1 /* Tail merging for gimple.
2    Copyright (C) 2011-2014 Free Software Foundation, Inc.
3    Contributed by Tom de Vries (tom@codesourcery.com)
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* Pass overview.
22 
23 
24    MOTIVATIONAL EXAMPLE
25 
26    gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
27 
28    hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
29    {
30      struct FILED.1638 * fpD.2605;
31      charD.1 fileNameD.2604[1000];
32      intD.0 D.3915;
33      const charD.1 * restrict outputFileName.0D.3914;
34 
35      # BLOCK 2 freq:10000
36      # PRED: ENTRY [100.0%]  (fallthru,exec)
37      # PT = nonlocal { D.3926 } (restr)
38      outputFileName.0D.3914_3
39        = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40      # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43      sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44      # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47      D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48      if (D.3915_4 == 0)
49        goto <bb 3>;
50      else
51        goto <bb 4>;
52      # SUCC: 3 [10.0%]  (true,exec) 4 [90.0%]  (false,exec)
53 
54      # BLOCK 3 freq:1000
55      # PRED: 2 [10.0%]  (true,exec)
56      # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59      freeD.898 (ctxD.2601_5(D));
60      goto <bb 7>;
61      # SUCC: 7 [100.0%]  (fallthru,exec)
62 
63      # BLOCK 4 freq:9000
64      # PRED: 2 [90.0%]  (false,exec)
65      # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66      # PT = nonlocal escaped
67      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69      fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70      if (fpD.2605_8 == 0B)
71        goto <bb 5>;
72      else
73        goto <bb 6>;
74      # SUCC: 5 [1.9%]  (true,exec) 6 [98.1%]  (false,exec)
75 
76      # BLOCK 5 freq:173
77      # PRED: 4 [1.9%]  (true,exec)
78      # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81      freeD.898 (ctxD.2601_5(D));
82      goto <bb 7>;
83      # SUCC: 7 [100.0%]  (fallthru,exec)
84 
85      # BLOCK 6 freq:8827
86      # PRED: 4 [98.1%]  (false,exec)
87      # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88      # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89      # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90      fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91      # SUCC: 7 [100.0%]  (fallthru,exec)
92 
93      # BLOCK 7 freq:10000
94      # PRED: 3 [100.0%]  (fallthru,exec) 5 [100.0%]  (fallthru,exec)
95              6 [100.0%]  (fallthru,exec)
96      # PT = nonlocal null
97 
98      # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99      # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100                             .MEMD.3923_18(6)>
101      # VUSE <.MEMD.3923_11>
102      return ctxD.2601_1;
103      # SUCC: EXIT [100.0%]
104    }
105 
106    bb 3 and bb 5 can be merged.  The blocks have different predecessors, but the
107    same successors, and the same operations.
108 
109 
110    CONTEXT
111 
112    A technique called tail merging (or cross jumping) can fix the example
113    above.  For a block, we look for common code at the end (the tail) of the
114    predecessor blocks, and insert jumps from one block to the other.
115    The example is a special case for tail merging, in that 2 whole blocks
116    can be merged, rather than just the end parts of it.
117    We currently only focus on whole block merging, so in that sense
118    calling this pass tail merge is a bit of a misnomer.
119 
120    We distinguish 2 kinds of situations in which blocks can be merged:
121    - same operations, same predecessors.  The successor edges coming from one
122      block are redirected to come from the other block.
123    - same operations, same successors.  The predecessor edges entering one block
124      are redirected to enter the other block.  Note that this operation might
125      involve introducing phi operations.
126 
127    For efficient implementation, we would like to value numbers the blocks, and
128    have a comparison operator that tells us whether the blocks are equal.
129    Besides being runtime efficient, block value numbering should also abstract
130    from irrelevant differences in order of operations, much like normal value
131    numbering abstracts from irrelevant order of operations.
132 
133    For the first situation (same_operations, same predecessors), normal value
134    numbering fits well.  We can calculate a block value number based on the
135    value numbers of the defs and vdefs.
136 
137    For the second situation (same operations, same successors), this approach
138    doesn't work so well.  We can illustrate this using the example.  The calls
139    to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140    remain different in value numbering, since they represent different memory
141    states.  So the resulting vdefs of the frees will be different in value
142    numbering, so the block value numbers will be different.
143 
144    The reason why we call the blocks equal is not because they define the same
145    values, but because uses in the blocks use (possibly different) defs in the
146    same way.  To be able to detect this efficiently, we need to do some kind of
147    reverse value numbering, meaning number the uses rather than the defs, and
148    calculate a block value number based on the value number of the uses.
149    Ideally, a block comparison operator will also indicate which phis are needed
150    to merge the blocks.
151 
152    For the moment, we don't do block value numbering, but we do insn-by-insn
153    matching, using scc value numbers to match operations with results, and
154    structural comparison otherwise, while ignoring vop mismatches.
155 
156 
157    IMPLEMENTATION
158 
159    1. The pass first determines all groups of blocks with the same successor
160       blocks.
161    2. Within each group, it tries to determine clusters of equal basic blocks.
162    3. The clusters are applied.
163    4. The same successor groups are updated.
164    5. This process is repeated from 2 onwards, until no more changes.
165 
166 
167    LIMITATIONS/TODO
168 
169    - block only
170    - handles only 'same operations, same successors'.
171      It handles same predecessors as a special subcase though.
172    - does not implement the reverse value numbering and block value numbering.
173    - improve memory allocation: use garbage collected memory, obstacks,
174      allocpools where appropriate.
175    - no insertion of gimple_reg phis,  We only introduce vop-phis.
176    - handle blocks with gimple_reg phi_nodes.
177 
178 
179    PASS PLACEMENT
180    This 'pass' is not a stand-alone gimple pass, but runs as part of
181    pass_pre, in order to share the value numbering.
182 
183 
184    SWITCHES
185 
186    - ftree-tail-merge.  On at -O2.  We may have to enable it only at -Os.  */
187 
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "stor-layout.h"
194 #include "trans-mem.h"
195 #include "tm_p.h"
196 #include "basic-block.h"
197 #include "flags.h"
198 #include "function.h"
199 #include "hash-table.h"
200 #include "tree-ssa-alias.h"
201 #include "internal-fn.h"
202 #include "tree-eh.h"
203 #include "gimple-expr.h"
204 #include "is-a.h"
205 #include "gimple.h"
206 #include "gimple-iterator.h"
207 #include "gimple-ssa.h"
208 #include "tree-cfg.h"
209 #include "tree-phinodes.h"
210 #include "ssa-iterators.h"
211 #include "tree-into-ssa.h"
212 #include "params.h"
213 #include "gimple-pretty-print.h"
214 #include "tree-ssa-sccvn.h"
215 #include "tree-dump.h"
216 #include "cfgloop.h"
217 #include "tree-pass.h"
218 #include "trans-mem.h"
219 
220 /* Describes a group of bbs with the same successors.  The successor bbs are
221    cached in succs, and the successor edge flags are cached in succ_flags.
222    If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
223    it's marked in inverse.
