1 /* Fixed-point arithmetic support.
2    Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "diagnostic-core.h"
26 
27 /* Compare two fixed objects for bitwise identity.  */
28 
29 bool
fixed_identical(const FIXED_VALUE_TYPE * a,const FIXED_VALUE_TYPE * b)30 fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
31 {
32   return (a->mode == b->mode
33 	  && a->data.high == b->data.high
34 	  && a->data.low == b->data.low);
35 }
36 
37 /* Calculate a hash value.  */
38 
39 unsigned int
fixed_hash(const FIXED_VALUE_TYPE * f)40 fixed_hash (const FIXED_VALUE_TYPE *f)
41 {
42   return (unsigned int) (f->data.low ^ f->data.high);
43 }
44 
45 /* Define the enum code for the range of the fixed-point value.  */
46 enum fixed_value_range_code {
47   FIXED_OK,		/* The value is within the range.  */
48   FIXED_UNDERFLOW,	/* The value is less than the minimum.  */
49   FIXED_GT_MAX_EPS,	/* The value is greater than the maximum, but not equal
50 			   to the maximum plus the epsilon.  */
51   FIXED_MAX_EPS		/* The value equals the maximum plus the epsilon.  */
52 };
53 
54 /* Check REAL_VALUE against the range of the fixed-point mode.
55    Return FIXED_OK, if it is within the range.
56           FIXED_UNDERFLOW, if it is less than the minimum.
57           FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
58 	    the maximum plus the epsilon.
59           FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon.  */
60 
61 static enum fixed_value_range_code
check_real_for_fixed_mode(REAL_VALUE_TYPE * real_value,enum machine_mode mode)62 check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, enum machine_mode mode)
63 {
64   REAL_VALUE_TYPE max_value, min_value, epsilon_value;
65 
66   real_2expN (&max_value, GET_MODE_IBIT (mode), mode);
67   real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), mode);
68 
69   if (SIGNED_FIXED_POINT_MODE_P (mode))
70     min_value = real_value_negate (&max_value);
71   else
72     real_from_string (&min_value, "0.0");
73 
74   if (real_compare (LT_EXPR, real_value, &min_value))
75     return FIXED_UNDERFLOW;
76   if (real_compare (EQ_EXPR, real_value, &max_value))
77     return FIXED_MAX_EPS;
78   real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
79   if (real_compare (GT_EXPR, real_value, &max_value))
80     return FIXED_GT_MAX_EPS;
81   return FIXED_OK;
82 }
83 
84 
85 /* Construct a CONST_FIXED from a bit payload and machine mode MODE.
86    The bits in PAYLOAD are sign-extended/zero-extended according to MODE.  */
87 
88 FIXED_VALUE_TYPE
fixed_from_double_int(double_int payload,enum machine_mode mode)89 fixed_from_double_int (double_int payload, enum machine_mode mode)
90 {
91   FIXED_VALUE_TYPE value;
92 
93   gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
94 
95   if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
96     value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
97   else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
98     value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
99   else
100     gcc_unreachable ();
101 
102   value.mode = mode;
103 
104   return value;
105 }
106 
107 
108 /* Initialize from a decimal or hexadecimal string.  */
109 
110 void
fixed_from_string(FIXED_VALUE_TYPE * f,const char * str,enum machine_mode mode)111 fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, enum machine_mode mode)
112 {
113   REAL_VALUE_TYPE real_value, fixed_value, base_value;
114   unsigned int fbit;
115   enum fixed_value_range_code temp;
116 
117   f->mode = mode;
118   fbit = GET_MODE_FBIT (mode);
119 
120   real_from_string (&real_value, str);
121   temp = check_real_for_fixed_mode (&real_value, f->mode);
122   /* We don't want to warn the case when the _Fract value is 1.0.  */
123   if (temp == FIXED_UNDERFLOW
124       || temp == FIXED_GT_MAX_EPS
125       || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
126     warning (OPT_Woverflow,
127 	     "large fixed-point constant implicitly truncated to fixed-point type");
128   real_2expN (&base_value, fbit, mode);
129   real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
130   real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high,
131 		    &fixed_value);
132 
133   if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
134     {
135       /* From the spec, we need to evaluate 1 to the maximal value.  */
136       f->data.low = -1;
137       f->data.high = -1;
138       f->data = f->data.zext (GET_MODE_FBIT (f->mode)
139 				+ GET_MODE_IBIT (f->mode));
140     }
141   else
142     f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
143 			      + GET_MODE_FBIT (f->mode)
144 			      + GET_MODE_IBIT (f->mode),
145 			      UNSIGNED_FIXED_POINT_MODE_P (f->mode));
146 }
147 
148 /* Render F as a decimal floating point constant.  */
149 
150 void
fixed_to_decimal(char * str,const FIXED_VALUE_TYPE * f_orig,size_t buf_size)151 fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
152 		  size_t buf_size)
153 {
154   REAL_VALUE_TYPE real_value, base_value, fixed_value;
155 
156   real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), f_orig->mode);
157   real_from_integer (&real_value, VOIDmode, f_orig->data.low, f_orig->data.high,
158 		     UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode));
159   real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
160   real_to_decimal (str, &fixed_value, buf_size, 0, 1);
161 }
162 
163 /* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
164    the machine mode MODE.
