointer-to incomplete type variants
856      will be replaced by pointer-to complete type variants if
857      they are available.
858 
859      With LTO the convenient situation of using `void *' to
860      access and store any pointer type will also become
861      more apparent (and `void *' is just another pointer-to
862      incomplete type).  Assigning alias-set zero to `void *'
863      and all pointer-to incomplete types is a not appealing
864      solution.  Assigning an effective alias-set zero only
865      affecting pointers might be - by recording proper subset
866      relationships of all pointer alias-sets.
867 
868      Pointer-to function types are another grey area which
869      needs caution.  Globbing them all into one alias-set
870      or the above effective zero set would work.
871 
872      For now just assign the same alias-set to all pointers.
873      That's simple and avoids all the above problems.  */
874   else if (POINTER_TYPE_P (t)
875 	   && t != ptr_type_node)
876     set = get_alias_set (ptr_type_node);
877 
878   /* Otherwise make a new alias set for this type.  */
879   else
880     {
881       /* Each canonical type gets its own alias set, so canonical types
882 	 shouldn't form a tree.  It doesn't really matter for types
883 	 we handle specially above, so only check it where it possibly
884 	 would result in a bogus alias set.  */
885       gcc_checking_assert (TYPE_CANONICAL (t) == t);
886 
887       set = new_alias_set ();
888     }
889 
890   TYPE_ALIAS_SET (t) = set;
891 
892   /* If this is an aggregate type or a complex type, we must record any
893      component aliasing information.  */
894   if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
895     record_component_aliases (t);
896 
897   return set;
898 }
899 
900 /* Return a brand-new alias set.  */
901 
902 alias_set_type
new_alias_set(void)903 new_alias_set (void)
904 {
905   if (flag_strict_aliasing)
906     {
907       if (alias_sets == 0)
908 	vec_safe_push (alias_sets, (alias_set_entry) 0);
909       vec_safe_push (alias_sets, (alias_set_entry) 0);
910       return alias_sets->length () - 1;
911     }
912   else
913     return 0;
914 }
915 
916 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
917    not everything that aliases SUPERSET also aliases SUBSET.  For example,
918    in C, a store to an `int' can alias a load of a structure containing an
919    `int', and vice versa.  But it can't alias a load of a 'double' member
920    of the same structure.  Here, the structure would be the SUPERSET and
921    `int' the SUBSET.  This relationship is also described in the comment at
922    the beginning of this file.
923 
924    This function should be called only once per SUPERSET/SUBSET pair.
925 
926    It is illegal for SUPERSET to be zero; everything is implicitly a
927    subset of alias set zero.  */
928 
929 void
record_alias_subset(alias_set_type superset,alias_set_type subset)930 record_alias_subset (alias_set_type superset, alias_set_type subset)
931 {
932   alias_set_entry superset_entry;
933   alias_set_entry subset_entry;
934 
935   /* It is possible in complex type situations for both sets to be the same,
936      in which case we can ignore this operation.  */
937   if (superset == subset)
938     return;
939 
940   gcc_assert (superset);
941 
942   superset_entry = get_alias_set_entry (superset);
943   if (superset_entry == 0)
944     {
945       /* Create an entry for the SUPERSET, so that we have a place to
946 	 attach the SUBSET.  */
947       superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
948       superset_entry->alias_set = superset;
949       superset_entry->children
950 	= splay_tree_new_ggc (splay_tree_compare_ints,
951 			      ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
952 			      ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
953       superset_entry->has_zero_child = 0;
954       (*alias_sets)[superset] = superset_entry;
955     }
956 
957   if (subset == 0)
958     superset_entry->has_zero_child = 1;
959   else
960     {
961       subset_entry = get_alias_set_entry (subset);
962       /* If there is an entry for the subset, enter all of its children
963 	 (if they are not already present) as children of the SUPERSET.  */
964       if (subset_entry)
965 	{
966 	  if (subset_entry->has_zero_child)
967 	    superset_entry->has_zero_child = 1;
968 
969 	  splay_tree_foreach (subset_entry->children, insert_subset_children,
970 			      superset_entry->children);
971 	}
972 
973       /* Enter the SUBSET itself as a child of the SUPERSET.  */
974       splay_tree_insert (superset_entry->children,
975 			 (splay_tree_key) subset, 0);
976     }
977 }
978 
979 /* Record that component types of TYPE, if any, are part of that type for
980    aliasing purposes.  For record types, we only record component types
981    for fields that are not marked non-addressable.  For array types, we
982    only record the component type if it is not marked non-aliased.  */
983 
984 void
record_component_aliases(tree type)985 record_component_aliases (tree type)
986 {
987   alias_set_type superset = get_alias_set (type);
988   tree field;
989 
990   if (superset == 0)
991     return;
992 
993   switch (TREE_CODE (type))
994     {
995     case RECORD_TYPE:
996     case UNION_TYPE:
997     case QUAL_UNION_TYPE:
998       /* Recursively record aliases for the base classes, if there are any.  */
999       if (TYPE_BINFO (type))
1000 	{
1001 	  int i;
1002 	  tree binfo, base_binfo;
1003 
1004 	  for (binfo = TYPE_BINFO (type), i = 0;
1005 	       BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1006 	    record_alias_subset (superset,
1007 				 get_alias_set (BINFO_TYPE (base_binfo)));
1008 	}
1009       for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1010 	if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1011 	  record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1012       break;
1013 
1014     case COMPLEX_TYPE:
1015       record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1016       break;
1017 
1018     /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1019        element type.  */
1020 
1021     default:
1022       break;
1023     }
1024 }
1025 
1026 /* Allocate an alias set for use in storing and reading from the varargs
1027    spill area.  */
1028 
1029 static GTY(()) alias_set_type varargs_set = -1;
1030 
1031 alias_set_type
get_varargs_alias_set(void)1032 get_varargs_alias_set (void)
1033 {
1034 #if 1
1035   /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1036      varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1037      consistently use the varargs alias set for loads from the varargs
1038      area.  So don't use it anywhere.  */
1039   return 0;
1040 #else
1041   if (varargs_set == -1)
1042     varargs_set = new_alias_set ();
1043 
1044   return varargs_set;
1045 #endif
1046 }
1047 
1048 /* Likewise, but used for the fixed portions of the frame, e.g., register
1049    save areas.  */
1050 
1051 static GTY(()) alias_set_type frame_set = -1;
1052 
1053 alias_set_type
get_frame_alias_set(void)1054 get_frame_alias_set (void)
1055 {
1056   if (frame_set == -1)
1057     frame_set = new_alias_set ();
1058 
1059   return frame_set;
1060 }
1061 
1062 /* Create a new, unique base with id ID.  */
1063 
1064 static rtx
unique_base_value(HOST_WIDE_INT id)1065 unique_base_value (HOST_WIDE_INT id)
1066 {
1067   return gen_rtx_ADDRESS (Pmode, id);
1068 }
1069 
1070 /* Return true if accesses based on any other base value cannot alias
1071    those based on X.  */
1072 
1073 static bool
unique_base_value_p(rtx x)1074 unique_base_value_p (rtx x)
1075 {
1076   return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1077 }
1078 
1079 /* Return true if X is known to be a base value.  */
1080 
1081 static bool
known_base_value_p(rtx x)1082 known_base_value_p (rtx x)
1083 {
1084   switch (GET_CODE (x))
1085     {
1086     case LABEL_REF:
1087     case SYMBOL_REF:
1088       return true;
1089 
1090     case ADDRESS:
1091       /* Arguments may or may not be bases; we don't know for sure.  */
1092       return GET_MODE (x) != VOIDmode;
1093 
1094     default:
1095       return false;
1096     }
1097 }
1098 
1099 /* Inside SRC, the source of a SET, find a base address.  */
1100 
1101 static rtx
find_base_value(rtx src)1102 find_base_value (rtx src)
1103 {
1104   unsigned int regno;
1105 
1106 #if defined (FIND_BASE_TERM)
1107   /* Try machine-dependent ways to find the base term.  */
1108   src = FIND_BASE_TERM (src);
1109 #endif
1110 
1111   switch (GET_CODE (src))
1112     {
1113     case SYMBOL_REF:
1114     case LABEL_REF:
1115       return src;
1116 
1117     case REG:
1118       regno = REGNO (src);
1119       /* At the start of a function, argument registers have known base
1120 	 values which may be lost later.  Returning an ADDRESS
1121 	 expression here allows optimization based on argument values
1122 	 even when the argument registers are used for other purposes.  */
1123       if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1124 	return new_reg_base_value[regno];
1125 
1126       /* If a pseudo has a known base value, return it.  Do not do this
1127 	 for non-fixed hard regs since it can result in a circular
1128 	 dependency chain for registers which have values at function entry.
