1 /* Sets (bit vectors) of hard registers, and operations on them.
2    Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 
4 This file is part of GCC
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_HARD_REG_SET_H
21 #define GCC_HARD_REG_SET_H
22 
23 /* Define the type of a set of hard registers.  */
24 
25 /* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
26    will be used for hard reg sets, either alone or in an array.
27 
28    If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
29    and it has enough bits to represent all the target machine's hard
30    registers.  Otherwise, it is a typedef for a suitably sized array
31    of HARD_REG_ELT_TYPEs.  HARD_REG_SET_LONGS is defined as how many.
32 
33    Note that lots of code assumes that the first part of a regset is
34    the same format as a HARD_REG_SET.  To help make sure this is true,
35    we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
36    instead of all the smaller types.  This approach loses only if
37    there are very few registers and then only in the few cases where
38    we have an array of HARD_REG_SETs, so it needn't be as complex as
39    it used to be.  */
40 
41 typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE;
42 
43 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
44 
45 #define HARD_REG_SET HARD_REG_ELT_TYPE
46 
47 #else
48 
49 #define HARD_REG_SET_LONGS \
50  ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1)	\
51   / HOST_BITS_PER_WIDEST_FAST_INT)
52 typedef HARD_REG_ELT_TYPE HARD_REG_SET[HARD_REG_SET_LONGS];
53 
54 #endif
55 
56 /* HARD_REG_SET wrapped into a structure, to make it possible to
57    use HARD_REG_SET even in APIs that should not include
58    hard-reg-set.h.  */
59 struct hard_reg_set_container
60 {
61   HARD_REG_SET set;
62 };
63 
64 /* HARD_CONST is used to cast a constant to the appropriate type
65    for use with a HARD_REG_SET.  */
66 
67 #define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X))
68 
69 /* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
70    to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
71    All three take two arguments: the set and the register number.
72 
73    In the case where sets are arrays of longs, the first argument
74    is actually a pointer to a long.
75 
76    Define two macros for initializing a set:
77    CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
78    These take just one argument.
79 
80    Also define macros for copying hard reg sets:
81    COPY_HARD_REG_SET and COMPL_HARD_REG_SET.
82    These take two arguments TO and FROM; they read from FROM
83    and store into TO.  COMPL_HARD_REG_SET complements each bit.
84 
85    Also define macros for combining hard reg sets:
86    IOR_HARD_REG_SET and AND_HARD_REG_SET.
87    These take two arguments TO and FROM; they read from FROM
88    and combine bitwise into TO.  Define also two variants
89    IOR_COMPL_HARD_REG_SET and AND_COMPL_HARD_REG_SET
90    which use the complement of the set FROM.
91 
92    Also define:
93 
94    hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
95    hard_reg_set_equal_p (X, Y), which returns true if X and Y are equal.
96    hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
97    hard_reg_set_empty_p (X), which returns true if X is empty.  */
98 
99 #define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
100 
101 #ifdef HARD_REG_SET
102 
103 #define SET_HARD_REG_BIT(SET, BIT)  \
104  ((SET) |= HARD_CONST (1) << (BIT))
105 #define CLEAR_HARD_REG_BIT(SET, BIT)  \
106  ((SET) &= ~(HARD_CONST (1) << (BIT)))
107 #define TEST_HARD_REG_BIT(SET, BIT)  \
