1 /* Array prefetching.
2    Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "tree-pretty-print.h"
29 #include "tree-ssa-alias.h"
30 #include "internal-fn.h"
31 #include "gimple-expr.h"
32 #include "is-a.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-ssa.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
42 #include "tree-into-ssa.h"
43 #include "cfgloop.h"
44 #include "tree-pass.h"
45 #include "insn-config.h"
46 #include "hashtab.h"
47 #include "tree-chrec.h"
48 #include "tree-scalar-evolution.h"
49 #include "diagnostic-core.h"
50 #include "params.h"
51 #include "langhooks.h"
52 #include "tree-inline.h"
53 #include "tree-data-ref.h"
54 
55 
56 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
57    between the GIMPLE and RTL worlds.  */
58 #include "expr.h"
59 #include "optabs.h"
60 #include "recog.h"
61 
62 /* This pass inserts prefetch instructions to optimize cache usage during
63    accesses to arrays in loops.  It processes loops sequentially and:
64 
65    1) Gathers all memory references in the single loop.
66    2) For each of the references it decides when it is profitable to prefetch
67       it.  To do it, we evaluate the reuse among the accesses, and determines
68       two values: PREFETCH_BEFORE (meaning that it only makes sense to do
69       prefetching in the first PREFETCH_BEFORE iterations of the loop) and
70       PREFETCH_MOD (meaning that it only makes sense to prefetch in the
71       iterations of the loop that are zero modulo PREFETCH_MOD).  For example
72       (assuming cache line size is 64 bytes, char has size 1 byte and there
73       is no hardware sequential prefetch):
74 
75       char *a;
76       for (i = 0; i < max; i++)
77 	{
78 	  a[255] = ...;		(0)
79 	  a[i] = ...;		(1)
80 	  a[i + 64] = ...;	(2)
81 	  a[16*i] = ...;	(3)
82 	  a[187*i] = ...;	(4)
83 	  a[187*i + 50] = ...;	(5)
84 	}
85 
86        (0) obviously has PREFETCH_BEFORE 1
87        (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
88            location 64 iterations before it, and PREFETCH_MOD 64 (since
89 	   it hits the same cache line otherwise).
90        (2) has PREFETCH_MOD 64
91        (3) has PREFETCH_MOD 4
92        (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
93            the cache line accessed by (5) is the same with probability only
94 	   7/32.
95        (5) has PREFETCH_MOD 1 as well.
96 
97       Additionally, we use data dependence analysis to determine for each
98       reference the distance till the first reuse; this information is used
99       to determine the temporality of the issued prefetch instruction.
100 
101    3) We determine how much ahead we need to prefetch.  The number of
102       iterations needed is time to fetch / time spent in one iteration of
103       the loop.  The problem is that we do not know either of these values,
104       so we just make a heuristic guess based on a magic (possibly)
105       target-specific constant and size of the loop.
106 
107    4) Determine which of the references we prefetch.  We take into account
108       that there is a maximum number of simultaneous prefetches (provided
109       by machine description).  We prefetch as many prefetches as possible
110       while still within this bound (starting with those with lowest
111       prefetch_mod, since they are responsible for most of the cache
112       misses).
113 
114    5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
115       and PREFETCH_BEFORE requirements (within some bounds), and to avoid
116       prefetching nonaccessed memory.
117       TODO -- actually implement peeling.
118 
119    6) We actually emit the prefetch instructions.  ??? Perhaps emit the
120       prefetch instructions with guards in cases where 5) was not sufficient
121       to satisfy the constraints?
122 
123    A cost model is implemented to determine whether or not prefetching is
124    profitable for a given loop.  The cost model has three heuristics:
125 
126    1. Function trip_count_to_ahead_ratio_too_small_p implements a
127       heuristic that determines whether or not the loop has too few
128       iterations (compared to ahead).  Prefetching is not likely to be
129       beneficial if the trip count to ahead ratio is below a certain
130       minimum.
131 
132    2. Function mem_ref_count_reasonable_p implements a heuristic that
133       determines whether the given loop has enough CPU ops that can be
134       overlapped with cache missing memory ops.  If not, the loop
135       won't benefit from prefetching.  In the implementation,
136       prefetching is not considered beneficial if the ratio between
137       the instruction count and the mem ref count is below a certain
138       minimum.
139 
140    3. Function insn_to_prefetch_ratio_too_small_p implements a
141       heuristic that disables prefetching in a loop if the prefetching
142       cost is above a certain limit.  The relative prefetching cost is
143       estimated by taking the ratio between the prefetch count and the
144       total intruction count (this models the I-cache cost).
145 
146    The limits used in these heuristics are defined as parameters with
147    reasonable default values. Machine-specific default values will be
148    added later.
149 
150    Some other TODO:
151       -- write and use more general reuse analysis (that could be also used
152 	 in other cache aimed loop optimizations)
153       -- make it behave sanely together with the prefetches given by user
154 	 (now we just ignore them; at the very least we should avoid
155 	 optimizing loops in that user put his own prefetches)
156       -- we assume cache line size alignment of arrays; this could be
157 	 improved.  */
158 
159 /* Magic constants follow.  These should be replaced by machine specific
160    numbers.  */
161 
162 /* True if write can be prefetched by a read prefetch.  */
163 
164 #ifndef WRITE_CAN_USE_READ_PREFETCH
165 #define WRITE_CAN_USE_READ_PREFETCH 1
166 #endif
167 
168 /* True if read can be prefetched by a write prefetch. */
169 
170 #ifndef READ_CAN_USE_WRITE_PREFETCH
171 #define READ_CAN_USE_WRITE_PREFETCH 0
172 #endif
173 
174 /* The size of the block loaded by a single prefetch.  Usually, this is
175    the same as cache line size (at the moment, we only consider one level
176    of cache hierarchy).  */
177 
178 #ifndef PREFETCH_BLOCK
179 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
180 #endif
181 
182 /* Do we have a forward hardware sequential prefetching?  */
183 
184 #ifndef HAVE_FORWARD_PREFETCH
185 #define HAVE_FORWARD_PREFETCH 0
186 #endif
187 
188 /* Do we have a backward hardware sequential prefetching?  */
189 
190 #ifndef HAVE_BACKWARD_PREFETCH
191 #define HAVE_BACKWARD_PREFETCH 0
192 #endif
193 
194 /* In some cases we are only able to determine that there is a certain
195    probability that the two accesses hit the same cache line.  In this
196    case, we issue the prefetches for both of them if this probability
197    is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */
198 
199 #ifndef ACCEPTABLE_MISS_RATE
200 #define ACCEPTABLE_MISS_RATE 50
201 #endif
202 
203 #ifndef HAVE_prefetch
204 #define HAVE_prefetch 0
205 #endif
206 
207 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
208 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
209 
210 /* We consider a memory access nontemporal if it is not reused sooner than
211    after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
212    accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
213    so that we use nontemporal prefetches e.g. if single memory location
214    is accessed several times in a single iteration of the loop.  */
215 #define NONTEMPORAL_FRACTION 16
216 
217 /* In case we have to emit a memory fence instruction after the loop that
218    uses nontemporal stores, this defines the builtin to use.  */
219 
220 #ifndef FENCE_FOLLOWING_MOVNT
221 #define FENCE_FOLLOWING_MOVNT NULL_TREE
222 #endif
223 
224 /* It is not profitable to prefetch when the trip count is not at
225    least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
226    For example, in a loop with a prefetch ahead distance of 10,
227    supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
228    profitable to prefetch when the trip count is greater or equal to
229    40.  In that case, 30 out of the 40 iterations will benefit from
230    prefetching.  */
231 
232 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
233 #define TRIP_COUNT_TO_AHEAD_RATIO 4
234 #endif
235 
236 /* The group of references between that reuse may occur.  */
237 
238 struct mem_ref_group
239 {
240   tree base;			/* Base of the reference.  */
241   tree step;			/* Step of the reference.  */
242   struct mem_ref *refs;		/* References in the group.  */
243   struct mem_ref_group *next;	/* Next group of references.  */
244 };
245 
246 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */
247 
248 #define PREFETCH_ALL		(~(unsigned HOST_WIDE_INT) 0)