224    Additionally, the hash value for the struct is cached in hashval, and
225    in_worklist indicates whether it's currently part of worklist.  */
226 
227 struct same_succ_def
228 {
229   /* The bbs that have the same successor bbs.  */
230   bitmap bbs;
231   /* The successor bbs.  */
232   bitmap succs;
233   /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
234      bb.  */
235   bitmap inverse;
236   /* The edge flags for each of the successor bbs.  */
237   vec<int> succ_flags;
238   /* Indicates whether the struct is currently in the worklist.  */
239   bool in_worklist;
240   /* The hash value of the struct.  */
241   hashval_t hashval;
242 
243   /* hash_table support.  */
244   typedef same_succ_def value_type;
245   typedef same_succ_def compare_type;
246   static inline hashval_t hash (const value_type *);
247   static int equal (const value_type *, const compare_type *);
248   static void remove (value_type *);
249 };
250 typedef struct same_succ_def *same_succ;
251 typedef const struct same_succ_def *const_same_succ;
252 
253 /* hash routine for hash_table support, returns hashval of E.  */
254 
255 inline hashval_t
hash(const value_type * e)256 same_succ_def::hash (const value_type *e)
257 {
258   return e->hashval;
259 }
260 
261 /* A group of bbs where 1 bb from bbs can replace the other bbs.  */
262 
263 struct bb_cluster_def
264 {
265   /* The bbs in the cluster.  */
266   bitmap bbs;
267   /* The preds of the bbs in the cluster.  */
268   bitmap preds;
269   /* Index in all_clusters vector.  */
270   int index;
271   /* The bb to replace the cluster with.  */
272   basic_block rep_bb;
273 };
274 typedef struct bb_cluster_def *bb_cluster;
275 typedef const struct bb_cluster_def *const_bb_cluster;
276 
277 /* Per bb-info.  */
278 
279 struct aux_bb_info
280 {
281   /* The number of non-debug statements in the bb.  */
282   int size;
283   /* The same_succ that this bb is a member of.  */
284   same_succ bb_same_succ;
285   /* The cluster that this bb is a member of.  */
286   bb_cluster cluster;
287   /* The vop state at the exit of a bb.  This is shortlived data, used to
288      communicate data between update_block_by and update_vuses.  */
289   tree vop_at_exit;
290   /* The bb that either contains or is dominated by the dependencies of the
291      bb.  */
292   basic_block dep_bb;
293 };
294 
295 /* Macros to access the fields of struct aux_bb_info.  */
296 
297 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
298 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
299 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
300 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
301 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
302 
303 /* Returns true if the only effect a statement STMT has, is to define locally
304    used SSA_NAMEs.  */
305 
306 static bool
stmt_local_def(gimple stmt)307 stmt_local_def (gimple stmt)
308 {
309   basic_block bb, def_bb;
310   imm_use_iterator iter;
311   use_operand_p use_p;
312   tree val;
313   def_operand_p def_p;
314 
315   if (gimple_vdef (stmt) != NULL_TREE
316       || gimple_has_side_effects (stmt)
317       || gimple_could_trap_p_1 (stmt, false, false))
318     return false;
319 
320   def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
321   if (def_p == NULL)
322     return false;
323 
324   val = DEF_FROM_PTR (def_p);
325   if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
326     return false;
327 
328   def_bb = gimple_bb (stmt);
329 
330   FOR_EACH_IMM_USE_FAST (use_p, iter, val)
331     {
332       if (is_gimple_debug (USE_STMT (use_p)))
333 	continue;
334       bb = gimple_bb (USE_STMT (use_p));
335       if (bb == def_bb)
336 	continue;
337 
338       if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
339 	  && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
340 	continue;
341 
342       return false;
343     }
344 
345   return true;
346 }
347 
348 /* Let GSI skip forwards over local defs.  */
349 
350 static void
gsi_advance_fw_nondebug_nonlocal(gimple_stmt_iterator * gsi)351 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
352 {
353   gimple stmt;
354 
355   while (true)
356     {
357       if (gsi_end_p (*gsi))
358 	return;
359       stmt = gsi_stmt (*gsi);
360       if (!stmt_local_def (stmt))
361 	return;
362 	gsi_next_nondebug (gsi);
363     }
364 }
365 
366 /* VAL1 and VAL2 are either:
367    - uses in BB1 and BB2, or
368    - phi alternatives for BB1 and BB2.
369    Return true if the uses have the same gvn value.  */
370 
371 static bool
gvn_uses_equal(tree val1,tree val2)372 gvn_uses_equal (tree val1, tree val2)
373 {
374   gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
375 
376   if (val1 == val2)
377     return true;
378 
379   if (vn_valueize (val1) != vn_valueize (val2))
380     return false;
381 
382   return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
383 	  && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
384 }
385 
386 /* Prints E to FILE.  */
387 
388 static void
same_succ_print(FILE * file,const same_succ e)389 same_succ_print (FILE *file, const same_succ e)
390 {
391   unsigned int i;
392   bitmap_print (file, e->bbs, "bbs:", "\n");
393   bitmap_print (file, e->succs, "succs:", "\n");
394   bitmap_print (file, e->inverse, "inverse:", "\n");
395   fprintf (file, "flags:");
396   for (i = 0; i < e->succ_flags.length (); ++i)
397     fprintf (file, " %x", e->succ_flags[i]);
398   fprintf (file, "\n");
399 }
400 
401 /* Prints same_succ VE to VFILE.  */
402 
403 inline int
ssa_same_succ_print_traverse(same_succ * pe,FILE * file)404 ssa_same_succ_print_traverse (same_succ *pe, FILE *file)
405 {
406   const same_succ e = *pe;
407   same_succ_print (file, e);
408   return 1;
409 }
410 
411 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB.  */
412 
413 static void
update_dep_bb(basic_block use_bb,tree val)414 update_dep_bb (basic_block use_bb, tree val)
415 {
416   basic_block dep_bb;
417 
418   /* Not a dep.  */
419   if (TREE_CODE (val) != SSA_NAME)
420     return;
421 
422   /* Skip use of global def.  */
423   if (SSA_NAME_IS_DEFAULT_DEF (val))
424     return;
425 
426   /* Skip use of local def.  */
427   dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
428   if (dep_bb == use_bb)
429     return;
430 
431   if (BB_DEP_BB (use_bb) == NULL
432       || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
433     BB_DEP_BB (use_bb) = dep_bb;
434 }
435 
436 /* Update BB_DEP_BB, given the dependencies in STMT.  */
437 
438 static void
stmt_update_dep_bb(gimple stmt)439 stmt_update_dep_bb (gimple stmt)
440 {
441   ssa_op_iter iter;
442   use_operand_p use;
443 
444   FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
445     update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
446 }
447 
448 /* Calculates hash value for same_succ VE.  */
449 
450 static hashval_t
same_succ_hash(const_same_succ e)451 same_succ_hash (const_same_succ e)
452 {
453   hashval_t hashval = bitmap_hash (e->succs);
454   int flags;
455   unsigned int i;
456   unsigned int first = bitmap_first_set_bit (e->bbs);
457   basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
458   int size = 0;
459   gimple_stmt_iterator gsi;
460   gimple stmt;
461   tree arg;
462   unsigned int s;