108  (!!((SET) & (HARD_CONST (1) << (BIT))))
109 
110 #define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0))
111 #define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0))
112 
113 #define COPY_HARD_REG_SET(TO, FROM) ((TO) = (FROM))
114 #define COMPL_HARD_REG_SET(TO, FROM) ((TO) = ~(FROM))
115 
116 #define IOR_HARD_REG_SET(TO, FROM) ((TO) |= (FROM))
117 #define IOR_COMPL_HARD_REG_SET(TO, FROM) ((TO) |= ~ (FROM))
118 #define AND_HARD_REG_SET(TO, FROM) ((TO) &= (FROM))
119 #define AND_COMPL_HARD_REG_SET(TO, FROM) ((TO) &= ~ (FROM))
120 
121 static inline bool
hard_reg_set_subset_p(const HARD_REG_SET x,const HARD_REG_SET y)122 hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
123 {
124   return (x & ~y) == HARD_CONST (0);
125 }
126 
127 static inline bool
hard_reg_set_equal_p(const HARD_REG_SET x,const HARD_REG_SET y)128 hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
129 {
130   return x == y;
131 }
132 
133 static inline bool
hard_reg_set_intersect_p(const HARD_REG_SET x,const HARD_REG_SET y)134 hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
135 {
136   return (x & y) != HARD_CONST (0);
137 }
138 
139 static inline bool
hard_reg_set_empty_p(const HARD_REG_SET x)140 hard_reg_set_empty_p (const HARD_REG_SET x)
141 {
142   return x == HARD_CONST (0);
143 }
144 
145 #else
146 
147 #define SET_HARD_REG_BIT(SET, BIT)		\
148   ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
149    |= HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))
150 
151 #define CLEAR_HARD_REG_BIT(SET, BIT)		\
152   ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
153    &= ~(HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)))
154 
155 #define TEST_HARD_REG_BIT(SET, BIT)		\
156   (!!((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT]	\
157       & (HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))))
158 
159 #if FIRST_PSEUDO_REGISTER <= 2*HOST_BITS_PER_WIDEST_FAST_INT
160 #define CLEAR_HARD_REG_SET(TO)  \
161 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
162      scan_tp_[0] = 0;						\
163      scan_tp_[1] = 0; } while (0)
164 
165 #define SET_HARD_REG_SET(TO)  \
166 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
167      scan_tp_[0] = -1;						\
168      scan_tp_[1] = -1; } while (0)
169 
170 #define COPY_HARD_REG_SET(TO, FROM)  \
171 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM);	\
172      scan_tp_[0] = scan_fp_[0];					\
173      scan_tp_[1] = scan_fp_[1]; } while (0)
174 
175 #define COMPL_HARD_REG_SET(TO, FROM)  \
176 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
177      scan_tp_[0] = ~ scan_fp_[0];				\
178      scan_tp_[1] = ~ scan_fp_[1]; } while (0)
179 
180 #define AND_HARD_REG_SET(TO, FROM)  \
181 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
182      scan_tp_[0] &= scan_fp_[0];				\
183      scan_tp_[1] &= scan_fp_[1]; } while (0)
184 
185 #define AND_COMPL_HARD_REG_SET(TO, FROM)  \
186 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
187      scan_tp_[0] &= ~ scan_fp_[0];				\
188      scan_tp_[1] &= ~ scan_fp_[1]; } while (0)
189 
190 #define IOR_HARD_REG_SET(TO, FROM)  \
191 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
192      scan_tp_[0] |= scan_fp_[0];				\
193      scan_tp_[1] |= scan_fp_[1]; } while (0)
194 
195 #define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
196 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
197      scan_tp_[0] |= ~ scan_fp_[0];				\
198      scan_tp_[1] |= ~ scan_fp_[1]; } while (0)
199 
200 static inline bool
hard_reg_set_subset_p(const HARD_REG_SET x,const HARD_REG_SET y)201 hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
