1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package fmt
6
7import (
8	"errors"
9	"io"
10	"math"
11	"os"
12	"reflect"
13	"strconv"
14	"unicode/utf8"
15)
16
17// runeUnreader is the interface to something that can unread runes.
18// If the object provided to Scan does not satisfy this interface,
19// a local buffer will be used to back up the input, but its contents
20// will be lost when Scan returns.
21type runeUnreader interface {
22	UnreadRune() error
23}
24
25// ScanState represents the scanner state passed to custom scanners.
26// Scanners may do rune-at-a-time scanning or ask the ScanState
27// to discover the next space-delimited token.
28type ScanState interface {
29	// ReadRune reads the next rune (Unicode code point) from the input.
30	// If invoked during Scanln, Fscanln, or Sscanln, ReadRune() will
31	// return EOF after returning the first '\n' or when reading beyond
32	// the specified width.
33	ReadRune() (r rune, size int, err error)
34	// UnreadRune causes the next call to ReadRune to return the same rune.
35	UnreadRune() error
36	// SkipSpace skips space in the input. Newlines are treated as space
37	// unless the scan operation is Scanln, Fscanln or Sscanln, in which case
38	// a newline is treated as EOF.
39	SkipSpace()
40	// Token skips space in the input if skipSpace is true, then returns the
41	// run of Unicode code points c satisfying f(c).  If f is nil,
42	// !unicode.IsSpace(c) is used; that is, the token will hold non-space
43	// characters.  Newlines are treated as space unless the scan operation
44	// is Scanln, Fscanln or Sscanln, in which case a newline is treated as
45	// EOF.  The returned slice points to shared data that may be overwritten
46	// by the next call to Token, a call to a Scan function using the ScanState
47	// as input, or when the calling Scan method returns.
48	Token(skipSpace bool, f func(rune) bool) (token []byte, err error)
49	// Width returns the value of the width option and whether it has been set.
50	// The unit is Unicode code points.
51	Width() (wid int, ok bool)
52	// Because ReadRune is implemented by the interface, Read should never be
53	// called by the scanning routines and a valid implementation of
54	// ScanState may choose always to return an error from Read.
55	Read(buf []byte) (n int, err error)
56}
57
58// Scanner is implemented by any value that has a Scan method, which scans
59// the input for the representation of a value and stores the result in the
60// receiver, which must be a pointer to be useful.  The Scan method is called
61// for any argument to Scan, Scanf, or Scanln that implements it.
62type Scanner interface {
63	Scan(state ScanState, verb rune) error
64}
65
66// Scan scans text read from standard input, storing successive
67// space-separated values into successive arguments.  Newlines count
68// as space.  It returns the number of items successfully scanned.
69// If that is less than the number of arguments, err will report why.
70func Scan(a ...interface{}) (n int, err error) {
71	return Fscan(os.Stdin, a...)
72}
73
74// Scanln is similar to Scan, but stops scanning at a newline and
75// after the final item there must be a newline or EOF.
76func Scanln(a ...interface{}) (n int, err error) {
77	return Fscanln(os.Stdin, a...)
78}
79
80// Scanf scans text read from standard input, storing successive
81// space-separated values into successive arguments as determined by
82// the format.  It returns the number of items successfully scanned.
83func Scanf(format string, a ...interface{}) (n int, err error) {
84	return Fscanf(os.Stdin, format, a...)
85}
86
87type stringReader string
88
89func (r *stringReader) Read(b []byte) (n int, err error) {
90	n = copy(b, *r)
91	*r = (*r)[n:]
92	if n == 0 {
93		err = io.EOF
94	}
95	return
96}
97
98// Sscan scans the argument string, storing successive space-separated
99// values into successive arguments.  Newlines count as space.  It
100// returns the number of items successfully scanned.  If that is less
101// than the number of arguments, err will report why.
102func Sscan(str string, a ...interface{}) (n int, err error) {
103	return Fscan((*stringReader)(&str), a...)
104}
105
106// Sscanln is similar to Sscan, but stops scanning at a newline and
107// after the final item there must be a newline or EOF.
108func Sscanln(str string, a ...interface{}) (n int, err error) {
109	return Fscanln((*stringReader)(&str), a...)
110}
111
112// Sscanf scans the argument string, storing successive space-separated
113// values into successive arguments as determined by the format.  It
114// returns the number of items successfully parsed.
115func Sscanf(str string, format string, a ...interface{}) (n int, err error) {
116	return Fscanf((*stringReader)(&str), format, a...)
117}
118
119// Fscan scans text read from r, storing successive space-separated
120// values into successive arguments.  Newlines count as space.  It
121// returns the number of items successfully scanned.  If that is less
122// than the number of arguments, err will report why.