249 
250 /* Do not generate a prefetch if the unroll factor is significantly less
251    than what is required by the prefetch.  This is to avoid redundant
252    prefetches.  For example, when prefetch_mod is 16 and unroll_factor is
253    2, prefetching requires unrolling the loop 16 times, but
254    the loop is actually unrolled twice.  In this case (ratio = 8),
255    prefetching is not likely to be beneficial.  */
256 
257 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
258 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
259 #endif
260 
261 /* Some of the prefetch computations have quadratic complexity.  We want to
262    avoid huge compile times and, therefore, want to limit the amount of
263    memory references per loop where we consider prefetching.  */
264 
265 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
266 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
267 #endif
268 
269 /* The memory reference.  */
270 
271 struct mem_ref
272 {
273   gimple stmt;			/* Statement in that the reference appears.  */
274   tree mem;			/* The reference.  */
275   HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
276   struct mem_ref_group *group;	/* The group of references it belongs to.  */
277   unsigned HOST_WIDE_INT prefetch_mod;
278 				/* Prefetch only each PREFETCH_MOD-th
279 				   iteration.  */
280   unsigned HOST_WIDE_INT prefetch_before;
281 				/* Prefetch only first PREFETCH_BEFORE
282 				   iterations.  */
283   unsigned reuse_distance;	/* The amount of data accessed before the first
284 				   reuse of this value.  */
285   struct mem_ref *next;		/* The next reference in the group.  */
286   unsigned write_p : 1;		/* Is it a write?  */
287   unsigned independent_p : 1;	/* True if the reference is independent on
288 				   all other references inside the loop.  */
289   unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
290   unsigned storent_p : 1;	/* True if we changed the store to a
291 				   nontemporal one.  */
292 };
293 
294 /* Dumps information about memory reference */
295 static void
dump_mem_details(FILE * file,tree base,tree step,HOST_WIDE_INT delta,bool write_p)296 dump_mem_details (FILE *file, tree base, tree step,
297 	    HOST_WIDE_INT delta, bool write_p)
298 {
299   fprintf (file, "(base ");
300   print_generic_expr (file, base, TDF_SLIM);
301   fprintf (file, ", step ");
302   if (cst_and_fits_in_hwi (step))
303     fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
304   else
305     print_generic_expr (file, step, TDF_TREE);
306   fprintf (file, ")\n");
307   fprintf (file, "  delta ");
308   fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
309   fprintf (file, "\n");
310   fprintf (file, "  %s\n", write_p ? "write" : "read");
311   fprintf (file, "\n");
312 }
313 
314 /* Dumps information about reference REF to FILE.  */
315 
316 static void
dump_mem_ref(FILE * file,struct mem_ref * ref)317 dump_mem_ref (FILE *file, struct mem_ref *ref)
318 {
319   fprintf (file, "Reference %p:\n", (void *) ref);
320 
321   fprintf (file, "  group %p ", (void *) ref->group);
322 
323   dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
324                    ref->write_p);
325 }
326 
327 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
328    exist.  */
329 
330 static struct mem_ref_group *
find_or_create_group(struct mem_ref_group ** groups,tree base,tree step)331 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
332 {
333   struct mem_ref_group *group;
334 
335   for (; *groups; groups = &(*groups)->next)
336     {
337       if (operand_equal_p ((*groups)->step, step, 0)
338 	  && operand_equal_p ((*groups)->base, base, 0))
339 	return *groups;
340 
341       /* If step is an integer constant, keep the list of groups sorted
342          by decreasing step.  */
343         if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
344             && int_cst_value ((*groups)->step) < int_cst_value (step))
345 	break;
346     }
347 
348   group = XNEW (struct mem_ref_group);
349   group->base = base;
350   group->step = step;
351   group->refs = NULL;
352   group->next = *groups;
353   *groups = group;
354 
355   return group;
356 }
357 
358 /* Records a memory reference MEM in GROUP with offset DELTA and write status
359    WRITE_P.  The reference occurs in statement STMT.  */
360 
361 static void
record_ref(struct mem_ref_group * group,gimple stmt,tree mem,HOST_WIDE_INT delta,bool write_p)362 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
363 	    HOST_WIDE_INT delta, bool write_p)
364 {
365   struct mem_ref **aref;
366 
367   /* Do not record the same address twice.  */
368   for (aref = &group->refs; *aref; aref = &(*aref)->next)
369     {
370       /* It does not have to be possible for write reference to reuse the read
371 	 prefetch, or vice versa.  */
372       if (!WRITE_CAN_USE_READ_PREFETCH
373 	  && write_p
374 	  && !(*aref)->write_p)
375 	continue;
376       if (!READ_CAN_USE_WRITE_PREFETCH
377 	  && !write_p
378 	  && (*aref)->write_p)
379 	continue;
380 
381       if ((*aref)->delta == delta)
382 	return;
383     }
384 
385   (*aref) = XNEW (struct mem_ref);
386   (*aref)->stmt = stmt;
387   (*aref)->mem = mem;
388   (*aref)->delta = delta;
389   (*aref)->write_p = write_p;
390   (*aref)->prefetch_before = PREFETCH_ALL;
391   (*aref)->prefetch_mod = 1;
392   (*aref)->reuse_distance = 0;
393   (*aref)->issue_prefetch_p = false;
394   (*aref)->group = group;
395   (*aref)->next = NULL;
396   (*aref)->independent_p = false;
397   (*aref)->storent_p = false;
398 
399   if (dump_file && (dump_flags & TDF_DETAILS))
400     dump_mem_ref (dump_file, *aref);
401 }
402 
403 /* Release memory references in GROUPS.  */
404 
405 static void
release_mem_refs(struct mem_ref_group * groups)406 release_mem_refs (struct mem_ref_group *groups)
407 {
408   struct mem_ref_group *next_g;
409   struct mem_ref *ref, *next_r;
410 
411   for (; groups; groups = next_g)
412     {
413       next_g = groups->next;
414       for (ref = groups->refs; ref; ref = next_r)
415 	{
416 	  next_r = ref->next;
417 	  free (ref);
418 	}
419       free (groups);
420     }
421 }
422 
423 /* A structure used to pass arguments to idx_analyze_ref.  */
424 
425 struct ar_data
426 {
427   struct loop *loop;			/* Loop of the reference.  */
428   gimple stmt;				/* Statement of the reference.  */
429   tree *step;				/* Step of the memory reference.  */
430   HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
431 };
432 
433 /* Analyzes a single INDEX of a memory reference to obtain information
434    described at analyze_ref.  Callback for for_each_index.  */
435 
436 static bool
idx_analyze_ref(tree base,tree * index,void * data)437 idx_analyze_ref (tree base, tree *index, void *data)
438 {
439   struct ar_data *ar_data = (struct ar_data *) data;
440   tree ibase, step, stepsize;
441   HOST_WIDE_INT idelta = 0, imult = 1;
442   affine_iv iv;
443 
444   if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
445 		  *index, &iv, true))
446     return false;
447   ibase = iv.base;
448   step = iv.step;
449 
450   if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
451       && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
452     {
453       idelta = int_cst_value (TREE_OPERAND (ibase, 1));
454       ibase = TREE_OPERAND (ibase, 0);
455     }
456   if (cst_and_fits_in_hwi (ibase))
457     {
458       idelta += int_cst_value (ibase);
459       ibase = build_int_cst (TREE_TYPE (ibase), 0);
460     }
461 
462   if (TREE_CODE (base) == ARRAY_REF)
463     {
464       stepsize = array_ref_element_size (base);
465       if (!cst_and_fits_in_hwi (stepsize))
466 	return false;
467       imult = int_cst_value (stepsize);
468       step = fold_build2 (MULT_EXPR, sizetype,
469 			  fold_convert (sizetype, step),
470 			  fold_convert (sizetype, stepsize));
471       idelta *= imult;
472     }
473 
474   if (*ar_data->step == NULL_TREE)
475     *ar_data->step = step;
476   else
477     *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
478 				  fold_convert (sizetype, *ar_data->step),
479 				  fold_convert (sizetype, step));
480   *ar_data->delta += idelta;
481   *index = ibase;
482 
483   return true;
484 }
485 
486 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
487    STEP are integer constants and iter is number of iterations of LOOP.  The
488    reference occurs in statement STMT.  Strips nonaddressable component
489    references from REF_P.  */
490 
491 static bool
analyze_ref(struct loop * loop,tree * ref_p,tree * base,tree * step,HOST_WIDE_INT * delta,gimple stmt)492 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
493 	     tree *step, HOST_WIDE_INT *delta,
494 	     gimple stmt)
495 {
496   struct ar_data ar_data;
497   tree off;
498   HOST_WIDE_INT bit_offset;
499   tree ref = *ref_p;
500 
501   *step = NULL_TREE;
502   *delta = 0;
503 
504   /* First strip off the component references.  Ignore bitfields.