463   bitmap_iterator bs;
464 
465   for (gsi = gsi_start_nondebug_bb (bb);
466        !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
467     {
468       stmt = gsi_stmt (gsi);
469       stmt_update_dep_bb (stmt);
470       if (stmt_local_def (stmt))
471 	continue;
472       size++;
473 
474       hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
475       if (is_gimple_assign (stmt))
476 	hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
477 					    hashval);
478       if (!is_gimple_call (stmt))
479 	continue;
480       if (gimple_call_internal_p (stmt))
481 	hashval = iterative_hash_hashval_t
482 	  ((hashval_t) gimple_call_internal_fn (stmt), hashval);
483       else
484 	{
485 	  hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
486 	  if (gimple_call_chain (stmt))
487 	    hashval = iterative_hash_expr (gimple_call_chain (stmt), hashval);
488 	}
489       for (i = 0; i < gimple_call_num_args (stmt); i++)
490 	{
491 	  arg = gimple_call_arg (stmt, i);
492 	  arg = vn_valueize (arg);
493 	  hashval = iterative_hash_expr (arg, hashval);
494 	}
495     }
496 
497   hashval = iterative_hash_hashval_t (size, hashval);
498   BB_SIZE (bb) = size;
499 
500   for (i = 0; i < e->succ_flags.length (); ++i)
501     {
502       flags = e->succ_flags[i];
503       flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
504       hashval = iterative_hash_hashval_t (flags, hashval);
505     }
506 
507   EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
508     {
509       int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
510       for (gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s)); !gsi_end_p (gsi);
511 	   gsi_next (&gsi))
512 	{
513 	  gimple phi = gsi_stmt (gsi);
514 	  tree lhs = gimple_phi_result (phi);
515 	  tree val = gimple_phi_arg_def (phi, n);
516 
517 	  if (virtual_operand_p (lhs))
518 	    continue;
519 	  update_dep_bb (bb, val);
520 	}
521     }
522 
523   return hashval;
524 }
525 
526 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
527    are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
528    the other edge flags.  */
529 
530 static bool
inverse_flags(const_same_succ e1,const_same_succ e2)531 inverse_flags (const_same_succ e1, const_same_succ e2)
532 {
533   int f1a, f1b, f2a, f2b;
534   int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
535 
536   if (e1->succ_flags.length () != 2)
537     return false;
538 
539   f1a = e1->succ_flags[0];
540   f1b = e1->succ_flags[1];
541   f2a = e2->succ_flags[0];
542   f2b = e2->succ_flags[1];
543 
544   if (f1a == f2a && f1b == f2b)
545     return false;
546 
547   return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
548 }
549 
550 /* Compares SAME_SUCCs E1 and E2.  */
551 
552 int
equal(const value_type * e1,const compare_type * e2)553 same_succ_def::equal (const value_type *e1, const compare_type *e2)
554 {
555   unsigned int i, first1, first2;
556   gimple_stmt_iterator gsi1, gsi2;
557   gimple s1, s2;
558   basic_block bb1, bb2;
559 
560   if (e1->hashval != e2->hashval)
561     return 0;
562 
563   if (e1->succ_flags.length () != e2->succ_flags.length ())
564     return 0;
565 
566   if (!bitmap_equal_p (e1->succs, e2->succs))
567     return 0;
568 
569   if (!inverse_flags (e1, e2))
570     {
571       for (i = 0; i < e1->succ_flags.length (); ++i)
572 	if (e1->succ_flags[i] != e1->succ_flags[i])
573 	  return 0;
574     }
575 
576   first1 = bitmap_first_set_bit (e1->bbs);
577   first2 = bitmap_first_set_bit (e2->bbs);
578 
579   bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
580   bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
581 
582   if (BB_SIZE (bb1) != BB_SIZE (bb2))
583     return 0;
584 
585   gsi1 = gsi_start_nondebug_bb (bb1);
586   gsi2 = gsi_start_nondebug_bb (bb2);
587   gsi_advance_fw_nondebug_nonlocal (&gsi1);
588   gsi_advance_fw_nondebug_nonlocal (&gsi2);
589   while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
590     {
591       s1 = gsi_stmt (gsi1);
592       s2 = gsi_stmt (gsi2);
593       if (gimple_code (s1) != gimple_code (s2))
594 	return 0;
595       if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
596 	return 0;
597       gsi_next_nondebug (&gsi1);
598       gsi_next_nondebug (&gsi2);
599       gsi_advance_fw_nondebug_nonlocal (&gsi1);
600       gsi_advance_fw_nondebug_nonlocal (&gsi2);
601     }
602 
603   return 1;
604 }
605 
606 /* Alloc and init a new SAME_SUCC.  */
607 
608 static same_succ
same_succ_alloc(void)609 same_succ_alloc (void)
610 {
611   same_succ same = XNEW (struct same_succ_def);
612 
613   same->bbs = BITMAP_ALLOC (NULL);
614   same->succs = BITMAP_ALLOC (NULL);
615   same->inverse = BITMAP_ALLOC (NULL);
616   same->succ_flags.create (10);
617   same->in_worklist = false;
618 
619   return same;
620 }
621 
622 /* Delete same_succ E.  */
623 
624 void
remove(same_succ e)625 same_succ_def::remove (same_succ e)
626 {
627   BITMAP_FREE (e->bbs);
628   BITMAP_FREE (e->succs);
629   BITMAP_FREE (e->inverse);
630   e->succ_flags.release ();
631 
632   XDELETE (e);
633 }
634 
635 /* Reset same_succ SAME.  */
636 
637 static void
same_succ_reset(same_succ same)638 same_succ_reset (same_succ same)
639 {
640   bitmap_clear (same->bbs);
641   bitmap_clear (same->succs);
642   bitmap_clear (same->inverse);
643   same->succ_flags.truncate (0);
644 }
645 
646 static hash_table <same_succ_def> same_succ_htab;
647 
648 /* Array that is used to store the edge flags for a successor.  */
649 
650 static int *same_succ_edge_flags;
651 
652 /* Bitmap that is used to mark bbs that are recently deleted.  */
653 
654 static bitmap deleted_bbs;
655 
656 /* Bitmap that is used to mark predecessors of bbs that are
657    deleted.  */
658 
659 static bitmap deleted_bb_preds;
660 
661 /* Prints same_succ_htab to stderr.  */
662 
663 extern void debug_same_succ (void);
664 DEBUG_FUNCTION void
debug_same_succ(void)665 debug_same_succ ( void)
666 {
667   same_succ_htab.traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
668 }
669 
670 
671 /* Vector of bbs to process.  */
672 
673 static vec<same_succ> worklist;
674 
675 /* Prints worklist to FILE.  */
676 
677 static void
print_worklist(FILE * file)678 print_worklist (FILE *file)
679 {
680   unsigned int i;
681   for (i = 0; i < worklist.length (); ++i)
682     same_succ_print (file, worklist[i]);
683 }
684 
685 /* Adds SAME to worklist.  */
686 
687 static void
add_to_worklist(same_succ same)688 add_to_worklist (same_succ same)
689 {
690   if (same->in_worklist)
691     return;
692 
693   if (bitmap_count_bits (same->bbs) < 2)
694     return;
695 
696   same->in_worklist = true;
697   worklist.safe_push (same);
698 }
699 
700 /* Add BB to same_succ_htab.  */
701 
702 static void
find_same_succ_bb(basic_block bb,same_succ * same_p)703 find_same_succ_bb (basic_block bb, same_succ *same_p)
704 {
705   unsigned int j;
706   bitmap_iterator bj;
707   same_succ same = *same_p;
708   same_succ *slot;
709   edge_iterator ei;
710   edge e;
711 
712   if (bb == NULL
713       /* Be conservative with loop structure.  It's not evident that this test
714 	 is sufficient.  Before tail-merge, we've just called
715 	 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
716 	 set, so there's no guarantee that the loop->latch value is still valid.
