1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/param.h>
38 #if defined(LIBC_SCCS) && !defined(lint)
39 static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
40 #endif /* LIBC_SCCS and not lint */
41 #include <sys/cdefs.h>
42 
43 /*
44  * PACKAGE:  hashing
45  *
46  * DESCRIPTION:
47  *	Page manipulation for hashing package.
48  *
49  * ROUTINES:
50  *
51  * External
52  *	__get_page
53  *	__add_ovflpage
54  * Internal
55  *	overflow_page
56  *	open_temp
57  */
58 
59 #include <sys/types.h>
60 
61 #include <errno.h>
62 #include <fcntl.h>
63 #include <signal.h>
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <string.h>
67 #include <unistd.h>
68 #ifdef DEBUG
69 #include <assert.h>
70 #endif
71 
72 #include "db_local.h"
73 #include "hash.h"
74 #include "page.h"
75 #include "extern.h"
76 
77 static __uint32_t	*fetch_bitmap(HTAB *, int);
78 static __uint32_t	 first_free(__uint32_t);
79 static int	 open_temp(HTAB *);
80 static __uint16_t	 overflow_page(HTAB *);
81 static void	 putpair(char *, const DBT *, const DBT *);
82 static void	 squeeze_key(__uint16_t *, const DBT *, const DBT *);
83 static int	 ugly_split
84 (HTAB *, __uint32_t, BUFHEAD *, BUFHEAD *, int, int);
85 
86 #define	PAGE_INIT(P) { \
87 	((__uint16_t *)(P))[0] = 0; \
88 	((__uint16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(__uint16_t); \
89 	((__uint16_t *)(P))[2] = hashp->BSIZE; \
90 }
91 
92 /*
93  * This is called AFTER we have verified that there is room on the page for
94  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
95  * stuff on.
96  */
97 static void
putpair(p,key,val)98 putpair(p, key, val)
99 	char *p;
100 	const DBT *key, *val;
101 {
102 	__uint16_t *bp, n, off;
103 
104 	bp = (__uint16_t *)p;
105 
106 	/* Enter the key first. */
107 	n = bp[0];
108 
109 	off = OFFSET(bp) - key->size;
110 	memmove(p + off, key->data, key->size);
111 	bp[++n] = off;
112 
113 	/* Now the data. */
114 	off -= val->size;
115 	memmove(p + off, val->data, val->size);
116 	bp[++n] = off;
117 
118 	/* Adjust page info. */
119 	bp[0] = n;
120 	bp[n + 1] = off - ((n + 3) * sizeof(__uint16_t));
121 	bp[n + 2] = off;
122 }
123 
124 /*
125  * Returns:
126  *	 0 OK
127  *	-1 error
128  */
129 extern int
130 __delpair(hashp, bufp, ndx)
131 	HTAB *hashp;
132 	BUFHEAD *bufp;
133 	int ndx;
134 {
135 	__uint16_t *bp, newoff;
136 	int n;
137 	__uint16_t pairlen;
138 
139 	bp = (__uint16_t *)bufp->page;
140 	n = bp[0];
141 
142 	if (bp[ndx + 1] < REAL_KEY)
143 		return (__big_delete(hashp, bufp));
144 	if (ndx != 1)
145 		newoff = bp[ndx - 1];
146 	else
147 		newoff = hashp->BSIZE;
148 	pairlen = newoff - bp[ndx + 1];
149 
150 	if (ndx != (n - 1)) {
151 		/* Hard Case -- need to shuffle keys */
152 		int i;
153 		char *src = bufp->page + (int)OFFSET(bp);
154 		char *dst = src + (int)pairlen;
155 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
156 
157 		/* Now adjust the pointers */
158 		for (i = ndx + 2; i <= n; i += 2) {
159 			if (bp[i + 1] == OVFLPAGE) {
160 				bp[i - 2] = bp[i];
161 				bp[i - 1] = bp[i + 1];
162 			} else {
163 				bp[i - 2] = bp[i] + pairlen;
164 				bp[i - 1] = bp[i + 1] + pairlen;