123func Fscan(r io.Reader, a ...interface{}) (n int, err error) {
124	s, old := newScanState(r, true, false)
125	n, err = s.doScan(a)
126	s.free(old)
127	return
128}
129
130// Fscanln is similar to Fscan, but stops scanning at a newline and
131// after the final item there must be a newline or EOF.
132func Fscanln(r io.Reader, a ...interface{}) (n int, err error) {
133	s, old := newScanState(r, false, true)
134	n, err = s.doScan(a)
135	s.free(old)
136	return
137}
138
139// Fscanf scans text read from r, storing successive space-separated
140// values into successive arguments as determined by the format.  It
141// returns the number of items successfully parsed.
142func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err error) {
143	s, old := newScanState(r, false, false)
144	n, err = s.doScanf(format, a)
145	s.free(old)
146	return
147}
148
149// scanError represents an error generated by the scanning software.
150// It's used as a unique signature to identify such errors when recovering.
151type scanError struct {
152	err error
153}
154
155const eof = -1
156
157// ss is the internal implementation of ScanState.
158type ss struct {
159	rr       io.RuneReader // where to read input
160	buf      buffer        // token accumulator
161	peekRune rune          // one-rune lookahead
162	prevRune rune          // last rune returned by ReadRune
163	count    int           // runes consumed so far.
164	atEOF    bool          // already read EOF
165	ssave
166}
167
168// ssave holds the parts of ss that need to be
169// saved and restored on recursive scans.
170type ssave struct {
171	validSave bool // is or was a part of an actual ss.
172	nlIsEnd   bool // whether newline terminates scan
173	nlIsSpace bool // whether newline counts as white space
174	argLimit  int  // max value of ss.count for this arg; argLimit <= limit
175	limit     int  // max value of ss.count.
176	maxWid    int  // width of this arg.
177}
178
179// The Read method is only in ScanState so that ScanState
180// satisfies io.Reader. It will never be called when used as
181// intended, so there is no need to make it actually work.
182func (s *ss) Read(buf []byte) (n int, err error) {
183	return 0, errors.New("ScanState's Read should not be called. Use ReadRune")
184}
185
186func (s *ss) ReadRune() (r rune, size int, err error) {
187	if s.peekRune >= 0 {
188		s.count++
189		r = s.peekRune
190		size = utf8.RuneLen(r)
191		s.prevRune = r
192		s.peekRune = -1
193		return
194	}
195	if s.atEOF || s.nlIsEnd && s.prevRune == '\n' || s.count >= s.argLimit {
196		err = io.EOF
197		return
198	}
199
200	r, size, err = s.rr.ReadRune()
201	if err == nil {
202		s.count++
203		s.prevRune = r
204	} else if err == io.EOF {
205		s.atEOF = true
206	}
207	return
208}
209
210func (s *ss) Width() (wid int, ok bool) {
211	if s.maxWid == hugeWid {
212		return 0, false
213	}
214	return s.maxWid, true
215}
216
217// The public method returns an error; this private one panics.
218// If getRune reaches EOF, the return value is EOF (-1).
219func (s *ss) getRune() (r rune) {
220	r, _, err := s.ReadRune()
221	if err != nil {
222		if err == io.EOF {
223			return eof
224		}
225		s.error(err)
226	}
227	return
228}
229
230// mustReadRune turns io.EOF into a panic(io.ErrUnexpectedEOF).
231// It is called in cases such as string scanning where an EOF is a
232// syntax error.
233func (s *ss) mustReadRune() (r rune) {
234	r = s.getRune()
235	if r == eof {
236		s.error(io.ErrUnexpectedEOF)
237	}
238	return
239}
240
241func (s *ss) UnreadRune() error {
242	if u, ok := s.rr.(runeUnreader); ok {
243		u.UnreadRune()
244	} else {
245		s.peekRune = s.prevRune
246	}
247	s.prevRune = -1
248	s.count--
249	return nil
250}
251
252func (s *ss) error(err error) {
253	panic(scanError{err})
254}
255
256func (s *ss) errorString(err string) {
257	panic(scanError{errors.New(err)})
258}
259
260func (s *ss) Token(skipSpace bool, f func(rune) bool) (tok []byte, err error) {
261	defer func() {
262		if e := recover(); e != nil {
263			if se, ok := e.(scanError); ok {
264				err = se.err
265			} else {
266				panic(e)
267			}
268		}
269	}()
270	if f == nil {
271		f = notSpace
272	}
273	s.buf = s.buf[:0]
274	tok = s.token(skipSpace, f)
275	return
276}
277
278// space is a copy of the unicode.White_Space ranges,
279// to avoid depending on package unicode.