165    Do not modify *F otherwise.
166    This function assumes the width of double_int is greater than the width
167    of the fixed-point value (the sum of a possible sign bit, possible ibits,
168    and fbits).
169    Return true, if !SAT_P and overflow.  */
170 
171 static bool
fixed_saturate1(enum machine_mode mode,double_int a,double_int * f,bool sat_p)172 fixed_saturate1 (enum machine_mode mode, double_int a, double_int *f,
173 		 bool sat_p)
174 {
175   bool overflow_p = false;
176   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
177   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
178 
179   if (unsigned_p) /* Unsigned type.  */
180     {
181       double_int max;
182       max.low = -1;
183       max.high = -1;
184       max = max.zext (i_f_bits);
185       if (a.ugt (max))
186 	{
187 	  if (sat_p)
188 	    *f = max;
189 	  else
190 	    overflow_p = true;
191 	}
192     }
193   else /* Signed type.  */
194     {
195       double_int max, min;
196       max.high = -1;
197       max.low = -1;
198       max = max.zext (i_f_bits);
199       min.high = 0;
200       min.low = 1;
201       min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
202       min = min.sext (1 + i_f_bits);
203       if (a.sgt (max))
204 	{
205 	  if (sat_p)
206 	    *f = max;
207 	  else
208 	    overflow_p = true;
209 	}
210       else if (a.slt (min))
211 	{
212 	  if (sat_p)
213 	    *f = min;
214 	  else
215 	    overflow_p = true;
216 	}
217     }
218   return overflow_p;
219 }
220 
221 /* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
222    save to *F based on the machine mode MODE.
223    Do not modify *F otherwise.
224    This function assumes the width of two double_int is greater than the width
225    of the fixed-point value (the sum of a possible sign bit, possible ibits,
226    and fbits).
227    Return true, if !SAT_P and overflow.  */
228 
229 static bool
fixed_saturate2(enum machine_mode mode,double_int a_high,double_int a_low,double_int * f,bool sat_p)230 fixed_saturate2 (enum machine_mode mode, double_int a_high, double_int a_low,
231 		 double_int *f, bool sat_p)
232 {
233   bool overflow_p = false;
234   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
235   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
236 
237   if (unsigned_p) /* Unsigned type.  */
238     {
239       double_int max_r, max_s;
240       max_r.high = 0;
241       max_r.low = 0;
242       max_s.high = -1;
243       max_s.low = -1;
244       max_s = max_s.zext (i_f_bits);
245       if (a_high.ugt (max_r)
246 	  || (a_high == max_r &&
247 	      a_low.ugt (max_s)))
248 	{
249 	  if (sat_p)
250 	    *f = max_s;
251 	  else
252 	    overflow_p = true;
253 	}
254     }
255   else /* Signed type.  */
256     {
257       double_int max_r, max_s, min_r, min_s;
258       max_r.high = 0;
259       max_r.low = 0;
260       max_s.high = -1;
261       max_s.low = -1;
262       max_s = max_s.zext (i_f_bits);
263       min_r.high = -1;
264       min_r.low = -1;
265       min_s.high = 0;
266       min_s.low = 1;
267       min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
268       min_s = min_s.sext (1 + i_f_bits);
269       if (a_high.sgt (max_r)
270 	  || (a_high == max_r &&
271 	      a_low.ugt (max_s)))
272 	{
273 	  if (sat_p)
274 	    *f = max_s;
275 	  else
276 	    overflow_p = true;
277 	}
278       else if (a_high.slt (min_r)
279 	       || (a_high == min_r &&
280 		   a_low.ult (min_s)))
281 	{
282 	  if (sat_p)
283 	    *f = min_s;
284 	  else
285 	    overflow_p = true;
286 	}
287     }
288   return overflow_p;
289 }
290 
291 /* Return the sign bit based on I_F_BITS.  */
292 
293 static inline int
get_fixed_sign_bit(double_int a,int i_f_bits)294 get_fixed_sign_bit (double_int a, int i_f_bits)
295 {
296   if (i_f_bits < HOST_BITS_PER_WIDE_INT)
297     return (a.low >> i_f_bits) & 1;
298   else
299     return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
300 }
301 
302 /* Calculate F = A + (SUBTRACT_P ? -B : B).