505      Also strip off the real and imagine parts of a complex, so that
506      they can have the same base.  */
507   if (TREE_CODE (ref) == REALPART_EXPR
508       || TREE_CODE (ref) == IMAGPART_EXPR
509       || (TREE_CODE (ref) == COMPONENT_REF
510           && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
511     {
512       if (TREE_CODE (ref) == IMAGPART_EXPR)
513         *delta += int_size_in_bytes (TREE_TYPE (ref));
514       ref = TREE_OPERAND (ref, 0);
515     }
516 
517   *ref_p = ref;
518 
519   for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
520     {
521       off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
522       bit_offset = TREE_INT_CST_LOW (off);
523       gcc_assert (bit_offset % BITS_PER_UNIT == 0);
524 
525       *delta += bit_offset / BITS_PER_UNIT;
526     }
527 
528   *base = unshare_expr (ref);
529   ar_data.loop = loop;
530   ar_data.stmt = stmt;
531   ar_data.step = step;
532   ar_data.delta = delta;
533   return for_each_index (base, idx_analyze_ref, &ar_data);
534 }
535 
536 /* Record a memory reference REF to the list REFS.  The reference occurs in
537    LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
538    reference was recorded, false otherwise.  */
539 
540 static bool
gather_memory_references_ref(struct loop * loop,struct mem_ref_group ** refs,tree ref,bool write_p,gimple stmt)541 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
542 			      tree ref, bool write_p, gimple stmt)
543 {
544   tree base, step;
545   HOST_WIDE_INT delta;
546   struct mem_ref_group *agrp;
547 
548   if (get_base_address (ref) == NULL)
549     return false;
550 
551   if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
552     return false;
553   /* If analyze_ref fails the default is a NULL_TREE.  We can stop here.  */
554   if (step == NULL_TREE)
555     return false;
556 
557   /* Stop if the address of BASE could not be taken.  */
558   if (may_be_nonaddressable_p (base))
559     return false;
560 
561   /* Limit non-constant step prefetching only to the innermost loops and
562      only when the step is loop invariant in the entire loop nest. */
563   if (!cst_and_fits_in_hwi (step))
564     {
565       if (loop->inner != NULL)
566         {
567           if (dump_file && (dump_flags & TDF_DETAILS))
568             {
569               fprintf (dump_file, "Memory expression %p\n",(void *) ref );
570               print_generic_expr (dump_file, ref, TDF_TREE);
571               fprintf (dump_file,":");
572               dump_mem_details (dump_file, base, step, delta, write_p);
573               fprintf (dump_file,
574                        "Ignoring %p, non-constant step prefetching is "
575                        "limited to inner most loops \n",
576                        (void *) ref);
577             }
578             return false;
579          }
580       else
581         {
582           if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
583           {
584             if (dump_file && (dump_flags & TDF_DETAILS))
585               {
586                 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
587                 print_generic_expr (dump_file, ref, TDF_TREE);
588                 fprintf (dump_file,":");
589                 dump_mem_details (dump_file, base, step, delta, write_p);
590                 fprintf (dump_file,
591                          "Not prefetching, ignoring %p due to "
592                          "loop variant step\n",
593                          (void *) ref);
594               }
595               return false;
596             }
597         }
598     }
599 
600   /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
601      are integer constants.  */
602   agrp = find_or_create_group (refs, base, step);
603   record_ref (agrp, stmt, ref, delta, write_p);
604 
605   return true;
606 }
607 
608 /* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
609    true if there are no other memory references inside the loop.  */
610 
611 static struct mem_ref_group *
gather_memory_references(struct loop * loop,bool * no_other_refs,unsigned * ref_count)612 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
613 {
614   basic_block *body = get_loop_body_in_dom_order (loop);
615   basic_block bb;
616   unsigned i;
617   gimple_stmt_iterator bsi;
618   gimple stmt;
619   tree lhs, rhs;
620   struct mem_ref_group *refs = NULL;
621 
622   *no_other_refs = true;
623   *ref_count = 0;
624 
625   /* Scan the loop body in order, so that the former references precede the
626      later ones.  */
627   for (i = 0; i < loop->num_nodes; i++)
628     {
629       bb = body[i];
630       if (bb->loop_father != loop)
631 	continue;
632 
633       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
634 	{
635 	  stmt = gsi_stmt (bsi);
636 
637 	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
638 	    {
639 	      if (gimple_vuse (stmt)
640 		  || (is_gimple_call (stmt)
641 		      && !(gimple_call_flags (stmt) & ECF_CONST)))
642 		*no_other_refs = false;
643 	      continue;
644 	    }
645 
646 	  lhs = gimple_assign_lhs (stmt);
647 	  rhs = gimple_assign_rhs1 (stmt);
648 
649 	  if (REFERENCE_CLASS_P (rhs))
650 	    {
651 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
652 							    rhs, false, stmt);
653 	    *ref_count += 1;
654 	    }
655 	  if (REFERENCE_CLASS_P (lhs))
656 	    {
657 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
658 							    lhs, true, stmt);
659 	    *ref_count += 1;
660 	    }
661 	}
662     }
663   free (body);
664 
665   return refs;
666 }
667 
668 /* Prune the prefetch candidate REF using the self-reuse.  */
669 
670 static void
prune_ref_by_self_reuse(struct mem_ref * ref)671 prune_ref_by_self_reuse (struct mem_ref *ref)
672 {
673   HOST_WIDE_INT step;
674   bool backward;
675 
676   /* If the step size is non constant, we cannot calculate prefetch_mod.  */
677   if (!cst_and_fits_in_hwi (ref->group->step))
678     return;
679 
680   step = int_cst_value (ref->group->step);
681 
682   backward = step < 0;
683 
684   if (step == 0)
685     {
686       /* Prefetch references to invariant address just once.  */
687       ref->prefetch_before = 1;
688       return;
689     }
690 
691   if (backward)
692     step = -step;
693 
694   if (step > PREFETCH_BLOCK)
695     return;
696 
697   if ((backward && HAVE_BACKWARD_PREFETCH)
698       || (!backward && HAVE_FORWARD_PREFETCH))
699     {
700       ref->prefetch_before = 1;
701       return;
702     }
703 
704   ref->prefetch_mod = PREFETCH_BLOCK / step;
705 }
706 
707 /* Divides X by BY, rounding down.  */
708 
709 static HOST_WIDE_INT
ddown(HOST_WIDE_INT x,unsigned HOST_WIDE_INT by)710 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
711 {
712   gcc_assert (by > 0);
713 
714   if (x >= 0)
715     return x / by;
716   else
717     return (x + by - 1) / by;
718 }
719 
720 /* Given a CACHE_LINE_SIZE and two inductive memory references
721    with a common STEP greater than CACHE_LINE_SIZE and an address
722    difference DELTA, compute the probability that they will fall
723    in different cache lines.  Return true if the computed miss rate
724    is not greater than the ACCEPTABLE_MISS_RATE.  DISTINCT_ITERS is the
725    number of distinct iterations after which the pattern repeats itself.
726    ALIGN_UNIT is the unit of alignment in bytes.  */
727 
728 static bool
is_miss_rate_acceptable(unsigned HOST_WIDE_INT cache_line_size,HOST_WIDE_INT step,HOST_WIDE_INT delta,unsigned HOST_WIDE_INT distinct_iters,int align_unit)729 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
730 		   HOST_WIDE_INT step, HOST_WIDE_INT delta,
731 		   unsigned HOST_WIDE_INT distinct_iters,
732 		   int align_unit)
733 {
734   unsigned align, iter;
735   int total_positions, miss_positions, max_allowed_miss_positions;
736   int address1, address2, cache_line1, cache_line2;
737 
738   /* It always misses if delta is greater than or equal to the cache
739      line size.  */
740   if (delta >= (HOST_WIDE_INT) cache_line_size)
741     return false;
742 
743   miss_positions = 0;
744   total_positions = (cache_line_size / align_unit) * distinct_iters;
745   max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
746 
747   /* Iterate through all possible alignments of the first
748      memory reference within its cache line.  */
749   for (align = 0; align < cache_line_size; align += align_unit)
750 
751     /* Iterate through all distinct iterations.  */
752     for (iter = 0; iter < distinct_iters; iter++)
753       {
754 	address1 = align + step * iter;
755 	address2 = address1 + delta;
756 	cache_line1 = address1 / cache_line_size;
757 	cache_line2 = address2 / cache_line_size;
758 	if (cache_line1 != cache_line2)
759 	  {
760 	    miss_positions += 1;
761             if (miss_positions > max_allowed_miss_positions)
762 	      return false;
763           }
764       }
765   return true;
766 }
767 
768 /* Prune the prefetch candidate REF using the reuse with BY.