717 	 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
718 	 start of pre, we've kept that property intact throughout pre, and are
719 	 keeping it throughout tail-merge using this test.  */
720       || bb->loop_father->latch == bb)
721     return;
722   bitmap_set_bit (same->bbs, bb->index);
723   FOR_EACH_EDGE (e, ei, bb->succs)
724     {
725       int index = e->dest->index;
726       bitmap_set_bit (same->succs, index);
727       same_succ_edge_flags[index] = e->flags;
728     }
729   EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
730     same->succ_flags.safe_push (same_succ_edge_flags[j]);
731 
732   same->hashval = same_succ_hash (same);
733 
734   slot = same_succ_htab.find_slot_with_hash (same, same->hashval, INSERT);
735   if (*slot == NULL)
736     {
737       *slot = same;
738       BB_SAME_SUCC (bb) = same;
739       add_to_worklist (same);
740       *same_p = NULL;
741     }
742   else
743     {
744       bitmap_set_bit ((*slot)->bbs, bb->index);
745       BB_SAME_SUCC (bb) = *slot;
746       add_to_worklist (*slot);
747       if (inverse_flags (same, *slot))
748 	bitmap_set_bit ((*slot)->inverse, bb->index);
749       same_succ_reset (same);
750     }
751 }
752 
753 /* Find bbs with same successors.  */
754 
755 static void
find_same_succ(void)756 find_same_succ (void)
757 {
758   same_succ same = same_succ_alloc ();
759   basic_block bb;
760 
761   FOR_EACH_BB_FN (bb, cfun)
762     {
763       find_same_succ_bb (bb, &same);
764       if (same == NULL)
765 	same = same_succ_alloc ();
766     }
767 
768   same_succ_def::remove (same);
769 }
770 
771 /* Initializes worklist administration.  */
772 
773 static void
init_worklist(void)774 init_worklist (void)
775 {
776   alloc_aux_for_blocks (sizeof (struct aux_bb_info));
777   same_succ_htab.create (n_basic_blocks_for_fn (cfun));
778   same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
779   deleted_bbs = BITMAP_ALLOC (NULL);
780   deleted_bb_preds = BITMAP_ALLOC (NULL);
781   worklist.create (n_basic_blocks_for_fn (cfun));
782   find_same_succ ();
783 
784   if (dump_file && (dump_flags & TDF_DETAILS))
785     {
786       fprintf (dump_file, "initial worklist:\n");
787       print_worklist (dump_file);
788     }
789 }
790 
791 /* Deletes worklist administration.  */
792 
793 static void
delete_worklist(void)794 delete_worklist (void)
795 {
796   free_aux_for_blocks ();
797   same_succ_htab.dispose ();
798   XDELETEVEC (same_succ_edge_flags);
799   same_succ_edge_flags = NULL;
800   BITMAP_FREE (deleted_bbs);
801   BITMAP_FREE (deleted_bb_preds);
802   worklist.release ();
803 }
804 
805 /* Mark BB as deleted, and mark its predecessors.  */
806 
807 static void
mark_basic_block_deleted(basic_block bb)808 mark_basic_block_deleted (basic_block bb)
809 {
810   edge e;
811   edge_iterator ei;
812 
813   bitmap_set_bit (deleted_bbs, bb->index);
814 
815   FOR_EACH_EDGE (e, ei, bb->preds)
816     bitmap_set_bit (deleted_bb_preds, e->src->index);
817 }
818 
819 /* Removes BB from its corresponding same_succ.  */
820 
821 static void
same_succ_flush_bb(basic_block bb)822 same_succ_flush_bb (basic_block bb)
823 {
824   same_succ same = BB_SAME_SUCC (bb);
825   BB_SAME_SUCC (bb) = NULL;
826   if (bitmap_single_bit_set_p (same->bbs))
827     same_succ_htab.remove_elt_with_hash (same, same->hashval);
828   else
829     bitmap_clear_bit (same->bbs, bb->index);
830 }
831 
832 /* Removes all bbs in BBS from their corresponding same_succ.  */
833 
834 static void
same_succ_flush_bbs(bitmap bbs)835 same_succ_flush_bbs (bitmap bbs)
836 {
837   unsigned int i;
838   bitmap_iterator bi;
839 
840   EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
841     same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
842 }
843 
844 /* Release the last vdef in BB, either normal or phi result.  */
845 
846 static void
release_last_vdef(basic_block bb)847 release_last_vdef (basic_block bb)
848 {
849   gimple_stmt_iterator i;
850 
851   for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
852     {
853       gimple stmt = gsi_stmt (i);
854       if (gimple_vdef (stmt) == NULL_TREE)
855 	continue;
856 
857       mark_virtual_operand_for_renaming (gimple_vdef (stmt));
858       return;
859     }
860 
861   for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
862     {
863       gimple phi = gsi_stmt (i);
864       tree res = gimple_phi_result (phi);
865 
866       if (!virtual_operand_p (res))
867 	continue;
868 
869       mark_virtual_phi_result_for_renaming (phi);
870       return;
871     }
872 
873 }
874 
875 /* For deleted_bb_preds, find bbs with same successors.  */
876 
877 static void
update_worklist(void)878 update_worklist (void)
879 {
880   unsigned int i;
881   bitmap_iterator bi;
882   basic_block bb;
883   same_succ same;
884 
885   bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
886   bitmap_clear (deleted_bbs);
887 
888   bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
889   same_succ_flush_bbs (deleted_bb_preds);
890 
891   same = same_succ_alloc ();
892   EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
893     {
894       bb = BASIC_BLOCK_FOR_FN (cfun, i);
895       gcc_assert (bb != NULL);
896       find_same_succ_bb (bb, &same);
897       if (same == NULL)
898 	same = same_succ_alloc ();
899     }
900   same_succ_def::remove (same);
901   bitmap_clear (deleted_bb_preds);
902 }
903 
904 /* Prints cluster C to FILE.  */
905 
906 static void
print_cluster(FILE * file,bb_cluster c)907 print_cluster (FILE *file, bb_cluster c)
908 {
909   if (c == NULL)
910     return;
911   bitmap_print (file, c->bbs, "bbs:", "\n");
912   bitmap_print (file, c->preds, "preds:", "\n");
913 }
914 
915 /* Prints cluster C to stderr.  */
916 
917 extern void debug_cluster (bb_cluster);
918 DEBUG_FUNCTION void
debug_cluster(bb_cluster c)919 debug_cluster (bb_cluster c)
920 {
921   print_cluster (stderr, c);
922 }
923 
924 /* Update C->rep_bb, given that BB is added to the cluster.  */
925 
926 static void
update_rep_bb(bb_cluster c,basic_block bb)927 update_rep_bb (bb_cluster c, basic_block bb)
928 {
929   /* Initial.  */
930   if (c->rep_bb == NULL)
931     {
932       c->rep_bb = bb;
933       return;
934     }
935 
936   /* Current needs no deps, keep it.  */
937   if (BB_DEP_BB (c->rep_bb) == NULL)
938     return;
939 
940   /* Bb needs no deps, change rep_bb.  */
941   if (BB_DEP_BB (bb) == NULL)
942     {
943       c->rep_bb = bb;
944       return;
945     }
946 
947   /* Bb needs last deps earlier than current, change rep_bb.  A potential
948      problem with this, is that the first deps might also be earlier, which
949      would mean we prefer longer lifetimes for the deps.  To be able to check