202 {
203   return (x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0;
204 }
205 
206 static inline bool
hard_reg_set_equal_p(const HARD_REG_SET x,const HARD_REG_SET y)207 hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
208 {
209   return x[0] == y[0] && x[1] == y[1];
210 }
211 
212 static inline bool
hard_reg_set_intersect_p(const HARD_REG_SET x,const HARD_REG_SET y)213 hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
214 {
215   return (x[0] & y[0]) != 0 || (x[1] & y[1]) != 0;
216 }
217 
218 static inline bool
hard_reg_set_empty_p(const HARD_REG_SET x)219 hard_reg_set_empty_p (const HARD_REG_SET x)
220 {
221   return x[0] == 0 && x[1] == 0;
222 }
223 
224 #else
225 #if FIRST_PSEUDO_REGISTER <= 3*HOST_BITS_PER_WIDEST_FAST_INT
226 #define CLEAR_HARD_REG_SET(TO)  \
227 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
228      scan_tp_[0] = 0;						\
229      scan_tp_[1] = 0;						\
230      scan_tp_[2] = 0; } while (0)
231 
232 #define SET_HARD_REG_SET(TO)  \
233 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
234      scan_tp_[0] = -1;						\
235      scan_tp_[1] = -1;						\
236      scan_tp_[2] = -1; } while (0)
237 
238 #define COPY_HARD_REG_SET(TO, FROM)  \
239 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM);	\
240      scan_tp_[0] = scan_fp_[0];					\
241      scan_tp_[1] = scan_fp_[1];					\
242      scan_tp_[2] = scan_fp_[2]; } while (0)
243 
244 #define COMPL_HARD_REG_SET(TO, FROM)  \
245 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
246      scan_tp_[0] = ~ scan_fp_[0];				\
247      scan_tp_[1] = ~ scan_fp_[1];				\
248      scan_tp_[2] = ~ scan_fp_[2]; } while (0)
249 
250 #define AND_HARD_REG_SET(TO, FROM)  \
251 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
252      scan_tp_[0] &= scan_fp_[0];				\
253      scan_tp_[1] &= scan_fp_[1];				\
254      scan_tp_[2] &= scan_fp_[2]; } while (0)
255 
256 #define AND_COMPL_HARD_REG_SET(TO, FROM)  \
257 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
258      scan_tp_[0] &= ~ scan_fp_[0];				\
259      scan_tp_[1] &= ~ scan_fp_[1];				\
260      scan_tp_[2] &= ~ scan_fp_[2]; } while (0)
261 
262 #define IOR_HARD_REG_SET(TO, FROM)  \
263 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
264      scan_tp_[0] |= scan_fp_[0];				\
265      scan_tp_[1] |= scan_fp_[1];				\
266      scan_tp_[2] |= scan_fp_[2]; } while (0)
267 
268 #define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
269 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
270      scan_tp_[0] |= ~ scan_fp_[0];				\
271      scan_tp_[1] |= ~ scan_fp_[1];				\
272      scan_tp_[2] |= ~ scan_fp_[2]; } while (0)
273 
274 static inline bool
hard_reg_set_subset_p(const HARD_REG_SET x,const HARD_REG_SET y)275 hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
276 {
277   return ((x[0] & ~y[0]) == 0
278 	  && (x[1] & ~y[1]) == 0
279 	  && (x[2] & ~y[2]) == 0);
280 }
281 
282 static inline bool
hard_reg_set_equal_p(const HARD_REG_SET x,const HARD_REG_SET y)283 hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
284 {
285   return x[0] == y[0] && x[1] == y[1] && x[2] == y[2];
286 }
287 
288 static inline bool
hard_reg_set_intersect_p(const HARD_REG_SET x,const HARD_REG_SET y)289 hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
290 {
291   return ((x[0] & y[0]) != 0
292 	  || (x[1] & y[1]) != 0
293 	  || (x[2] & y[2]) != 0);
294 }
295 
296 static inline bool
hard_reg_set_empty_p(const HARD_REG_SET x)297 hard_reg_set_empty_p (const HARD_REG_SET x)
298 {
299   return x[0] == 0 && x[1] == 0 && x[2] == 0;
300 }
301 
302 #else