769    If BY_IS_BEFORE is true, BY is before REF in the loop.  */
770 
771 static void
prune_ref_by_group_reuse(struct mem_ref * ref,struct mem_ref * by,bool by_is_before)772 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
773 			  bool by_is_before)
774 {
775   HOST_WIDE_INT step;
776   bool backward;
777   HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
778   HOST_WIDE_INT delta = delta_b - delta_r;
779   HOST_WIDE_INT hit_from;
780   unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
781   HOST_WIDE_INT reduced_step;
782   unsigned HOST_WIDE_INT reduced_prefetch_block;
783   tree ref_type;
784   int align_unit;
785 
786   /* If the step is non constant we cannot calculate prefetch_before.  */
787   if (!cst_and_fits_in_hwi (ref->group->step)) {
788     return;
789   }
790 
791   step = int_cst_value (ref->group->step);
792 
793   backward = step < 0;
794 
795 
796   if (delta == 0)
797     {
798       /* If the references has the same address, only prefetch the
799 	 former.  */
800       if (by_is_before)
801 	ref->prefetch_before = 0;
802 
803       return;
804     }
805 
806   if (!step)
807     {
808       /* If the reference addresses are invariant and fall into the
809 	 same cache line, prefetch just the first one.  */
810       if (!by_is_before)
811 	return;
812 
813       if (ddown (ref->delta, PREFETCH_BLOCK)
814 	  != ddown (by->delta, PREFETCH_BLOCK))
815 	return;
816 
817       ref->prefetch_before = 0;
818       return;
819     }
820 
821   /* Only prune the reference that is behind in the array.  */
822   if (backward)
823     {
824       if (delta > 0)
825 	return;
826 
827       /* Transform the data so that we may assume that the accesses
828 	 are forward.  */
829       delta = - delta;
830       step = -step;
831       delta_r = PREFETCH_BLOCK - 1 - delta_r;
832       delta_b = PREFETCH_BLOCK - 1 - delta_b;
833     }
834   else
835     {
836       if (delta < 0)
837 	return;
838     }
839 
840   /* Check whether the two references are likely to hit the same cache
841      line, and how distant the iterations in that it occurs are from
842      each other.  */
843 
844   if (step <= PREFETCH_BLOCK)
845     {
846       /* The accesses are sure to meet.  Let us check when.  */
847       hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
848       prefetch_before = (hit_from - delta_r + step - 1) / step;
849 
850       /* Do not reduce prefetch_before if we meet beyond cache size.  */
851       if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
852         prefetch_before = PREFETCH_ALL;
853       if (prefetch_before < ref->prefetch_before)
854 	ref->prefetch_before = prefetch_before;
855 
856       return;
857     }
858 
859   /* A more complicated case with step > prefetch_block.  First reduce
860      the ratio between the step and the cache line size to its simplest
861      terms.  The resulting denominator will then represent the number of
862      distinct iterations after which each address will go back to its
863      initial location within the cache line.  This computation assumes
864      that PREFETCH_BLOCK is a power of two.  */
865   prefetch_block = PREFETCH_BLOCK;
866   reduced_prefetch_block = prefetch_block;
867   reduced_step = step;
868   while ((reduced_step & 1) == 0
869 	 && reduced_prefetch_block > 1)
870     {
871       reduced_step >>= 1;
872       reduced_prefetch_block >>= 1;
873     }
874 
875   prefetch_before = delta / step;
876   delta %= step;
877   ref_type = TREE_TYPE (ref->mem);
878   align_unit = TYPE_ALIGN (ref_type) / 8;
879   if (is_miss_rate_acceptable (prefetch_block, step, delta,
880 			       reduced_prefetch_block, align_unit))
881     {
882       /* Do not reduce prefetch_before if we meet beyond cache size.  */
883       if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
884         prefetch_before = PREFETCH_ALL;
885       if (prefetch_before < ref->prefetch_before)
886 	ref->prefetch_before = prefetch_before;
887 
888       return;
889     }
890 
891   /* Try also the following iteration.  */
892   prefetch_before++;
893   delta = step - delta;
894   if (is_miss_rate_acceptable (prefetch_block, step, delta,
895 			       reduced_prefetch_block, align_unit))
896     {
897       if (prefetch_before < ref->prefetch_before)
898 	ref->prefetch_before = prefetch_before;
899 
900       return;
901     }
902 
903   /* The ref probably does not reuse by.  */
904   return;
905 }
906 
907 /* Prune the prefetch candidate REF using the reuses with other references
908    in REFS.  */
909 
910 static void
prune_ref_by_reuse(struct mem_ref * ref,struct mem_ref * refs)911 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
912 {
913   struct mem_ref *prune_by;
914   bool before = true;
915 
916   prune_ref_by_self_reuse (ref);
917 
918   for (prune_by = refs; prune_by; prune_by = prune_by->next)
919     {
920       if (prune_by == ref)
921 	{
922 	  before = false;
923 	  continue;
924 	}
925 
926       if (!WRITE_CAN_USE_READ_PREFETCH
927 	  && ref->write_p
928 	  && !prune_by->write_p)
929 	continue;
930       if (!READ_CAN_USE_WRITE_PREFETCH
931 	  && !ref->write_p
932 	  && prune_by->write_p)
933 	continue;
934 
935       prune_ref_by_group_reuse (ref, prune_by, before);
936     }
937 }
938 
939 /* Prune the prefetch candidates in GROUP using the reuse analysis.  */
940 
941 static void
prune_group_by_reuse(struct mem_ref_group * group)942 prune_group_by_reuse (struct mem_ref_group *group)
943 {
944   struct mem_ref *ref_pruned;
945 
946   for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
947     {
948       prune_ref_by_reuse (ref_pruned, group->refs);
949 
950       if (dump_file && (dump_flags & TDF_DETAILS))
951 	{
952 	  fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
953 
954 	  if (ref_pruned->prefetch_before == PREFETCH_ALL
955 	      && ref_pruned->prefetch_mod == 1)
956 	    fprintf (dump_file, " no restrictions");
957 	  else if (ref_pruned->prefetch_before == 0)
958 	    fprintf (dump_file, " do not prefetch");
959 	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
960 	    fprintf (dump_file, " prefetch once");
961 	  else
962 	    {
963 	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
964 		{
965 		  fprintf (dump_file, " prefetch before ");
966 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
967 			   ref_pruned->prefetch_before);
968 		}
969 	      if (ref_pruned->prefetch_mod != 1)
970 		{
971 		  fprintf (dump_file, " prefetch mod ");
972 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
973 			   ref_pruned->prefetch_mod);
974 		}
975 	    }
976 	  fprintf (dump_file, "\n");
977 	}
978     }
979 }
980 
981 /* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */
982 
983 static void
prune_by_reuse(struct mem_ref_group * groups)984 prune_by_reuse (struct mem_ref_group *groups)
985 {
986   for (; groups; groups = groups->next)
987     prune_group_by_reuse (groups);
988 }
989 
990 /* Returns true if we should issue prefetch for REF.  */
991 
992 static bool
should_issue_prefetch_p(struct mem_ref * ref)993 should_issue_prefetch_p (struct mem_ref *ref)
994 {
995   /* For now do not issue prefetches for only first few of the
996      iterations.  */
997   if (ref->prefetch_before != PREFETCH_ALL)
998     {
999       if (dump_file && (dump_flags & TDF_DETAILS))
1000         fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1001 		 (void *) ref);
1002       return false;
1003     }
1004 
1005   /* Do not prefetch nontemporal stores.  */
1006   if (ref->storent_p)
1007     {
1008       if (dump_file && (dump_flags & TDF_DETAILS))
1009         fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1010       return false;
1011     }
1012 
1013   return true;
1014 }
1015 
1016 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1017    AHEAD is the number of iterations to prefetch ahead (which corresponds
1018    to the number of simultaneous instances of one prefetch running at a
1019    time).  UNROLL_FACTOR is the factor by that the loop is going to be
1020    unrolled.  Returns true if there is anything to prefetch.  */
1021 
1022 static bool
schedule_prefetches(struct mem_ref_group * groups,unsigned unroll_factor,unsigned ahead)1023 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1024 		     unsigned ahead)
1025 {
1026   unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1027   unsigned slots_per_prefetch;
1028   struct mem_ref *ref;
1029   bool any = false;
1030 
1031   /* At most SIMULTANEOUS_PREFETCHES should be running at the same time.  */
1032   remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1033 
1034   /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1035      AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
1036      it will need a prefetch slot.  */
1037   slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1038   if (dump_file && (dump_flags & TDF_DETAILS))
1039     fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1040 	     slots_per_prefetch);
1041 
1042   /* For now we just take memory references one by one and issue
1043      prefetches for as many as possible.  The groups are sorted
1044      starting with the largest step, since the references with
1045      large step are more likely to cause many cache misses.  */
1046 
1047   for (; groups; groups = groups->next)
1048     for (ref = groups->refs; ref; ref = ref->next)
1049       {
1050 	if (!should_issue_prefetch_p (ref))
1051 	  continue;
1052 
1053         /* The loop is far from being sufficiently unrolled for this
1054            prefetch.  Do not generate prefetch to avoid many redudant
1055            prefetches.  */
1056         if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1057           continue;
1058 
1059 	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
1060 	   and we unroll the loop UNROLL_FACTOR times, we need to insert
1061 	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1062 	   iteration.  */
1063 	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1064 			/ ref->prefetch_mod);
1065 	prefetch_slots = n_prefetches * slots_per_prefetch;
1066 
1067 	/* If more than half of the prefetches would be lost anyway, do not
1068 	   issue the prefetch.  */
1069 	if (2 * remaining_prefetch_slots < prefetch_slots)
1070 	  continue;
1071 
1072 	ref->issue_prefetch_p = true;
1073 
1074 	if (remaining_prefetch_slots <= prefetch_slots)
1075 	  return true;
1076 	remaining_prefetch_slots -= prefetch_slots;
1077 	any = true;
1078       }
1079 
1080   return any;
1081 }
1082 
1083 /* Return TRUE if no prefetch is going to be generated in the given
1084    GROUPS.  */
1085 
1086 static bool
nothing_to_prefetch_p(struct mem_ref_group * groups)1087 nothing_to_prefetch_p (struct mem_ref_group *groups)
1088 {
1089   struct mem_ref *ref;
1090 
1091   for (; groups; groups = groups->next)
1092     for (ref = groups->refs; ref; ref = ref->next)
1093       if (should_issue_prefetch_p (ref))
1094 	return false;
1095 
1096   return true;
1097 }
1098 
1099 /* Estimate the number of prefetches in the given GROUPS.