303    If SAT_P, saturate the result to the max or the min.
304    Return true, if !SAT_P and overflow.  */
305 
306 static bool
do_fixed_add(FIXED_VALUE_TYPE * f,const FIXED_VALUE_TYPE * a,const FIXED_VALUE_TYPE * b,bool subtract_p,bool sat_p)307 do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
308 	      const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
309 {
310   bool overflow_p = false;
311   bool unsigned_p;
312   double_int temp;
313   int i_f_bits;
314 
315   /* This was a conditional expression but it triggered a bug in
316      Sun C 5.5.  */
317   if (subtract_p)
318     temp = -b->data;
319   else
320     temp = b->data;
321 
322   unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
323   i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
324   f->mode = a->mode;
325   f->data = a->data + temp;
326   if (unsigned_p) /* Unsigned type.  */
327     {
328       if (subtract_p) /* Unsigned subtraction.  */
329 	{
330 	  if (a->data.ult (b->data))
331 	    {
332 	      if (sat_p)
333 		{
334 		  f->data.high = 0;
335 		  f->data.low = 0;
336 		 }
337 	      else
338 		overflow_p = true;
339 	    }
340 	}
341       else /* Unsigned addition.  */
342 	{
343 	  f->data = f->data.zext (i_f_bits);
344 	  if (f->data.ult (a->data)
345 	      || f->data.ult (b->data))
346 	    {
347 	      if (sat_p)
348 		{
349 		  f->data.high = -1;
350 		  f->data.low = -1;
351 		}
352 	      else
353 		overflow_p = true;
354 	    }
355 	}
356     }
357   else /* Signed type.  */
358     {
359       if ((!subtract_p
360 	   && (get_fixed_sign_bit (a->data, i_f_bits)
361 	       == get_fixed_sign_bit (b->data, i_f_bits))
362 	   && (get_fixed_sign_bit (a->data, i_f_bits)
363 	       != get_fixed_sign_bit (f->data, i_f_bits)))
364 	  || (subtract_p
365 	      && (get_fixed_sign_bit (a->data, i_f_bits)
366 		  != get_fixed_sign_bit (b->data, i_f_bits))
367 	      && (get_fixed_sign_bit (a->data, i_f_bits)
368 		  != get_fixed_sign_bit (f->data, i_f_bits))))
369 	{
370 	  if (sat_p)
371 	    {
372 	      f->data.low = 1;
373 	      f->data.high = 0;
374 	      f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
375 	      if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
376 		{
377 		  --f->data;
378 		}
379 	    }
380 	  else
381 	    overflow_p = true;
382 	}
383     }
384   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
385   return overflow_p;
386 }
387 
388 /* Calculate F = A * B.