950      for this, we would have to trace BB_FIRST_DEP_BB as well, besides
951      BB_DEP_BB, which is really BB_LAST_DEP_BB.
952      The benefit of choosing the bb with last deps earlier, is that it can
953      potentially be used as replacement for more bbs.  */
954   if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
955     c->rep_bb = bb;
956 }
957 
958 /* Add BB to cluster C.  Sets BB in C->bbs, and preds of BB in C->preds.  */
959 
960 static void
add_bb_to_cluster(bb_cluster c,basic_block bb)961 add_bb_to_cluster (bb_cluster c, basic_block bb)
962 {
963   edge e;
964   edge_iterator ei;
965 
966   bitmap_set_bit (c->bbs, bb->index);
967 
968   FOR_EACH_EDGE (e, ei, bb->preds)
969     bitmap_set_bit (c->preds, e->src->index);
970 
971   update_rep_bb (c, bb);
972 }
973 
974 /* Allocate and init new cluster.  */
975 
976 static bb_cluster
new_cluster(void)977 new_cluster (void)
978 {
979   bb_cluster c;
980   c = XCNEW (struct bb_cluster_def);
981   c->bbs = BITMAP_ALLOC (NULL);
982   c->preds = BITMAP_ALLOC (NULL);
983   c->rep_bb = NULL;
984   return c;
985 }
986 
987 /* Delete clusters.  */
988 
989 static void
delete_cluster(bb_cluster c)990 delete_cluster (bb_cluster c)
991 {
992   if (c == NULL)
993     return;
994   BITMAP_FREE (c->bbs);
995   BITMAP_FREE (c->preds);
996   XDELETE (c);
997 }
998 
999 
1000 /* Array that contains all clusters.  */
1001 
1002 static vec<bb_cluster> all_clusters;
1003 
1004 /* Allocate all cluster vectors.  */
1005 
1006 static void
alloc_cluster_vectors(void)1007 alloc_cluster_vectors (void)
1008 {
1009   all_clusters.create (n_basic_blocks_for_fn (cfun));
1010 }
1011 
1012 /* Reset all cluster vectors.  */
1013 
1014 static void
reset_cluster_vectors(void)1015 reset_cluster_vectors (void)
1016 {
1017   unsigned int i;
1018   basic_block bb;
1019   for (i = 0; i < all_clusters.length (); ++i)
1020     delete_cluster (all_clusters[i]);
1021   all_clusters.truncate (0);
1022   FOR_EACH_BB_FN (bb, cfun)
1023     BB_CLUSTER (bb) = NULL;
1024 }
1025 
1026 /* Delete all cluster vectors.  */
1027 
1028 static void
delete_cluster_vectors(void)1029 delete_cluster_vectors (void)
1030 {
1031   unsigned int i;
1032   for (i = 0; i < all_clusters.length (); ++i)
1033     delete_cluster (all_clusters[i]);
1034   all_clusters.release ();
1035 }
1036 
1037 /* Merge cluster C2 into C1.  */
1038 
1039 static void
merge_clusters(bb_cluster c1,bb_cluster c2)1040 merge_clusters (bb_cluster c1, bb_cluster c2)
1041 {
1042   bitmap_ior_into (c1->bbs, c2->bbs);
1043   bitmap_ior_into (c1->preds, c2->preds);
1044 }
1045 
1046 /* Register equivalence of BB1 and BB2 (members of cluster C).  Store c in
1047    all_clusters, or merge c with existing cluster.  */
1048 
1049 static void
set_cluster(basic_block bb1,basic_block bb2)1050 set_cluster (basic_block bb1, basic_block bb2)
1051 {
1052   basic_block merge_bb, other_bb;
1053   bb_cluster merge, old, c;
1054 
1055   if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1056     {
1057       c = new_cluster ();
1058       add_bb_to_cluster (c, bb1);
1059       add_bb_to_cluster (c, bb2);
1060       BB_CLUSTER (bb1) = c;
1061       BB_CLUSTER (bb2) = c;
1062       c->index = all_clusters.length ();
1063       all_clusters.safe_push (c);
1064     }
1065   else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1066     {
1067       merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1068       other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1069       merge = BB_CLUSTER (merge_bb);
1070       add_bb_to_cluster (merge, other_bb);
1071       BB_CLUSTER (other_bb) = merge;
1072     }
1073   else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1074     {
1075       unsigned int i;
1076       bitmap_iterator bi;
1077 
1078       old = BB_CLUSTER (bb2);
1079       merge = BB_CLUSTER (bb1);
1080       merge_clusters (merge, old);
1081       EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1082 	BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1083       all_clusters[old->index] = NULL;
1084       update_rep_bb (merge, old->rep_bb);
1085       delete_cluster (old);
1086     }
1087   else
1088     gcc_unreachable ();
1089 }
1090 
1091 /* Return true if gimple operands T1 and T2 have the same value.  */
1092 
1093 static bool
gimple_operand_equal_value_p(tree t1,tree t2)1094 gimple_operand_equal_value_p (tree t1, tree t2)
1095 {
1096   if (t1 == t2)
1097     return true;
1098 
1099   if (t1 == NULL_TREE
1100       || t2 == NULL_TREE)
1101     return false;
1102 
1103   if (operand_equal_p (t1, t2, 0))
1104     return true;
1105 
1106   return gvn_uses_equal (t1, t2);
1107 }
1108 
1109 /* Return true if gimple statements S1 and S2 are equal.  Gimple_bb (s1) and
1110    gimple_bb (s2) are members of SAME_SUCC.  */
1111 
1112 static bool
gimple_equal_p(same_succ same_succ,gimple s1,gimple s2)1113 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1114 {
1115   unsigned int i;
1116   tree lhs1, lhs2;
1117   basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1118   tree t1, t2;
1119   bool inv_cond;