1100    UNROLL_FACTOR is the factor by which LOOP was unrolled.  */
1101 
1102 static int
estimate_prefetch_count(struct mem_ref_group * groups,unsigned unroll_factor)1103 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1104 {
1105   struct mem_ref *ref;
1106   unsigned n_prefetches;
1107   int prefetch_count = 0;
1108 
1109   for (; groups; groups = groups->next)
1110     for (ref = groups->refs; ref; ref = ref->next)
1111       if (should_issue_prefetch_p (ref))
1112 	{
1113 	  n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1114 			  / ref->prefetch_mod);
1115 	  prefetch_count += n_prefetches;
1116 	}
1117 
1118   return prefetch_count;
1119 }
1120 
1121 /* Issue prefetches for the reference REF into loop as decided before.
1122    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
1123    is the factor by which LOOP was unrolled.  */
1124 
1125 static void
issue_prefetch_ref(struct mem_ref * ref,unsigned unroll_factor,unsigned ahead)1126 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1127 {
1128   HOST_WIDE_INT delta;
1129   tree addr, addr_base, write_p, local, forward;
1130   gimple prefetch;
1131   gimple_stmt_iterator bsi;
1132   unsigned n_prefetches, ap;
1133   bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1134 
1135   if (dump_file && (dump_flags & TDF_DETAILS))
1136     fprintf (dump_file, "Issued%s prefetch for %p.\n",
1137 	     nontemporal ? " nontemporal" : "",
1138 	     (void *) ref);
1139 
1140   bsi = gsi_for_stmt (ref->stmt);
1141 
1142   n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1143 		  / ref->prefetch_mod);
1144   addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1145   addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1146 					true, NULL, true, GSI_SAME_STMT);
1147   write_p = ref->write_p ? integer_one_node : integer_zero_node;
1148   local = nontemporal ? integer_zero_node : integer_three_node;
1149 
1150   for (ap = 0; ap < n_prefetches; ap++)
1151     {
1152       if (cst_and_fits_in_hwi (ref->group->step))
1153         {
1154           /* Determine the address to prefetch.  */
1155           delta = (ahead + ap * ref->prefetch_mod) *
1156 		   int_cst_value (ref->group->step);
1157           addr = fold_build_pointer_plus_hwi (addr_base, delta);
1158           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1159                                            true, GSI_SAME_STMT);
1160         }
1161       else
1162         {
1163           /* The step size is non-constant but loop-invariant.  We use the
1164              heuristic to simply prefetch ahead iterations ahead.  */
1165           forward = fold_build2 (MULT_EXPR, sizetype,
1166                                  fold_convert (sizetype, ref->group->step),
1167                                  fold_convert (sizetype, size_int (ahead)));
1168           addr = fold_build_pointer_plus (addr_base, forward);
1169           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1170 					   NULL, true, GSI_SAME_STMT);
1171       }
1172       /* Create the prefetch instruction.  */
1173       prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1174 				    3, addr, write_p, local);
1175       gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1176     }
1177 }
1178 
1179 /* Issue prefetches for the references in GROUPS into loop as decided before.
1180    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
1181    factor by that LOOP was unrolled.  */
1182 
1183 static void
issue_prefetches(struct mem_ref_group * groups,unsigned unroll_factor,unsigned ahead)1184 issue_prefetches (struct mem_ref_group *groups,
1185 		  unsigned unroll_factor, unsigned ahead)
1186 {
1187   struct mem_ref *ref;
1188 
1189   for (; groups; groups = groups->next)
1190     for (ref = groups->refs; ref; ref = ref->next)
1191       if (ref->issue_prefetch_p)
1192 	issue_prefetch_ref (ref, unroll_factor, ahead);
1193 }
1194 
1195 /* Returns true if REF is a memory write for that a nontemporal store insn
1196    can be used.  */
1197 
1198 static bool
nontemporal_store_p(struct mem_ref * ref)1199 nontemporal_store_p (struct mem_ref *ref)
1200 {
1201   enum machine_mode mode;
1202   enum insn_code code;
1203 
1204   /* REF must be a write that is not reused.  We require it to be independent
1205      on all other memory references in the loop, as the nontemporal stores may
1206      be reordered with respect to other memory references.  */
1207   if (!ref->write_p
1208       || !ref->independent_p
1209       || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1210     return false;
1211 
1212   /* Check that we have the storent instruction for the mode.  */
1213   mode = TYPE_MODE (TREE_TYPE (ref->mem));
1214   if (mode == BLKmode)
1215     return false;
1216 
1217   code = optab_handler (storent_optab, mode);
1218   return code != CODE_FOR_nothing;
1219 }
1220 
1221 /* If REF is a nontemporal store, we mark the corresponding modify statement
1222    and return true.  Otherwise, we return false.  */
1223 
1224 static bool
mark_nontemporal_store(struct mem_ref * ref)1225 mark_nontemporal_store (struct mem_ref *ref)
1226 {
1227   if (!nontemporal_store_p (ref))
1228     return false;
1229 
1230   if (dump_file && (dump_flags & TDF_DETAILS))
1231     fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1232 	     (void *) ref);
1233 
1234   gimple_assign_set_nontemporal_move (ref->stmt, true);
1235   ref->storent_p = true;
1236 
1237   return true;
1238 }
1239 
1240 /* Issue a memory fence instruction after LOOP.  */
1241 
1242 static void
emit_mfence_after_loop(struct loop * loop)1243 emit_mfence_after_loop (struct loop *loop)
1244 {
1245   vec<edge> exits = get_loop_exit_edges (loop);
1246   edge exit;
1247   gimple call;
1248   gimple_stmt_iterator bsi;
1249   unsigned i;
1250 
1251   FOR_EACH_VEC_ELT (exits, i, exit)
1252     {
1253       call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1254 
1255       if (!single_pred_p (exit->dest)
1256 	  /* If possible, we prefer not to insert the fence on other paths
1257 	     in cfg.  */
1258 	  && !(exit->flags & EDGE_ABNORMAL))
1259 	split_loop_exit_edge (exit);
1260       bsi = gsi_after_labels (exit->dest);
1261 
1262       gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1263     }
1264 
1265   exits.release ();
1266   update_ssa (TODO_update_ssa_only_virtuals);
1267 }
1268 
1269 /* Returns true if we can use storent in loop, false otherwise.  */
1270 
1271 static bool
may_use_storent_in_loop_p(struct loop * loop)1272 may_use_storent_in_loop_p (struct loop *loop)
1273 {
1274   bool ret = true;
1275 
1276   if (loop->inner != NULL)
1277     return false;
1278 
1279   /* If we must issue a mfence insn after using storent, check that there
1280      is a suitable place for it at each of the loop exits.  */
1281   if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1282     {
1283       vec<edge> exits = get_loop_exit_edges (loop);
1284       unsigned i;
1285       edge exit;
1286 
1287       FOR_EACH_VEC_ELT (exits, i, exit)
1288 	if ((exit->flags & EDGE_ABNORMAL)
1289 	    && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1290 	  ret = false;
1291 
1292       exits.release ();
1293     }
1294 
1295   return ret;
1296 }
1297 
1298 /* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
1299    references in the loop.  */
1300 
1301 static void
mark_nontemporal_stores(struct loop * loop,struct mem_ref_group * groups)1302 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1303 {
1304   struct mem_ref *ref;
1305   bool any = false;
1306 
1307   if (!may_use_storent_in_loop_p (loop))
1308     return;
1309 
1310   for (; groups; groups = groups->next)
1311     for (ref = groups->refs; ref; ref = ref->next)
1312       any |= mark_nontemporal_store (ref);
1313 
1314   if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1315     emit_mfence_after_loop (loop);
1316 }
1317 
1318 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1319    this is the case, fill in DESC by the description of number of
1320    iterations.  */
1321 
1322 static bool
should_unroll_loop_p(struct loop * loop,struct tree_niter_desc * desc,unsigned factor)1323 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1324 		      unsigned factor)
1325 {
1326   if (!can_unroll_loop_p (loop, factor, desc))
1327     return false;
1328 
1329   /* We only consider loops without control flow for unrolling.  This is not
1330      a hard restriction -- tree_unroll_loop works with arbitrary loops
1331      as well; but the unrolling/prefetching is usually more profitable for
1332      loops consisting of a single basic block, and we want to limit the
1333      code growth.  */
1334   if (loop->num_nodes > 2)
1335     return false;
1336 
1337   return true;
1338 }
1339 
1340 /* Determine the coefficient by that unroll LOOP, from the information
1341    contained in the list of memory references REFS.  Description of