280var space = [][2]uint16{
281	{0x0009, 0x000d},
282	{0x0020, 0x0020},
283	{0x0085, 0x0085},
284	{0x00a0, 0x00a0},
285	{0x1680, 0x1680},
286	{0x180e, 0x180e},
287	{0x2000, 0x200a},
288	{0x2028, 0x2029},
289	{0x202f, 0x202f},
290	{0x205f, 0x205f},
291	{0x3000, 0x3000},
292}
293
294func isSpace(r rune) bool {
295	if r >= 1<<16 {
296		return false
297	}
298	rx := uint16(r)
299	for _, rng := range space {
300		if rx < rng[0] {
301			return false
302		}
303		if rx <= rng[1] {
304			return true
305		}
306	}
307	return false
308}
309
310// notSpace is the default scanning function used in Token.
311func notSpace(r rune) bool {
312	return !isSpace(r)
313}
314
315// SkipSpace provides Scan methods the ability to skip space and newline
316// characters in keeping with the current scanning mode set by format strings
317// and Scan/Scanln.
318func (s *ss) SkipSpace() {
319	s.skipSpace(false)
320}
321
322// readRune is a structure to enable reading UTF-8 encoded code points
323// from an io.Reader.  It is used if the Reader given to the scanner does
324// not already implement io.RuneReader.
325type readRune struct {
326	reader  io.Reader
327	buf     [utf8.UTFMax]byte // used only inside ReadRune
328	pending int               // number of bytes in pendBuf; only >0 for bad UTF-8
329	pendBuf [utf8.UTFMax]byte // bytes left over
330}
331
332// readByte returns the next byte from the input, which may be
333// left over from a previous read if the UTF-8 was ill-formed.
334func (r *readRune) readByte() (b byte, err error) {
335	if r.pending > 0 {
336		b = r.pendBuf[0]
337		copy(r.pendBuf[0:], r.pendBuf[1:])
338		r.pending--
339		return
340	}
341	n, err := io.ReadFull(r.reader, r.pendBuf[0:1])
342	if n != 1 {
343		return 0, err
344	}
345	return r.pendBuf[0], err
346}
347
348// unread saves the bytes for the next read.
349func (r *readRune) unread(buf []byte) {
350	copy(r.pendBuf[r.pending:], buf)
351	r.pending += len(buf)
352}
353
354// ReadRune returns the next UTF-8 encoded code point from the
355// io.Reader inside r.
356func (r *readRune) ReadRune() (rr rune, size int, err error) {
357	r.buf[0], err = r.readByte()
358	if err != nil {
359		return 0, 0, err
360	}
361	if r.buf[0] < utf8.RuneSelf { // fast check for common ASCII case
362		rr = rune(r.buf[0])
363		return
364	}
365	var n int
366	for n = 1; !utf8.FullRune(r.buf[0:n]); n++ {
367		r.buf[n], err = r.readByte()
368		if err != nil {
369			if err == io.EOF {
370				err = nil
371				break
372			}
373			return
374		}
375	}
376	rr, size = utf8.DecodeRune(r.buf[0:n])
377	if size < n { // an error
378		r.unread(r.buf[size:n])
379	}
380	return
381}
382
383var ssFree = newCache(func() interface{} { return new(ss) })
384
385// newScanState allocates a new ss struct or grab a cached one.
386func newScanState(r io.Reader, nlIsSpace, nlIsEnd bool) (s *ss, old ssave) {
387	// If the reader is a *ss, then we've got a recursive
388	// call to Scan, so re-use the scan state.
389	s, ok := r.(*ss)
390	if ok {
391		old = s.ssave
392		s.limit = s.argLimit
393		s.nlIsEnd = nlIsEnd || s.nlIsEnd
394		s.nlIsSpace = nlIsSpace
395		return
396	}
397
398	s = ssFree.get().(*ss)
399	if rr, ok := r.(io.RuneReader); ok {
400		s.rr = rr
401	} else {
402		s.rr = &readRune{reader: r}
403	}
404	s.nlIsSpace = nlIsSpace
405	s.nlIsEnd = nlIsEnd
406	s.prevRune = -1
407	s.peekRune = -1
408	s.atEOF = false
409	s.limit = hugeWid
410	s.argLimit = hugeWid
411	s.maxWid = hugeWid
412	s.validSave = true
413	s.count = 0
414	return
415}
416
417// free saves used ss structs in ssFree; avoid an allocation per invocation.
418func (s *ss) free(old ssave) {
419	// If it was used recursively, just restore the old state.
420	if old.validSave {
421		s.ssave = old
422		return
423	}
424	// Don't hold on to ss structs with large buffers.