389    If SAT_P, saturate the result to the max or the min.
390    Return true, if !SAT_P and overflow.  */
391 
392 static bool
do_fixed_multiply(FIXED_VALUE_TYPE * f,const FIXED_VALUE_TYPE * a,const FIXED_VALUE_TYPE * b,bool sat_p)393 do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
394 		   const FIXED_VALUE_TYPE *b, bool sat_p)
395 {
396   bool overflow_p = false;
397   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
398   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
399   f->mode = a->mode;
400   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
401     {
402       f->data = a->data * b->data;
403       f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
404 				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
405       overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
406     }
407   else
408     {
409       /* The result of multiplication expands to two double_int.  */
410       double_int a_high, a_low, b_high, b_low;
411       double_int high_high, high_low, low_high, low_low;
412       double_int r, s, temp1, temp2;
413       int carry = 0;
414 
415       /* Decompose a and b to four double_int.  */
416       a_high.low = a->data.high;
417       a_high.high = 0;
418       a_low.low = a->data.low;
419       a_low.high = 0;
420       b_high.low = b->data.high;
421       b_high.high = 0;
422       b_low.low = b->data.low;
423       b_low.high = 0;
424 
425       /* Perform four multiplications.  */
426       low_low = a_low * b_low;
427       low_high = a_low * b_high;
428       high_low = a_high * b_low;
429       high_high = a_high * b_high;
430 
431       /* Accumulate four results to {r, s}.  */
432       temp1.high = high_low.low;
433       temp1.low = 0;
434       s = low_low + temp1;
435       if (s.ult (low_low)
436 	  || s.ult (temp1))
437 	carry ++; /* Carry */
438       temp1.high = s.high;
439       temp1.low = s.low;
440       temp2.high = low_high.low;
441       temp2.low = 0;
442       s = temp1 + temp2;
443       if (s.ult (temp1)
444 	  || s.ult (temp2))
445 	carry ++; /* Carry */
446 
447       temp1.low = high_low.high;
448       temp1.high = 0;
449       r = high_high + temp1;
450       temp1.low = low_high.high;
451       temp1.high = 0;
452       r += temp1;
453       temp1.low = carry;
454       temp1.high = 0;
455       r += temp1;
456 
457       /* We need to subtract b from r, if a < 0.  */
458       if (!unsigned_p && a->data.high < 0)
459 	r -= b->data;
460       /* We need to subtract a from r, if b < 0.  */
461       if (!unsigned_p && b->data.high < 0)
462 	r -= a->data;
463 
464       /* Shift right the result by FBIT.  */
465       if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
466 	{
467 	  s.low = r.low;
468 	  s.high = r.high;
469 	  if (unsigned_p)
470 	    {
471 	      r.low = 0;
472 	      r.high = 0;
473 	    }
474 	  else
475 	    {
476 	      r.low = -1;
477 	      r.high = -1;
478 	    }
479 	  f->data.low = s.low;
480 	  f->data.high = s.high;
481 	}
482       else
483 	{
484 	  s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT);
485 	  f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT
486 			  - GET_MODE_FBIT (f->mode)),
487 			 HOST_BITS_PER_DOUBLE_INT);
488 	  f->data.low = f->data.low | s.low;
489 	  f->data.high = f->data.high | s.high;
490 	  s.low = f->data.low;
491 	  s.high = f->data.high;
492 	  r = r.lshift (-GET_MODE_FBIT (f->mode),
493 			HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
494 	}
495 
496       overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
497     }
498 
499   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
500   return overflow_p;
501 }
502 
503 /* Calculate F = A / B.
504    If SAT_P, saturate the result to the max or the min.
505    Return true, if !SAT_P and overflow.  */
506 
507 static bool
do_fixed_divide(FIXED_VALUE_TYPE * f,const FIXED_VALUE_TYPE * a,const FIXED_VALUE_TYPE * b,bool sat_p)508 do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
509 		 const FIXED_VALUE_TYPE *b, bool sat_p)
510 {
511   bool overflow_p = false;
512   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
513   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
514   f->mode = a->mode;
515   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
516     {
517       f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
518 				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
519       f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
520       overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
521     }
522   else
523     {
524       double_int pos_a, pos_b, r, s;
525       double_int quo_r, quo_s, mod, temp;
526       int num_of_neg = 0;
527       int i;
528 
529       /* If a < 0, negate a.  */
530       if (!unsigned_p && a->data.high < 0)
531 	{
532 	  pos_a = -a->data;
533 	  num_of_neg ++;
534 	}
535       else
536 	pos_a = a->data;
537 
538       /* If b < 0, negate b.  */
539       if (!unsigned_p && b->data.high < 0)
540 	{
541 	  pos_b = -b->data;
542 	  num_of_neg ++;
543 	}
544       else
545 	pos_b = b->data;
546 