1342    umber of iterations of LOOP is stored to DESC.  NINSNS is the number of
1343    insns of the LOOP.  EST_NITER is the estimated number of iterations of
1344    the loop, or -1 if no estimate is available.  */
1345 
1346 static unsigned
determine_unroll_factor(struct loop * loop,struct mem_ref_group * refs,unsigned ninsns,struct tree_niter_desc * desc,HOST_WIDE_INT est_niter)1347 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1348 			 unsigned ninsns, struct tree_niter_desc *desc,
1349 			 HOST_WIDE_INT est_niter)
1350 {
1351   unsigned upper_bound;
1352   unsigned nfactor, factor, mod_constraint;
1353   struct mem_ref_group *agp;
1354   struct mem_ref *ref;
1355 
1356   /* First check whether the loop is not too large to unroll.  We ignore
1357      PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1358      from unrolling them enough to make exactly one cache line covered by each
1359      iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1360      us from unrolling the loops too many times in cases where we only expect
1361      gains from better scheduling and decreasing loop overhead, which is not
1362      the case here.  */
1363   upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1364 
1365   /* If we unrolled the loop more times than it iterates, the unrolled version
1366      of the loop would be never entered.  */
1367   if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1368     upper_bound = est_niter;
1369 
1370   if (upper_bound <= 1)
1371     return 1;
1372 
1373   /* Choose the factor so that we may prefetch each cache just once,
1374      but bound the unrolling by UPPER_BOUND.  */
1375   factor = 1;
1376   for (agp = refs; agp; agp = agp->next)
1377     for (ref = agp->refs; ref; ref = ref->next)
1378       if (should_issue_prefetch_p (ref))
1379 	{
1380 	  mod_constraint = ref->prefetch_mod;
1381 	  nfactor = least_common_multiple (mod_constraint, factor);
1382 	  if (nfactor <= upper_bound)
1383 	    factor = nfactor;
1384 	}
1385 
1386   if (!should_unroll_loop_p (loop, desc, factor))
1387     return 1;
1388 
1389   return factor;
1390 }
1391 
1392 /* Returns the total volume of the memory references REFS, taking into account
1393    reuses in the innermost loop and cache line size.  TODO -- we should also
1394    take into account reuses across the iterations of the loops in the loop
1395    nest.  */
1396 
1397 static unsigned
volume_of_references(struct mem_ref_group * refs)1398 volume_of_references (struct mem_ref_group *refs)
1399 {
1400   unsigned volume = 0;
1401   struct mem_ref_group *gr;
1402   struct mem_ref *ref;
1403 
1404   for (gr = refs; gr; gr = gr->next)
1405     for (ref = gr->refs; ref; ref = ref->next)
1406       {
1407 	/* Almost always reuses another value?  */
1408 	if (ref->prefetch_before != PREFETCH_ALL)
1409 	  continue;
1410 
1411 	/* If several iterations access the same cache line, use the size of
1412 	   the line divided by this number.  Otherwise, a cache line is
1413 	   accessed in each iteration.  TODO -- in the latter case, we should
1414 	   take the size of the reference into account, rounding it up on cache
1415 	   line size multiple.  */
1416 	volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1417       }
1418   return volume;
1419 }
1420 
1421 /* Returns the volume of memory references accessed across VEC iterations of
1422    loops, whose sizes are described in the LOOP_SIZES array.  N is the number
1423    of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */
1424 
1425 static unsigned
volume_of_dist_vector(lambda_vector vec,unsigned * loop_sizes,unsigned n)1426 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1427 {
1428   unsigned i;
1429 
1430   for (i = 0; i < n; i++)
1431     if (vec[i] != 0)
1432       break;
1433 
1434   if (i == n)
1435     return 0;
1436 
1437   gcc_assert (vec[i] > 0);
1438 
1439   /* We ignore the parts of the distance vector in subloops, since usually
1440      the numbers of iterations are much smaller.  */
1441   return loop_sizes[i] * vec[i];
1442 }
1443 
1444 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1445    at the position corresponding to the loop of the step.  N is the depth
1446    of the considered loop nest, and, LOOP is its innermost loop.  */
1447 
1448 static void
add_subscript_strides(tree access_fn,unsigned stride,HOST_WIDE_INT * strides,unsigned n,struct loop * loop)1449 add_subscript_strides (tree access_fn, unsigned stride,
1450 		       HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1451 {
1452   struct loop *aloop;
1453   tree step;
1454   HOST_WIDE_INT astep;
1455   unsigned min_depth = loop_depth (loop) - n;
1456 
1457   while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1458     {
1459       aloop = get_chrec_loop (access_fn);
1460       step = CHREC_RIGHT (access_fn);
1461       access_fn = CHREC_LEFT (access_fn);
1462 
1463       if ((unsigned) loop_depth (aloop) <= min_depth)
1464 	continue;
1465 
1466       if (tree_fits_shwi_p (step))
1467 	astep = tree_to_shwi (step);
1468       else
1469 	astep = L1_CACHE_LINE_SIZE;
1470 
1471       strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1472 
1473     }
1474 }
1475 
1476 /* Returns the volume of memory references accessed between two consecutive
1477    self-reuses of the reference DR.  We consider the subscripts of DR in N
1478    loops, and LOOP_SIZES contains the volumes of accesses in each of the
1479    loops.  LOOP is the innermost loop of the current loop nest.  */
1480 
1481 static unsigned
self_reuse_distance(data_reference_p dr,unsigned * loop_sizes,unsigned n,struct loop * loop)1482 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1483 		     struct loop *loop)
1484 {
1485   tree stride, access_fn;
1486   HOST_WIDE_INT *strides, astride;
1487   vec<tree> access_fns;
1488   tree ref = DR_REF (dr);
1489   unsigned i, ret = ~0u;
1490 
1491   /* In the following example:
1492 
1493      for (i = 0; i < N; i++)
1494        for (j = 0; j < N; j++)
1495          use (a[j][i]);
1496      the same cache line is accessed each N steps (except if the change from
1497      i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
1498      we cannot rely purely on the results of the data dependence analysis.
1499 
1500      Instead, we compute the stride of the reference in each loop, and consider
1501      the innermost loop in that the stride is less than cache size.  */
1502 
1503   strides = XCNEWVEC (HOST_WIDE_INT, n);
1504   access_fns = DR_ACCESS_FNS (dr);
1505 
1506   FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1507     {
1508       /* Keep track of the reference corresponding to the subscript, so that we
1509 	 know its stride.  */
1510       while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1511 	ref = TREE_OPERAND (ref, 0);
1512 
1513       if (TREE_CODE (ref) == ARRAY_REF)
1514 	{
1515 	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1516 	  if (tree_fits_uhwi_p (stride))
1517 	    astride = tree_to_uhwi (stride);
1518 	  else
1519 	    astride = L1_CACHE_LINE_SIZE;
1520 
1521 	  ref = TREE_OPERAND (ref, 0);
1522 	}
1523       else
1524 	astride = 1;
1525 
1526       add_subscript_strides (access_fn, astride, strides, n, loop);
1527     }
1528 
1529   for (i = n; i-- > 0; )
1530     {
1531       unsigned HOST_WIDE_INT s;
1532 
1533       s = strides[i] < 0 ?  -strides[i] : strides[i];
1534 
1535       if (s < (unsigned) L1_CACHE_LINE_SIZE
1536 	  && (loop_sizes[i]
1537 	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1538 	{
1539 	  ret = loop_sizes[i];
1540 	  break;
1541 	}
1542     }
1543 
1544   free (strides);
1545   return ret;
1546 }
1547 
1548 /* Determines the distance till the first reuse of each reference in REFS
1549    in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
1550    memory references in the loop.  Return false if the analysis fails.  */
1551 
1552 static bool
determine_loop_nest_reuse(struct loop * loop,struct mem_ref_group * refs,bool no_other_refs)1553 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1554 			   bool no_other_refs)
1555 {
1556   struct loop *nest, *aloop;
1557   vec<data_reference_p> datarefs = vNULL;
1558   vec<ddr_p> dependences = vNULL;
1559   struct mem_ref_group *gr;
1560   struct mem_ref *ref, *refb;
1561   vec<loop_p> vloops = vNULL;
1562   unsigned *loop_data_size;
1563   unsigned i, j, n;
1564   unsigned volume, dist, adist;
1565   HOST_WIDE_INT vol;
1566   data_reference_p dr;
1567   ddr_p dep;
1568 
1569   if (loop->inner)
1570     return true;
1571 
1572   /* Find the outermost loop of the loop nest of loop (we require that
1573      there are no sibling loops inside the nest).  */
1574   nest = loop;
1575   while (1)
1576     {
1577       aloop = loop_outer (nest);
1578 
1579       if (aloop == current_loops->tree_root
1580 	  || aloop->inner->next)
1581 	break;
1582 
1583       nest = aloop;
1584     }
1585 
1586   /* For each loop, determine the amount of data accessed in each iteration.