1129 
1130 	 The test above is not sufficient because the scheduler may move
1131 	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
1132       if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1133 	  && regno < vec_safe_length (reg_base_value))
1134 	{
1135 	  /* If we're inside init_alias_analysis, use new_reg_base_value
1136 	     to reduce the number of relaxation iterations.  */
1137 	  if (new_reg_base_value && new_reg_base_value[regno]
1138 	      && DF_REG_DEF_COUNT (regno) == 1)
1139 	    return new_reg_base_value[regno];
1140 
1141 	  if ((*reg_base_value)[regno])
1142 	    return (*reg_base_value)[regno];
1143 	}
1144 
1145       return 0;
1146 
1147     case MEM:
1148       /* Check for an argument passed in memory.  Only record in the
1149 	 copying-arguments block; it is too hard to track changes
1150 	 otherwise.  */
1151       if (copying_arguments
1152 	  && (XEXP (src, 0) == arg_pointer_rtx
1153 	      || (GET_CODE (XEXP (src, 0)) == PLUS
1154 		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1155 	return arg_base_value;
1156       return 0;
1157 
1158     case CONST:
1159       src = XEXP (src, 0);
1160       if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1161 	break;
1162 
1163       /* ... fall through ...  */
1164 
1165     case PLUS:
1166     case MINUS:
1167       {
1168 	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1169 
1170 	/* If either operand is a REG that is a known pointer, then it
1171 	   is the base.  */
1172 	if (REG_P (src_0) && REG_POINTER (src_0))
1173 	  return find_base_value (src_0);
1174 	if (REG_P (src_1) && REG_POINTER (src_1))
1175 	  return find_base_value (src_1);
1176 
1177 	/* If either operand is a REG, then see if we already have
1178 	   a known value for it.  */
1179 	if (REG_P (src_0))
1180 	  {
1181 	    temp = find_base_value (src_0);
1182 	    if (temp != 0)
1183 	      src_0 = temp;
1184 	  }
1185 
1186 	if (REG_P (src_1))
1187 	  {
1188 	    temp = find_base_value (src_1);
1189 	    if (temp!= 0)
1190 	      src_1 = temp;
1191 	  }
1192 
1193 	/* If either base is named object or a special address
1194 	   (like an argument or stack reference), then use it for the
1195 	   base term.  */
1196 	if (src_0 != 0 && known_base_value_p (src_0))
1197 	  return src_0;
1198 
1199 	if (src_1 != 0 && known_base_value_p (src_1))
1200 	  return src_1;
1201 
1202 	/* Guess which operand is the base address:
1203 	   If either operand is a symbol, then it is the base.  If
1204 	   either operand is a CONST_INT, then the other is the base.  */
1205 	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1206 	  return find_base_value (src_0);
1207 	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1208 	  return find_base_value (src_1);
1209 
1210 	return 0;
1211       }
1212 
1213     case LO_SUM:
1214       /* The standard form is (lo_sum reg sym) so look only at the
1215 	 second operand.  */
1216       return find_base_value (XEXP (src, 1));
1217 
1218     case AND:
1219       /* If the second operand is constant set the base
1220 	 address to the first operand.  */
1221       if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1222 	return find_base_value (XEXP (src, 0));
1223       return 0;
1224 
1225     case TRUNCATE:
1226       /* As we do not know which address space the pointer is referring to, we can
1227 	 handle this only if the target does not support different pointer or
1228 	 address modes depending on the address space.  */
1229       if (!target_default_pointer_address_modes_p ())
1230 	break;
1231       if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1232 	break;
1233       /* Fall through.  */
1234     case HIGH:
1235     case PRE_INC:
1236     case PRE_DEC:
1237     case POST_INC:
1238     case POST_DEC:
1239     case PRE_MODIFY:
1240     case POST_MODIFY:
1241       return find_base_value (XEXP (src, 0));
1242 
1243     case ZERO_EXTEND:
1244     case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1245       /* As we do not know which address space the pointer is referring to, we can
1246 	 handle this only if the target does not support different pointer or
1247 	 address modes depending on the address space.  */
1248       if (!target_default_pointer_address_modes_p ())
1249 	break;
1250 
1251       {
1252 	rtx temp = find_base_value (XEXP (src, 0));
1253 
1254 	if (temp != 0 && CONSTANT_P (temp))
1255 	  temp = convert_memory_address (Pmode, temp);
1256 
1257 	return temp;
1258       }
1259 
1260     default:
1261       break;
1262     }
1263 
1264   return 0;
1265 }
1266 
1267 /* Called from init_alias_analysis indirectly through note_stores,
1268    or directly if DEST is a register with a REG_NOALIAS note attached.
1269    SET is null in the latter case.  */
1270 
1271 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1272    register N has been set in this function.  */
1273 static sbitmap reg_seen;
1274 
1275 static void
record_set(rtx dest,const_rtx set,void * data ATTRIBUTE_UNUSED)1276 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1277 {
1278   unsigned regno;
1279   rtx src;
1280   int n;
1281 
1282   if (!REG_P (dest))
1283     return;
1284 
1285   regno = REGNO (dest);
1286 
1287   gcc_checking_assert (regno < reg_base_value->length ());
1288 
1289   /* If this spans multiple hard registers, then we must indicate that every
1290      register has an unusable value.  */
1291   if (regno < FIRST_PSEUDO_REGISTER)
1292     n = hard_regno_nregs[regno][GET_MODE (dest)];
1293   else
1294     n = 1;
1295   if (n != 1)
1296     {
1297       while (--n >= 0)
1298 	{
1299 	  bitmap_set_bit (reg_seen, regno + n);
1300 	  new_reg_base_value[regno + n] = 0;
1301 	}
1302       return;
1303     }
1304 
1305   if (set)
1306     {
1307       /* A CLOBBER wipes out any old value but does not prevent a previously
1308 	 unset register from acquiring a base address (i.e. reg_seen is not
1309 	 set).  */
1310       if (GET_CODE (set) == CLOBBER)
1311 	{
1312 	  new_reg_base_value[regno] = 0;
1313 	  return;
1314 	}
1315       src = SET_SRC (set);
1316     }
1317   else
1318     {
1319       /* There's a REG_NOALIAS note against DEST.  */
1320       if (bitmap_bit_p (reg_seen, regno))
1321 	{
1322 	  new_reg_base_value[regno] = 0;
1323 	  return;
1324 	}
1325       bitmap_set_bit (reg_seen, regno);
1326       new_reg_base_value[regno] = unique_base_value (unique_id++);
1327       return;
1328     }
1329 
1330   /* If this is not the first set of REGNO, see whether the new value
1331      is related to the old one.  There are two cases of interest:
1332 
1333 	(1) The register might be assigned an entirely new value
1334 	    that has the same base term as the original set.
1335 
1336 	(2) The set might be a simple self-modification that
1337 	    cannot change REGNO's base value.
1338 
1339      If neither case holds, reject the original base value as invalid.
1340      Note that the following situation is not detected:
1341 
1342 	 extern int x, y;  int *p = &x; p += (&y-&x);
1343 
1344      ANSI C does not allow computing the difference of addresses
1345      of distinct top level objects.  */
1346   if (new_reg_base_value[regno] != 0
1347       && find_base_value (src) != new_reg_base_value[regno])
1348     switch (GET_CODE (src))
1349       {
1350       case LO_SUM:
1351       case MINUS:
1352 	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1353 	  new_reg_base_value[regno] = 0;
1354 	break;
1355       case PLUS:
1356 	/* If the value we add in the PLUS is also a valid base value,
1357 	   this might be the actual base value, and the original value
1358 	   an index.  */
1359 	{
1360 	  rtx other = NULL_RTX;
1361 
1362 	  if (XEXP (src, 0) == dest)
1363 	    other = XEXP (src, 1);
1364 	  else if (XEXP (src, 1) == dest)
1365 	    other = XEXP (src, 0);
1366 
1367 	  if (! other || find_base_value (other))
1368 	    new_reg_base_value[regno] = 0;
1369 	  break;
1370 	}
1371       case AND:
1372 	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1373 	  new_reg_base_value[regno] = 0;
1374 	break;
1375       default:
1376 	new_reg_base_value[regno] = 0;
1377 	break;
1378       }
1379   /* If this is the first set of a register, record the value.  */
1380   else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1381 	   && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1382     new_reg_base_value[regno] = find_base_value (src);
1383 
1384   bitmap_set_bit (reg_seen, regno);
1385 }
1386 
1387 /* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1388    using hard registers with non-null REG_BASE_VALUE for renaming.  */
1389 rtx
get_reg_base_value(unsigned int regno)1390 get_reg_base_value (unsigned int regno)
1391 {
1392   return (*reg_base_value)[regno];
1393 }
1394 
1395 /* If a value is known for REGNO, return it.  */
1396 
1397 rtx
get_reg_known_value(unsigned int regno)1398 get_reg_known_value (unsigned int regno)
1399 {
1400   if (regno >= FIRST_PSEUDO_REGISTER)
1401     {
1402       regno -= FIRST_PSEUDO_REGISTER;
1403       if (regno < vec_safe_length (reg_known_value))
1404 	return (*reg_known_value)[regno];
1405     }
1406   return NULL;
1407 }
1408 
1409 /* Set it.  */
1410 
1411 static void
set_reg_known_value(unsigned int regno,rtx val)1412 set_reg_known_value (unsigned int regno, rtx val)
1413 {
1414   if (regno >= FIRST_PSEUDO_REGISTER)
1415     {
1416       regno -= FIRST_PSEUDO_REGISTER;
1417       if (regno < vec_safe_length (reg_known_value))
1418 	(*reg_known_value)[regno] = val;
1419     }
1420 }
1421 
1422 /* Similarly for reg_known_equiv_p.  */
1423 
1424 bool
get_reg_known_equiv_p(unsigned int regno)1425 get_reg_known_equiv_p (unsigned int regno)
1426 {
1427   if (regno >= FIRST_PSEUDO_REGISTER)
1428     {
1429       regno -= FIRST_PSEUDO_REGISTER;
1430       if (regno < vec_safe_length (reg_known_value))
1431 	return bitmap_bit_p (reg_known_equiv_p, regno);
1432     }
1433   return false;
1434 }
1435 
1436 static void
set_reg_known_equiv_p(unsigned int regno,bool val)1437 set_reg_known_equiv_p (unsigned int regno, bool val)
1438 {
1439   if (regno >= FIRST_PSEUDO_REGISTER)
1440     {
1441       regno -= FIRST_PSEUDO_REGISTER;
1442       if (regno < vec_safe_length (reg_known_value))
1443 	{
1444 	  if (val)
1445 	    bitmap_set_bit (reg_known_equiv_p, regno);
1446 	  else
1447 	    bitmap_clear_bit (reg_known_equiv_p, regno);
1448 	}
1449     }
1450 }
1451 
1452 
1453 /* Returns a canonical version of X, from the point of view alias
1454    analysis.  (For example, if X is a MEM whose address is a register,
1455    and the register has a known value (say a SYMBOL_REF), then a MEM
1456    whose address is the SYMBOL_REF is returned.)  */
1457 
1458 rtx
canon_rtx(rtx x)1459 canon_rtx (rtx x)
1460 {
1461   /* Recursively look for equivalences.  */
1462   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1463     {
1464       rtx t = get_reg_known_value (REGNO (x));
1465       if (t == x)
1466 	return x;
1467       if (t)
1468 	return canon_rtx (t);
1469     }
1470 
1471   if (GET_CODE (x) == PLUS)
1472     {
1473       rtx x0 = canon_rtx (XEXP (x, 0));
1474       rtx x1 = canon_rtx (XEXP (x, 1));
1475 
1476       if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1477 	{
1478 	  if (CONST_INT_P (x0))
1479 	    return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1480 	  else if (CONST_INT_P (x1))
1481 	    return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1482 	  return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1483 	}
1484     }
1485 
1486   /* This gives us much better alias analysis when called from
1487      the loop optimizer.   Note we want to leave the original
1488      MEM alone, but need to return the canonicalized MEM with
1489      all the flags with their original values.  */
1490   else if (MEM_P (x))
1491     x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1492 
1493   return x;
1494 }
1495 
1496 /* Return 1 if X and Y are identical-looking rtx's.