165 			}
166 		}
167 	}
168 	/* Finally adjust the page data */
169 	bp[n] = OFFSET(bp) + pairlen;
170 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(__uint16_t);
171 	bp[0] = n - 2;
172 	hashp->NKEYS--;
173 
174 	bufp->flags |= BUF_MOD;
175 	return (0);
176 }
177 /*
178  * Returns:
179  *	 0 ==> OK
180  *	-1 ==> Error
181  */
182 extern int
183 __split_page(hashp, obucket, nbucket)
184 	HTAB *hashp;
185 	__uint32_t obucket, nbucket;
186 {
187 	BUFHEAD *new_bufp, *old_bufp;
188 	__uint16_t *ino;
189 	char *np;
190 	DBT key, val;
191 	int n, ndx, retval;
192 	__uint16_t copyto, diff, off, moved;
193 	char *op;
194 
195 	copyto = (__uint16_t)hashp->BSIZE;
196 	off = (__uint16_t)hashp->BSIZE;
197 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
198 	if (old_bufp == NULL)
199 		return (-1);
200 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
201 	if (new_bufp == NULL)
202 		return (-1);
203 
204 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
205 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
206 
207 	ino = (__uint16_t *)(op = old_bufp->page);
208 	np = new_bufp->page;
209 
210 	moved = 0;
211 
212 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
213 		if (ino[n + 1] < REAL_KEY) {
214 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
215 			    (int)copyto, (int)moved);
216 			old_bufp->flags &= ~BUF_PIN;
217 			new_bufp->flags &= ~BUF_PIN;
218 			return (retval);
219 
220 		}
221 		key.data = (u_char *)op + ino[n];
222 		key.size = off - ino[n];
223 
224 		if (__call_hash(hashp, key.data, key.size) == obucket) {
225 			/* Don't switch page */
226 			diff = copyto - off;
227 			if (diff) {
228 				copyto = ino[n + 1] + diff;
229 				memmove(op + copyto, op + ino[n + 1],
230 				    off - ino[n + 1]);
231 				ino[ndx] = copyto + ino[n] - ino[n + 1];
232 				ino[ndx + 1] = copyto;
233 			} else
234 				copyto = ino[n + 1];
235 			ndx += 2;
236 		} else {
237 			/* Switch page */
238 			val.data = (u_char *)op + ino[n + 1];
239 			val.size = ino[n] - ino[n + 1];
240 			putpair(np, &key, &val);
241 			moved += 2;
242 		}
243 
244 		off = ino[n + 1];
245 	}
246 
247 	/* Now clean up the page */
248 	ino[0] -= moved;
249 	FREESPACE(ino) = copyto - sizeof(__uint16_t) * (ino[0] + 3);
250 	OFFSET(ino) = copyto;
251 
252 #ifdef DEBUG3
253 	(void)fprintf(stderr, "split %d/%d\n",
254 	    ((__uint16_t *)np)[0] / 2,
255 	    ((__uint16_t *)op)[0] / 2);
256 #endif
257 	/* unpin both pages */
258 	old_bufp->flags &= ~BUF_PIN;
259 	new_bufp->flags &= ~BUF_PIN;
260 	return (0);
261 }
262 
263 /*
264  * Called when we encounter an overflow or big key/data page during split
265  * handling.  This is special cased since we have to begin checking whether
266  * the key/data pairs fit on their respective pages and because we may need
267  * overflow pages for both the old and new pages.
268  *
269  * The first page might be a page with regular key/data pairs in which case
270  * we have a regular overflow condition and just need to go on to the next
271  * page or it might be a big key/data pair in which case we need to fix the
272  * big key/data pair.