547       /* Left shift pos_a to {r, s} by FBIT.  */
548       if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
549 	{
550 	  r = pos_a;
551 	  s.high = 0;
552 	  s.low = 0;
553 	}
554       else
555  	{
556 	  s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT);
557 	  r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT
558 			    - GET_MODE_FBIT (f->mode)),
559 			 HOST_BITS_PER_DOUBLE_INT);
560  	}
561 
562       /* Divide r by pos_b to quo_r.  The remainder is in mod.  */
563       quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod);
564       quo_s = double_int_zero;
565 
566       for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++)
567 	{
568 	  /* Record the leftmost bit of mod.  */
569 	  int leftmost_mod = (mod.high < 0);
570 
571 	  /* Shift left mod by 1 bit.  */
572 	  mod = mod.lshift (1);
573 
574 	  /* Test the leftmost bit of s to add to mod.  */
575 	  if (s.high < 0)
576 	    mod.low += 1;
577 
578 	  /* Shift left quo_s by 1 bit.  */
579 	  quo_s = quo_s.lshift (1);
580 
581 	  /* Try to calculate (mod - pos_b).  */
582 	  temp = mod - pos_b;
583 
584 	  if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1)
585 	    {
586 	      quo_s.low += 1;
587 	      mod = temp;
588 	    }
589 
590 	  /* Shift left s by 1 bit.  */
591 	  s = s.lshift (1);
592 
593 	}
594 
595       if (num_of_neg == 1)
596 	{
597 	  quo_s = -quo_s;
598 	  if (quo_s.high == 0 && quo_s.low == 0)
599 	    quo_r = -quo_r;
600 	  else
601 	    {
602 	      quo_r.low = ~quo_r.low;
603 	      quo_r.high = ~quo_r.high;
604 	    }
605 	}
606 
607       f->data = quo_s;
608       overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
609     }
610 
611   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
612   return overflow_p;
613 }
614 
615 /* Calculate F = A << B if LEFT_P.  Otherwise, F = A >> B.
616    If SAT_P, saturate the result to the max or the min.
617    Return true, if !SAT_P and overflow.  */
618 
619 static bool
do_fixed_shift(FIXED_VALUE_TYPE * f,const FIXED_VALUE_TYPE * a,const FIXED_VALUE_TYPE * b,bool left_p,bool sat_p)620 do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
621 	      const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
622 {
623   bool overflow_p = false;
624   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
625   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
626   f->mode = a->mode;
627 
628   if (b->data.low == 0)
629     {
630       f->data = a->data;
631       return overflow_p;
632     }
633 
634   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
635     {
636       f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
637 				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
638       if (left_p) /* Only left shift saturates.  */
639 	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
640     }
641   else /* We need two double_int to store the left-shift result.  */
642     {
643       double_int temp_high, temp_low;
644       if (b->data.low == HOST_BITS_PER_DOUBLE_INT)
645 	{
646 	  temp_high = a->data;
647 	  temp_low.high = 0;
648 	  temp_low.low = 0;
649 	}
650       else
651 	{
652 	  temp_low = a->data.lshift (b->data.low,
653 				     HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
654 	  /* Logical shift right to temp_high.  */
655 	  temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
656 			 HOST_BITS_PER_DOUBLE_INT);
657 	}
658       if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high.  */
659 	temp_high = temp_high.ext (b->data.low, unsigned_p);
660       f->data = temp_low;
661       overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
662 				    sat_p);
663     }
664   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
665   return overflow_p;
666 }
667 
668 /* Calculate F = -A.
669    If SAT_P, saturate the result to the max or the min.
670    Return true, if !SAT_P and overflow.  */
671 
672 static bool
do_fixed_neg(FIXED_VALUE_TYPE * f,const FIXED_VALUE_TYPE * a,bool sat_p)673 do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
674 {
675   bool overflow_p = false;
676   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
677   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
678   f->mode = a->mode;
679   f->data = -a->data;
680   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
681 
682   if (unsigned_p) /* Unsigned type.  */
683     {
684       if (f->data.low != 0 || f->data.high != 0)
685 	{
686 	  if (sat_p)
687 	    {
688 	      f->data.low = 0;
689 	      f->data.high = 0;
690 	    }
691 	  else
692 	    overflow_p = true;
693 	}
694     }
695   else /* Signed type.  */
696     {
697       if (!(f->data.high == 0 && f->data.low == 0)
698 	  && f->data.high == a->data.high && f->data.low == a->data.low )
699 	{
700 	  if (sat_p)
701 	    {
702 	      /* Saturate to the maximum by subtracting f->data by one.  */
703 	      f->data.low = -1;
704 	      f->data.high = -1;
705 	      f->data = f->data.zext (i_f_bits);
706 	    }
707 	  else
708 	    overflow_p = true;
709 	}
710     }
711   return overflow_p;
712 }
713 
714 /* Perform the binary or unary operation described by CODE.