425	if cap(s.buf) > 1024 {
426		return
427	}
428	s.buf = s.buf[:0]
429	s.rr = nil
430	ssFree.put(s)
431}
432
433// skipSpace skips spaces and maybe newlines.
434func (s *ss) skipSpace(stopAtNewline bool) {
435	for {
436		r := s.getRune()
437		if r == eof {
438			return
439		}
440		if r == '\r' && s.peek("\n") {
441			continue
442		}
443		if r == '\n' {
444			if stopAtNewline {
445				break
446			}
447			if s.nlIsSpace {
448				continue
449			}
450			s.errorString("unexpected newline")
451			return
452		}
453		if !isSpace(r) {
454			s.UnreadRune()
455			break
456		}
457	}
458}
459
460// token returns the next space-delimited string from the input.  It
461// skips white space.  For Scanln, it stops at newlines.  For Scan,
462// newlines are treated as spaces.
463func (s *ss) token(skipSpace bool, f func(rune) bool) []byte {
464	if skipSpace {
465		s.skipSpace(false)
466	}
467	// read until white space or newline
468	for {
469		r := s.getRune()
470		if r == eof {
471			break
472		}
473		if !f(r) {
474			s.UnreadRune()
475			break
476		}
477		s.buf.WriteRune(r)
478	}
479	return s.buf
480}
481
482var complexError = errors.New("syntax error scanning complex number")
483var boolError = errors.New("syntax error scanning boolean")
484
485func indexRune(s string, r rune) int {
486	for i, c := range s {
487		if c == r {
488			return i
489		}
490	}
491	return -1
492}
493
494// consume reads the next rune in the input and reports whether it is in the ok string.
495// If accept is true, it puts the character into the input token.
496func (s *ss) consume(ok string, accept bool) bool {
497	r := s.getRune()
498	if r == eof {
499		return false
500	}
501	if indexRune(ok, r) >= 0 {
502		if accept {
503			s.buf.WriteRune(r)
504		}
505		return true
506	}
507	if r != eof && accept {
508		s.UnreadRune()
509	}
510	return false
511}
512
513// peek reports whether the next character is in the ok string, without consuming it.
514func (s *ss) peek(ok string) bool {
515	r := s.getRune()
516	if r != eof {
517		s.UnreadRune()
518	}
519	return indexRune(ok, r) >= 0
520}
521
522func (s *ss) notEOF() {
523	// Guarantee there is data to be read.
524	if r := s.getRune(); r == eof {
525		panic(io.EOF)
526	}
527	s.UnreadRune()
528}
529
530// accept checks the next rune in the input.  If it's a byte (sic) in the string, it puts it in the
531// buffer and returns true. Otherwise it return false.
532func (s *ss) accept(ok string) bool {
533	return s.consume(ok, true)
534}
535
536// okVerb verifies that the verb is present in the list, setting s.err appropriately if not.
537func (s *ss) okVerb(verb rune, okVerbs, typ string) bool {
538	for _, v := range okVerbs {
539		if v == verb {
540			return true
541		}
542	}
543	s.errorString("bad verb %" + string(verb) + " for " + typ)
544	return false
545}
546
547// scanBool returns the value of the boolean represented by the next token.
548func (s *ss) scanBool(verb rune) bool {
549	s.skipSpace(false)
550	s.notEOF()
551	if !s.okVerb(verb, "tv", "boolean") {
552		return false
553	}
554	// Syntax-checking a boolean is annoying.  We're not fastidious about case.
555	switch s.getRune() {
556	case '0':
557		return false
558	case '1':
559		return true
560	case 't', 'T':
561		if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) {
562			s.error(boolError)
563		}
564		return true
565	case 'f', 'F':
566		if s.accept("aA") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) {
567			s.error(boolError)
568		}
569		return false
570	}
571	return false
572}
573
574// Numerical elements
575const (
576	binaryDigits      = "01"
577	octalDigits       = "01234567"
578	decimalDigits     = "0123456789"
579	hexadecimalDigits = "0123456789aAbBcCdDeEfF"
580	sign              = "+-"
581	period            = "."
582	exponent          = "eEp"
583)
584
585// getBase returns the numeric base represented by the verb and its digit string.
586func (s *ss) getBase(verb rune) (base int, digits string) {
587	s.okVerb(verb, "bdoUxXv", "integer") // sets s.err
588	base = 10
589	digits = decimalDigits
590	switch verb {
591	case 'b':
592		base = 2
593		digits = binaryDigits
594	case 'o':
595		base = 8
596		digits = octalDigits
597	case 'x', 'X', 'U':
598		base = 16
599		digits = hexadecimalDigits
600	}
601	return
602}
603
604// scanNumber returns the numerical string with specified digits starting here.