273  *
274  * Returns:
275  *	 0 ==> success
276  *	-1 ==> failure
277  */
278 static int
ugly_split(hashp,obucket,old_bufp,new_bufp,copyto,moved)279 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
280 	HTAB *hashp;
281 	__uint32_t obucket;	/* Same as __split_page. */
282 	BUFHEAD *old_bufp, *new_bufp;
283 	int copyto;	/* First byte on page which contains key/data values. */
284 	int moved;		/* Number of pairs moved to new page. */
285 {
286 	BUFHEAD *bufp;		/* Buffer header for ino */
287 	__uint16_t *ino;		/* Page keys come off of */
288 	__uint16_t *np;		/* New page */
289 	__uint16_t *op;		/* Page keys go on to if they aren't moving */
290 
291 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
292 	DBT key, val;
293 	SPLIT_RETURN ret;
294 	__uint16_t n, off, ov_addr, scopyto;
295 	char *cino;		/* Character value of ino */
296 
297 	bufp = old_bufp;
298 	ino = (__uint16_t *)old_bufp->page;
299 	np = (__uint16_t *)new_bufp->page;
300 	op = (__uint16_t *)old_bufp->page;
301 	last_bfp = NULL;
302 	scopyto = (__uint16_t)copyto;	/* ANSI */
303 
304 	n = ino[0] - 1;
305 	while (n < ino[0]) {
306 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
307 			if (__big_split(hashp, old_bufp,
308 			    new_bufp, bufp, bufp->addr, obucket, &ret))
309 				return (-1);
310 			old_bufp = ret.oldp;
311 			if (!old_bufp)
312 				return (-1);
313 			op = (__uint16_t *)old_bufp->page;
314 			new_bufp = ret.newp;
315 			if (!new_bufp)
316 				return (-1);
317 			np = (__uint16_t *)new_bufp->page;
318 			bufp = ret.nextp;
319 			if (!bufp)
320 				return (0);
321 			cino = (char *)bufp->page;
322 			ino = (__uint16_t *)cino;
323 			last_bfp = ret.nextp;
324 		} else if (ino[n + 1] == OVFLPAGE) {
325 			ov_addr = ino[n];
326 			/*
327 			 * Fix up the old page -- the extra 2 are the fields
328 			 * which contained the overflow information.
329 			 */
330 			ino[0] -= (moved + 2);
331 			FREESPACE(ino) =
332 			    scopyto - sizeof(__uint16_t) * (ino[0] + 3);
333 			OFFSET(ino) = scopyto;
334 
335 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
336 			if (!bufp)
337 				return (-1);
338 
339 			ino = (__uint16_t *)bufp->page;
340 			n = 1;
341 			scopyto = hashp->BSIZE;
342 			moved = 0;
343 
344 			if (last_bfp)
345 				__free_ovflpage(hashp, last_bfp);
346 			last_bfp = bufp;
347 		}
348 		/* Move regular sized pairs of there are any */
349 		off = hashp->BSIZE;
350 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
351 			cino = (char *)ino;
352 			key.data = (u_char *)cino + ino[n];
353 			key.size = off - ino[n];
354 			val.data = (u_char *)cino + ino[n + 1];
355 			val.size = ino[n] - ino[n + 1];
356 			off = ino[n + 1];
357 
358 			if (__call_hash(hashp, key.data, key.size) == obucket) {
359 				/* Keep on old page */
360 				if (PAIRFITS(op, (&key), (&val)))
361 					putpair((char *)op, &key, &val);
362 				else {
363 					old_bufp =
364 					    __add_ovflpage(hashp, old_bufp);
365 					if (!old_bufp)
366 						return (-1);
367 					op = (__uint16_t *)old_bufp->page;
368 					putpair((char *)op, &key, &val);
369 				}
370 				old_bufp->flags |= BUF_MOD;
371 			} else {
372 				/* Move to new page */
373 				if (PAIRFITS(np, (&key), (&val)))
374 					putpair((char *)np, &key, &val);
375 				else {
376 					new_bufp =
377 					    __add_ovflpage(hashp, new_bufp);
378 					if (!new_bufp)
379 						return (-1);
380 					np = (__uint16_t *)new_bufp->page;
381 					putpair((char *)np, &key, &val);
382 				}
383 				new_bufp->flags |= BUF_MOD;
384 			}
385 		}
386 	}
387 	if (last_bfp)
388 		__free_ovflpage(hashp, last_bfp);
389 	return (0);
390 }
391 
392 /*
393  * Add the given pair to the page
394  *
395  * Returns:
396  *	0 ==> OK
397  *	1 ==> failure
398  */
399 extern int
400 __addel(hashp, bufp, key, val)
401 	HTAB *hashp;
402 	BUFHEAD *bufp;
403 	const DBT *key, *val;
404 {
405 	__uint16_t *bp, *sop;
406 	int do_expand;
407 
408 	bp = (__uint16_t *)bufp->page;
409 	do_expand = 0;
410 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
411 		/* Exception case */
412 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
413 			/* This is the last page of a big key/data pair
414 			   and we need to add another page */
415 			break;
416 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
417 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
418 			if (!bufp)
419 				return (-1);
420 			bp = (__uint16_t *)bufp->page;
421 		} else
422 			/* Try to squeeze key on this page */
423 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
424 				squeeze_key(bp, key, val);
425 				return (0);
426 			} else {
427 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
428 				if (!bufp)
429 					return (-1);
430 				bp = (__uint16_t *)bufp->page;
431 			}
432 
433 	if (PAIRFITS(bp, key, val))
434 		putpair(bufp->page, key, val);
435 	else {
436 		do_expand = 1;
437 		bufp = __add_ovflpage(hashp, bufp);
438 		if (!bufp)
439 			return (-1);
440 		sop = (__uint16_t *)bufp->page;
441 
442 		if (PAIRFITS(sop, key, val))
443 			putpair((char *)sop, key, val);
444 		else
445 			if (__big_insert(hashp, bufp, key, val))
446 				return (-1);
447 	}
448 	bufp->flags |= BUF_MOD;
449 	/*
450 	 * If the average number of keys per bucket exceeds the fill factor,
451 	 * expand the table.