1120   enum tree_code code1, code2;
1121 
1122   if (gimple_code (s1) != gimple_code (s2))
1123     return false;
1124 
1125   switch (gimple_code (s1))
1126     {
1127     case GIMPLE_CALL:
1128       if (!gimple_call_same_target_p (s1, s2))
1129         return false;
1130 
1131       t1 = gimple_call_chain (s1);
1132       t2 = gimple_call_chain (s2);
1133       if (!gimple_operand_equal_value_p (t1, t2))
1134 	return false;
1135 
1136       if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1137 	return false;
1138 
1139       for (i = 0; i < gimple_call_num_args (s1); ++i)
1140 	{
1141 	  t1 = gimple_call_arg (s1, i);
1142 	  t2 = gimple_call_arg (s2, i);
1143 	  if (!gimple_operand_equal_value_p (t1, t2))
1144 	    return false;
1145 	}
1146 
1147       lhs1 = gimple_get_lhs (s1);
1148       lhs2 = gimple_get_lhs (s2);
1149       if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1150 	return true;
1151       if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1152 	return false;
1153       if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1154 	return vn_valueize (lhs1) == vn_valueize (lhs2);
1155       return operand_equal_p (lhs1, lhs2, 0);
1156 
1157     case GIMPLE_ASSIGN:
1158       lhs1 = gimple_get_lhs (s1);
1159       lhs2 = gimple_get_lhs (s2);
1160       if (TREE_CODE (lhs1) != SSA_NAME
1161 	  && TREE_CODE (lhs2) != SSA_NAME)
1162 	return (operand_equal_p (lhs1, lhs2, 0)
1163 		&& gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1164 						 gimple_assign_rhs1 (s2)));
1165       else if (TREE_CODE (lhs1) == SSA_NAME
1166 	       && TREE_CODE (lhs2) == SSA_NAME)
1167 	return vn_valueize (lhs1) == vn_valueize (lhs2);
1168       return false;
1169 
1170     case GIMPLE_COND:
1171       t1 = gimple_cond_lhs (s1);
1172       t2 = gimple_cond_lhs (s2);
1173       if (!gimple_operand_equal_value_p (t1, t2))
1174 	return false;
1175 
1176       t1 = gimple_cond_rhs (s1);
1177       t2 = gimple_cond_rhs (s2);
1178       if (!gimple_operand_equal_value_p (t1, t2))
1179 	return false;
1180 
1181       code1 = gimple_expr_code (s1);
1182       code2 = gimple_expr_code (s2);
1183       inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1184 		  != bitmap_bit_p (same_succ->inverse, bb2->index));
1185       if (inv_cond)
1186 	{
1187 	  bool honor_nans
1188 	    = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1189 	  code2 = invert_tree_comparison (code2, honor_nans);
1190 	}
1191       return code1 == code2;
1192 
1193     default:
1194       return false;
1195     }
1196 }
1197 
1198 /* Let GSI skip backwards over local defs.  Return the earliest vuse in VUSE.
1199    Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1200    processed statements.  */
1201 
1202 static void
gsi_advance_bw_nondebug_nonlocal(gimple_stmt_iterator * gsi,tree * vuse,bool * vuse_escaped)1203 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1204 				  bool *vuse_escaped)
1205 {
1206   gimple stmt;
1207   tree lvuse;
1208 
1209   while (true)
1210     {
1211       if (gsi_end_p (*gsi))
1212 	return;
1213       stmt = gsi_stmt (*gsi);
1214 
1215       lvuse = gimple_vuse (stmt);
1216       if (lvuse != NULL_TREE)
1217 	{
1218 	  *vuse = lvuse;
1219 	  if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1220 	    *vuse_escaped = true;
1221 	}
1222 
1223       if (!stmt_local_def (stmt))
1224 	return;
1225       gsi_prev_nondebug (gsi);
1226     }
1227 }
1228 
1229 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates.  If so,
1230    clusters them.  */
1231 
1232 static void
find_duplicate(same_succ same_succ,basic_block bb1,basic_block bb2)1233 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1234 {
1235   gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1236   gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1237   tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1238   bool vuse_escaped = false;
1239 
1240   gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1241   gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1242 
1243   while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1244     {
1245       gimple stmt1 = gsi_stmt (gsi1);
1246       gimple stmt2 = gsi_stmt (gsi2);
1247 
1248       /* What could be better than to this this here is to blacklist the bb
1249 	 containing the stmt, when encountering the stmt f.i. in
1250 	 same_succ_hash.  */
1251       if (is_tm_ending (stmt1)
1252 	  || is_tm_ending (stmt2))
1253 	return;
1254 
1255       if (!gimple_equal_p (same_succ, stmt1, stmt2))
1256 	return;
1257 
1258       gsi_prev_nondebug (&gsi1);
1259       gsi_prev_nondebug (&gsi2);
1260       gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1261       gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1262     }
1263 
1264   if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1265     return;
1266 
1267   /* If the incoming vuses are not the same, and the vuse escaped into an
1268      SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1269      which potentially means the semantics of one of the blocks will be changed.