303 #if FIRST_PSEUDO_REGISTER <= 4*HOST_BITS_PER_WIDEST_FAST_INT
304 #define CLEAR_HARD_REG_SET(TO)  \
305 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
306      scan_tp_[0] = 0;						\
307      scan_tp_[1] = 0;						\
308      scan_tp_[2] = 0;						\
309      scan_tp_[3] = 0; } while (0)
310 
311 #define SET_HARD_REG_SET(TO)  \
312 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
313      scan_tp_[0] = -1;						\
314      scan_tp_[1] = -1;						\
315      scan_tp_[2] = -1;						\
316      scan_tp_[3] = -1; } while (0)
317 
318 #define COPY_HARD_REG_SET(TO, FROM)  \
319 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM);	\
320      scan_tp_[0] = scan_fp_[0];					\
321      scan_tp_[1] = scan_fp_[1];					\
322      scan_tp_[2] = scan_fp_[2];					\
323      scan_tp_[3] = scan_fp_[3]; } while (0)
324 
325 #define COMPL_HARD_REG_SET(TO, FROM)  \
326 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
327      scan_tp_[0] = ~ scan_fp_[0];				\
328      scan_tp_[1] = ~ scan_fp_[1];				\
329      scan_tp_[2] = ~ scan_fp_[2];				\
330      scan_tp_[3] = ~ scan_fp_[3]; } while (0)
331 
332 #define AND_HARD_REG_SET(TO, FROM)  \
333 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
334      scan_tp_[0] &= scan_fp_[0];				\
335      scan_tp_[1] &= scan_fp_[1];				\
336      scan_tp_[2] &= scan_fp_[2];				\
337      scan_tp_[3] &= scan_fp_[3]; } while (0)
338 
339 #define AND_COMPL_HARD_REG_SET(TO, FROM)  \
340 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
341      scan_tp_[0] &= ~ scan_fp_[0];				\
342      scan_tp_[1] &= ~ scan_fp_[1];				\
343      scan_tp_[2] &= ~ scan_fp_[2];				\
344      scan_tp_[3] &= ~ scan_fp_[3]; } while (0)
345 
346 #define IOR_HARD_REG_SET(TO, FROM)  \
347 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
348      scan_tp_[0] |= scan_fp_[0];				\
349      scan_tp_[1] |= scan_fp_[1];				\
350      scan_tp_[2] |= scan_fp_[2];				\
351      scan_tp_[3] |= scan_fp_[3]; } while (0)
352 
353 #define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
354 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
355      scan_tp_[0] |= ~ scan_fp_[0];				\
356      scan_tp_[1] |= ~ scan_fp_[1];				\
357      scan_tp_[2] |= ~ scan_fp_[2];				\
358      scan_tp_[3] |= ~ scan_fp_[3]; } while (0)
359 
360 static inline bool
hard_reg_set_subset_p(const HARD_REG_SET x,const HARD_REG_SET y)361 hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
362 {
363   return ((x[0] & ~y[0]) == 0
364 	  && (x[1] & ~y[1]) == 0
365 	  && (x[2] & ~y[2]) == 0
366 	  && (x[3] & ~y[3]) == 0);
367 }
368 
369 static inline bool
hard_reg_set_equal_p(const HARD_REG_SET x,const HARD_REG_SET y)370 hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
371 {
372   return x[0] == y[0] && x[1] == y[1] && x[2] == y[2] && x[3] == y[3];
373 }
374 
375 static inline bool
hard_reg_set_intersect_p(const HARD_REG_SET x,const HARD_REG_SET y)376 hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
377 {
378   return ((x[0] & y[0]) != 0
379 	  || (x[1] & y[1]) != 0
380 	  || (x[2] & y[2]) != 0
381 	  || (x[3] & y[3]) != 0);
382 }
383 
384 static inline bool
hard_reg_set_empty_p(const HARD_REG_SET x)385 hard_reg_set_empty_p (const HARD_REG_SET x)
386 {
387   return x[0] == 0 && x[1] == 0 && x[2] == 0 && x[3] == 0;
388 }
389 
390 #else /* FIRST_PSEUDO_REGISTER > 4*HOST_BITS_PER_WIDEST_FAST_INT */
391 
392 #define CLEAR_HARD_REG_SET(TO)  \
393 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
394      int i;							\
395      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
396        *scan_tp_++ = 0; } while (0)
397 
398 #define SET_HARD_REG_SET(TO)  \