452 	 */
453 	hashp->NKEYS++;
454 	if (do_expand ||
455 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
456 		return (__expand_table(hashp));
457 	return (0);
458 }
459 
460 /*
461  *
462  * Returns:
463  *	pointer on success
464  *	NULL on error
465  */
466 extern BUFHEAD *
467 __add_ovflpage(hashp, bufp)
468 	HTAB *hashp;
469 	BUFHEAD *bufp;
470 {
471 	__uint16_t *sp;
472 	__uint16_t ndx, ovfl_num;
473 #ifdef DEBUG1
474 	int tmp1, tmp2;
475 #endif
476 	sp = (__uint16_t *)bufp->page;
477 
478 	/* Check if we are dynamically determining the fill factor */
479 	if (hashp->FFACTOR == DEF_FFACTOR) {
480 		hashp->FFACTOR = sp[0] >> 1;
481 		if (hashp->FFACTOR < MIN_FFACTOR)
482 			hashp->FFACTOR = MIN_FFACTOR;
483 	}
484 	bufp->flags |= BUF_MOD;
485 	ovfl_num = overflow_page(hashp);
486 #ifdef DEBUG1
487 	tmp1 = bufp->addr;
488 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
489 #endif
490 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
491 		return (NULL);
492 	bufp->ovfl->flags |= BUF_MOD;
493 #ifdef DEBUG1
494 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
495 	    tmp1, tmp2, bufp->ovfl->addr);
496 #endif
497 	ndx = sp[0];
498 	/*
499 	 * Since a pair is allocated on a page only if there's room to add
500 	 * an overflow page, we know that the OVFL information will fit on
501 	 * the page.
502 	 */
503 	sp[ndx + 4] = OFFSET(sp);
504 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
505 	sp[ndx + 1] = ovfl_num;
506 	sp[ndx + 2] = OVFLPAGE;
507 	sp[0] = ndx + 2;
508 #ifdef HASH_STATISTICS
509 	hash_overflows++;
510 #endif
511 	return (bufp->ovfl);
512 }
513 
514 /*
515  * Returns:
516  *	 0 indicates SUCCESS
517  *	-1 indicates FAILURE
518  */
519 extern int
520 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
521 	HTAB *hashp;
522 	char *p;
523 	__uint32_t bucket;
524 	int is_bucket, is_disk, is_bitmap;
525 {
526 	int fd, page, size;
527 	int rsize;
528 	__uint16_t *bp;
529 
530 	fd = hashp->fp;
531 	size = hashp->BSIZE;
532 
533 	if ((fd == -1) || !is_disk) {
534 		PAGE_INIT(p);
535 		return (0);
536 	}
537 	if (is_bucket)
538 		page = BUCKET_TO_PAGE(bucket);
539 	else
540 		page = OADDR_TO_PAGE(bucket);
541 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
542 	    ((rsize = read(fd, p, size)) == -1))
543 		return (-1);
544 	bp = (__uint16_t *)p;
545 	if (!rsize)
546 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
547 	else
548 		if (rsize != size) {
549 			errno = EFTYPE;
550 			return (-1);
551 		}
552 	if (!is_bitmap && !bp[0]) {
553 		PAGE_INIT(p);
554 	} else
555                if (hashp->LORDER != DB_BYTE_ORDER) {
556 			int i, max;
557 
558 			if (is_bitmap) {
559 				max = hashp->BSIZE >> 2; /* divide by 4 */
560 				for (i = 0; i < max; i++)
561 					M_32_SWAP(((int *)p)[i]);
562 			} else {
563 				M_16_SWAP(bp[0]);
564 				max = bp[0] + 2;
565 				for (i = 1; i <= max; i++)
566 					M_16_SWAP(bp[i]);
567 			}
568 		}
569 	return (0);
570 }
571 
572 /*
573  * Write page p to disk
574  *
575  * Returns:
576  *	 0 ==> OK
577  *	-1 ==>failure
578  */
579 extern int
580 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
581 	HTAB *hashp;
582 	char *p;
583 	__uint32_t bucket;
584 	int is_bucket, is_bitmap;
585 {
586 	int fd, page, size;
587 	int wsize;
588 
589 	size = hashp->BSIZE;