1497    Expect that X and Y has been already canonicalized.
1498 
1499    We use the data in reg_known_value above to see if two registers with
1500    different numbers are, in fact, equivalent.  */
1501 
1502 static int
rtx_equal_for_memref_p(const_rtx x,const_rtx y)1503 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1504 {
1505   int i;
1506   int j;
1507   enum rtx_code code;
1508   const char *fmt;
1509 
1510   if (x == 0 && y == 0)
1511     return 1;
1512   if (x == 0 || y == 0)
1513     return 0;
1514 
1515   if (x == y)
1516     return 1;
1517 
1518   code = GET_CODE (x);
1519   /* Rtx's of different codes cannot be equal.  */
1520   if (code != GET_CODE (y))
1521     return 0;
1522 
1523   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1524      (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1525 
1526   if (GET_MODE (x) != GET_MODE (y))
1527     return 0;
1528 
1529   /* Some RTL can be compared without a recursive examination.  */
1530   switch (code)
1531     {
1532     case REG:
1533       return REGNO (x) == REGNO (y);
1534 
1535     case LABEL_REF:
1536       return XEXP (x, 0) == XEXP (y, 0);
1537 
1538     case SYMBOL_REF:
1539       return XSTR (x, 0) == XSTR (y, 0);
1540 
1541     case ENTRY_VALUE:
1542       /* This is magic, don't go through canonicalization et al.  */
1543       return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1544 
1545     case VALUE:
1546     CASE_CONST_UNIQUE:
1547       /* There's no need to compare the contents of CONST_DOUBLEs or
1548 	 CONST_INTs because pointer equality is a good enough
1549 	 comparison for these nodes.  */
1550       return 0;
1551 
1552     default:
1553       break;
1554     }
1555 
1556   /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1557   if (code == PLUS)
1558     return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1559 	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1560 	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1561 		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1562   /* For commutative operations, the RTX match if the operand match in any
1563      order.  Also handle the simple binary and unary cases without a loop.  */
1564   if (COMMUTATIVE_P (x))
1565     {
1566       rtx xop0 = canon_rtx (XEXP (x, 0));
1567       rtx yop0 = canon_rtx (XEXP (y, 0));
1568       rtx yop1 = canon_rtx (XEXP (y, 1));
1569 
1570       return ((rtx_equal_for_memref_p (xop0, yop0)
1571 	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1572 	      || (rtx_equal_for_memref_p (xop0, yop1)
1573 		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1574     }
1575   else if (NON_COMMUTATIVE_P (x))
1576     {
1577       return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1578 				      canon_rtx (XEXP (y, 0)))
1579 	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1580 					 canon_rtx (XEXP (y, 1))));
1581     }
1582   else if (UNARY_P (x))
1583     return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1584 				   canon_rtx (XEXP (y, 0)));
1585 
1586   /* Compare the elements.  If any pair of corresponding elements
1587      fail to match, return 0 for the whole things.
1588 
1589      Limit cases to types which actually appear in addresses.  */
1590 
1591   fmt = GET_RTX_FORMAT (code);
1592   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1593     {
1594       switch (fmt[i])
1595 	{
1596 	case 'i':
1597 	  if (XINT (x, i) != XINT (y, i))
1598 	    return 0;
1599 	  break;
1600 
1601 	case 'E':
1602 	  /* Two vectors must have the same length.  */
1603 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1604 	    return 0;
1605 
1606 	  /* And the corresponding elements must match.  */
1607 	  for (j = 0; j < XVECLEN (x, i); j++)
1608 	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1609 					canon_rtx (XVECEXP (y, i, j))) == 0)
1610 	      return 0;
1611 	  break;
1612 
1613 	case 'e':
1614 	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1615 				      canon_rtx (XEXP (y, i))) == 0)
1616 	    return 0;
1617 	  break;
1618 
1619 	  /* This can happen for asm operands.  */
1620 	case 's':
1621 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1622 	    return 0;
1623 	  break;
1624 
1625 	/* This can happen for an asm which clobbers memory.  */
1626 	case '0':
1627 	  break;
1628 
1629 	  /* It is believed that rtx's at this level will never
1630 	     contain anything but integers and other rtx's,
1631 	     except for within LABEL_REFs and SYMBOL_REFs.  */
1632 	default:
1633 	  gcc_unreachable ();
1634 	}
1635     }
1636   return 1;
1637 }
1638 
1639 static rtx
find_base_term(rtx x)1640 find_base_term (rtx x)
1641 {
1642   cselib_val *val;
1643   struct elt_loc_list *l, *f;
1644   rtx ret;
1645 
1646 #if defined (FIND_BASE_TERM)
1647   /* Try machine-dependent ways to find the base term.  */
1648   x = FIND_BASE_TERM (x);
1649 #endif
1650 
1651   switch (GET_CODE (x))
1652     {
1653     case REG:
1654       return REG_BASE_VALUE (x);
1655 
1656     case TRUNCATE:
1657       /* As we do not know which address space the pointer is referring to, we can
1658 	 handle this only if the target does not support different pointer or
1659 	 address modes depending on the address space.  */
1660       if (!target_default_pointer_address_modes_p ())
1661 	return 0;
1662       if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1663 	return 0;
1664       /* Fall through.  */
1665     case HIGH:
1666     case PRE_INC:
1667     case PRE_DEC:
1668     case POST_INC:
1669     case POST_DEC:
1670     case PRE_MODIFY:
1671     case POST_MODIFY:
1672       return find_base_term (XEXP (x, 0));
1673 
1674     case ZERO_EXTEND:
1675     case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1676       /* As we do not know which address space the pointer is referring to, we can
1677 	 handle this only if the target does not support different pointer or
1678 	 address modes depending on the address space.  */
1679       if (!target_default_pointer_address_modes_p ())
1680 	return 0;
1681 
1682       {
1683 	rtx temp = find_base_term (XEXP (x, 0));
1684 
1685 	if (temp != 0 && CONSTANT_P (temp))
1686 	  temp = convert_memory_address (Pmode, temp);
1687 
1688 	return temp;
1689       }
1690 
1691     case VALUE:
1692       val = CSELIB_VAL_PTR (x);
1693       ret = NULL_RTX;
1694 
1695       if (!val)
1696 	return ret;
1697 
1698       if (cselib_sp_based_value_p (val))
1699 	return static_reg_base_value[STACK_POINTER_REGNUM];
1700 
1701       f = val->locs;
1702       /* Temporarily reset val->locs to avoid infinite recursion.  */
1703       val->locs = NULL;
1704 
1705       for (l = f; l; l = l->next)
1706 	if (GET_CODE (l->loc) == VALUE
1707 	    && CSELIB_VAL_PTR (l->loc)->locs
1708 	    && !CSELIB_VAL_PTR (l->loc)->locs->next
1709 	    && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1710 	  continue;
1711 	else if ((ret = find_base_term (l->loc)) != 0)
1712 	  break;
1713 
1714       val->locs = f;
1715       return ret;
1716 
1717     case LO_SUM:
1718       /* The standard form is (lo_sum reg sym) so look only at the
1719          second operand.  */
1720       return find_base_term (XEXP (x, 1));
1721 
1722     case CONST:
1723       x = XEXP (x, 0);
1724       if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1725 	return 0;
1726       /* Fall through.  */
1727     case PLUS:
1728     case MINUS:
1729       {
1730 	rtx tmp1 = XEXP (x, 0);
1731 	rtx tmp2 = XEXP (x, 1);
1732 
1733 	/* This is a little bit tricky since we have to determine which of
1734 	   the two operands represents the real base address.  Otherwise this
1735 	   routine may return the index register instead of the base register.
1736 
1737 	   That may cause us to believe no aliasing was possible, when in
1738 	   fact aliasing is possible.