605func (s *ss) scanNumber(digits string, haveDigits bool) string {
606	if !haveDigits {
607		s.notEOF()
608		if !s.accept(digits) {
609			s.errorString("expected integer")
610		}
611	}
612	for s.accept(digits) {
613	}
614	return string(s.buf)
615}
616
617// scanRune returns the next rune value in the input.
618func (s *ss) scanRune(bitSize int) int64 {
619	s.notEOF()
620	r := int64(s.getRune())
621	n := uint(bitSize)
622	x := (r << (64 - n)) >> (64 - n)
623	if x != r {
624		s.errorString("overflow on character value " + string(r))
625	}
626	return r
627}
628
629// scanBasePrefix reports whether the integer begins with a 0 or 0x,
630// and returns the base, digit string, and whether a zero was found.
631// It is called only if the verb is %v.
632func (s *ss) scanBasePrefix() (base int, digits string, found bool) {
633	if !s.peek("0") {
634		return 10, decimalDigits, false
635	}
636	s.accept("0")
637	found = true // We've put a digit into the token buffer.
638	// Special cases for '0' && '0x'
639	base, digits = 8, octalDigits
640	if s.peek("xX") {
641		s.consume("xX", false)
642		base, digits = 16, hexadecimalDigits
643	}
644	return
645}
646
647// scanInt returns the value of the integer represented by the next
648// token, checking for overflow.  Any error is stored in s.err.
649func (s *ss) scanInt(verb rune, bitSize int) int64 {
650	if verb == 'c' {
651		return s.scanRune(bitSize)
652	}
653	s.skipSpace(false)
654	s.notEOF()
655	base, digits := s.getBase(verb)
656	haveDigits := false
657	if verb == 'U' {
658		if !s.consume("U", false) || !s.consume("+", false) {
659			s.errorString("bad unicode format ")
660		}
661	} else {
662		s.accept(sign) // If there's a sign, it will be left in the token buffer.
663		if verb == 'v' {
664			base, digits, haveDigits = s.scanBasePrefix()
665		}
666	}
667	tok := s.scanNumber(digits, haveDigits)
668	i, err := strconv.ParseInt(tok, base, 64)
669	if err != nil {
670		s.error(err)
671	}
672	n := uint(bitSize)
673	x := (i << (64 - n)) >> (64 - n)
674	if x != i {
675		s.errorString("integer overflow on token " + tok)
676	}
677	return i
678}
679
680// scanUint returns the value of the unsigned integer represented
681// by the next token, checking for overflow.  Any error is stored in s.err.
682func (s *ss) scanUint(verb rune, bitSize int) uint64 {
683	if verb == 'c' {
684		return uint64(s.scanRune(bitSize))
685	}
686	s.skipSpace(false)
687	s.notEOF()
688	base, digits := s.getBase(verb)
689	haveDigits := false
690	if verb == 'U' {
691		if !s.consume("U", false) || !s.consume("+", false) {
692			s.errorString("bad unicode format ")
693		}
694	} else if verb == 'v' {
695		base, digits, haveDigits = s.scanBasePrefix()
696	}
697	tok := s.scanNumber(digits, haveDigits)
698	i, err := strconv.ParseUint(tok, base, 64)
699	if err != nil {
700		s.error(err)
701	}
702	n := uint(bitSize)
703	x := (i << (64 - n)) >> (64 - n)
704	if x != i {
705		s.errorString("unsigned integer overflow on token " + tok)
706	}
707	return i
708}
709
710// floatToken returns the floating-point number starting here, no longer than swid
711// if the width is specified. It's not rigorous about syntax because it doesn't check that
712// we have at least some digits, but Atof will do that.
713func (s *ss) floatToken() string {
714	s.buf = s.buf[:0]
715	// NaN?
716	if s.accept("nN") && s.accept("aA") && s.accept("nN") {
717		return string(s.buf)
718	}
719	// leading sign?
720	s.accept(sign)
721	// Inf?
722	if s.accept("iI") && s.accept("nN") && s.accept("fF") {
723		return string(s.buf)
724	}
725	// digits?
726	for s.accept(decimalDigits) {
727	}
728	// decimal point?
729	if s.accept(period) {
730		// fraction?
731		for s.accept(decimalDigits) {
732		}
733	}
734	// exponent?
735	if s.accept(exponent) {
736		// leading sign?
737		s.accept(sign)
738		// digits?
739		for s.accept(decimalDigits) {
740		}
741	}
742	return string(s.buf)
743}
744
745// complexTokens returns the real and imaginary parts of the complex number starting here.