590 	if ((hashp->fp == -1) && open_temp(hashp))
591 		return (-1);
592 	fd = hashp->fp;
593 
594        if (hashp->LORDER != DB_BYTE_ORDER) {
595 		int i;
596 		int max;
597 
598 		if (is_bitmap) {
599 			max = hashp->BSIZE >> 2;	/* divide by 4 */
600 			for (i = 0; i < max; i++)
601 				M_32_SWAP(((int *)p)[i]);
602 		} else {
603 			max = ((__uint16_t *)p)[0] + 2;
604 			for (i = 0; i <= max; i++)
605 				M_16_SWAP(((__uint16_t *)p)[i]);
606 		}
607 	}
608 	if (is_bucket)
609 		page = BUCKET_TO_PAGE(bucket);
610 	else
611 		page = OADDR_TO_PAGE(bucket);
612 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
613 	    ((wsize = write(fd, p, size)) == -1))
614 		/* Errno is set */
615 		return (-1);
616 	if (wsize != size) {
617 		errno = EFTYPE;
618 		return (-1);
619 	}
620 	return (0);
621 }
622 
623 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
624 /*
625  * Initialize a new bitmap page.  Bitmap pages are left in memory
626  * once they are read in.
627  */
628 extern int
629 __ibitmap(hashp, pnum, nbits, ndx)
630 	HTAB *hashp;
631 	int pnum, nbits, ndx;
632 {
633 	__uint32_t *ip;
634 	int clearbytes, clearints;
635 
636 	if ((ip = (__uint32_t *)malloc(hashp->BSIZE)) == NULL)
637 		return (1);
638 	hashp->nmaps++;
639 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
640 	clearbytes = clearints << INT_TO_BYTE;
641 	(void)memset((char *)ip, 0, clearbytes);
642 	(void)memset(((char *)ip) + clearbytes, 0xFF,
643 	    hashp->BSIZE - clearbytes);
644 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
645 	SETBIT(ip, 0);
646 	hashp->BITMAPS[ndx] = (__uint16_t)pnum;
647 	hashp->mapp[ndx] = ip;
648 	return (0);
649 }
650 
651 static __uint32_t
first_free(map)652 first_free(map)
653 	__uint32_t map;
654 {
655 	__uint32_t i, mask;
656 
657 	mask = 0x1;
658 	for (i = 0; i < BITS_PER_MAP; i++) {
659 		if (!(mask & map))
660 			return (i);
661 		mask = mask << 1;
662 	}
663 	return (i);
664 }
665 
666 static __uint16_t
overflow_page(hashp)667 overflow_page(hashp)
668 	HTAB *hashp;
669 {
670 	__uint32_t *freep = NULL;
671 	int max_free, offset, splitnum;
672 	__uint16_t addr;
673 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
674 #ifdef DEBUG2
675 	int tmp1, tmp2;
676 #endif
677 	splitnum = hashp->OVFL_POINT;
678 	max_free = hashp->SPARES[splitnum];
679 
680 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
681 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
682 
683 	/* Look through all the free maps to find the first free block */
684 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
685 	for ( i = first_page; i <= free_page; i++ ) {
686 		if (!(freep = (__uint32_t *)hashp->mapp[i]) &&
687 		    !(freep = fetch_bitmap(hashp, i)))
688 			return (0);
689 		if (i == free_page)
690 			in_use_bits = free_bit;
691 		else
692 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
693 
694 		if (i == first_page) {
695 			bit = hashp->LAST_FREED &
696 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
697 			j = bit / BITS_PER_MAP;
698 			bit = bit & ~(BITS_PER_MAP - 1);
699 		} else {
700 			bit = 0;
701 			j = 0;
702 		}
703 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
704 			if (freep[j] != ALL_SET)
705 				goto found;
706 	}
707 
708 	/* No Free Page Found */
709 	hashp->LAST_FREED = hashp->SPARES[splitnum];