1739 
1740 	   We use a few simple tests to guess the base register.  Additional
1741 	   tests can certainly be added.  For example, if one of the operands
1742 	   is a shift or multiply, then it must be the index register and the
1743 	   other operand is the base register.  */
1744 
1745 	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1746 	  return find_base_term (tmp2);
1747 
1748 	/* If either operand is known to be a pointer, then prefer it
1749 	   to determine the base term.  */
1750 	if (REG_P (tmp1) && REG_POINTER (tmp1))
1751 	  ;
1752 	else if (REG_P (tmp2) && REG_POINTER (tmp2))
1753 	  {
1754 	    rtx tem = tmp1;
1755 	    tmp1 = tmp2;
1756 	    tmp2 = tem;
1757 	  }
1758 
1759 	/* Go ahead and find the base term for both operands.  If either base
1760 	   term is from a pointer or is a named object or a special address
1761 	   (like an argument or stack reference), then use it for the
1762 	   base term.  */
1763 	rtx base = find_base_term (tmp1);
1764 	if (base != NULL_RTX
1765 	    && ((REG_P (tmp1) && REG_POINTER (tmp1))
1766 		 || known_base_value_p (base)))
1767 	  return base;
1768 	base = find_base_term (tmp2);
1769 	if (base != NULL_RTX
1770 	    && ((REG_P (tmp2) && REG_POINTER (tmp2))
1771 		 || known_base_value_p (base)))
1772 	  return base;
1773 
1774 	/* We could not determine which of the two operands was the
1775 	   base register and which was the index.  So we can determine
1776 	   nothing from the base alias check.  */
1777 	return 0;
1778       }
1779 
1780     case AND:
1781       if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1782 	return find_base_term (XEXP (x, 0));
1783       return 0;
1784 
1785     case SYMBOL_REF:
1786     case LABEL_REF:
1787       return x;
1788 
1789     default:
1790       return 0;
1791     }
1792 }
1793 
1794 /* Return true if accesses to address X may alias accesses based
1795    on the stack pointer.  */
1796 
1797 bool
may_be_sp_based_p(rtx x)1798 may_be_sp_based_p (rtx x)
1799 {
1800   rtx base = find_base_term (x);
1801   return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1802 }
1803 
1804 /* Return 0 if the addresses X and Y are known to point to different
1805    objects, 1 if they might be pointers to the same object.  */
1806 
1807 static int
base_alias_check(rtx x,rtx x_base,rtx y,rtx y_base,enum machine_mode x_mode,enum machine_mode y_mode)1808 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1809 		  enum machine_mode x_mode, enum machine_mode y_mode)
1810 {
1811   /* If the address itself has no known base see if a known equivalent
1812      value has one.  If either address still has no known base, nothing
1813      is known about aliasing.  */
1814   if (x_base == 0)
1815     {
1816       rtx x_c;
1817 
1818       if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1819 	return 1;
1820 
1821       x_base = find_base_term (x_c);
1822       if (x_base == 0)
1823 	return 1;
1824     }
1825 
1826   if (y_base == 0)
1827     {
1828       rtx y_c;
1829       if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1830 	return 1;
1831 
1832       y_base = find_base_term (y_c);
1833       if (y_base == 0)
1834 	return 1;
1835     }
1836 
1837   /* If the base addresses are equal nothing is known about aliasing.  */
1838   if (rtx_equal_p (x_base, y_base))
1839     return 1;
1840 
1841   /* The base addresses are different expressions.  If they are not accessed
1842      via AND, there is no conflict.  We can bring knowledge of object
1843      alignment into play here.  For example, on alpha, "char a, b;" can
1844      alias one another, though "char a; long b;" cannot.  AND addesses may
1845      implicitly alias surrounding objects; i.e. unaligned access in DImode
1846      via AND address can alias all surrounding object types except those
1847      with aligment 8 or higher.  */
1848   if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1849     return 1;
1850   if (GET_CODE (x) == AND
1851       && (!CONST_INT_P (XEXP (x, 1))
1852 	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1853     return 1;
1854   if (GET_CODE (y) == AND
1855       && (!CONST_INT_P (XEXP (y, 1))
1856 	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1857     return 1;
1858 
1859   /* Differing symbols not accessed via AND never alias.  */
1860   if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1861     return 0;
1862 
1863   if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1864     return 0;
1865 
1866   return 1;
1867 }
1868 
1869 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1870    whose UID is greater than the int uid that D points to.  */
1871 
1872 static int
refs_newer_value_cb(rtx * x,void * d)1873 refs_newer_value_cb (rtx *x, void *d)
1874 {
1875   if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1876     return 1;
1877 
1878   return 0;
1879 }
1880 
1881 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1882    that of V.  */
1883 
1884 static bool
refs_newer_value_p(rtx expr,rtx v)1885 refs_newer_value_p (rtx expr, rtx v)
1886 {
1887   int minuid = CSELIB_VAL_PTR (v)->uid;
1888 
1889   return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1890 }
1891 
1892 /* Convert the address X into something we can use.  This is done by returning
1893    it unchanged unless it is a value; in the latter case we call cselib to get
1894    a more useful rtx.  */
1895 
1896 rtx
get_addr(rtx x)1897 get_addr (rtx x)
1898 {
1899   cselib_val *v;
1900   struct elt_loc_list *l;
1901 
1902   if (GET_CODE (x) != VALUE)
1903     return x;
1904   v = CSELIB_VAL_PTR (x);
1905   if (v)
1906     {
1907       bool have_equivs = cselib_have_permanent_equivalences ();
1908       if (have_equivs)
1909 	v = canonical_cselib_val (v);
1910       for (l = v->locs; l; l = l->next)
1911 	if (CONSTANT_P (l->loc))
1912 	  return l->loc;
1913       for (l = v->locs; l; l = l->next)
1914 	if (!REG_P (l->loc) && !MEM_P (l->loc)
1915 	    /* Avoid infinite recursion when potentially dealing with
1916 	       var-tracking artificial equivalences, by skipping the
1917 	       equivalences themselves, and not choosing expressions
1918 	       that refer to newer VALUEs.  */
1919 	    && (!have_equivs
1920 		|| (GET_CODE (l->loc) != VALUE
1921 		    && !refs_newer_value_p (l->loc, x))))
1922 	  return l->loc;
1923       if (have_equivs)
1924 	{
1925 	  for (l = v->locs; l; l = l->next)
1926 	    if (REG_P (l->loc)
1927 		|| (GET_CODE (l->loc) != VALUE
1928 		    && !refs_newer_value_p (l->loc, x)))
1929 	      return l->loc;
1930 	  /* Return the canonical value.  */
1931 	  return v->val_rtx;
1932 	}
1933       if (v->locs)
1934 	return v->locs->loc;
1935     }
1936   return x;
1937 }
1938 
1939 /*  Return the address of the (N_REFS + 1)th memory reference to ADDR
1940     where SIZE is the size in bytes of the memory reference.  If ADDR
1941     is not modified by the memory reference then ADDR is returned.  */
1942 
1943 static rtx
addr_side_effect_eval(rtx addr,int size,int n_refs)1944 addr_side_effect_eval (rtx addr, int size, int n_refs)
1945 {
1946   int offset = 0;
1947 
1948   switch (GET_CODE (addr))
1949     {
1950     case PRE_INC:
1951       offset = (n_refs + 1) * size;
1952       break;
1953     case PRE_DEC:
1954       offset = -(n_refs + 1) * size;
1955       break;
1956     case POST_INC:
1957       offset = n_refs * size;
1958       break;
1959     case POST_DEC:
1960       offset = -n_refs * size;
1961       break;
1962 
1963     default:
1964       return addr;
1965     }
1966 
1967   if (offset)
1968     addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1969 			 gen_int_mode (offset, GET_MODE (addr)));
1970   else
1971     addr = XEXP (addr, 0);
1972   addr = canon_rtx (addr);
1973 
1974   return addr;
1975 }
1976 
1977 /* Return TRUE if an object X sized at XSIZE bytes and another object
1978    Y sized at YSIZE bytes, starting C bytes after X, may overlap.  If
1979    any of the sizes is zero, assume an overlap, otherwise use the
1980    absolute value of the sizes as the actual sizes.  */
1981 
1982 static inline bool
offset_overlap_p(HOST_WIDE_INT c,int xsize,int ysize)1983 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1984 {
1985   return (xsize == 0 || ysize == 0
1986 	  || (c >= 0
1987 	      ? (abs (xsize) > c)
1988 	      : (abs (ysize) > -c)));
1989 }
1990 
1991 /* Return one if X and Y (memory addresses) reference the
1992    same location in memory or if the references overlap.
1993    Return zero if they do not overlap, else return
1994    minus one in which case they still might reference the same location.
1995 
1996    C is an offset accumulator.  When
1997    C is nonzero, we are testing aliases between X and Y + C.
1998    XSIZE is the size in bytes of the X reference,
1999    similarly YSIZE is the size in bytes for Y.
2000    Expect that canon_rtx has been already called for X and Y.
2001 
2002    If XSIZE or YSIZE is zero, we do not know the amount of memory being
2003    referenced (the reference was BLKmode), so make the most pessimistic
2004    assumptions.
2005 
2006    If XSIZE or YSIZE is negative, we may access memory outside the object
2007    being referenced as a side effect.  This can happen when using AND to
2008    align memory references, as is done on the Alpha.
2009 
2010    Nice to notice that varying addresses cannot conflict with fp if no
2011    local variables had their addresses taken, but that's too hard now.
2012 
2013    ???  Contrary to the tree alias oracle this does not return
2014    one for X + non-constant and Y + non-constant when X and Y are equal.