1270      TODO: make this check more precise.  */
1271   if (vuse_escaped && vuse1 != vuse2)
1272     return;
1273 
1274   if (dump_file)
1275     fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1276 	     bb1->index, bb2->index);
1277 
1278   set_cluster (bb1, bb2);
1279 }
1280 
1281 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1282    E2 are equal.  */
1283 
1284 static bool
same_phi_alternatives_1(basic_block dest,edge e1,edge e2)1285 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1286 {
1287   int n1 = e1->dest_idx, n2 = e2->dest_idx;
1288   gimple_stmt_iterator gsi;
1289 
1290   for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1291     {
1292       gimple phi = gsi_stmt (gsi);
1293       tree lhs = gimple_phi_result (phi);
1294       tree val1 = gimple_phi_arg_def (phi, n1);
1295       tree val2 = gimple_phi_arg_def (phi, n2);
1296 
1297       if (virtual_operand_p (lhs))
1298 	continue;
1299 
1300       if (operand_equal_for_phi_arg_p (val1, val2))
1301         continue;
1302       if (gvn_uses_equal (val1, val2))
1303 	continue;
1304 
1305       return false;
1306     }
1307 
1308   return true;
1309 }
1310 
1311 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1312    phi alternatives for BB1 and BB2 are equal.  */
1313 
1314 static bool
same_phi_alternatives(same_succ same_succ,basic_block bb1,basic_block bb2)1315 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1316 {
1317   unsigned int s;
1318   bitmap_iterator bs;
1319   edge e1, e2;
1320   basic_block succ;
1321 
1322   EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1323     {
1324       succ = BASIC_BLOCK_FOR_FN (cfun, s);
1325       e1 = find_edge (bb1, succ);
1326       e2 = find_edge (bb2, succ);
1327       if (e1->flags & EDGE_COMPLEX
1328 	  || e2->flags & EDGE_COMPLEX)
1329 	return false;
1330 
1331       /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1332 	 the same value.  */
1333       if (!same_phi_alternatives_1 (succ, e1, e2))
1334 	return false;
1335     }
1336 
1337   return true;
1338 }
1339 
1340 /* Return true if BB has non-vop phis.  */
1341 
1342 static bool
bb_has_non_vop_phi(basic_block bb)1343 bb_has_non_vop_phi (basic_block bb)
1344 {
1345   gimple_seq phis = phi_nodes (bb);
1346   gimple phi;
1347 
1348   if (phis == NULL)
1349     return false;
1350 
1351   if (!gimple_seq_singleton_p (phis))
1352     return true;
1353 
1354   phi = gimple_seq_first_stmt (phis);
1355   return !virtual_operand_p (gimple_phi_result (phi));
1356 }
1357 
1358 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1359    invariant that uses in FROM are dominates by their defs.  */
1360 
1361 static bool
deps_ok_for_redirect_from_bb_to_bb(basic_block from,basic_block to)1362 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1363 {
1364   basic_block cd, dep_bb = BB_DEP_BB (to);
1365   edge_iterator ei;
1366   edge e;
1367   bitmap from_preds = BITMAP_ALLOC (NULL);
1368 
1369   if (dep_bb == NULL)
1370     return true;
1371 
1372   FOR_EACH_EDGE (e, ei, from->preds)
1373     bitmap_set_bit (from_preds, e->src->index);
1374   cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1375   BITMAP_FREE (from_preds);
1376 
1377   return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1378 }
1379 
1380 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1381    replacement bb) and vice versa maintains the invariant that uses in the
1382    replacement are dominates by their defs.  */
1383 
1384 static bool
deps_ok_for_redirect(basic_block bb1,basic_block bb2)1385 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1386 {
1387   if (BB_CLUSTER (bb1) != NULL)
1388     bb1 = BB_CLUSTER (bb1)->rep_bb;
1389 
1390   if (BB_CLUSTER (bb2) != NULL)
1391     bb2 = BB_CLUSTER (bb2)->rep_bb;
1392 
1393   return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1394 	  && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1395 }
1396 
1397 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged.  */
1398 
1399 static void
find_clusters_1(same_succ same_succ)1400 find_clusters_1 (same_succ same_succ)
1401 {
1402   basic_block bb1, bb2;
1403   unsigned int i, j;
1404   bitmap_iterator bi, bj;
1405   int nr_comparisons;
1406   int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1407 
1408   EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1409     {
1410       bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1411 
1412       /* TODO: handle blocks with phi-nodes.  We'll have to find corresponding
1413 	 phi-nodes in bb1 and bb2, with the same alternatives for the same
1414 	 preds.  */
1415       if (bb_has_non_vop_phi (bb1))
1416 	continue;
1417 
1418       nr_comparisons = 0;
1419       EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1420 	{
1421 	  bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1422 
1423 	  if (bb_has_non_vop_phi (bb2))
1424 	    continue;
1425 
1426 	  if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1427 	    continue;
1428 
1429 	  /* Limit quadratic behaviour.  */
1430 	  nr_comparisons++;
1431 	  if (nr_comparisons > max_comparisons)
1432 	    break;
1433 
1434 	  /* This is a conservative dependency check.  We could test more
1435 	     precise for allowed replacement direction.  */
1436 	  if (!deps_ok_for_redirect (bb1, bb2))
1437 	    continue;
1438 
1439 	  if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1440 	    continue;
1441 
1442 	  find_duplicate (same_succ, bb1, bb2);
1443         }
1444     }
1445 }
1446 
1447 /* Find clusters of bbs which can be merged.  */
1448 
1449 static void
find_clusters(void)1450 find_clusters (void)
1451 {
1452   same_succ same;
1453 
1454   while (!worklist.is_empty ())
1455     {
1456       same = worklist.pop ();
1457       same->in_worklist = false;
1458       if (dump_file && (dump_flags & TDF_DETAILS))
1459 	{
1460 	  fprintf (dump_file, "processing worklist entry\n");
1461 	  same_succ_print (dump_file, same);
1462 	}
1463       find_clusters_1 (same);
1464     }
1465 }
1466 
1467 /* Returns the vop phi of BB, if any.  */
1468 
1469 static gimple
vop_phi(basic_block bb)1470 vop_phi (basic_block bb)
1471 {
1472   gimple stmt;
1473   gimple_stmt_iterator gsi;
1474   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1475     {
1476       stmt = gsi_stmt (gsi);
1477       if (! virtual_operand_p (gimple_phi_result (stmt)))
1478 	continue;
1479       return stmt;
1480     }
1481   return NULL;
1482 }
1483 
1484 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed.  */
1485 
1486 static void
replace_block_by(basic_block bb1,basic_block bb2)1487 replace_block_by (basic_block bb1, basic_block bb2)
1488 {
1489   edge pred_edge;
1490   edge e1, e2;
1491   edge_iterator ei;
1492   unsigned int i;
1493   gimple bb2_phi;
1494 
1495   bb2_phi = vop_phi (bb2);
1496 
1497   /* Mark the basic block as deleted.  */
1498   mark_basic_block_deleted (bb1);
1499 
1500   /* Redirect the incoming edges of bb1 to bb2.  */
1501   for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1502     {
1503       pred_edge = EDGE_PRED (bb1, i - 1);
1504       pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1505       gcc_assert (pred_edge != NULL);
1506 
1507       if (bb2_phi == NULL)
1508 	continue;
1509 
1510       /* The phi might have run out of capacity when the redirect added an
1511 	 argument, which means it could have been replaced.  Refresh it.  */
1512       bb2_phi = vop_phi (bb2);
1513 
1514       add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1515 		   pred_edge, UNKNOWN_LOCATION);
1516     }
1517 
1518   bb2->frequency += bb1->frequency;
1519   if (bb2->frequency > BB_FREQ_MAX)
1520     bb2->frequency = BB_FREQ_MAX;
1521 
1522   bb2->count += bb1->count;
1523 
1524   /* Merge the outgoing edge counts from bb1 onto bb2.  */
1525   gcov_type out_sum = 0;
1526   FOR_EACH_EDGE (e1, ei, bb1->succs)
1527     {
1528       e2 = find_edge (bb2, e1->dest);
1529       gcc_assert (e2);
1530       e2->count += e1->count;
1531       out_sum += e2->count;
1532     }
1533   /* Recompute the edge probabilities from the new merged edge count.