710 	hashp->SPARES[splitnum]++;
711 	offset = hashp->SPARES[splitnum] -
712 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
713 
714 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
715 	if (offset > SPLITMASK) {
716 		if (++splitnum >= NCACHED) {
717 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
718 			return (0);
719 		}
720 		hashp->OVFL_POINT = splitnum;
721 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
722 		hashp->SPARES[splitnum-1]--;
723 		offset = 1;
724 	}
725 
726 	/* Check if we need to allocate a new bitmap page */
727 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
728 		free_page++;
729 		if (free_page >= NCACHED) {
730 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
731 			return (0);
732 		}
733 		/*
734 		 * This is tricky.  The 1 indicates that you want the new page
735 		 * allocated with 1 clear bit.  Actually, you are going to
736 		 * allocate 2 pages from this map.  The first is going to be
737 		 * the map page, the second is the overflow page we were
738 		 * looking for.  The init_bitmap routine automatically, sets
739 		 * the first bit of itself to indicate that the bitmap itself
740 		 * is in use.  We would explicitly set the second bit, but
741 		 * don't have to if we tell init_bitmap not to leave it clear
742 		 * in the first place.
743 		 */
744 		if (__ibitmap(hashp,
745 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
746 			return (0);
747 		hashp->SPARES[splitnum]++;
748 #ifdef DEBUG2
749 		free_bit = 2;
750 #endif
751 		offset++;
752 		if (offset > SPLITMASK) {
753 			if (++splitnum >= NCACHED) {
754 				(void)write(STDERR_FILENO, OVMSG,
755 				    sizeof(OVMSG) - 1);
756 				return (0);
757 			}
758 			hashp->OVFL_POINT = splitnum;
759 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
760 			hashp->SPARES[splitnum-1]--;
761 			offset = 0;
762 		}
763 	} else {
764 		/*
765 		 * Free_bit addresses the last used bit.  Bump it to address
766 		 * the first available bit.
767 		 */
768 		free_bit++;
769 		SETBIT(freep, free_bit);
770 	}
771 
772 	/* Calculate address of the new overflow page */
773 	addr = OADDR_OF(splitnum, offset);
774 #ifdef DEBUG2
775 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
776 	    addr, free_bit, free_page);
777 #endif
778 	return (addr);
779 
780 found:
781 	bit = bit + first_free(freep[j]);
782 	SETBIT(freep, bit);
783 #ifdef DEBUG2
784 	tmp1 = bit;
785 	tmp2 = i;
786 #endif
787 	/*
788 	 * Bits are addressed starting with 0, but overflow pages are addressed
789 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
790 	 * it to convert it to a page number.
791 	 */
792 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
793 	if (bit >= hashp->LAST_FREED)
794 		hashp->LAST_FREED = bit - 1;
795 
796 	/* Calculate the split number for this page */
797 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
798 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
799 	if (offset >= SPLITMASK)
800 		return (0);	/* Out of overflow pages */
801 	addr = OADDR_OF(i, offset);
802 #ifdef DEBUG2
803 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
804 	    addr, tmp1, tmp2);
805 #endif
806 
807 	/* Allocate and return the overflow page */
808 	return (addr);
809 }
810 
811 /*
812  * Mark this overflow page as free.