399 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO);			\
400      int i;							\
401      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
402        *scan_tp_++ = -1; } while (0)
403 
404 #define COPY_HARD_REG_SET(TO, FROM)  \
405 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
406      int i;							\
407      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
408        *scan_tp_++ = *scan_fp_++; } while (0)
409 
410 #define COMPL_HARD_REG_SET(TO, FROM)  \
411 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
412      int i;							\
413      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
414        *scan_tp_++ = ~ *scan_fp_++; } while (0)
415 
416 #define AND_HARD_REG_SET(TO, FROM)  \
417 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
418      int i;							\
419      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
420        *scan_tp_++ &= *scan_fp_++; } while (0)
421 
422 #define AND_COMPL_HARD_REG_SET(TO, FROM)  \
423 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
424      int i;							\
425      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
426        *scan_tp_++ &= ~ *scan_fp_++; } while (0)
427 
428 #define IOR_HARD_REG_SET(TO, FROM)  \
429 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
430      int i;							\
431      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
432        *scan_tp_++ |= *scan_fp_++; } while (0)
433 
434 #define IOR_COMPL_HARD_REG_SET(TO, FROM)  \
435 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); 	\
436      int i;							\
437      for (i = 0; i < HARD_REG_SET_LONGS; i++)			\
438        *scan_tp_++ |= ~ *scan_fp_++; } while (0)
439 
440 static inline bool
hard_reg_set_subset_p(const HARD_REG_SET x,const HARD_REG_SET y)441 hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y)
442 {
443   int i;
444 
445   for (i = 0; i < HARD_REG_SET_LONGS; i++)
446     if ((x[i] & ~y[i]) != 0)
447       return false;
448   return true;
449 }
450 
451 static inline bool
hard_reg_set_equal_p(const HARD_REG_SET x,const HARD_REG_SET y)452 hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y)
453 {
454   int i;
455 
456   for (i = 0; i < HARD_REG_SET_LONGS; i++)
457     if (x[i] != y[i])
458       return false;
459   return true;
460 }
461 
462 static inline bool
hard_reg_set_intersect_p(const HARD_REG_SET x,const HARD_REG_SET y)463 hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y)
464 {
465   int i;
466 
467   for (i = 0; i < HARD_REG_SET_LONGS; i++)
468     if ((x[i] & y[i]) != 0)
469       return true;
470   return false;
471 }
472 
473 static inline bool
hard_reg_set_empty_p(const HARD_REG_SET x)474 hard_reg_set_empty_p (const HARD_REG_SET x)
475 {
476   int i;
477 
478   for (i = 0; i < HARD_REG_SET_LONGS; i++)
479     if (x[i] != 0)
480       return false;
481   return true;
482 }
483 
484 #endif
485 #endif
486 #endif
487 #endif
488 
489 /* Iterator for hard register sets.  */
490 
491 struct hard_reg_set_iterator
492 {
493   /* Pointer to the current element.  */
494   HARD_REG_ELT_TYPE *pelt;
495 
496   /* The length of the set.  */
497   unsigned short length;
498 
499   /* Word within the current element.  */
500   unsigned short word_no;
501 
502   /* Contents of the actually processed word.  When finding next bit
503      it is shifted right, so that the actual bit is always the least
504      significant bit of ACTUAL.  */
505   HARD_REG_ELT_TYPE bits;
506 };
507 
508 #define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT
509 
510 /* The implementation of the iterator functions is fully analogous to