2015    If that is fixed the TBAA hack for union type-punning can be removed.  */
2016 
2017 static int
memrefs_conflict_p(int xsize,rtx x,int ysize,rtx y,HOST_WIDE_INT c)2018 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2019 {
2020   if (GET_CODE (x) == VALUE)
2021     {
2022       if (REG_P (y))
2023 	{
2024 	  struct elt_loc_list *l = NULL;
2025 	  if (CSELIB_VAL_PTR (x))
2026 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2027 		 l; l = l->next)
2028 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2029 		break;
2030 	  if (l)
2031 	    x = y;
2032 	  else
2033 	    x = get_addr (x);
2034 	}
2035       /* Don't call get_addr if y is the same VALUE.  */
2036       else if (x != y)
2037 	x = get_addr (x);
2038     }
2039   if (GET_CODE (y) == VALUE)
2040     {
2041       if (REG_P (x))
2042 	{
2043 	  struct elt_loc_list *l = NULL;
2044 	  if (CSELIB_VAL_PTR (y))
2045 	    for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2046 		 l; l = l->next)
2047 	      if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2048 		break;
2049 	  if (l)
2050 	    y = x;
2051 	  else
2052 	    y = get_addr (y);
2053 	}
2054       /* Don't call get_addr if x is the same VALUE.  */
2055       else if (y != x)
2056 	y = get_addr (y);
2057     }
2058   if (GET_CODE (x) == HIGH)
2059     x = XEXP (x, 0);
2060   else if (GET_CODE (x) == LO_SUM)
2061     x = XEXP (x, 1);
2062   else
2063     x = addr_side_effect_eval (x, abs (xsize), 0);
2064   if (GET_CODE (y) == HIGH)
2065     y = XEXP (y, 0);
2066   else if (GET_CODE (y) == LO_SUM)
2067     y = XEXP (y, 1);
2068   else
2069     y = addr_side_effect_eval (y, abs (ysize), 0);
2070 
2071   if (rtx_equal_for_memref_p (x, y))
2072     {
2073       return offset_overlap_p (c, xsize, ysize);
2074     }
2075 
2076   /* This code used to check for conflicts involving stack references and
2077      globals but the base address alias code now handles these cases.  */
2078 
2079   if (GET_CODE (x) == PLUS)
2080     {
2081       /* The fact that X is canonicalized means that this
2082 	 PLUS rtx is canonicalized.  */
2083       rtx x0 = XEXP (x, 0);
2084       rtx x1 = XEXP (x, 1);
2085 
2086       if (GET_CODE (y) == PLUS)
2087 	{
2088 	  /* The fact that Y is canonicalized means that this
2089 	     PLUS rtx is canonicalized.  */
2090 	  rtx y0 = XEXP (y, 0);
2091 	  rtx y1 = XEXP (y, 1);
2092 
2093 	  if (rtx_equal_for_memref_p (x1, y1))
2094 	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2095 	  if (rtx_equal_for_memref_p (x0, y0))
2096 	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2097 	  if (CONST_INT_P (x1))
2098 	    {
2099 	      if (CONST_INT_P (y1))
2100 		return memrefs_conflict_p (xsize, x0, ysize, y0,
2101 					   c - INTVAL (x1) + INTVAL (y1));
2102 	      else
2103 		return memrefs_conflict_p (xsize, x0, ysize, y,
2104 					   c - INTVAL (x1));
2105 	    }
2106 	  else if (CONST_INT_P (y1))
2107 	    return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2108 
2109 	  return -1;
2110 	}
2111       else if (CONST_INT_P (x1))
2112 	return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2113     }
2114   else if (GET_CODE (y) == PLUS)
2115     {
2116       /* The fact that Y is canonicalized means that this
2117 	 PLUS rtx is canonicalized.  */
2118       rtx y0 = XEXP (y, 0);
2119       rtx y1 = XEXP (y, 1);
2120 
2121       if (CONST_INT_P (y1))
2122 	return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2123       else
2124 	return -1;
2125     }
2126 
2127   if (GET_CODE (x) == GET_CODE (y))
2128     switch (GET_CODE (x))
2129       {
2130       case MULT:
2131 	{
2132 	  /* Handle cases where we expect the second operands to be the
2133 	     same, and check only whether the first operand would conflict
2134 	     or not.  */
2135 	  rtx x0, y0;
2136 	  rtx x1 = canon_rtx (XEXP (x, 1));
2137 	  rtx y1 = canon_rtx (XEXP (y, 1));
2138 	  if (! rtx_equal_for_memref_p (x1, y1))
2139 	    return -1;
2140 	  x0 = canon_rtx (XEXP (x, 0));
2141 	  y0 = canon_rtx (XEXP (y, 0));
2142 	  if (rtx_equal_for_memref_p (x0, y0))
2143 	    return offset_overlap_p (c, xsize, ysize);
2144 
2145 	  /* Can't properly adjust our sizes.  */
2146 	  if (!CONST_INT_P (x1))
2147 	    return -1;
2148 	  xsize /= INTVAL (x1);
2149 	  ysize /= INTVAL (x1);
2150 	  c /= INTVAL (x1);
2151 	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2152 	}
2153 
2154       default:
2155 	break;
2156       }
2157 
2158   /* Deal with alignment ANDs by adjusting offset and size so as to
2159      cover the maximum range, without taking any previously known
2160      alignment into account.  Make a size negative after such an
2161      adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2162      assume a potential overlap, because they may end up in contiguous
2163      memory locations and the stricter-alignment access may span over
2164      part of both.  */
2165   if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2166     {
2167       HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2168       unsigned HOST_WIDE_INT uc = sc;
2169       if (sc < 0 && -uc == (uc & -uc))
2170 	{
2171 	  if (xsize > 0)
2172 	    xsize = -xsize;
2173 	  if (xsize)
2174 	    xsize += sc + 1;
2175 	  c -= sc + 1;
2176 	  return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2177 				     ysize, y, c);
2178 	}
2179     }
2180   if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2181     {
2182       HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2183       unsigned HOST_WIDE_INT uc = sc;
2184       if (sc < 0 && -uc == (uc & -uc))
2185 	{
2186 	  if (ysize > 0)
2187 	    ysize = -ysize;
2188 	  if (ysize)
2189 	    ysize += sc + 1;
2190 	  c += sc + 1;
2191 	  return memrefs_conflict_p (xsize, x,
2192 				     ysize, canon_rtx (XEXP (y, 0)), c);
2193 	}
2194     }
2195 
2196   if (CONSTANT_P (x))
2197     {
2198       if (CONST_INT_P (x) && CONST_INT_P (y))
2199 	{
2200 	  c += (INTVAL (y) - INTVAL (x));
2201 	  return offset_overlap_p (c, xsize, ysize);
2202 	}
2203 
2204       if (GET_CODE (x) == CONST)
2205 	{
2206 	  if (GET_CODE (y) == CONST)
2207 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2208 				       ysize, canon_rtx (XEXP (y, 0)), c);
2209 	  else
2210 	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2211 				       ysize, y, c);
2212 	}
2213       if (GET_CODE (y) == CONST)
2214 	return memrefs_conflict_p (xsize, x, ysize,
2215 				   canon_rtx (XEXP (y, 0)), c);
2216 
2217       /* Assume a potential overlap for symbolic addresses that went
2218 	 through alignment adjustments (i.e., that have negative
2219 	 sizes), because we can't know how far they are from each
2220 	 other.  */
2221       if (CONSTANT_P (y))
2222 	return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2223 
2224       return -1;
2225     }
2226 
2227   return -1;
2228 }
2229 
2230 /* Functions to compute memory dependencies.
2231 
2232    Since we process the insns in execution order, we can build tables
2233    to keep track of what registers are fixed (and not aliased), what registers
2234    are varying in known ways, and what registers are varying in unknown
2235    ways.
2236 
2237    If both memory references are volatile, then there must always be a
2238    dependence between the two references, since their order can not be
2239    changed.  A volatile and non-volatile reference can be interchanged
2240    though.
2241 
2242    We also must allow AND addresses, because they may generate accesses
2243    outside the object being referenced.  This is used to generate aligned
2244    addresses from unaligned addresses, for instance, the alpha
2245    storeqi_unaligned pattern.  */
2246 
2247 /* Read dependence: X is read after read in MEM takes place.  There can
2248    only be a dependence here if both reads are volatile, or if either is
2249    an explicit barrier.  */
2250 
2251 int
read_dependence(const_rtx mem,const_rtx x)2252 read_dependence (const_rtx mem, const_rtx x)
2253 {
2254   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2255     return true;
2256   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2257       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2258     return true;
2259   return false;
2260 }
2261 
2262 /* Return true if we can determine that the fields referenced cannot
2263    overlap for any pair of objects.  */
2264 
2265 static bool
nonoverlapping_component_refs_p(const_rtx rtlx,const_rtx rtly)2266 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2267 {
2268   const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2269   const_tree fieldx, fieldy, typex, typey, orig_y;
2270 
2271   if (!flag_strict_aliasing
2272       || !x || !y
2273       || TREE_CODE (x) != COMPONENT_REF
2274       || TREE_CODE (y) != COMPONENT_REF)
2275     return false;
2276 
2277   do
2278     {
2279       /* The comparison has to be done at a common type, since we don't
2280 	 know how the inheritance hierarchy works.  */
2281       orig_y = y;
2282       do
2283 	{
2284 	  fieldx = TREE_OPERAND (x, 1);
2285 	  typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2286 
2287 	  y = orig_y;
2288 	  do
2289 	    {
2290 	      fieldy = TREE_OPERAND (y, 1);
2291 	      typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2292 
2293 	      if (typex == typey)
2294 		goto found;
2295 
2296 	      y = TREE_OPERAND (y, 0);
2297 	    }
2298 	  while (y && TREE_CODE (y) == COMPONENT_REF);
2299 
2300 	  x = TREE_OPERAND (x, 0);
2301 	}
2302       while (x && TREE_CODE (x) == COMPONENT_REF);
2303       /* Never found a common type.  */
2304       return false;
2305 
2306     found:
2307       /* If we're left with accessing different fields of a structure, then no
2308 	 possible overlap, unless they are both bitfields.  */
2309       if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
2310 	return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
2311 
2312       /* The comparison on the current field failed.  If we're accessing
2313 	 a very nested structure, look at the next outer level.  */
2314       x = TREE_OPERAND (x, 0);
2315       y = TREE_OPERAND (y, 0);
2316     }
2317   while (x && y
2318 	 && TREE_CODE (x) == COMPONENT_REF
2319 	 && TREE_CODE (y) == COMPONENT_REF);
2320 
2321   return false;
2322 }
2323 
2324 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2325 
2326 static tree
decl_for_component_ref(tree x)2327 decl_for_component_ref (tree x)
2328 {
2329   do
2330     {
2331       x = TREE_OPERAND (x, 0);
2332     }
2333   while (x && TREE_CODE (x) == COMPONENT_REF);
2334 
2335   return x && DECL_P (x) ? x : NULL_TREE;
2336 }
2337 
2338 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2339    for the offset of the field reference.  *KNOWN_P says whether the
2340    offset is known.  */
2341 
2342 static void
adjust_offset_for_component_ref(tree x,bool * known_p,HOST_WIDE_INT * offset)2343 adjust_offset_for_component_ref (tree x, bool *known_p,
2344 				 HOST_WIDE_INT *offset)
2345 {
2346   if (!*known_p)
2347     return;
2348   do
2349     {
2350       tree xoffset = component_ref_field_offset (x);
2351       tree field = TREE_OPERAND (x, 1);
2352 
2353       if (! tree_fits_uhwi_p (xoffset))
2354 	{
2355 	  *known_p = false;
2356 	  return;
2357 	}
2358       *offset += (tree_to_uhwi (xoffset)
2359 		  + (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2360 		     / BITS_PER_UNIT));
2361 
2362       x = TREE_OPERAND (x, 0);
2363     }
2364   while (x && TREE_CODE (x) == COMPONENT_REF);