813  */
814 extern void
815 __free_ovflpage(hashp, obufp)
816 	HTAB *hashp;
817 	BUFHEAD *obufp;
818 {
819 	__uint16_t addr;
820 	__uint32_t *freep;
821 	int bit_address, free_page, free_bit;
822 	__uint16_t ndx;
823 
824 	addr = obufp->addr;
825 #ifdef DEBUG1
826 	(void)fprintf(stderr, "Freeing %d\n", addr);
827 #endif
828 	ndx = (((__uint16_t)addr) >> SPLITSHIFT);
829 	bit_address =
830 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
831 	 if (bit_address < hashp->LAST_FREED)
832 		hashp->LAST_FREED = bit_address;
833 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
834 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
835 
836 	if (!(freep = hashp->mapp[free_page]))
837 		freep = fetch_bitmap(hashp, free_page);
838 #ifdef DEBUG
839 	/*
840 	 * This had better never happen.  It means we tried to read a bitmap
841 	 * that has already had overflow pages allocated off it, and we
842 	 * failed to read it from the file.
843 	 */
844 	if (!freep)
845 		assert(0);
846 #endif
847 	CLRBIT(freep, free_bit);
848 #ifdef DEBUG2
849 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
850 	    obufp->addr, free_bit, free_page);
851 #endif
852 	__reclaim_buf(hashp, obufp);
853 }
854 
855 /*
856  * Returns:
857  *	 0 success
858  *	-1 failure
859  */
860 static int
open_temp(hashp)861 open_temp(hashp)
862 	HTAB *hashp;
863 {
864 	sigset_t set, oset;
865 	static char namestr[] = "_hashXXXXXX";
866 
867 	/* Block signals; make sure file goes away at process exit. */
868 	(void)sigfillset(&set);
869 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
870 	if ((hashp->fp = mkstemp(namestr)) != -1) {
871 		(void)unlink(namestr);
872 #ifdef HAVE_FCNTL
873 		(void)fcntl(hashp->fp, F_SETFD, 1);
874 #endif
875 	}
876 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
877 	return (hashp->fp != -1 ? 0 : -1);
878 }
879 
880 /*
881  * We have to know that the key will fit, but the last entry on the page is
882  * an overflow pair, so we need to shift things.
883  */
884 static void
squeeze_key(sp,key,val)885 squeeze_key(sp, key, val)
886 	__uint16_t *sp;
887 	const DBT *key, *val;
888 {
889 	char *p;
890 	__uint16_t free_space, n, off, pageno;
891 
892 	p = (char *)sp;
893 	n = sp[0];
894 	free_space = FREESPACE(sp);
895 	off = OFFSET(sp);
896 
897 	pageno = sp[n - 1];
898 	off -= key->size;
899 	sp[n - 1] = off;
900 	memmove(p + off, key->data, key->size);
901 	off -= val->size;
902 	sp[n] = off;
903 	memmove(p + off, val->data, val->size);
904 	sp[0] = n + 2;
905 	sp[n + 1] = pageno;
906 	sp[n + 2] = OVFLPAGE;
907 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
908 	OFFSET(sp) = off;
909 }
910 
911 static __uint32_t *
fetch_bitmap(hashp,ndx)912 fetch_bitmap(hashp, ndx)
913 	HTAB *hashp;
914 	int ndx;
915 {
916 	if (ndx >= hashp->nmaps)
917 		return (NULL);
918 	if ((hashp->mapp[ndx] = (__uint32_t *)malloc(hashp->BSIZE)) == NULL)
919 		return (NULL);
920 	if (__get_page(hashp,
921 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
922 		free(hashp->mapp[ndx]);
923 		return (NULL);
924 	}
925 	return (hashp->mapp[ndx]);
926 }
927 
928 #ifdef DEBUG4
929 int
print_chain(addr)930 print_chain(addr)
931 	int addr;
932 {
933 	BUFHEAD *bufp;
934 	short *bp, oaddr;
935 
936 	(void)fprintf(stderr, "%d ", addr);
937 	bufp = __get_buf(hashp, addr, NULL, 0);
938 	bp = (short *)bufp->page;
939 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
940 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
941 		oaddr = bp[bp[0] - 1];
942 		(void)fprintf(stderr, "%d ", (int)oaddr);
943 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
944 		bp = (short *)bufp->page;
945 	}
946 	(void)fprintf(stderr, "\n");
947 }
948 #endif
949