511    the bitmap iterators.  */
512 static inline void
hard_reg_set_iter_init(hard_reg_set_iterator * iter,HARD_REG_SET set,unsigned min,unsigned * regno)513 hard_reg_set_iter_init (hard_reg_set_iterator *iter, HARD_REG_SET set,
514                         unsigned min, unsigned *regno)
515 {
516 #ifdef HARD_REG_SET_LONGS
517   iter->pelt = set;
518   iter->length = HARD_REG_SET_LONGS;
519 #else
520   iter->pelt = &set;
521   iter->length = 1;
522 #endif
523   iter->word_no = min / HARD_REG_ELT_BITS;
524   if (iter->word_no < iter->length)
525     {
526       iter->bits = iter->pelt[iter->word_no];
527       iter->bits >>= min % HARD_REG_ELT_BITS;
528 
529       /* This is required for correct search of the next bit.  */
530       min += !iter->bits;
531     }
532   *regno = min;
533 }
534 
535 static inline bool
hard_reg_set_iter_set(hard_reg_set_iterator * iter,unsigned * regno)536 hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno)
537 {
538   while (1)
539     {
540       /* Return false when we're advanced past the end of the set.  */
541       if (iter->word_no >= iter->length)
542         return false;
543 
544       if (iter->bits)
545         {
546           /* Find the correct bit and return it.  */
547           while (!(iter->bits & 1))
548             {
549               iter->bits >>= 1;
550               *regno += 1;
551             }
552           return (*regno < FIRST_PSEUDO_REGISTER);
553         }
554 
555       /* Round to the beginning of the next word.  */
556       *regno = (*regno + HARD_REG_ELT_BITS - 1);
557       *regno -= *regno % HARD_REG_ELT_BITS;
558 
559       /* Find the next non-zero word.  */
560       while (++iter->word_no < iter->length)
561         {
562           iter->bits = iter->pelt[iter->word_no];
563           if (iter->bits)
564             break;
565           *regno += HARD_REG_ELT_BITS;
566         }
567     }
568 }
569 
570 static inline void
hard_reg_set_iter_next(hard_reg_set_iterator * iter,unsigned * regno)571 hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno)
572 {
573   iter->bits >>= 1;
574   *regno += 1;
575 }
576 
577 #define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER)          \
578   for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM));       \
579        hard_reg_set_iter_set (&(ITER), &(REGNUM));                      \
580        hard_reg_set_iter_next (&(ITER), &(REGNUM)))
581 
582 
583 /* Define some standard sets of registers.  */
584 
585 /* Indexed by hard register number, contains 1 for registers
586    that are being used for global register decls.
587    These must be exempt from ordinary flow analysis
588    and are also considered fixed.  */
589 
590 extern char global_regs[FIRST_PSEUDO_REGISTER];
591 
592 struct target_hard_regs {
593   /* The set of registers that actually exist on the current target.  */
594   HARD_REG_SET x_accessible_reg_set;
595 
596   /* The set of registers that should be considered to be register
597      operands.  It is a subset of x_accessible_reg_set.  */
598   HARD_REG_SET x_operand_reg_set;
599 
600   /* Indexed by hard register number, contains 1 for registers
601      that are fixed use (stack pointer, pc, frame pointer, etc.;.
602      These are the registers that cannot be used to allocate
603      a pseudo reg whose life does not cross calls.  */
604   char x_fixed_regs[FIRST_PSEUDO_REGISTER];
605 
606   /* The same info as a HARD_REG_SET.  */
607   HARD_REG_SET x_fixed_reg_set;
608 
609   /* Indexed by hard register number, contains 1 for registers
610      that are fixed use or are clobbered by function calls.