2365 }
2366 
2367 /* Return nonzero if we can determine the exprs corresponding to memrefs
2368    X and Y and they do not overlap.
2369    If LOOP_VARIANT is set, skip offset-based disambiguation */
2370 
2371 int
nonoverlapping_memrefs_p(const_rtx x,const_rtx y,bool loop_invariant)2372 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2373 {
2374   tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2375   rtx rtlx, rtly;
2376   rtx basex, basey;
2377   bool moffsetx_known_p, moffsety_known_p;
2378   HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2379   HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2380 
2381   /* Unless both have exprs, we can't tell anything.  */
2382   if (exprx == 0 || expry == 0)
2383     return 0;
2384 
2385   /* For spill-slot accesses make sure we have valid offsets.  */
2386   if ((exprx == get_spill_slot_decl (false)
2387        && ! MEM_OFFSET_KNOWN_P (x))
2388       || (expry == get_spill_slot_decl (false)
2389 	  && ! MEM_OFFSET_KNOWN_P (y)))
2390     return 0;
2391 
2392   /* If the field reference test failed, look at the DECLs involved.  */
2393   moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2394   if (moffsetx_known_p)
2395     moffsetx = MEM_OFFSET (x);
2396   if (TREE_CODE (exprx) == COMPONENT_REF)
2397     {
2398       tree t = decl_for_component_ref (exprx);
2399       if (! t)
2400 	return 0;
2401       adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2402       exprx = t;
2403     }
2404 
2405   moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2406   if (moffsety_known_p)
2407     moffsety = MEM_OFFSET (y);
2408   if (TREE_CODE (expry) == COMPONENT_REF)
2409     {
2410       tree t = decl_for_component_ref (expry);
2411       if (! t)
2412 	return 0;
2413       adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2414       expry = t;
2415     }
2416 
2417   if (! DECL_P (exprx) || ! DECL_P (expry))
2418     return 0;
2419 
2420   /* With invalid code we can end up storing into the constant pool.
2421      Bail out to avoid ICEing when creating RTL for this.
2422      See gfortran.dg/lto/20091028-2_0.f90.  */
2423   if (TREE_CODE (exprx) == CONST_DECL
2424       || TREE_CODE (expry) == CONST_DECL)
2425     return 1;
2426 
2427   rtlx = DECL_RTL (exprx);
2428   rtly = DECL_RTL (expry);
2429 
2430   /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2431      can't overlap unless they are the same because we never reuse that part
2432      of the stack frame used for locals for spilled pseudos.  */
2433   if ((!MEM_P (rtlx) || !MEM_P (rtly))
2434       && ! rtx_equal_p (rtlx, rtly))
2435     return 1;
2436 
2437   /* If we have MEMs referring to different address spaces (which can
2438      potentially overlap), we cannot easily tell from the addresses
2439      whether the references overlap.  */
2440   if (MEM_P (rtlx) && MEM_P (rtly)
2441       && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2442     return 0;
2443 
2444   /* Get the base and offsets of both decls.  If either is a register, we
2445      know both are and are the same, so use that as the base.  The only
2446      we can avoid overlap is if we can deduce that they are nonoverlapping
2447      pieces of that decl, which is very rare.  */
2448   basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2449   if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2450     offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2451 
2452   basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2453   if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2454     offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2455 
2456   /* If the bases are different, we know they do not overlap if both
2457      are constants or if one is a constant and the other a pointer into the
2458      stack frame.  Otherwise a different base means we can't tell if they
2459      overlap or not.  */
2460   if (! rtx_equal_p (basex, basey))
2461     return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2462 	    || (CONSTANT_P (basex) && REG_P (basey)
2463 		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2464 	    || (CONSTANT_P (basey) && REG_P (basex)
2465 		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2466 
2467   /* Offset based disambiguation not appropriate for loop invariant */
2468   if (loop_invariant)
2469     return 0;
2470 
2471   sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2472 	   : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2473 	   : -1);
2474   sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2475 	   : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2476 	   : -1);
2477 
2478   /* If we have an offset for either memref, it can update the values computed
2479      above.  */
2480   if (moffsetx_known_p)
2481     offsetx += moffsetx, sizex -= moffsetx;
2482   if (moffsety_known_p)
2483     offsety += moffsety, sizey -= moffsety;
2484 
2485   /* If a memref has both a size and an offset, we can use the smaller size.
2486      We can't do this if the offset isn't known because we must view this
2487      memref as being anywhere inside the DECL's MEM.  */
2488   if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2489     sizex = MEM_SIZE (x);
2490   if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2491     sizey = MEM_SIZE (y);
2492 
2493   /* Put the values of the memref with the lower offset in X's values.  */
2494   if (offsetx > offsety)
2495     {
2496       tem = offsetx, offsetx = offsety, offsety = tem;
2497       tem = sizex, sizex = sizey, sizey = tem;
2498     }
2499 
2500   /* If we don't know the size of the lower-offset value, we can't tell
2501      if they conflict.  Otherwise, we do the test.  */
2502   return sizex >= 0 && offsety >= offsetx + sizex;
2503 }
2504 
2505 /* Helper for true_dependence and canon_true_dependence.
2506    Checks for true dependence: X is read after store in MEM takes place.
2507 
2508    If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2509    NULL_RTX, and the canonical addresses of MEM and X are both computed
2510    here.  If MEM_CANONICALIZED, then MEM must be already canonicalized.
2511 
2512    If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2513 
2514    Returns 1 if there is a true dependence, 0 otherwise.  */
2515 
2516 static int
true_dependence_1(const_rtx mem,enum machine_mode mem_mode,rtx mem_addr,const_rtx x,rtx x_addr,bool mem_canonicalized)2517 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2518 		   const_rtx x, rtx x_addr, bool mem_canonicalized)
2519 {
2520   rtx base;
2521   int ret;
2522 
2523   gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2524 		       : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2525 
2526   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2527     return 1;
2528 
2529   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2530      This is used in epilogue deallocation functions, and in cselib.  */
2531   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2532     return 1;
2533   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2534     return 1;
2535   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2536       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2537     return 1;
2538 
2539   /* Read-only memory is by definition never modified, and therefore can't
2540      conflict with anything.  We don't expect to find read-only set on MEM,
2541      but stupid user tricks can produce them, so don't die.  */
2542   if (MEM_READONLY_P (x))
2543     return 0;
2544 
2545   /* If we have MEMs referring to different address spaces (which can
2546      potentially overlap), we cannot easily tell from the addresses
2547      whether the references overlap.  */
2548   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2549     return 1;
2550 
2551   if (! mem_addr)
2552     {
2553       mem_addr = XEXP (mem, 0);
2554       if (mem_mode == VOIDmode)
2555 	mem_mode = GET_MODE (mem);
2556     }
2557 
2558   if (! x_addr)
2559     {
2560       x_addr = XEXP (x, 0);
2561       if (!((GET_CODE (x_addr) == VALUE
2562 	     && GET_CODE (mem_addr) != VALUE
2563 	     && reg_mentioned_p (x_addr, mem_addr))
2564 	    || (GET_CODE (x_addr) != VALUE
2565 		&& GET_CODE (mem_addr) == VALUE
2566 		&& reg_mentioned_p (mem_addr, x_addr))))
2567 	{
2568 	  x_addr = get_addr (x_addr);
2569 	  if (! mem_canonicalized)
2570 	    mem_addr = get_addr (mem_addr);
2571 	}
2572     }
2573 
2574   base = find_base_term (x_addr);
2575   if (base && (GET_CODE (base) == LABEL_REF
2576 	       || (GET_CODE (base) == SYMBOL_REF
2577 		   && CONSTANT_POOL_ADDRESS_P (base))))
2578     return 0;
2579 
2580   rtx mem_base = find_base_term (mem_addr);
2581   if (! base_alias_check (x_addr, base, mem_addr, mem_base,
2582 			  GET_MODE (x), mem_mode))
2583     return 0;
2584 
2585   x_addr = canon_rtx (x_addr);
2586   if (!mem_canonicalized)
2587     mem_addr = canon_rtx (mem_addr);
2588 
2589   if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2590 				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2591     return ret;
2592 
2593   if (mems_in_disjoint_alias_sets_p (x, mem))
2594     return 0;
2595 
2596   if (nonoverlapping_memrefs_p (mem, x, false))
2597     return 0;
2598 
2599   if (nonoverlapping_component_refs_p (mem, x))
2600     return 0;
2601 
2602   return rtx_refs_may_alias_p (x, mem, true);
2603 }
2604 
2605 /* True dependence: X is read after store in MEM takes place.  */
2606 
2607 int
true_dependence(const_rtx mem,enum machine_mode mem_mode,const_rtx x)2608 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2609 {
2610   return true_dependence_1 (mem, mem_mode, NULL_RTX,
2611 			    x, NULL_RTX, /*mem_canonicalized=*/false);
2612 }
2613 
2614 /* Canonical true dependence: X is read after store in MEM takes place.