746// The number might be parenthesized and has the format (N+Ni) where N is a floating-point
747// number and there are no spaces within.
748func (s *ss) complexTokens() (real, imag string) {
749	// TODO: accept N and Ni independently?
750	parens := s.accept("(")
751	real = s.floatToken()
752	s.buf = s.buf[:0]
753	// Must now have a sign.
754	if !s.accept("+-") {
755		s.error(complexError)
756	}
757	// Sign is now in buffer
758	imagSign := string(s.buf)
759	imag = s.floatToken()
760	if !s.accept("i") {
761		s.error(complexError)
762	}
763	if parens && !s.accept(")") {
764		s.error(complexError)
765	}
766	return real, imagSign + imag
767}
768
769// convertFloat converts the string to a float64value.
770func (s *ss) convertFloat(str string, n int) float64 {
771	if p := indexRune(str, 'p'); p >= 0 {
772		// Atof doesn't handle power-of-2 exponents,
773		// but they're easy to evaluate.
774		f, err := strconv.ParseFloat(str[:p], n)
775		if err != nil {
776			// Put full string into error.
777			if e, ok := err.(*strconv.NumError); ok {
778				e.Num = str
779			}
780			s.error(err)
781		}
782		m, err := strconv.Atoi(str[p+1:])
783		if err != nil {
784			// Put full string into error.
785			if e, ok := err.(*strconv.NumError); ok {
786				e.Num = str
787			}
788			s.error(err)
789		}
790		return math.Ldexp(f, m)
791	}
792	f, err := strconv.ParseFloat(str, n)
793	if err != nil {
794		s.error(err)
795	}
796	return f
797}
798
799// convertComplex converts the next token to a complex128 value.
800// The atof argument is a type-specific reader for the underlying type.
801// If we're reading complex64, atof will parse float32s and convert them
802// to float64's to avoid reproducing this code for each complex type.
803func (s *ss) scanComplex(verb rune, n int) complex128 {
804	if !s.okVerb(verb, floatVerbs, "complex") {
805		return 0
806	}
807	s.skipSpace(false)
808	s.notEOF()
809	sreal, simag := s.complexTokens()
810	real := s.convertFloat(sreal, n/2)
811	imag := s.convertFloat(simag, n/2)
812	return complex(real, imag)
813}
814
815// convertString returns the string represented by the next input characters.
816// The format of the input is determined by the verb.
817func (s *ss) convertString(verb rune) (str string) {
818	if !s.okVerb(verb, "svqx", "string") {
819		return ""
820	}
821	s.skipSpace(false)
822	s.notEOF()
823	switch verb {
824	case 'q':
825		str = s.quotedString()
826	case 'x':
827		str = s.hexString()
828	default:
829		str = string(s.token(true, notSpace)) // %s and %v just return the next word
830	}
831	return
832}
833
834// quotedString returns the double- or back-quoted string represented by the next input characters.
835func (s *ss) quotedString() string {
836	s.notEOF()
837	quote := s.getRune()
838	switch quote {
839	case '`':
840		// Back-quoted: Anything goes until EOF or back quote.
841		for {
842			r := s.mustReadRune()
843			if r == quote {
844				break
845			}
846			s.buf.WriteRune(r)
847		}
848		return string(s.buf)
849	case '"':
850		// Double-quoted: Include the quotes and let strconv.Unquote do the backslash escapes.
851		s.buf.WriteRune(quote)
852		for {
853			r := s.mustReadRune()
854			s.buf.WriteRune(r)
855			if r == '\\' {
856				// In a legal backslash escape, no matter how long, only the character
857				// immediately after the escape can itself be a backslash or quote.
858				// Thus we only need to protect the first character after the backslash.
859				s.buf.WriteRune(s.mustReadRune())
860			} else if r == '"' {
861				break
862			}
863		}
864		result, err := strconv.Unquote(string(s.buf))
865		if err != nil {
866			s.error(err)
867		}
868		return result
869	default:
870		s.errorString("expected quoted string")
871	}
872	return ""
873}
874
875// hexDigit returns the value of the hexadecimal digit
876func (s *ss) hexDigit(d rune) int {
877	digit := int(d)
878	switch digit {
879	case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
880		return digit - '0'
881	case 'a', 'b', 'c', 'd', 'e', 'f':
882		return 10 + digit - 'a'
883	case 'A', 'B', 'C', 'D', 'E', 'F':
884		return 10 + digit - 'A'
885	}
886	s.errorString("illegal hex digit")
887	return 0
888}
889
890// hexByte returns the next hex-encoded (two-character) byte from the input.
891// There must be either two hexadecimal digits or a space character in the input.