1587      We use this to estimate whether the reference is evicted from the
1588      cache before its reuse.  */
1589   find_loop_nest (nest, &vloops);
1590   n = vloops.length ();
1591   loop_data_size = XNEWVEC (unsigned, n);
1592   volume = volume_of_references (refs);
1593   i = n;
1594   while (i-- != 0)
1595     {
1596       loop_data_size[i] = volume;
1597       /* Bound the volume by the L2 cache size, since above this bound,
1598 	 all dependence distances are equivalent.  */
1599       if (volume > L2_CACHE_SIZE_BYTES)
1600 	continue;
1601 
1602       aloop = vloops[i];
1603       vol = estimated_stmt_executions_int (aloop);
1604       if (vol == -1)
1605 	vol = expected_loop_iterations (aloop);
1606       volume *= vol;
1607     }
1608 
1609   /* Prepare the references in the form suitable for data dependence
1610      analysis.  We ignore unanalyzable data references (the results
1611      are used just as a heuristics to estimate temporality of the
1612      references, hence we do not need to worry about correctness).  */
1613   for (gr = refs; gr; gr = gr->next)
1614     for (ref = gr->refs; ref; ref = ref->next)
1615       {
1616 	dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1617 			      ref->mem, ref->stmt, !ref->write_p);
1618 
1619 	if (dr)
1620 	  {
1621 	    ref->reuse_distance = volume;
1622 	    dr->aux = ref;
1623 	    datarefs.safe_push (dr);
1624 	  }
1625 	else
1626 	  no_other_refs = false;
1627       }
1628 
1629   FOR_EACH_VEC_ELT (datarefs, i, dr)
1630     {
1631       dist = self_reuse_distance (dr, loop_data_size, n, loop);
1632       ref = (struct mem_ref *) dr->aux;
1633       if (ref->reuse_distance > dist)
1634 	ref->reuse_distance = dist;
1635 
1636       if (no_other_refs)
1637 	ref->independent_p = true;
1638     }
1639 
1640   if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1641     return false;
1642 
1643   FOR_EACH_VEC_ELT (dependences, i, dep)
1644     {
1645       if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1646 	continue;
1647 
1648       ref = (struct mem_ref *) DDR_A (dep)->aux;
1649       refb = (struct mem_ref *) DDR_B (dep)->aux;
1650 
1651       if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1652 	  || DDR_NUM_DIST_VECTS (dep) == 0)
1653 	{
1654 	  /* If the dependence cannot be analyzed, assume that there might be
1655 	     a reuse.  */
1656 	  dist = 0;
1657 
1658 	  ref->independent_p = false;
1659 	  refb->independent_p = false;
1660 	}
1661       else
1662 	{
1663 	  /* The distance vectors are normalized to be always lexicographically
1664 	     positive, hence we cannot tell just from them whether DDR_A comes
1665 	     before DDR_B or vice versa.  However, it is not important,
1666 	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
1667 	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1668 	     in cache (and marking it as nontemporal would not affect
1669 	     anything).  */
1670 
1671 	  dist = volume;
1672 	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1673 	    {
1674 	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1675 					     loop_data_size, n);
1676 
1677 	      /* If this is a dependence in the innermost loop (i.e., the
1678 		 distances in all superloops are zero) and it is not
1679 		 the trivial self-dependence with distance zero, record that
1680 		 the references are not completely independent.  */
1681 	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1682 		  && (ref != refb
1683 		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
1684 		{
1685 		  ref->independent_p = false;
1686 		  refb->independent_p = false;
1687 		}
1688 
1689 	      /* Ignore accesses closer than
1690 		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1691 	      	 so that we use nontemporal prefetches e.g. if single memory
1692 		 location is accessed several times in a single iteration of
1693 		 the loop.  */
1694 	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1695 		continue;
1696 
1697 	      if (adist < dist)
1698 		dist = adist;
1699 	    }
1700 	}
1701 
1702       if (ref->reuse_distance > dist)
1703 	ref->reuse_distance = dist;
1704       if (refb->reuse_distance > dist)
1705 	refb->reuse_distance = dist;
1706     }
1707 
1708   free_dependence_relations (dependences);
1709   free_data_refs (datarefs);
1710   free (loop_data_size);
1711 
1712   if (dump_file && (dump_flags & TDF_DETAILS))
1713     {
1714       fprintf (dump_file, "Reuse distances:\n");
1715       for (gr = refs; gr; gr = gr->next)
1716 	for (ref = gr->refs; ref; ref = ref->next)
1717 	  fprintf (dump_file, " ref %p distance %u\n",
1718 		   (void *) ref, ref->reuse_distance);
1719     }
1720 
1721   return true;
1722 }
1723 
1724 /* Determine whether or not the trip count to ahead ratio is too small based
1725    on prefitablility consideration.
1726    AHEAD: the iteration ahead distance,
1727    EST_NITER: the estimated trip count.  */
1728 
1729 static bool
trip_count_to_ahead_ratio_too_small_p(unsigned ahead,HOST_WIDE_INT est_niter)1730 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1731 {
1732   /* Assume trip count to ahead ratio is big enough if the trip count could not
1733      be estimated at compile time.  */
1734   if (est_niter < 0)
1735     return false;
1736 
1737   if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1738     {
1739       if (dump_file && (dump_flags & TDF_DETAILS))
1740 	fprintf (dump_file,
1741 		 "Not prefetching -- loop estimated to roll only %d times\n",
1742 		 (int) est_niter);
1743       return true;
1744     }
1745 
1746   return false;
1747 }
1748 
1749 /* Determine whether or not the number of memory references in the loop is
1750    reasonable based on the profitablity and compilation time considerations.
1751    NINSNS: estimated number of instructions in the loop,
1752    MEM_REF_COUNT: total number of memory references in the loop.  */
1753 
1754 static bool
mem_ref_count_reasonable_p(unsigned ninsns,unsigned mem_ref_count)1755 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1756 {
1757   int insn_to_mem_ratio;
1758 
1759   if (mem_ref_count == 0)
1760     return false;
1761 
1762   /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1763      (compute_all_dependences) have high costs based on quadratic complexity.
1764      To avoid huge compilation time, we give up prefetching if mem_ref_count
1765      is too large.  */
1766   if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1767     return false;
1768 
1769   /* Prefetching improves performance by overlapping cache missing
1770      memory accesses with CPU operations.  If the loop does not have
1771      enough CPU operations to overlap with memory operations, prefetching
1772      won't give a significant benefit.  One approximate way of checking
1773      this is to require the ratio of instructions to memory references to
1774      be above a certain limit.  This approximation works well in practice.
1775      TODO: Implement a more precise computation by estimating the time
1776      for each CPU or memory op in the loop. Time estimates for memory ops
1777      should account for cache misses.  */
1778   insn_to_mem_ratio = ninsns / mem_ref_count;
1779 
1780   if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1781     {
1782       if (dump_file && (dump_flags & TDF_DETAILS))
1783         fprintf (dump_file,
1784 		 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1785 		 insn_to_mem_ratio);
1786       return false;
1787     }
1788 
1789   return true;
1790 }
1791 
1792 /* Determine whether or not the instruction to prefetch ratio in the loop is
1793    too small based on the profitablity consideration.
1794    NINSNS: estimated number of instructions in the loop,
1795    PREFETCH_COUNT: an estimate of the number of prefetches,
1796    UNROLL_FACTOR:  the factor to unroll the loop if prefetching.  */
1797 
1798 static bool
insn_to_prefetch_ratio_too_small_p(unsigned ninsns,unsigned prefetch_count,unsigned unroll_factor)1799 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1800                                      unsigned unroll_factor)
1801 {
1802   int insn_to_prefetch_ratio;
1803 
1804   /* Prefetching most likely causes performance degradation when the instruction
1805      to prefetch ratio is too small.  Too many prefetch instructions in a loop
1806      may reduce the I-cache performance.