2615    Variant of true_dependence which assumes MEM has already been
2616    canonicalized (hence we no longer do that here).
2617    The mem_addr argument has been added, since true_dependence_1 computed
2618    this value prior to canonicalizing.  */
2619 
2620 int
canon_true_dependence(const_rtx mem,enum machine_mode mem_mode,rtx mem_addr,const_rtx x,rtx x_addr)2621 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2622 		       const_rtx x, rtx x_addr)
2623 {
2624   return true_dependence_1 (mem, mem_mode, mem_addr,
2625 			    x, x_addr, /*mem_canonicalized=*/true);
2626 }
2627 
2628 /* Returns nonzero if a write to X might alias a previous read from
2629    (or, if WRITEP is true, a write to) MEM.
2630    If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2631    and X_MODE the mode for that access.
2632    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
2633 
2634 static int
write_dependence_p(const_rtx mem,const_rtx x,enum machine_mode x_mode,rtx x_addr,bool mem_canonicalized,bool x_canonicalized,bool writep)2635 write_dependence_p (const_rtx mem,
2636 		    const_rtx x, enum machine_mode x_mode, rtx x_addr,
2637 		    bool mem_canonicalized, bool x_canonicalized, bool writep)
2638 {
2639   rtx mem_addr;
2640   rtx base;
2641   int ret;
2642 
2643   gcc_checking_assert (x_canonicalized
2644 		       ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2645 		       : (x_addr == NULL_RTX && x_mode == VOIDmode));
2646 
2647   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2648     return 1;
2649 
2650   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2651      This is used in epilogue deallocation functions.  */
2652   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2653     return 1;
2654   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2655     return 1;
2656   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2657       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2658     return 1;
2659 
2660   /* A read from read-only memory can't conflict with read-write memory.  */
2661   if (!writep && MEM_READONLY_P (mem))
2662     return 0;
2663 
2664   /* If we have MEMs referring to different address spaces (which can
2665      potentially overlap), we cannot easily tell from the addresses
2666      whether the references overlap.  */
2667   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2668     return 1;
2669 
2670   mem_addr = XEXP (mem, 0);
2671   if (!x_addr)
2672     {
2673       x_addr = XEXP (x, 0);
2674       if (!((GET_CODE (x_addr) == VALUE
2675 	     && GET_CODE (mem_addr) != VALUE
2676 	     && reg_mentioned_p (x_addr, mem_addr))
2677 	    || (GET_CODE (x_addr) != VALUE
2678 		&& GET_CODE (mem_addr) == VALUE
2679 		&& reg_mentioned_p (mem_addr, x_addr))))
2680 	{
2681 	  x_addr = get_addr (x_addr);
2682 	  if (!mem_canonicalized)
2683 	    mem_addr = get_addr (mem_addr);
2684 	}
2685     }
2686 
2687   base = find_base_term (mem_addr);
2688   if (! writep
2689       && base
2690       && (GET_CODE (base) == LABEL_REF
2691 	  || (GET_CODE (base) == SYMBOL_REF
2692 	      && CONSTANT_POOL_ADDRESS_P (base))))
2693     return 0;
2694 
2695   rtx x_base = find_base_term (x_addr);
2696   if (! base_alias_check (x_addr, x_base, mem_addr, base, GET_MODE (x),
2697 			  GET_MODE (mem)))
2698     return 0;
2699 
2700   if (!x_canonicalized)
2701     {
2702       x_addr = canon_rtx (x_addr);
2703       x_mode = GET_MODE (x);
2704     }
2705   if (!mem_canonicalized)
2706     mem_addr = canon_rtx (mem_addr);
2707 
2708   if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2709 				 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2710     return ret;
2711 
2712   if (nonoverlapping_memrefs_p (x, mem, false))
2713     return 0;
2714 
2715   return rtx_refs_may_alias_p (x, mem, false);
2716 }
2717 
2718 /* Anti dependence: X is written after read in MEM takes place.  */
2719 
2720 int
anti_dependence(const_rtx mem,const_rtx x)2721 anti_dependence (const_rtx mem, const_rtx x)
2722 {
2723   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2724 			     /*mem_canonicalized=*/false,
2725 			     /*x_canonicalized*/false, /*writep=*/false);
2726 }
2727 
2728 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2729    Also, consider X in X_MODE (which might be from an enclosing
2730    STRICT_LOW_PART / ZERO_EXTRACT).
2731    If MEM_CANONICALIZED is true, MEM is canonicalized.  */
2732 
2733 int
canon_anti_dependence(const_rtx mem,bool mem_canonicalized,const_rtx x,enum machine_mode x_mode,rtx x_addr)2734 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2735 		       const_rtx x, enum machine_mode x_mode, rtx x_addr)
2736 {
2737   return write_dependence_p (mem, x, x_mode, x_addr,
2738 			     mem_canonicalized, /*x_canonicalized=*/true,
2739 			     /*writep=*/false);
2740 }
2741 
2742 /* Output dependence: X is written after store in MEM takes place.  */
2743 
2744 int
output_dependence(const_rtx mem,const_rtx x)2745 output_dependence (const_rtx mem, const_rtx x)
2746 {
2747   return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2748 			     /*mem_canonicalized=*/false,
2749 			     /*x_canonicalized*/false, /*writep=*/true);
2750 }
2751 
2752 
2753 
2754 /* Check whether X may be aliased with MEM.  Don't do offset-based
2755   memory disambiguation & TBAA.  */
2756 int
may_alias_p(const_rtx mem,const_rtx x)2757 may_alias_p (const_rtx mem, const_rtx x)
2758 {
2759   rtx x_addr, mem_addr;
2760 
2761   if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2762     return 1;
2763 
2764   /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2765      This is used in epilogue deallocation functions.  */
2766   if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2767     return 1;
2768   if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2769     return 1;
2770   if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2771       || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2772     return 1;
2773 
2774   /* Read-only memory is by definition never modified, and therefore can't
2775      conflict with anything.  We don't expect to find read-only set on MEM,
2776      but stupid user tricks can produce them, so don't die.  */
2777   if (MEM_READONLY_P (x))
2778     return 0;
2779 
2780   /* If we have MEMs referring to different address spaces (which can
2781      potentially overlap), we cannot easily tell from the addresses
2782      whether the references overlap.  */
2783   if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2784     return 1;
2785 
2786   x_addr = XEXP (x, 0);
2787   mem_addr = XEXP (mem, 0);
2788   if (!((GET_CODE (x_addr) == VALUE
2789 	 && GET_CODE (mem_addr) != VALUE
2790 	 && reg_mentioned_p (x_addr, mem_addr))
2791 	|| (GET_CODE (x_addr) != VALUE
2792 	    && GET_CODE (mem_addr) == VALUE
2793 	    && reg_mentioned_p (mem_addr, x_addr))))
2794     {
2795       x_addr = get_addr (x_addr);
2796       mem_addr = get_addr (mem_addr);
2797     }
2798 
2799   rtx x_base = find_base_term (x_addr);
2800   rtx mem_base = find_base_term (mem_addr);
2801   if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2802 			  GET_MODE (x), GET_MODE (mem_addr)))
2803     return 0;
2804 
2805   x_addr = canon_rtx (x_addr);
2806   mem_addr = canon_rtx (mem_addr);
2807 
2808   if (nonoverlapping_memrefs_p (mem, x, true))
2809     return 0;
2810 
2811   /* TBAA not valid for loop_invarint */
2812   return rtx_refs_may_alias_p (x, mem, false);
2813 }
2814 
2815 void
init_alias_target(void)2816 init_alias_target (void)
2817 {
2818   int i;
2819 
2820   if (!arg_base_value)
2821     arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2822 
2823   memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2824 
2825   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2826     /* Check whether this register can hold an incoming pointer
2827        argument.  FUNCTION_ARG_REGNO_P tests outgoing register
2828        numbers, so translate if necessary due to register windows.  */
2829     if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2830 	&& HARD_REGNO_MODE_OK (i, Pmode))
2831       static_reg_base_value[i] = arg_base_value;
2832 
2833   static_reg_base_value[STACK_POINTER_REGNUM]
2834     = unique_base_value (UNIQUE_BASE_VALUE_SP);
2835   static_reg_base_value[ARG_POINTER_REGNUM]
2836     = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2837   static_reg_base_value[FRAME_POINTER_REGNUM]
2838     = unique_base_value (UNIQUE_BASE_VALUE_FP);
2839 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2840   static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2841     = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2842 #endif
2843 }
2844 
2845 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2846    to be memory reference.  */
2847 static bool memory_modified;
2848 static void
memory_modified_1(rtx x,const_rtx pat ATTRIBUTE_UNUSED,void * data)2849 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2850 {
2851   if (MEM_P (x))
2852     {
2853       if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2854 	memory_modified = true;
2855     }
2856 }
2857 
2858 
2859 /* Return true when INSN possibly modify memory contents of MEM
2860    (i.e. address can be modified).  */