715    Note that OP0 and OP1 must have the same mode for binary operators.
716    For a unary operation, leave OP1 NULL.
717    Return true, if !SAT_P and overflow.  */
718 
719 bool
fixed_arithmetic(FIXED_VALUE_TYPE * f,int icode,const FIXED_VALUE_TYPE * op0,const FIXED_VALUE_TYPE * op1,bool sat_p)720 fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
721 		  const FIXED_VALUE_TYPE *op1, bool sat_p)
722 {
723   switch (icode)
724     {
725     case NEGATE_EXPR:
726       return do_fixed_neg (f, op0, sat_p);
727       break;
728 
729     case PLUS_EXPR:
730       gcc_assert (op0->mode == op1->mode);
731       return do_fixed_add (f, op0, op1, false, sat_p);
732       break;
733 
734     case MINUS_EXPR:
735       gcc_assert (op0->mode == op1->mode);
736       return do_fixed_add (f, op0, op1, true, sat_p);
737       break;
738 
739     case MULT_EXPR:
740       gcc_assert (op0->mode == op1->mode);
741       return do_fixed_multiply (f, op0, op1, sat_p);
742       break;
743 
744     case TRUNC_DIV_EXPR:
745       gcc_assert (op0->mode == op1->mode);
746       return do_fixed_divide (f, op0, op1, sat_p);
747       break;
748 
749     case LSHIFT_EXPR:
750       return do_fixed_shift (f, op0, op1, true, sat_p);
751       break;
752 
753     case RSHIFT_EXPR:
754       return do_fixed_shift (f, op0, op1, false, sat_p);
755       break;
756 
757     default:
758       gcc_unreachable ();
759     }
760   return false;
761 }
762 
763 /* Compare fixed-point values by tree_code.
764    Note that OP0 and OP1 must have the same mode.  */
765 
766 bool
fixed_compare(int icode,const FIXED_VALUE_TYPE * op0,const FIXED_VALUE_TYPE * op1)767 fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
768 	       const FIXED_VALUE_TYPE *op1)
769 {
770   enum tree_code code = (enum tree_code) icode;
771   gcc_assert (op0->mode == op1->mode);
772 
773   switch (code)
774     {
775     case NE_EXPR:
776       return op0->data != op1->data;
777 
778     case EQ_EXPR:
779       return op0->data == op1->data;
780 
781     case LT_EXPR:
782       return op0->data.cmp (op1->data,
783 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
784 
785     case LE_EXPR:
786       return op0->data.cmp (op1->data,
787 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
788 
789     case GT_EXPR:
790       return op0->data.cmp (op1->data,
791 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
792 
793     case GE_EXPR:
794       return op0->data.cmp (op1->data,
795 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
796 
797     default:
798       gcc_unreachable ();
799     }
800 }
801 
802 /* Extend or truncate to a new mode.
803    If SAT_P, saturate the result to the max or the min.
804    Return true, if !SAT_P and overflow.  */
805 
806 bool
fixed_convert(FIXED_VALUE_TYPE * f,enum machine_mode mode,const FIXED_VALUE_TYPE * a,bool sat_p)807 fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
808                const FIXED_VALUE_TYPE *a, bool sat_p)
809 {
810   bool overflow_p = false;
811   if (mode == a->mode)
812     {
813       *f = *a;
814       return overflow_p;
815     }
816 
817   if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
818     {
819       /* Left shift a to temp_high, temp_low based on a->mode.  */
820       double_int temp_high, temp_low;
821       int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
822       temp_low = a->data.lshift (amount,
823 				 HOST_BITS_PER_DOUBLE_INT,
824 				 SIGNED_FIXED_POINT_MODE_P (a->mode));
825       /* Logical shift right to temp_high.  */
826       temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
827 		     HOST_BITS_PER_DOUBLE_INT);
828       if (SIGNED_FIXED_POINT_MODE_P (a->mode)
829 	  && a->data.high < 0) /* Signed-extend temp_high.  */
830 	temp_high = temp_high.sext (amount);
831       f->mode = mode;
832       f->data = temp_low;
833       if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
834 	  SIGNED_FIXED_POINT_MODE_P (f->mode))
835 	overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
836 				      sat_p);
837       else
838 	{
839 	  /* Take care of the cases when converting between signed and
840 	     unsigned.  */
841 	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
842 	    {
843 	      /* Signed -> Unsigned.  */
844 	      if (a->data.high < 0)
845 		{
846 		  if (sat_p)
847 		    {
848 		      f->data.low = 0;  /* Set to zero.  */
849 		      f->data.high = 0;  /* Set to zero.  */
850 		    }
851 		  else
852 		    overflow_p = true;
853 		}
854 	      else
855 		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
856 					      &f->data, sat_p);
857 	    }
858 	  else
859 	    {
860 	      /* Unsigned -> Signed.  */
861 	      if (temp_high.high < 0)
862 		{
863 		  if (sat_p)
864 		    {
865 		      /* Set to maximum.  */
866 		      f->data.low = -1;  /* Set to all ones.  */
867 		      f->data.high = -1;  /* Set to all ones.  */