892func (s *ss) hexByte() (b byte, ok bool) {
893	rune1 := s.getRune()
894	if rune1 == eof {
895		return
896	}
897	if isSpace(rune1) {
898		s.UnreadRune()
899		return
900	}
901	rune2 := s.mustReadRune()
902	return byte(s.hexDigit(rune1)<<4 | s.hexDigit(rune2)), true
903}
904
905// hexString returns the space-delimited hexpair-encoded string.
906func (s *ss) hexString() string {
907	s.notEOF()
908	for {
909		b, ok := s.hexByte()
910		if !ok {
911			break
912		}
913		s.buf.WriteByte(b)
914	}
915	if len(s.buf) == 0 {
916		s.errorString("no hex data for %x string")
917		return ""
918	}
919	return string(s.buf)
920}
921
922const floatVerbs = "beEfFgGv"
923
924const hugeWid = 1 << 30
925
926// scanOne scans a single value, deriving the scanner from the type of the argument.
927func (s *ss) scanOne(verb rune, arg interface{}) {
928	s.buf = s.buf[:0]
929	var err error
930	// If the parameter has its own Scan method, use that.
931	if v, ok := arg.(Scanner); ok {
932		err = v.Scan(s, verb)
933		if err != nil {
934			if err == io.EOF {
935				err = io.ErrUnexpectedEOF
936			}
937			s.error(err)
938		}
939		return
940	}
941
942	switch v := arg.(type) {
943	case *bool:
944		*v = s.scanBool(verb)
945	case *complex64:
946		*v = complex64(s.scanComplex(verb, 64))
947	case *complex128:
948		*v = s.scanComplex(verb, 128)
949	case *int:
950		*v = int(s.scanInt(verb, intBits))
951	case *int8:
952		*v = int8(s.scanInt(verb, 8))
953	case *int16:
954		*v = int16(s.scanInt(verb, 16))
955	case *int32:
956		*v = int32(s.scanInt(verb, 32))
957	case *int64:
958		*v = s.scanInt(verb, 64)
959	case *uint:
960		*v = uint(s.scanUint(verb, intBits))
961	case *uint8:
962		*v = uint8(s.scanUint(verb, 8))
963	case *uint16:
964		*v = uint16(s.scanUint(verb, 16))
965	case *uint32:
966		*v = uint32(s.scanUint(verb, 32))
967	case *uint64:
968		*v = s.scanUint(verb, 64)
969	case *uintptr:
970		*v = uintptr(s.scanUint(verb, uintptrBits))
971	// Floats are tricky because you want to scan in the precision of the result, not
972	// scan in high precision and convert, in order to preserve the correct error condition.
973	case *float32:
974		if s.okVerb(verb, floatVerbs, "float32") {
975			s.skipSpace(false)
976			s.notEOF()
977			*v = float32(s.convertFloat(s.floatToken(), 32))
978		}
979	case *float64:
980		if s.okVerb(verb, floatVerbs, "float64") {
981			s.skipSpace(false)
982			s.notEOF()
983			*v = s.convertFloat(s.floatToken(), 64)
984		}
985	case *string:
986		*v = s.convertString(verb)
987	case *[]byte:
988		// We scan to string and convert so we get a copy of the data.
989		// If we scanned to bytes, the slice would point at the buffer.
990		*v = []byte(s.convertString(verb))
991	default:
992		val := reflect.ValueOf(v)
993		ptr := val
994		if ptr.Kind() != reflect.Ptr {
995			s.errorString("type not a pointer: " + val.Type().String())
996			return
997		}
998		switch v := ptr.Elem(); v.Kind() {
999		case reflect.Bool:
1000			v.SetBool(s.scanBool(verb))
1001		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
1002			v.SetInt(s.scanInt(verb, v.Type().Bits()))
1003		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
1004			v.SetUint(s.scanUint(verb, v.Type().Bits()))
1005		case reflect.String:
1006			v.SetString(s.convertString(verb))
1007		case reflect.Slice:
1008			// For now, can only handle (renamed) []byte.
1009			typ := v.Type()
1010			if typ.Elem().Kind() != reflect.Uint8 {
1011				s.errorString("can't scan type: " + val.Type().String())
1012			}
1013			str := s.convertString(verb)
1014			v.Set(reflect.MakeSlice(typ, len(str), len(str)))
1015			for i := 0; i < len(str); i++ {
1016				v.Index(i).SetUint(uint64(str[i]))
1017			}
1018		case reflect.Float32, reflect.Float64:
1019			s.skipSpace(false)
1020			s.notEOF()
1021			v.SetFloat(s.convertFloat(s.floatToken(), v.Type().Bits()))
1022		case reflect.Complex64, reflect.Complex128:
1023			v.SetComplex(s.scanComplex(verb, v.Type().Bits()))
1024		default:
1025			s.errorString("can't scan type: " + val.Type().String())
1026		}
1027	}
1028}
1029
1030// errorHandler turns local panics into error returns.