1807      (unroll_factor * ninsns) is used to estimate the number of instructions in
1808      the unrolled loop.  This implementation is a bit simplistic -- the number
1809      of issued prefetch instructions is also affected by unrolling.  So,
1810      prefetch_mod and the unroll factor should be taken into account when
1811      determining prefetch_count.  Also, the number of insns of the unrolled
1812      loop will usually be significantly smaller than the number of insns of the
1813      original loop * unroll_factor (at least the induction variable increases
1814      and the exit branches will get eliminated), so it might be better to use
1815      tree_estimate_loop_size + estimated_unrolled_size.  */
1816   insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1817   if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1818     {
1819       if (dump_file && (dump_flags & TDF_DETAILS))
1820         fprintf (dump_file,
1821 		 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1822 		 insn_to_prefetch_ratio);
1823       return true;
1824     }
1825 
1826   return false;
1827 }
1828 
1829 
1830 /* Issue prefetch instructions for array references in LOOP.  Returns
1831    true if the LOOP was unrolled.  */
1832 
1833 static bool
loop_prefetch_arrays(struct loop * loop)1834 loop_prefetch_arrays (struct loop *loop)
1835 {
1836   struct mem_ref_group *refs;
1837   unsigned ahead, ninsns, time, unroll_factor;
1838   HOST_WIDE_INT est_niter;
1839   struct tree_niter_desc desc;
1840   bool unrolled = false, no_other_refs;
1841   unsigned prefetch_count;
1842   unsigned mem_ref_count;
1843 
1844   if (optimize_loop_nest_for_size_p (loop))
1845     {
1846       if (dump_file && (dump_flags & TDF_DETAILS))
1847 	fprintf (dump_file, "  ignored (cold area)\n");
1848       return false;
1849     }
1850 
1851   /* FIXME: the time should be weighted by the probabilities of the blocks in
1852      the loop body.  */
1853   time = tree_num_loop_insns (loop, &eni_time_weights);
1854   if (time == 0)
1855     return false;
1856 
1857   ahead = (PREFETCH_LATENCY + time - 1) / time;
1858   est_niter = estimated_stmt_executions_int (loop);
1859   if (est_niter == -1)
1860     est_niter = max_stmt_executions_int (loop);
1861 
1862   /* Prefetching is not likely to be profitable if the trip count to ahead
1863      ratio is too small.  */
1864   if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1865     return false;
1866 
1867   ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1868 
1869   /* Step 1: gather the memory references.  */
1870   refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1871 
1872   /* Give up prefetching if the number of memory references in the
1873      loop is not reasonable based on profitablity and compilation time
1874      considerations.  */
1875   if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1876     goto fail;
1877 
1878   /* Step 2: estimate the reuse effects.  */
1879   prune_by_reuse (refs);
1880 
1881   if (nothing_to_prefetch_p (refs))
1882     goto fail;
1883 
1884   if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1885     goto fail;
1886 
1887   /* Step 3: determine unroll factor.  */
1888   unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1889 					   est_niter);
1890 
1891   /* Estimate prefetch count for the unrolled loop.  */
1892   prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1893   if (prefetch_count == 0)
1894     goto fail;
1895 
1896   if (dump_file && (dump_flags & TDF_DETAILS))
1897     fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1898 	     HOST_WIDE_INT_PRINT_DEC "\n"
1899 	     "insn count %d, mem ref count %d, prefetch count %d\n",
1900 	     ahead, unroll_factor, est_niter,
1901 	     ninsns, mem_ref_count, prefetch_count);
1902 
1903   /* Prefetching is not likely to be profitable if the instruction to prefetch
1904      ratio is too small.  */
1905   if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1906 					  unroll_factor))
1907     goto fail;
1908 
1909   mark_nontemporal_stores (loop, refs);
1910 
1911   /* Step 4: what to prefetch?  */
1912   if (!schedule_prefetches (refs, unroll_factor, ahead))
1913     goto fail;
1914 
1915   /* Step 5: unroll the loop.  TODO -- peeling of first and last few
1916      iterations so that we do not issue superfluous prefetches.  */
1917   if (unroll_factor != 1)
1918     {
1919       tree_unroll_loop (loop, unroll_factor,
1920 			single_dom_exit (loop), &desc);
1921       unrolled = true;
1922     }
1923 
1924   /* Step 6: issue the prefetches.  */
1925   issue_prefetches (refs, unroll_factor, ahead);
1926 
1927 fail:
1928   release_mem_refs (refs);
1929   return unrolled;
1930 }
1931 
1932 /* Issue prefetch instructions for array references in loops.  */
1933 
1934 unsigned int
tree_ssa_prefetch_arrays(void)1935 tree_ssa_prefetch_arrays (void)
1936 {
1937   struct loop *loop;
1938   bool unrolled = false;
1939   int todo_flags = 0;
1940 
1941   if (!HAVE_prefetch
1942       /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1943 	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1944 	 of processor costs and i486 does not have prefetch, but
1945 	 -march=pentium4 causes HAVE_prefetch to be true.  Ugh.  */
1946       || PREFETCH_BLOCK == 0)
1947     return 0;
1948 
1949   if (dump_file && (dump_flags & TDF_DETAILS))
1950     {
1951       fprintf (dump_file, "Prefetching parameters:\n");
1952       fprintf (dump_file, "    simultaneous prefetches: %d\n",
1953 	       SIMULTANEOUS_PREFETCHES);
1954       fprintf (dump_file, "    prefetch latency: %d\n", PREFETCH_LATENCY);
1955       fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
1956       fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
1957 	       L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1958       fprintf (dump_file, "    L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1959       fprintf (dump_file, "    L2 cache size: %d kB\n", L2_CACHE_SIZE);
1960       fprintf (dump_file, "    min insn-to-prefetch ratio: %d \n",
1961 	       MIN_INSN_TO_PREFETCH_RATIO);
1962       fprintf (dump_file, "    min insn-to-mem ratio: %d \n",
1963 	       PREFETCH_MIN_INSN_TO_MEM_RATIO);
1964       fprintf (dump_file, "\n");
1965     }
1966 
1967   initialize_original_copy_tables ();
1968 
1969   if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1970     {
1971       tree type = build_function_type_list (void_type_node,
1972 					    const_ptr_type_node, NULL_TREE);
1973       tree decl = add_builtin_function ("__builtin_prefetch", type,
1974 					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1975 					NULL, NULL_TREE);
1976       DECL_IS_NOVOPS (decl) = true;
1977       set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
1978     }
1979 
1980   /* We assume that size of cache line is a power of two, so verify this
1981      here.  */
1982   gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1983 
1984   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1985     {
1986       if (dump_file && (dump_flags & TDF_DETAILS))
1987 	fprintf (dump_file, "Processing loop %d:\n", loop->num);
1988 
1989       unrolled |= loop_prefetch_arrays (loop);
1990 
1991       if (dump_file && (dump_flags & TDF_DETAILS))
1992 	fprintf (dump_file, "\n\n");
1993     }
1994 
1995   if (unrolled)
1996     {
1997       scev_reset ();
1998       todo_flags |= TODO_cleanup_cfg;
1999     }
2000 
2001   free_original_copy_tables ();
2002   return todo_flags;
2003 }
2004 
2005 /* Prefetching.  */
2006 
2007 static unsigned int
tree_ssa_loop_prefetch(void)2008 tree_ssa_loop_prefetch (void)
2009 {
2010   if (number_of_loops (cfun) <= 1)
2011     return 0;
2012 
2013   return tree_ssa_prefetch_arrays ();
2014 }
2015 
2016 static bool
gate_tree_ssa_loop_prefetch(void)2017 gate_tree_ssa_loop_prefetch (void)
2018 {
2019   return flag_prefetch_loop_arrays > 0;
2020 }
2021 
2022 namespace {
2023 
2024 const pass_data pass_data_loop_prefetch =
2025 {
2026   GIMPLE_PASS, /* type */
2027   "aprefetch", /* name */
2028   OPTGROUP_LOOP, /* optinfo_flags */
2029   true, /* has_gate */
2030   true, /* has_execute */
2031   TV_TREE_PREFETCH, /* tv_id */
2032   ( PROP_cfg | PROP_ssa ), /* properties_required */
2033   0, /* properties_provided */
2034   0, /* properties_destroyed */
2035   0, /* todo_flags_start */
2036   0, /* todo_flags_finish */
2037 };
2038 
2039 class pass_loop_prefetch : public gimple_opt_pass
2040 {
2041 public:
pass_loop_prefetch(gcc::context * ctxt)2042   pass_loop_prefetch (gcc::context *ctxt)
2043     : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2044   {}
2045 
2046   /* opt_pass methods: */
gate()2047   bool gate () { return gate_tree_ssa_loop_prefetch (); }
execute()2048   unsigned int execute () { return tree_ssa_loop_prefetch (); }
2049 
2050 }; // class pass_loop_prefetch
2051 
2052 } // anon namespace
2053 
2054 gimple_opt_pass *
make_pass_loop_prefetch(gcc::context * ctxt)2055 make_pass_loop_prefetch (gcc::context *ctxt)
2056 {
2057   return new pass_loop_prefetch (ctxt);
2058 }
2059 
2060 
2061