868 		      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
869 						+ GET_MODE_IBIT (f->mode));
870 						/* Clear the sign.  */
871 		    }
872 		  else
873 		    overflow_p = true;
874 		}
875 	      else
876 		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
877 					      &f->data, sat_p);
878 	    }
879 	}
880     }
881   else
882     {
883       /* Right shift a to temp based on a->mode.  */
884       double_int temp;
885       temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
886 			     HOST_BITS_PER_DOUBLE_INT,
887 			     SIGNED_FIXED_POINT_MODE_P (a->mode));
888       f->mode = mode;
889       f->data = temp;
890       if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
891 	  SIGNED_FIXED_POINT_MODE_P (f->mode))
892 	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
893       else
894 	{
895 	  /* Take care of the cases when converting between signed and
896 	     unsigned.  */
897 	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
898 	    {
899 	      /* Signed -> Unsigned.  */
900 	      if (a->data.high < 0)
901 		{
902 		  if (sat_p)
903 		    {
904 		      f->data.low = 0;  /* Set to zero.  */
905 		      f->data.high = 0;  /* Set to zero.  */
906 		    }
907 		  else
908 		    overflow_p = true;
909 		}
910 	      else
911 		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
912 					      sat_p);
913 	    }
914 	  else
915 	    {
916 	      /* Unsigned -> Signed.  */
917 	      if (temp.high < 0)
918 		{
919 		  if (sat_p)
920 		    {
921 		      /* Set to maximum.  */
922 		      f->data.low = -1;  /* Set to all ones.  */
923 		      f->data.high = -1;  /* Set to all ones.  */
924 		      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
925 						+ GET_MODE_IBIT (f->mode));
926 						/* Clear the sign.  */
927 		    }
928 		  else
929 		    overflow_p = true;
930 		}
931 	      else
932 		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
933 					      sat_p);
934 	    }
935 	}
936     }
937 
938   f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
939 			    + GET_MODE_FBIT (f->mode)
940 			    + GET_MODE_IBIT (f->mode),
941 			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
942   return overflow_p;
943 }
944 
945 /* Convert to a new fixed-point mode from an integer.
946    If UNSIGNED_P, this integer is unsigned.
947    If SAT_P, saturate the result to the max or the min.
948    Return true, if !SAT_P and overflow.  */
949 
950 bool
fixed_convert_from_int(FIXED_VALUE_TYPE * f,enum machine_mode mode,double_int a,bool unsigned_p,bool sat_p)951 fixed_convert_from_int (FIXED_VALUE_TYPE *f, enum machine_mode mode,
952 			double_int a, bool unsigned_p, bool sat_p)
953 {
954   bool overflow_p = false;
955   /* Left shift a to temp_high, temp_low.  */
956   double_int temp_high, temp_low;
957   int amount = GET_MODE_FBIT (mode);
958   if (amount == HOST_BITS_PER_DOUBLE_INT)
959     {
960        temp_high = a;
961        temp_low.low = 0;
962        temp_low.high = 0;
963     }
964   else
965     {
966       temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT);
967 
968       /* Logical shift right to temp_high.  */
969       temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
970 		     HOST_BITS_PER_DOUBLE_INT);
971     }
972   if (!unsigned_p && a.high < 0) /* Signed-extend temp_high.  */
973     temp_high = temp_high.sext (amount);
974 
975   f->mode = mode;
976   f->data = temp_low;
977 
978   if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
979     overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
980 				  sat_p);
981   else
982     {
983       /* Take care of the cases when converting between signed and unsigned.  */
984       if (!unsigned_p)
985 	{
986 	  /* Signed -> Unsigned.  */
987 	  if (a.high < 0)
988 	    {
989 	      if (sat_p)
990 		{
991 		  f->data.low = 0;  /* Set to zero.  */
992 		  f->data.high = 0;  /* Set to zero.  */
993 		}
994 	      else
995 		overflow_p = true;
996 	    }
997 	  else
998 	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
999 					  &f->data, sat_p);
1000 	}
1001       else
1002 	{
1003 	  /* Unsigned -> Signed.  */
1004 	  if (temp_high.high < 0)
1005 	    {
1006 	      if (sat_p)
1007 		{
1008 		  /* Set to maximum.  */
1009 		  f->data.low = -1;  /* Set to all ones.  */
1010 		  f->data.high = -1;  /* Set to all ones.  */
1011 		  f->data = f->data.zext (GET_MODE_FBIT (f->mode)
1012 					    + GET_MODE_IBIT (f->mode));
1013 					    /* Clear the sign.  */
1014 		}
1015 	      else
1016 		overflow_p = true;
1017 	    }
1018 	  else
1019 	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1020 					  &f->data, sat_p);
1021 	}
1022     }
1023   f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
1024 			    + GET_MODE_FBIT (f->mode)
1025 			    + GET_MODE_IBIT (f->mode),
1026 			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1027   return overflow_p;
1028 }
1029 
1030 /* Convert to a new fixed-point mode from a real.