2861 bool
memory_modified_in_insn_p(const_rtx mem,const_rtx insn)2862 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2863 {
2864   if (!INSN_P (insn))
2865     return false;
2866   memory_modified = false;
2867   note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2868   return memory_modified;
2869 }
2870 
2871 /* Return TRUE if the destination of a set is rtx identical to
2872    ITEM.  */
2873 static inline bool
set_dest_equal_p(const_rtx set,const_rtx item)2874 set_dest_equal_p (const_rtx set, const_rtx item)
2875 {
2876   rtx dest = SET_DEST (set);
2877   return rtx_equal_p (dest, item);
2878 }
2879 
2880 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2881    *DEFINITELY* modify the memory contents of MEM.  */
2882 bool
memory_must_be_modified_in_insn_p(const_rtx mem,const_rtx insn)2883 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2884 {
2885   if (!INSN_P (insn))
2886     return false;
2887   insn = PATTERN (insn);
2888   if (GET_CODE (insn) == SET)
2889     return set_dest_equal_p (insn, mem);
2890   else if (GET_CODE (insn) == PARALLEL)
2891     {
2892       int i;
2893       for (i = 0; i < XVECLEN (insn, 0); i++)
2894 	{
2895 	  rtx sub = XVECEXP (insn, 0, i);
2896 	  if (GET_CODE (sub) == SET
2897 	      &&  set_dest_equal_p (sub, mem))
2898 	    return true;
2899 	}
2900     }
2901   return false;
2902 }
2903 
2904 /* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
2905    array.  */
2906 
2907 void
init_alias_analysis(void)2908 init_alias_analysis (void)
2909 {
2910   unsigned int maxreg = max_reg_num ();
2911   int changed, pass;
2912   int i;
2913   unsigned int ui;
2914   rtx insn, val;
2915   int rpo_cnt;
2916   int *rpo;
2917 
2918   timevar_push (TV_ALIAS_ANALYSIS);
2919 
2920   vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2921   reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2922   bitmap_clear (reg_known_equiv_p);
2923 
2924   /* If we have memory allocated from the previous run, use it.  */
2925   if (old_reg_base_value)
2926     reg_base_value = old_reg_base_value;
2927 
2928   if (reg_base_value)
2929     reg_base_value->truncate (0);
2930 
2931   vec_safe_grow_cleared (reg_base_value, maxreg);
2932 
2933   new_reg_base_value = XNEWVEC (rtx, maxreg);
2934   reg_seen = sbitmap_alloc (maxreg);
2935 
2936   /* The basic idea is that each pass through this loop will use the
2937      "constant" information from the previous pass to propagate alias
2938      information through another level of assignments.
2939 
2940      The propagation is done on the CFG in reverse post-order, to propagate
2941      things forward as far as possible in each iteration.
2942 
2943      This could get expensive if the assignment chains are long.  Maybe
2944      we should throttle the number of iterations, possibly based on
2945      the optimization level or flag_expensive_optimizations.
2946 
2947      We could propagate more information in the first pass by making use
2948      of DF_REG_DEF_COUNT to determine immediately that the alias information
2949      for a pseudo is "constant".
2950 
2951      A program with an uninitialized variable can cause an infinite loop
2952      here.  Instead of doing a full dataflow analysis to detect such problems
2953      we just cap the number of iterations for the loop.
2954 
2955      The state of the arrays for the set chain in question does not matter
2956      since the program has undefined behavior.  */
2957 
2958   rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2959   rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2960 
2961   pass = 0;
2962   do
2963     {
2964       /* Assume nothing will change this iteration of the loop.  */
2965       changed = 0;
2966 
2967       /* We want to assign the same IDs each iteration of this loop, so
2968 	 start counting from one each iteration of the loop.  */
2969       unique_id = 1;
2970 
2971       /* We're at the start of the function each iteration through the
2972 	 loop, so we're copying arguments.  */
2973       copying_arguments = true;
2974 
2975       /* Wipe the potential alias information clean for this pass.  */
2976       memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2977 
2978       /* Wipe the reg_seen array clean.  */
2979       bitmap_clear (reg_seen);
2980 
2981       /* Initialize the alias information for this pass.  */
2982       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2983 	if (static_reg_base_value[i])
2984 	  {
2985 	    new_reg_base_value[i] = static_reg_base_value[i];
2986 	    bitmap_set_bit (reg_seen, i);
2987 	  }
2988 
2989       /* Walk the insns adding values to the new_reg_base_value array.  */
2990       for (i = 0; i < rpo_cnt; i++)
2991 	{
2992 	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
2993 	  FOR_BB_INSNS (bb, insn)
2994 	    {
2995 	      if (NONDEBUG_INSN_P (insn))
2996 		{
2997 		  rtx note, set;
2998 
2999 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
3000 		  /* The prologue/epilogue insns are not threaded onto the
3001 		     insn chain until after reload has completed.  Thus,
3002 		     there is no sense wasting time checking if INSN is in
3003 		     the prologue/epilogue until after reload has completed.  */
3004 		  if (reload_completed
3005 		      && prologue_epilogue_contains (insn))
3006 		    continue;
3007 #endif
3008 
3009 		  /* If this insn has a noalias note, process it,  Otherwise,
3010 		     scan for sets.  A simple set will have no side effects
3011 		     which could change the base value of any other register.  */
3012 
3013 		  if (GET_CODE (PATTERN (insn)) == SET
3014 		      && REG_NOTES (insn) != 0
3015 		      && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3016 		    record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3017 		  else
3018 		    note_stores (PATTERN (insn), record_set, NULL);
3019 
3020 		  set = single_set (insn);
3021 
3022 		  if (set != 0
3023 		      && REG_P (SET_DEST (set))
3024 		      && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3025 		    {
3026 		      unsigned int regno = REGNO (SET_DEST (set));
3027 		      rtx src = SET_SRC (set);
3028 		      rtx t;
3029 
3030 		      note = find_reg_equal_equiv_note (insn);
3031 		      if (note && REG_NOTE_KIND (note) == REG_EQUAL
3032 			  && DF_REG_DEF_COUNT (regno) != 1)
3033 			note = NULL_RTX;
3034 
3035 		      if (note != NULL_RTX
3036 			  && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3037 			  && ! rtx_varies_p (XEXP (note, 0), 1)
3038 			  && ! reg_overlap_mentioned_p (SET_DEST (set),
3039 							XEXP (note, 0)))
3040 			{
3041 			  set_reg_known_value (regno, XEXP (note, 0));
3042 			  set_reg_known_equiv_p (regno,
3043 						 REG_NOTE_KIND (note) == REG_EQUIV);
3044 			}
3045 		      else if (DF_REG_DEF_COUNT (regno) == 1
3046 			       && GET_CODE (src) == PLUS
3047 			       && REG_P (XEXP (src, 0))
3048 			       && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3049 			       && CONST_INT_P (XEXP (src, 1)))
3050 			{
3051 			  t = plus_constant (GET_MODE (src), t,
3052 					     INTVAL (XEXP (src, 1)));
3053 			  set_reg_known_value (regno, t);
3054 			  set_reg_known_equiv_p (regno, false);
3055 			}
3056 		      else if (DF_REG_DEF_COUNT (regno) == 1
3057 			       && ! rtx_varies_p (src, 1))
3058 			{
3059 			  set_reg_known_value (regno, src);
3060 			  set_reg_known_equiv_p (regno, false);
3061 			}
3062 		    }
3063 		}
3064 	      else if (NOTE_P (insn)
3065 		       && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3066 		copying_arguments = false;
3067 	    }
3068 	}
3069 
3070       /* Now propagate values from new_reg_base_value to reg_base_value.  */
3071       gcc_assert (maxreg == (unsigned int) max_reg_num ());
3072 
3073       for (ui = 0; ui < maxreg; ui++)
3074 	{
3075 	  if (new_reg_base_value[ui]
3076 	      && new_reg_base_value[ui] != (*reg_base_value)[ui]
3077 	      && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3078 	    {
3079 	      (*reg_base_value)[ui] = new_reg_base_value[ui];
3080 	      changed = 1;
3081 	    }
3082 	}
3083     }
3084   while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3085   XDELETEVEC (rpo);
3086 
3087   /* Fill in the remaining entries.  */
3088   FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3089     {
3090       int regno = i + FIRST_PSEUDO_REGISTER;
3091       if (! val)
3092 	set_reg_known_value (regno, regno_reg_rtx[regno]);
3093     }
3094 
3095   /* Clean up.  */
3096   free (new_reg_base_value);
3097   new_reg_base_value = 0;
3098   sbitmap_free (reg_seen);
3099   reg_seen = 0;
3100   timevar_pop (TV_ALIAS_ANALYSIS);
3101 }
3102 
3103 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3104    Special API for var-tracking pass purposes.  */
3105 
3106 void
vt_equate_reg_base_value(const_rtx reg1,const_rtx reg2)3107 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3108 {
3109   (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3110 }
3111 
3112 void
end_alias_analysis(void)3113 end_alias_analysis (void)
3114 {
3115   old_reg_base_value = reg_base_value;
3116   vec_free (reg_known_value);
3117   sbitmap_free (reg_known_equiv_p);
3118 }
3119 
3120 #include "gt-alias.h"
3121