611      These are the registers that cannot be used to allocate
612      a pseudo reg whose life crosses calls.  */
613   char x_call_used_regs[FIRST_PSEUDO_REGISTER];
614 
615   char x_call_really_used_regs[FIRST_PSEUDO_REGISTER];
616 
617   /* The same info as a HARD_REG_SET.  */
618   HARD_REG_SET x_call_used_reg_set;
619 
620   /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
621      a function value return register or TARGET_STRUCT_VALUE_RTX or
622      STATIC_CHAIN_REGNUM.  These are the registers that cannot hold quantities
623      across calls even if we are willing to save and restore them.  */
624   HARD_REG_SET x_call_fixed_reg_set;
625 
626   /* Contains 1 for registers that are set or clobbered by calls.  */
627   /* ??? Ideally, this would be just call_used_regs plus global_regs, but
628      for someone's bright idea to have call_used_regs strictly include
629      fixed_regs.  Which leaves us guessing as to the set of fixed_regs
630      that are actually preserved.  We know for sure that those associated
631      with the local stack frame are safe, but scant others.  */
632   HARD_REG_SET x_regs_invalidated_by_call;
633 
634   /* Call used hard registers which can not be saved because there is no
635      insn for this.  */
636   HARD_REG_SET x_no_caller_save_reg_set;
637 
638   /* Table of register numbers in the order in which to try to use them.  */
639   int x_reg_alloc_order[FIRST_PSEUDO_REGISTER];
640 
641   /* The inverse of reg_alloc_order.  */
642   int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
643 
644   /* For each reg class, a HARD_REG_SET saying which registers are in it.  */
645   HARD_REG_SET x_reg_class_contents[N_REG_CLASSES];
646 
647   /* For each reg class, a boolean saying whether the class contains only
648      fixed registers.  */
649   bool x_class_only_fixed_regs[N_REG_CLASSES];
650 
651   /* For each reg class, number of regs it contains.  */
652   unsigned int x_reg_class_size[N_REG_CLASSES];
653 
654   /* For each reg class, table listing all the classes contained in it.  */
655   enum reg_class x_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
656 
657   /* For each pair of reg classes,
658      a largest reg class contained in their union.  */
659   enum reg_class x_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
660 
661   /* For each pair of reg classes,
662      the smallest reg class that contains their union.  */
663   enum reg_class x_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
664 
665   /* Vector indexed by hardware reg giving its name.  */
666   const char *x_reg_names[FIRST_PSEUDO_REGISTER];
667 };
668 
669 extern struct target_hard_regs default_target_hard_regs;
670 #if SWITCHABLE_TARGET
671 extern struct target_hard_regs *this_target_hard_regs;
672 #else
673 #define this_target_hard_regs (&default_target_hard_regs)
674 #endif
675 
676 #define accessible_reg_set \
677   (this_target_hard_regs->x_accessible_reg_set)
678 #define operand_reg_set \
679   (this_target_hard_regs->x_operand_reg_set)
680 #define fixed_regs \
681   (this_target_hard_regs->x_fixed_regs)
682 #define fixed_reg_set \
683   (this_target_hard_regs->x_fixed_reg_set)
684 #define call_used_regs \
685   (this_target_hard_regs->x_call_used_regs)
686 #define call_really_used_regs \
687   (this_target_hard_regs->x_call_really_used_regs)
688 #define call_used_reg_set \
689   (this_target_hard_regs->x_call_used_reg_set)
690 #define call_fixed_reg_set \
691   (this_target_hard_regs->x_call_fixed_reg_set)
692 #define regs_invalidated_by_call \
693   (this_target_hard_regs->x_regs_invalidated_by_call)
694 #define no_caller_save_reg_set \
695   (this_target_hard_regs->x_no_caller_save_reg_set)
696 #define reg_alloc_order \
697   (this_target_hard_regs->x_reg_alloc_order)
698 #define inv_reg_alloc_order \
699   (this_target_hard_regs->x_inv_reg_alloc_order)
700 #define reg_class_contents \
701   (this_target_hard_regs->x_reg_class_contents)
702 #define class_only_fixed_regs \
703   (this_target_hard_regs->x_class_only_fixed_regs)
704 #define reg_class_size \
705   (this_target_hard_regs->x_reg_class_size)
706 #define reg_class_subclasses \
707   (this_target_hard_regs->x_reg_class_subclasses)
708 #define reg_class_subunion \
709   (this_target_hard_regs->x_reg_class_subunion)
710 #define reg_class_superunion \
711   (this_target_hard_regs->x_reg_class_superunion)
712 #define reg_names \
713   (this_target_hard_regs->x_reg_names)
714 
715 /* Vector indexed by reg class giving its name.  */
716 
717 extern const char * reg_class_names[];
718 
719 /* Given a hard REGN a FROM mode and a TO mode, return nonzero if
720    REGN cannot change modes between the specified modes.  */
721 #define REG_CANNOT_CHANGE_MODE_P(REGN, FROM, TO)                          \
722          CANNOT_CHANGE_MODE_CLASS (FROM, TO, REGNO_REG_CLASS (REGN))
723 
724 #endif /* ! GCC_HARD_REG_SET_H */
725