1031    If SAT_P, saturate the result to the max or the min.
1032    Return true, if !SAT_P and overflow.  */
1033 
1034 bool
fixed_convert_from_real(FIXED_VALUE_TYPE * f,enum machine_mode mode,const REAL_VALUE_TYPE * a,bool sat_p)1035 fixed_convert_from_real (FIXED_VALUE_TYPE *f, enum machine_mode mode,
1036 			 const REAL_VALUE_TYPE *a, bool sat_p)
1037 {
1038   bool overflow_p = false;
1039   REAL_VALUE_TYPE real_value, fixed_value, base_value;
1040   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
1041   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
1042   unsigned int fbit = GET_MODE_FBIT (mode);
1043   enum fixed_value_range_code temp;
1044 
1045   real_value = *a;
1046   f->mode = mode;
1047   real_2expN (&base_value, fbit, mode);
1048   real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
1049   real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, &fixed_value);
1050   temp = check_real_for_fixed_mode (&real_value, mode);
1051   if (temp == FIXED_UNDERFLOW) /* Minimum.  */
1052     {
1053       if (sat_p)
1054 	{
1055 	  if (unsigned_p)
1056 	    {
1057 	      f->data.low = 0;
1058 	      f->data.high = 0;
1059 	    }
1060 	  else
1061 	    {
1062 	      f->data.low = 1;
1063 	      f->data.high = 0;
1064 	      f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
1065 	      f->data = f->data.sext (1 + i_f_bits);
1066 	    }
1067 	}
1068       else
1069 	overflow_p = true;
1070     }
1071   else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum.  */
1072     {
1073       if (sat_p)
1074 	{
1075 	  f->data.low = -1;
1076 	  f->data.high = -1;
1077 	  f->data = f->data.zext (i_f_bits);
1078 	}
1079       else
1080 	overflow_p = true;
1081     }
1082   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1083   return overflow_p;
1084 }
1085 
1086 /* Convert to a new real mode from a fixed-point.  */
1087 
1088 void
real_convert_from_fixed(REAL_VALUE_TYPE * r,enum machine_mode mode,const FIXED_VALUE_TYPE * f)1089 real_convert_from_fixed (REAL_VALUE_TYPE *r, enum machine_mode mode,
1090 			 const FIXED_VALUE_TYPE *f)
1091 {
1092   REAL_VALUE_TYPE base_value, fixed_value, real_value;
1093 
1094   real_2expN (&base_value, GET_MODE_FBIT (f->mode), f->mode);
1095   real_from_integer (&fixed_value, VOIDmode, f->data.low, f->data.high,
1096 		     UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1097   real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
1098   real_convert (r, mode, &real_value);
1099 }
1100 
1101 /* Determine whether a fixed-point value F is negative.  */
1102 
1103 bool
fixed_isneg(const FIXED_VALUE_TYPE * f)1104 fixed_isneg (const FIXED_VALUE_TYPE *f)
1105 {
1106   if (SIGNED_FIXED_POINT_MODE_P (f->mode))
1107     {
1108       int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
1109       int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
1110       if (sign_bit == 1)
1111 	return true;
1112     }
1113 
1114   return false;
1115 }
1116