1534      Use the sum of the new merged edge counts computed above instead
1535      of bb2's merged count, in case there are profile count insanities
1536      making the bb count inconsistent with the edge weights.  */
1537   FOR_EACH_EDGE (e2, ei, bb2->succs)
1538     {
1539       e2->probability = GCOV_COMPUTE_SCALE (e2->count, out_sum);
1540     }
1541 
1542   /* Do updates that use bb1, before deleting bb1.  */
1543   release_last_vdef (bb1);
1544   same_succ_flush_bb (bb1);
1545 
1546   delete_basic_block (bb1);
1547 }
1548 
1549 /* Bbs for which update_debug_stmt need to be called.  */
1550 
1551 static bitmap update_bbs;
1552 
1553 /* For each cluster in all_clusters, merge all cluster->bbs.  Returns
1554    number of bbs removed.  */
1555 
1556 static int
apply_clusters(void)1557 apply_clusters (void)
1558 {
1559   basic_block bb1, bb2;
1560   bb_cluster c;
1561   unsigned int i, j;
1562   bitmap_iterator bj;
1563   int nr_bbs_removed = 0;
1564 
1565   for (i = 0; i < all_clusters.length (); ++i)
1566     {
1567       c = all_clusters[i];
1568       if (c == NULL)
1569 	continue;
1570 
1571       bb2 = c->rep_bb;
1572       bitmap_set_bit (update_bbs, bb2->index);
1573 
1574       bitmap_clear_bit (c->bbs, bb2->index);
1575       EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1576 	{
1577 	  bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1578 	  bitmap_clear_bit (update_bbs, bb1->index);
1579 
1580 	  replace_block_by (bb1, bb2);
1581 	  nr_bbs_removed++;
1582 	}
1583     }
1584 
1585   return nr_bbs_removed;
1586 }
1587 
1588 /* Resets debug statement STMT if it has uses that are not dominated by their
1589    defs.  */
1590 
1591 static void
update_debug_stmt(gimple stmt)1592 update_debug_stmt (gimple stmt)
1593 {
1594   use_operand_p use_p;
1595   ssa_op_iter oi;
1596   basic_block bbdef, bbuse;
1597   gimple def_stmt;
1598   tree name;
1599 
1600   if (!gimple_debug_bind_p (stmt))
1601     return;
1602 
1603   bbuse = gimple_bb (stmt);
1604   FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1605     {
1606       name = USE_FROM_PTR (use_p);
1607       gcc_assert (TREE_CODE (name) == SSA_NAME);
1608 
1609       def_stmt = SSA_NAME_DEF_STMT (name);
1610       gcc_assert (def_stmt != NULL);
1611 
1612       bbdef = gimple_bb (def_stmt);
1613       if (bbdef == NULL || bbuse == bbdef
1614 	  || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1615 	continue;
1616 
1617       gimple_debug_bind_reset_value (stmt);
1618       update_stmt (stmt);
1619     }
1620 }
1621 
1622 /* Resets all debug statements that have uses that are not
1623    dominated by their defs.  */
1624 
1625 static void
update_debug_stmts(void)1626 update_debug_stmts (void)
1627 {
1628   basic_block bb;
1629   bitmap_iterator bi;
1630   unsigned int i;
1631 
1632   EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1633     {
1634       gimple stmt;
1635       gimple_stmt_iterator gsi;
1636 
1637       bb = BASIC_BLOCK_FOR_FN (cfun, i);
1638       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1639 	{
1640 	  stmt = gsi_stmt (gsi);
1641 	  if (!is_gimple_debug (stmt))
1642 	    continue;
1643 	  update_debug_stmt (stmt);
1644 	}
1645     }
1646 }
1647 
1648 /* Runs tail merge optimization.  */
1649 
1650 unsigned int
tail_merge_optimize(unsigned int todo)1651 tail_merge_optimize (unsigned int todo)
1652 {
1653   int nr_bbs_removed_total = 0;
1654   int nr_bbs_removed;
1655   bool loop_entered = false;
1656   int iteration_nr = 0;
1657   int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1658 
1659   if (!flag_tree_tail_merge
1660       || max_iterations == 0
1661       /* We try to be conservative with respect to loop structure, since:
1662 	 - the cases where tail-merging could both affect loop structure and be
1663 	   beneficial are rare,
1664 	 - it prevents us from having to fixup the loops using
1665 	   loops_state_set (LOOPS_NEED_FIXUP), and
1666 	 - keeping loop structure may allow us to simplify the pass.
1667 	 In order to be conservative, we need loop information.	 In rare cases
1668 	 (about 7 test-cases in the g++ testsuite) there is none (because
1669 	 loop_optimizer_finalize has been called before tail-merge, and
1670 	 PROP_loops is not set), so we bail out.  */
1671       || current_loops == NULL)
1672     return 0;
1673 
1674   timevar_push (TV_TREE_TAIL_MERGE);
1675 
1676   if (!dom_info_available_p (CDI_DOMINATORS))
1677     {
1678       /* PRE can leave us with unreachable blocks, remove them now.  */
1679       delete_unreachable_blocks ();
1680       calculate_dominance_info (CDI_DOMINATORS);
1681     }
1682   init_worklist ();
1683 
1684   while (!worklist.is_empty ())
1685     {
1686       if (!loop_entered)
1687 	{
1688 	  loop_entered = true;
1689 	  alloc_cluster_vectors ();
1690 	  update_bbs = BITMAP_ALLOC (NULL);
1691 	}
1692       else
1693 	reset_cluster_vectors ();
1694 
1695       iteration_nr++;
1696       if (dump_file && (dump_flags & TDF_DETAILS))
1697 	fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1698 
1699       find_clusters ();
1700       gcc_assert (worklist.is_empty ());
1701       if (all_clusters.is_empty ())
1702 	break;
1703 
1704       nr_bbs_removed = apply_clusters ();
1705       nr_bbs_removed_total += nr_bbs_removed;
1706       if (nr_bbs_removed == 0)
1707 	break;
1708 
1709       free_dominance_info (CDI_DOMINATORS);
1710 
1711       if (iteration_nr == max_iterations)
1712 	break;
1713 
1714       calculate_dominance_info (CDI_DOMINATORS);
1715       update_worklist ();
1716     }
1717 
1718   if (dump_file && (dump_flags & TDF_DETAILS))
1719     fprintf (dump_file, "htab collision / search: %f\n",
1720 	     same_succ_htab.collisions ());
1721 
1722   if (nr_bbs_removed_total > 0)
1723     {
1724       if (MAY_HAVE_DEBUG_STMTS)
1725 	{
1726 	  calculate_dominance_info (CDI_DOMINATORS);
1727 	  update_debug_stmts ();
1728 	}
1729 
1730       if (dump_file && (dump_flags & TDF_DETAILS))
1731 	{
1732 	  fprintf (dump_file, "Before TODOs.\n");
1733 	  dump_function_to_file (current_function_decl, dump_file, dump_flags);
1734 	}
1735 
1736       todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow);
1737       mark_virtual_operands_for_renaming (cfun);
1738     }
1739 
1740   delete_worklist ();
1741   if (loop_entered)
1742     {
1743       delete_cluster_vectors ();
1744       BITMAP_FREE (update_bbs);
1745     }
1746 
1747   timevar_pop (TV_TREE_TAIL_MERGE);
1748 
1749   return todo;
1750 }
1751