1031func errorHandler(errp *error) {
1032	if e := recover(); e != nil {
1033		if se, ok := e.(scanError); ok { // catch local error
1034			*errp = se.err
1035		} else if eof, ok := e.(error); ok && eof == io.EOF { // out of input
1036			*errp = eof
1037		} else {
1038			panic(e)
1039		}
1040	}
1041}
1042
1043// doScan does the real work for scanning without a format string.
1044func (s *ss) doScan(a []interface{}) (numProcessed int, err error) {
1045	defer errorHandler(&err)
1046	for _, arg := range a {
1047		s.scanOne('v', arg)
1048		numProcessed++
1049	}
1050	// Check for newline if required.
1051	if !s.nlIsSpace {
1052		for {
1053			r := s.getRune()
1054			if r == '\n' || r == eof {
1055				break
1056			}
1057			if !isSpace(r) {
1058				s.errorString("expected newline")
1059				break
1060			}
1061		}
1062	}
1063	return
1064}
1065
1066// advance determines whether the next characters in the input match
1067// those of the format.  It returns the number of bytes (sic) consumed
1068// in the format. Newlines included, all runs of space characters in
1069// either input or format behave as a single space. This routine also
1070// handles the %% case.  If the return value is zero, either format
1071// starts with a % (with no following %) or the input is empty.
1072// If it is negative, the input did not match the string.
1073func (s *ss) advance(format string) (i int) {
1074	for i < len(format) {
1075		fmtc, w := utf8.DecodeRuneInString(format[i:])
1076		if fmtc == '%' {
1077			// %% acts like a real percent
1078			nextc, _ := utf8.DecodeRuneInString(format[i+w:]) // will not match % if string is empty
1079			if nextc != '%' {
1080				return
1081			}
1082			i += w // skip the first %
1083		}
1084		sawSpace := false
1085		for isSpace(fmtc) && i < len(format) {
1086			sawSpace = true
1087			i += w
1088			fmtc, w = utf8.DecodeRuneInString(format[i:])
1089		}
1090		if sawSpace {
1091			// There was space in the format, so there should be space (EOF)
1092			// in the input.
1093			inputc := s.getRune()
1094			if inputc == eof || inputc == '\n' {
1095				// If we've reached a newline, stop now; don't read ahead.
1096				return
1097			}
1098			if !isSpace(inputc) {
1099				// Space in format but not in input: error
1100				s.errorString("expected space in input to match format")
1101			}
1102			s.skipSpace(true)
1103			continue
1104		}
1105		inputc := s.mustReadRune()
1106		if fmtc != inputc {
1107			s.UnreadRune()
1108			return -1
1109		}
1110		i += w
1111	}
1112	return
1113}
1114
1115// doScanf does the real work when scanning with a format string.
1116//  At the moment, it handles only pointers to basic types.
1117func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err error) {
1118	defer errorHandler(&err)
1119	end := len(format) - 1
1120	// We process one item per non-trivial format
1121	for i := 0; i <= end; {
1122		w := s.advance(format[i:])
1123		if w > 0 {
1124			i += w
1125			continue
1126		}
1127		// Either we failed to advance, we have a percent character, or we ran out of input.
1128		if format[i] != '%' {
1129			// Can't advance format.  Why not?
1130			if w < 0 {
1131				s.errorString("input does not match format")
1132			}
1133			// Otherwise at EOF; "too many operands" error handled below
1134			break
1135		}
1136		i++ // % is one byte
1137
1138		// do we have 20 (width)?
1139		var widPresent bool
1140		s.maxWid, widPresent, i = parsenum(format, i, end)
1141		if !widPresent {
1142			s.maxWid = hugeWid
1143		}
1144		s.argLimit = s.limit
1145		if f := s.count + s.maxWid; f < s.argLimit {
1146			s.argLimit = f
1147		}
1148
1149		c, w := utf8.DecodeRuneInString(format[i:])
1150		i += w
1151
1152		if numProcessed >= len(a) { // out of operands
1153			s.errorString("too few operands for format %" + format[i-w:])
1154			break
1155		}
1156		arg := a[numProcessed]
1157
1158		s.scanOne(c, arg)
1159		numProcessed++
1160		s.argLimit = s.limit
1161	}
1162	if numProcessed < len(a) {
1163		s.errorString("too many operands")
1164	}
1165	return
1166}
1167